Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/mm.h>
12#include <linux/pagemap.h>
13#include <linux/file.h>
14#include <linux/writeback.h>
15#include <linux/swap.h>
16#include <linux/migrate.h>
17
18#include <linux/sunrpc/clnt.h>
19#include <linux/nfs_fs.h>
20#include <linux/nfs_mount.h>
21#include <linux/nfs_page.h>
22#include <linux/backing-dev.h>
23#include <linux/export.h>
24
25#include <asm/uaccess.h>
26
27#include "delegation.h"
28#include "internal.h"
29#include "iostat.h"
30#include "nfs4_fs.h"
31#include "fscache.h"
32#include "pnfs.h"
33
34#include "nfstrace.h"
35
36#define NFSDBG_FACILITY NFSDBG_PAGECACHE
37
38#define MIN_POOL_WRITE (32)
39#define MIN_POOL_COMMIT (4)
40
41/*
42 * Local function declarations
43 */
44static void nfs_redirty_request(struct nfs_page *req);
45static const struct rpc_call_ops nfs_write_common_ops;
46static const struct rpc_call_ops nfs_commit_ops;
47static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
48static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
49
50static struct kmem_cache *nfs_wdata_cachep;
51static mempool_t *nfs_wdata_mempool;
52static struct kmem_cache *nfs_cdata_cachep;
53static mempool_t *nfs_commit_mempool;
54
55struct nfs_commit_data *nfs_commitdata_alloc(void)
56{
57 struct nfs_commit_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
58
59 if (p) {
60 memset(p, 0, sizeof(*p));
61 INIT_LIST_HEAD(&p->pages);
62 }
63 return p;
64}
65EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
66
67void nfs_commit_free(struct nfs_commit_data *p)
68{
69 mempool_free(p, nfs_commit_mempool);
70}
71EXPORT_SYMBOL_GPL(nfs_commit_free);
72
73struct nfs_write_header *nfs_writehdr_alloc(void)
74{
75 struct nfs_write_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
76
77 if (p) {
78 struct nfs_pgio_header *hdr = &p->header;
79
80 memset(p, 0, sizeof(*p));
81 INIT_LIST_HEAD(&hdr->pages);
82 INIT_LIST_HEAD(&hdr->rpc_list);
83 spin_lock_init(&hdr->lock);
84 atomic_set(&hdr->refcnt, 0);
85 hdr->verf = &p->verf;
86 }
87 return p;
88}
89EXPORT_SYMBOL_GPL(nfs_writehdr_alloc);
90
91static struct nfs_write_data *nfs_writedata_alloc(struct nfs_pgio_header *hdr,
92 unsigned int pagecount)
93{
94 struct nfs_write_data *data, *prealloc;
95
96 prealloc = &container_of(hdr, struct nfs_write_header, header)->rpc_data;
97 if (prealloc->header == NULL)
98 data = prealloc;
99 else
100 data = kzalloc(sizeof(*data), GFP_KERNEL);
101 if (!data)
102 goto out;
103
104 if (nfs_pgarray_set(&data->pages, pagecount)) {
105 data->header = hdr;
106 atomic_inc(&hdr->refcnt);
107 } else {
108 if (data != prealloc)
109 kfree(data);
110 data = NULL;
111 }
112out:
113 return data;
114}
115
116void nfs_writehdr_free(struct nfs_pgio_header *hdr)
117{
118 struct nfs_write_header *whdr = container_of(hdr, struct nfs_write_header, header);
119 mempool_free(whdr, nfs_wdata_mempool);
120}
121EXPORT_SYMBOL_GPL(nfs_writehdr_free);
122
123void nfs_writedata_release(struct nfs_write_data *wdata)
124{
125 struct nfs_pgio_header *hdr = wdata->header;
126 struct nfs_write_header *write_header = container_of(hdr, struct nfs_write_header, header);
127
128 put_nfs_open_context(wdata->args.context);
129 if (wdata->pages.pagevec != wdata->pages.page_array)
130 kfree(wdata->pages.pagevec);
131 if (wdata == &write_header->rpc_data) {
132 wdata->header = NULL;
133 wdata = NULL;
134 }
135 if (atomic_dec_and_test(&hdr->refcnt))
136 hdr->completion_ops->completion(hdr);
137 /* Note: we only free the rpc_task after callbacks are done.
138 * See the comment in rpc_free_task() for why
139 */
140 kfree(wdata);
141}
142EXPORT_SYMBOL_GPL(nfs_writedata_release);
143
144static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
145{
146 ctx->error = error;
147 smp_wmb();
148 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
149}
150
151static struct nfs_page *
152nfs_page_find_request_locked(struct nfs_inode *nfsi, struct page *page)
153{
154 struct nfs_page *req = NULL;
155
156 if (PagePrivate(page))
157 req = (struct nfs_page *)page_private(page);
158 else if (unlikely(PageSwapCache(page))) {
159 struct nfs_page *freq, *t;
160
161 /* Linearly search the commit list for the correct req */
162 list_for_each_entry_safe(freq, t, &nfsi->commit_info.list, wb_list) {
163 if (freq->wb_page == page) {
164 req = freq;
165 break;
166 }
167 }
168 }
169
170 if (req)
171 kref_get(&req->wb_kref);
172
173 return req;
174}
175
176static struct nfs_page *nfs_page_find_request(struct page *page)
177{
178 struct inode *inode = page_file_mapping(page)->host;
179 struct nfs_page *req = NULL;
180
181 spin_lock(&inode->i_lock);
182 req = nfs_page_find_request_locked(NFS_I(inode), page);
183 spin_unlock(&inode->i_lock);
184 return req;
185}
186
187/* Adjust the file length if we're writing beyond the end */
188static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
189{
190 struct inode *inode = page_file_mapping(page)->host;
191 loff_t end, i_size;
192 pgoff_t end_index;
193
194 spin_lock(&inode->i_lock);
195 i_size = i_size_read(inode);
196 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
197 if (i_size > 0 && page_file_index(page) < end_index)
198 goto out;
199 end = page_file_offset(page) + ((loff_t)offset+count);
200 if (i_size >= end)
201 goto out;
202 i_size_write(inode, end);
203 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
204out:
205 spin_unlock(&inode->i_lock);
206}
207
208/* A writeback failed: mark the page as bad, and invalidate the page cache */
209static void nfs_set_pageerror(struct page *page)
210{
211 nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
212}
213
214/* We can set the PG_uptodate flag if we see that a write request
215 * covers the full page.
216 */
217static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
218{
219 if (PageUptodate(page))
220 return;
221 if (base != 0)
222 return;
223 if (count != nfs_page_length(page))
224 return;
225 SetPageUptodate(page);
226}
227
228static int wb_priority(struct writeback_control *wbc)
229{
230 if (wbc->for_reclaim)
231 return FLUSH_HIGHPRI | FLUSH_STABLE;
232 if (wbc->for_kupdate || wbc->for_background)
233 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
234 return FLUSH_COND_STABLE;
235}
236
237/*
238 * NFS congestion control
239 */
240
241int nfs_congestion_kb;
242
243#define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
244#define NFS_CONGESTION_OFF_THRESH \
245 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
246
247static void nfs_set_page_writeback(struct page *page)
248{
249 struct nfs_server *nfss = NFS_SERVER(page_file_mapping(page)->host);
250 int ret = test_set_page_writeback(page);
251
252 WARN_ON_ONCE(ret != 0);
253
254 if (atomic_long_inc_return(&nfss->writeback) >
255 NFS_CONGESTION_ON_THRESH) {
256 set_bdi_congested(&nfss->backing_dev_info,
257 BLK_RW_ASYNC);
258 }
259}
260
261static void nfs_end_page_writeback(struct page *page)
262{
263 struct inode *inode = page_file_mapping(page)->host;
264 struct nfs_server *nfss = NFS_SERVER(inode);
265
266 end_page_writeback(page);
267 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
268 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
269}
270
271static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
272{
273 struct inode *inode = page_file_mapping(page)->host;
274 struct nfs_page *req;
275 int ret;
276
277 spin_lock(&inode->i_lock);
278 for (;;) {
279 req = nfs_page_find_request_locked(NFS_I(inode), page);
280 if (req == NULL)
281 break;
282 if (nfs_lock_request(req))
283 break;
284 /* Note: If we hold the page lock, as is the case in nfs_writepage,
285 * then the call to nfs_lock_request() will always
286 * succeed provided that someone hasn't already marked the
287 * request as dirty (in which case we don't care).
288 */
289 spin_unlock(&inode->i_lock);
290 if (!nonblock)
291 ret = nfs_wait_on_request(req);
292 else
293 ret = -EAGAIN;
294 nfs_release_request(req);
295 if (ret != 0)
296 return ERR_PTR(ret);
297 spin_lock(&inode->i_lock);
298 }
299 spin_unlock(&inode->i_lock);
300 return req;
301}
302
303/*
304 * Find an associated nfs write request, and prepare to flush it out
305 * May return an error if the user signalled nfs_wait_on_request().
306 */
307static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
308 struct page *page, bool nonblock)
309{
310 struct nfs_page *req;
311 int ret = 0;
312
313 req = nfs_find_and_lock_request(page, nonblock);
314 if (!req)
315 goto out;
316 ret = PTR_ERR(req);
317 if (IS_ERR(req))
318 goto out;
319
320 nfs_set_page_writeback(page);
321 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
322
323 ret = 0;
324 if (!nfs_pageio_add_request(pgio, req)) {
325 nfs_redirty_request(req);
326 ret = pgio->pg_error;
327 }
328out:
329 return ret;
330}
331
332static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
333{
334 struct inode *inode = page_file_mapping(page)->host;
335 int ret;
336
337 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
338 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
339
340 nfs_pageio_cond_complete(pgio, page_file_index(page));
341 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
342 if (ret == -EAGAIN) {
343 redirty_page_for_writepage(wbc, page);
344 ret = 0;
345 }
346 return ret;
347}
348
349/*
350 * Write an mmapped page to the server.
351 */
352static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
353{
354 struct nfs_pageio_descriptor pgio;
355 int err;
356
357 NFS_PROTO(page_file_mapping(page)->host)->write_pageio_init(&pgio,
358 page->mapping->host,
359 wb_priority(wbc),
360 &nfs_async_write_completion_ops);
361 err = nfs_do_writepage(page, wbc, &pgio);
362 nfs_pageio_complete(&pgio);
363 if (err < 0)
364 return err;
365 if (pgio.pg_error < 0)
366 return pgio.pg_error;
367 return 0;
368}
369
370int nfs_writepage(struct page *page, struct writeback_control *wbc)
371{
372 int ret;
373
374 ret = nfs_writepage_locked(page, wbc);
375 unlock_page(page);
376 return ret;
377}
378
379static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
380{
381 int ret;
382
383 ret = nfs_do_writepage(page, wbc, data);
384 unlock_page(page);
385 return ret;
386}
387
388int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
389{
390 struct inode *inode = mapping->host;
391 unsigned long *bitlock = &NFS_I(inode)->flags;
392 struct nfs_pageio_descriptor pgio;
393 int err;
394
395 /* Stop dirtying of new pages while we sync */
396 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
397 nfs_wait_bit_killable, TASK_KILLABLE);
398 if (err)
399 goto out_err;
400
401 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
402
403 NFS_PROTO(inode)->write_pageio_init(&pgio, inode, wb_priority(wbc), &nfs_async_write_completion_ops);
404 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
405 nfs_pageio_complete(&pgio);
406
407 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
408 smp_mb__after_clear_bit();
409 wake_up_bit(bitlock, NFS_INO_FLUSHING);
410
411 if (err < 0)
412 goto out_err;
413 err = pgio.pg_error;
414 if (err < 0)
415 goto out_err;
416 return 0;
417out_err:
418 return err;
419}
420
421/*
422 * Insert a write request into an inode
423 */
424static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
425{
426 struct nfs_inode *nfsi = NFS_I(inode);
427
428 /* Lock the request! */
429 nfs_lock_request(req);
430
431 spin_lock(&inode->i_lock);
432 if (!nfsi->npages && NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
433 inode->i_version++;
434 /*
435 * Swap-space should not get truncated. Hence no need to plug the race
436 * with invalidate/truncate.
437 */
438 if (likely(!PageSwapCache(req->wb_page))) {
439 set_bit(PG_MAPPED, &req->wb_flags);
440 SetPagePrivate(req->wb_page);
441 set_page_private(req->wb_page, (unsigned long)req);
442 }
443 nfsi->npages++;
444 kref_get(&req->wb_kref);
445 spin_unlock(&inode->i_lock);
446}
447
448/*
449 * Remove a write request from an inode
450 */
451static void nfs_inode_remove_request(struct nfs_page *req)
452{
453 struct inode *inode = req->wb_context->dentry->d_inode;
454 struct nfs_inode *nfsi = NFS_I(inode);
455
456 spin_lock(&inode->i_lock);
457 if (likely(!PageSwapCache(req->wb_page))) {
458 set_page_private(req->wb_page, 0);
459 ClearPagePrivate(req->wb_page);
460 clear_bit(PG_MAPPED, &req->wb_flags);
461 }
462 nfsi->npages--;
463 spin_unlock(&inode->i_lock);
464 nfs_release_request(req);
465}
466
467static void
468nfs_mark_request_dirty(struct nfs_page *req)
469{
470 __set_page_dirty_nobuffers(req->wb_page);
471}
472
473#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
474/**
475 * nfs_request_add_commit_list - add request to a commit list
476 * @req: pointer to a struct nfs_page
477 * @dst: commit list head
478 * @cinfo: holds list lock and accounting info
479 *
480 * This sets the PG_CLEAN bit, updates the cinfo count of
481 * number of outstanding requests requiring a commit as well as
482 * the MM page stats.
483 *
484 * The caller must _not_ hold the cinfo->lock, but must be
485 * holding the nfs_page lock.
486 */
487void
488nfs_request_add_commit_list(struct nfs_page *req, struct list_head *dst,
489 struct nfs_commit_info *cinfo)
490{
491 set_bit(PG_CLEAN, &(req)->wb_flags);
492 spin_lock(cinfo->lock);
493 nfs_list_add_request(req, dst);
494 cinfo->mds->ncommit++;
495 spin_unlock(cinfo->lock);
496 if (!cinfo->dreq) {
497 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
498 inc_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
499 BDI_RECLAIMABLE);
500 __mark_inode_dirty(req->wb_context->dentry->d_inode,
501 I_DIRTY_DATASYNC);
502 }
503}
504EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
505
506/**
507 * nfs_request_remove_commit_list - Remove request from a commit list
508 * @req: pointer to a nfs_page
509 * @cinfo: holds list lock and accounting info
510 *
511 * This clears the PG_CLEAN bit, and updates the cinfo's count of
512 * number of outstanding requests requiring a commit
513 * It does not update the MM page stats.
514 *
515 * The caller _must_ hold the cinfo->lock and the nfs_page lock.
516 */
517void
518nfs_request_remove_commit_list(struct nfs_page *req,
519 struct nfs_commit_info *cinfo)
520{
521 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
522 return;
523 nfs_list_remove_request(req);
524 cinfo->mds->ncommit--;
525}
526EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
527
528static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
529 struct inode *inode)
530{
531 cinfo->lock = &inode->i_lock;
532 cinfo->mds = &NFS_I(inode)->commit_info;
533 cinfo->ds = pnfs_get_ds_info(inode);
534 cinfo->dreq = NULL;
535 cinfo->completion_ops = &nfs_commit_completion_ops;
536}
537
538void nfs_init_cinfo(struct nfs_commit_info *cinfo,
539 struct inode *inode,
540 struct nfs_direct_req *dreq)
541{
542 if (dreq)
543 nfs_init_cinfo_from_dreq(cinfo, dreq);
544 else
545 nfs_init_cinfo_from_inode(cinfo, inode);
546}
547EXPORT_SYMBOL_GPL(nfs_init_cinfo);
548
549/*
550 * Add a request to the inode's commit list.
551 */
552void
553nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
554 struct nfs_commit_info *cinfo)
555{
556 if (pnfs_mark_request_commit(req, lseg, cinfo))
557 return;
558 nfs_request_add_commit_list(req, &cinfo->mds->list, cinfo);
559}
560
561static void
562nfs_clear_page_commit(struct page *page)
563{
564 dec_zone_page_state(page, NR_UNSTABLE_NFS);
565 dec_bdi_stat(page_file_mapping(page)->backing_dev_info, BDI_RECLAIMABLE);
566}
567
568static void
569nfs_clear_request_commit(struct nfs_page *req)
570{
571 if (test_bit(PG_CLEAN, &req->wb_flags)) {
572 struct inode *inode = req->wb_context->dentry->d_inode;
573 struct nfs_commit_info cinfo;
574
575 nfs_init_cinfo_from_inode(&cinfo, inode);
576 if (!pnfs_clear_request_commit(req, &cinfo)) {
577 spin_lock(cinfo.lock);
578 nfs_request_remove_commit_list(req, &cinfo);
579 spin_unlock(cinfo.lock);
580 }
581 nfs_clear_page_commit(req->wb_page);
582 }
583}
584
585static inline
586int nfs_write_need_commit(struct nfs_write_data *data)
587{
588 if (data->verf.committed == NFS_DATA_SYNC)
589 return data->header->lseg == NULL;
590 return data->verf.committed != NFS_FILE_SYNC;
591}
592
593#else
594static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
595 struct inode *inode)
596{
597}
598
599void nfs_init_cinfo(struct nfs_commit_info *cinfo,
600 struct inode *inode,
601 struct nfs_direct_req *dreq)
602{
603}
604
605void
606nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
607 struct nfs_commit_info *cinfo)
608{
609}
610
611static void
612nfs_clear_request_commit(struct nfs_page *req)
613{
614}
615
616static inline
617int nfs_write_need_commit(struct nfs_write_data *data)
618{
619 return 0;
620}
621
622#endif
623
624static void nfs_write_completion(struct nfs_pgio_header *hdr)
625{
626 struct nfs_commit_info cinfo;
627 unsigned long bytes = 0;
628
629 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
630 goto out;
631 nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
632 while (!list_empty(&hdr->pages)) {
633 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
634
635 bytes += req->wb_bytes;
636 nfs_list_remove_request(req);
637 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
638 (hdr->good_bytes < bytes)) {
639 nfs_set_pageerror(req->wb_page);
640 nfs_context_set_write_error(req->wb_context, hdr->error);
641 goto remove_req;
642 }
643 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
644 nfs_mark_request_dirty(req);
645 goto next;
646 }
647 if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
648 memcpy(&req->wb_verf, &hdr->verf->verifier, sizeof(req->wb_verf));
649 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
650 goto next;
651 }
652remove_req:
653 nfs_inode_remove_request(req);
654next:
655 nfs_unlock_request(req);
656 nfs_end_page_writeback(req->wb_page);
657 nfs_release_request(req);
658 }
659out:
660 hdr->release(hdr);
661}
662
663#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
664static unsigned long
665nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
666{
667 return cinfo->mds->ncommit;
668}
669
670/* cinfo->lock held by caller */
671int
672nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
673 struct nfs_commit_info *cinfo, int max)
674{
675 struct nfs_page *req, *tmp;
676 int ret = 0;
677
678 list_for_each_entry_safe(req, tmp, src, wb_list) {
679 if (!nfs_lock_request(req))
680 continue;
681 kref_get(&req->wb_kref);
682 if (cond_resched_lock(cinfo->lock))
683 list_safe_reset_next(req, tmp, wb_list);
684 nfs_request_remove_commit_list(req, cinfo);
685 nfs_list_add_request(req, dst);
686 ret++;
687 if ((ret == max) && !cinfo->dreq)
688 break;
689 }
690 return ret;
691}
692
693/*
694 * nfs_scan_commit - Scan an inode for commit requests
695 * @inode: NFS inode to scan
696 * @dst: mds destination list
697 * @cinfo: mds and ds lists of reqs ready to commit
698 *
699 * Moves requests from the inode's 'commit' request list.
700 * The requests are *not* checked to ensure that they form a contiguous set.
701 */
702int
703nfs_scan_commit(struct inode *inode, struct list_head *dst,
704 struct nfs_commit_info *cinfo)
705{
706 int ret = 0;
707
708 spin_lock(cinfo->lock);
709 if (cinfo->mds->ncommit > 0) {
710 const int max = INT_MAX;
711
712 ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
713 cinfo, max);
714 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
715 }
716 spin_unlock(cinfo->lock);
717 return ret;
718}
719
720#else
721static unsigned long nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
722{
723 return 0;
724}
725
726int nfs_scan_commit(struct inode *inode, struct list_head *dst,
727 struct nfs_commit_info *cinfo)
728{
729 return 0;
730}
731#endif
732
733/*
734 * Search for an existing write request, and attempt to update
735 * it to reflect a new dirty region on a given page.
736 *
737 * If the attempt fails, then the existing request is flushed out
738 * to disk.
739 */
740static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
741 struct page *page,
742 unsigned int offset,
743 unsigned int bytes)
744{
745 struct nfs_page *req;
746 unsigned int rqend;
747 unsigned int end;
748 int error;
749
750 if (!PagePrivate(page))
751 return NULL;
752
753 end = offset + bytes;
754 spin_lock(&inode->i_lock);
755
756 for (;;) {
757 req = nfs_page_find_request_locked(NFS_I(inode), page);
758 if (req == NULL)
759 goto out_unlock;
760
761 rqend = req->wb_offset + req->wb_bytes;
762 /*
763 * Tell the caller to flush out the request if
764 * the offsets are non-contiguous.
765 * Note: nfs_flush_incompatible() will already
766 * have flushed out requests having wrong owners.
767 */
768 if (offset > rqend
769 || end < req->wb_offset)
770 goto out_flushme;
771
772 if (nfs_lock_request(req))
773 break;
774
775 /* The request is locked, so wait and then retry */
776 spin_unlock(&inode->i_lock);
777 error = nfs_wait_on_request(req);
778 nfs_release_request(req);
779 if (error != 0)
780 goto out_err;
781 spin_lock(&inode->i_lock);
782 }
783
784 /* Okay, the request matches. Update the region */
785 if (offset < req->wb_offset) {
786 req->wb_offset = offset;
787 req->wb_pgbase = offset;
788 }
789 if (end > rqend)
790 req->wb_bytes = end - req->wb_offset;
791 else
792 req->wb_bytes = rqend - req->wb_offset;
793out_unlock:
794 spin_unlock(&inode->i_lock);
795 if (req)
796 nfs_clear_request_commit(req);
797 return req;
798out_flushme:
799 spin_unlock(&inode->i_lock);
800 nfs_release_request(req);
801 error = nfs_wb_page(inode, page);
802out_err:
803 return ERR_PTR(error);
804}
805
806/*
807 * Try to update an existing write request, or create one if there is none.
808 *
809 * Note: Should always be called with the Page Lock held to prevent races
810 * if we have to add a new request. Also assumes that the caller has
811 * already called nfs_flush_incompatible() if necessary.
812 */
813static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
814 struct page *page, unsigned int offset, unsigned int bytes)
815{
816 struct inode *inode = page_file_mapping(page)->host;
817 struct nfs_page *req;
818
819 req = nfs_try_to_update_request(inode, page, offset, bytes);
820 if (req != NULL)
821 goto out;
822 req = nfs_create_request(ctx, inode, page, offset, bytes);
823 if (IS_ERR(req))
824 goto out;
825 nfs_inode_add_request(inode, req);
826out:
827 return req;
828}
829
830static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
831 unsigned int offset, unsigned int count)
832{
833 struct nfs_page *req;
834
835 req = nfs_setup_write_request(ctx, page, offset, count);
836 if (IS_ERR(req))
837 return PTR_ERR(req);
838 /* Update file length */
839 nfs_grow_file(page, offset, count);
840 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
841 nfs_mark_request_dirty(req);
842 nfs_unlock_and_release_request(req);
843 return 0;
844}
845
846int nfs_flush_incompatible(struct file *file, struct page *page)
847{
848 struct nfs_open_context *ctx = nfs_file_open_context(file);
849 struct nfs_lock_context *l_ctx;
850 struct nfs_page *req;
851 int do_flush, status;
852 /*
853 * Look for a request corresponding to this page. If there
854 * is one, and it belongs to another file, we flush it out
855 * before we try to copy anything into the page. Do this
856 * due to the lack of an ACCESS-type call in NFSv2.
857 * Also do the same if we find a request from an existing
858 * dropped page.
859 */
860 do {
861 req = nfs_page_find_request(page);
862 if (req == NULL)
863 return 0;
864 l_ctx = req->wb_lock_context;
865 do_flush = req->wb_page != page || req->wb_context != ctx;
866 if (l_ctx && ctx->dentry->d_inode->i_flock != NULL) {
867 do_flush |= l_ctx->lockowner.l_owner != current->files
868 || l_ctx->lockowner.l_pid != current->tgid;
869 }
870 nfs_release_request(req);
871 if (!do_flush)
872 return 0;
873 status = nfs_wb_page(page_file_mapping(page)->host, page);
874 } while (status == 0);
875 return status;
876}
877
878/*
879 * Avoid buffered writes when a open context credential's key would
880 * expire soon.
881 *
882 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
883 *
884 * Return 0 and set a credential flag which triggers the inode to flush
885 * and performs NFS_FILE_SYNC writes if the key will expired within
886 * RPC_KEY_EXPIRE_TIMEO.
887 */
888int
889nfs_key_timeout_notify(struct file *filp, struct inode *inode)
890{
891 struct nfs_open_context *ctx = nfs_file_open_context(filp);
892 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
893
894 return rpcauth_key_timeout_notify(auth, ctx->cred);
895}
896
897/*
898 * Test if the open context credential key is marked to expire soon.
899 */
900bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx)
901{
902 return rpcauth_cred_key_to_expire(ctx->cred);
903}
904
905/*
906 * If the page cache is marked as unsafe or invalid, then we can't rely on
907 * the PageUptodate() flag. In this case, we will need to turn off
908 * write optimisations that depend on the page contents being correct.
909 */
910static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
911{
912 if (nfs_have_delegated_attributes(inode))
913 goto out;
914 if (NFS_I(inode)->cache_validity & (NFS_INO_INVALID_DATA|NFS_INO_REVAL_PAGECACHE))
915 return false;
916out:
917 return PageUptodate(page) != 0;
918}
919
920/* If we know the page is up to date, and we're not using byte range locks (or
921 * if we have the whole file locked for writing), it may be more efficient to
922 * extend the write to cover the entire page in order to avoid fragmentation
923 * inefficiencies.
924 *
925 * If the file is opened for synchronous writes or if we have a write delegation
926 * from the server then we can just skip the rest of the checks.
927 */
928static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
929{
930 if (file->f_flags & O_DSYNC)
931 return 0;
932 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
933 return 1;
934 if (nfs_write_pageuptodate(page, inode) && (inode->i_flock == NULL ||
935 (inode->i_flock->fl_start == 0 &&
936 inode->i_flock->fl_end == OFFSET_MAX &&
937 inode->i_flock->fl_type != F_RDLCK)))
938 return 1;
939 return 0;
940}
941
942/*
943 * Update and possibly write a cached page of an NFS file.
944 *
945 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
946 * things with a page scheduled for an RPC call (e.g. invalidate it).
947 */
948int nfs_updatepage(struct file *file, struct page *page,
949 unsigned int offset, unsigned int count)
950{
951 struct nfs_open_context *ctx = nfs_file_open_context(file);
952 struct inode *inode = page_file_mapping(page)->host;
953 int status = 0;
954
955 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
956
957 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
958 file->f_path.dentry->d_parent->d_name.name,
959 file->f_path.dentry->d_name.name, count,
960 (long long)(page_file_offset(page) + offset));
961
962 if (nfs_can_extend_write(file, page, inode)) {
963 count = max(count + offset, nfs_page_length(page));
964 offset = 0;
965 }
966
967 status = nfs_writepage_setup(ctx, page, offset, count);
968 if (status < 0)
969 nfs_set_pageerror(page);
970 else
971 __set_page_dirty_nobuffers(page);
972
973 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
974 status, (long long)i_size_read(inode));
975 return status;
976}
977
978static int flush_task_priority(int how)
979{
980 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
981 case FLUSH_HIGHPRI:
982 return RPC_PRIORITY_HIGH;
983 case FLUSH_LOWPRI:
984 return RPC_PRIORITY_LOW;
985 }
986 return RPC_PRIORITY_NORMAL;
987}
988
989int nfs_initiate_write(struct rpc_clnt *clnt,
990 struct nfs_write_data *data,
991 const struct rpc_call_ops *call_ops,
992 int how, int flags)
993{
994 struct inode *inode = data->header->inode;
995 int priority = flush_task_priority(how);
996 struct rpc_task *task;
997 struct rpc_message msg = {
998 .rpc_argp = &data->args,
999 .rpc_resp = &data->res,
1000 .rpc_cred = data->header->cred,
1001 };
1002 struct rpc_task_setup task_setup_data = {
1003 .rpc_client = clnt,
1004 .task = &data->task,
1005 .rpc_message = &msg,
1006 .callback_ops = call_ops,
1007 .callback_data = data,
1008 .workqueue = nfsiod_workqueue,
1009 .flags = RPC_TASK_ASYNC | flags,
1010 .priority = priority,
1011 };
1012 int ret = 0;
1013
1014 /* Set up the initial task struct. */
1015 NFS_PROTO(inode)->write_setup(data, &msg);
1016
1017 dprintk("NFS: %5u initiated write call "
1018 "(req %s/%lld, %u bytes @ offset %llu)\n",
1019 data->task.tk_pid,
1020 inode->i_sb->s_id,
1021 (long long)NFS_FILEID(inode),
1022 data->args.count,
1023 (unsigned long long)data->args.offset);
1024
1025 nfs4_state_protect_write(NFS_SERVER(inode)->nfs_client,
1026 &task_setup_data.rpc_client, &msg, data);
1027
1028 task = rpc_run_task(&task_setup_data);
1029 if (IS_ERR(task)) {
1030 ret = PTR_ERR(task);
1031 goto out;
1032 }
1033 if (how & FLUSH_SYNC) {
1034 ret = rpc_wait_for_completion_task(task);
1035 if (ret == 0)
1036 ret = task->tk_status;
1037 }
1038 rpc_put_task(task);
1039out:
1040 return ret;
1041}
1042EXPORT_SYMBOL_GPL(nfs_initiate_write);
1043
1044/*
1045 * Set up the argument/result storage required for the RPC call.
1046 */
1047static void nfs_write_rpcsetup(struct nfs_write_data *data,
1048 unsigned int count, unsigned int offset,
1049 int how, struct nfs_commit_info *cinfo)
1050{
1051 struct nfs_page *req = data->header->req;
1052
1053 /* Set up the RPC argument and reply structs
1054 * NB: take care not to mess about with data->commit et al. */
1055
1056 data->args.fh = NFS_FH(data->header->inode);
1057 data->args.offset = req_offset(req) + offset;
1058 /* pnfs_set_layoutcommit needs this */
1059 data->mds_offset = data->args.offset;
1060 data->args.pgbase = req->wb_pgbase + offset;
1061 data->args.pages = data->pages.pagevec;
1062 data->args.count = count;
1063 data->args.context = get_nfs_open_context(req->wb_context);
1064 data->args.lock_context = req->wb_lock_context;
1065 data->args.stable = NFS_UNSTABLE;
1066 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
1067 case 0:
1068 break;
1069 case FLUSH_COND_STABLE:
1070 if (nfs_reqs_to_commit(cinfo))
1071 break;
1072 default:
1073 data->args.stable = NFS_FILE_SYNC;
1074 }
1075
1076 data->res.fattr = &data->fattr;
1077 data->res.count = count;
1078 data->res.verf = &data->verf;
1079 nfs_fattr_init(&data->fattr);
1080}
1081
1082static int nfs_do_write(struct nfs_write_data *data,
1083 const struct rpc_call_ops *call_ops,
1084 int how)
1085{
1086 struct inode *inode = data->header->inode;
1087
1088 return nfs_initiate_write(NFS_CLIENT(inode), data, call_ops, how, 0);
1089}
1090
1091static int nfs_do_multiple_writes(struct list_head *head,
1092 const struct rpc_call_ops *call_ops,
1093 int how)
1094{
1095 struct nfs_write_data *data;
1096 int ret = 0;
1097
1098 while (!list_empty(head)) {
1099 int ret2;
1100
1101 data = list_first_entry(head, struct nfs_write_data, list);
1102 list_del_init(&data->list);
1103
1104 ret2 = nfs_do_write(data, call_ops, how);
1105 if (ret == 0)
1106 ret = ret2;
1107 }
1108 return ret;
1109}
1110
1111/* If a nfs_flush_* function fails, it should remove reqs from @head and
1112 * call this on each, which will prepare them to be retried on next
1113 * writeback using standard nfs.
1114 */
1115static void nfs_redirty_request(struct nfs_page *req)
1116{
1117 nfs_mark_request_dirty(req);
1118 nfs_unlock_request(req);
1119 nfs_end_page_writeback(req->wb_page);
1120 nfs_release_request(req);
1121}
1122
1123static void nfs_async_write_error(struct list_head *head)
1124{
1125 struct nfs_page *req;
1126
1127 while (!list_empty(head)) {
1128 req = nfs_list_entry(head->next);
1129 nfs_list_remove_request(req);
1130 nfs_redirty_request(req);
1131 }
1132}
1133
1134static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1135 .error_cleanup = nfs_async_write_error,
1136 .completion = nfs_write_completion,
1137};
1138
1139static void nfs_flush_error(struct nfs_pageio_descriptor *desc,
1140 struct nfs_pgio_header *hdr)
1141{
1142 set_bit(NFS_IOHDR_REDO, &hdr->flags);
1143 while (!list_empty(&hdr->rpc_list)) {
1144 struct nfs_write_data *data = list_first_entry(&hdr->rpc_list,
1145 struct nfs_write_data, list);
1146 list_del(&data->list);
1147 nfs_writedata_release(data);
1148 }
1149 desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1150}
1151
1152/*
1153 * Generate multiple small requests to write out a single
1154 * contiguous dirty area on one page.
1155 */
1156static int nfs_flush_multi(struct nfs_pageio_descriptor *desc,
1157 struct nfs_pgio_header *hdr)
1158{
1159 struct nfs_page *req = hdr->req;
1160 struct page *page = req->wb_page;
1161 struct nfs_write_data *data;
1162 size_t wsize = desc->pg_bsize, nbytes;
1163 unsigned int offset;
1164 int requests = 0;
1165 struct nfs_commit_info cinfo;
1166
1167 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1168
1169 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1170 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo) ||
1171 desc->pg_count > wsize))
1172 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1173
1174
1175 offset = 0;
1176 nbytes = desc->pg_count;
1177 do {
1178 size_t len = min(nbytes, wsize);
1179
1180 data = nfs_writedata_alloc(hdr, 1);
1181 if (!data) {
1182 nfs_flush_error(desc, hdr);
1183 return -ENOMEM;
1184 }
1185 data->pages.pagevec[0] = page;
1186 nfs_write_rpcsetup(data, len, offset, desc->pg_ioflags, &cinfo);
1187 list_add(&data->list, &hdr->rpc_list);
1188 requests++;
1189 nbytes -= len;
1190 offset += len;
1191 } while (nbytes != 0);
1192 nfs_list_remove_request(req);
1193 nfs_list_add_request(req, &hdr->pages);
1194 desc->pg_rpc_callops = &nfs_write_common_ops;
1195 return 0;
1196}
1197
1198/*
1199 * Create an RPC task for the given write request and kick it.
1200 * The page must have been locked by the caller.
1201 *
1202 * It may happen that the page we're passed is not marked dirty.
1203 * This is the case if nfs_updatepage detects a conflicting request
1204 * that has been written but not committed.
1205 */
1206static int nfs_flush_one(struct nfs_pageio_descriptor *desc,
1207 struct nfs_pgio_header *hdr)
1208{
1209 struct nfs_page *req;
1210 struct page **pages;
1211 struct nfs_write_data *data;
1212 struct list_head *head = &desc->pg_list;
1213 struct nfs_commit_info cinfo;
1214
1215 data = nfs_writedata_alloc(hdr, nfs_page_array_len(desc->pg_base,
1216 desc->pg_count));
1217 if (!data) {
1218 nfs_flush_error(desc, hdr);
1219 return -ENOMEM;
1220 }
1221
1222 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1223 pages = data->pages.pagevec;
1224 while (!list_empty(head)) {
1225 req = nfs_list_entry(head->next);
1226 nfs_list_remove_request(req);
1227 nfs_list_add_request(req, &hdr->pages);
1228 *pages++ = req->wb_page;
1229 }
1230
1231 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1232 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo)))
1233 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1234
1235 /* Set up the argument struct */
1236 nfs_write_rpcsetup(data, desc->pg_count, 0, desc->pg_ioflags, &cinfo);
1237 list_add(&data->list, &hdr->rpc_list);
1238 desc->pg_rpc_callops = &nfs_write_common_ops;
1239 return 0;
1240}
1241
1242int nfs_generic_flush(struct nfs_pageio_descriptor *desc,
1243 struct nfs_pgio_header *hdr)
1244{
1245 if (desc->pg_bsize < PAGE_CACHE_SIZE)
1246 return nfs_flush_multi(desc, hdr);
1247 return nfs_flush_one(desc, hdr);
1248}
1249EXPORT_SYMBOL_GPL(nfs_generic_flush);
1250
1251static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1252{
1253 struct nfs_write_header *whdr;
1254 struct nfs_pgio_header *hdr;
1255 int ret;
1256
1257 whdr = nfs_writehdr_alloc();
1258 if (!whdr) {
1259 desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1260 return -ENOMEM;
1261 }
1262 hdr = &whdr->header;
1263 nfs_pgheader_init(desc, hdr, nfs_writehdr_free);
1264 atomic_inc(&hdr->refcnt);
1265 ret = nfs_generic_flush(desc, hdr);
1266 if (ret == 0)
1267 ret = nfs_do_multiple_writes(&hdr->rpc_list,
1268 desc->pg_rpc_callops,
1269 desc->pg_ioflags);
1270 if (atomic_dec_and_test(&hdr->refcnt))
1271 hdr->completion_ops->completion(hdr);
1272 return ret;
1273}
1274
1275static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1276 .pg_test = nfs_generic_pg_test,
1277 .pg_doio = nfs_generic_pg_writepages,
1278};
1279
1280void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1281 struct inode *inode, int ioflags,
1282 const struct nfs_pgio_completion_ops *compl_ops)
1283{
1284 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, compl_ops,
1285 NFS_SERVER(inode)->wsize, ioflags);
1286}
1287EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1288
1289void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1290{
1291 pgio->pg_ops = &nfs_pageio_write_ops;
1292 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1293}
1294EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1295
1296
1297void nfs_write_prepare(struct rpc_task *task, void *calldata)
1298{
1299 struct nfs_write_data *data = calldata;
1300 int err;
1301 err = NFS_PROTO(data->header->inode)->write_rpc_prepare(task, data);
1302 if (err)
1303 rpc_exit(task, err);
1304}
1305
1306void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1307{
1308 struct nfs_commit_data *data = calldata;
1309
1310 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1311}
1312
1313/*
1314 * Handle a write reply that flushes a whole page.
1315 *
1316 * FIXME: There is an inherent race with invalidate_inode_pages and
1317 * writebacks since the page->count is kept > 1 for as long
1318 * as the page has a write request pending.
1319 */
1320static void nfs_writeback_done_common(struct rpc_task *task, void *calldata)
1321{
1322 struct nfs_write_data *data = calldata;
1323
1324 nfs_writeback_done(task, data);
1325}
1326
1327static void nfs_writeback_release_common(void *calldata)
1328{
1329 struct nfs_write_data *data = calldata;
1330 struct nfs_pgio_header *hdr = data->header;
1331 int status = data->task.tk_status;
1332
1333 if ((status >= 0) && nfs_write_need_commit(data)) {
1334 spin_lock(&hdr->lock);
1335 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags))
1336 ; /* Do nothing */
1337 else if (!test_and_set_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags))
1338 memcpy(hdr->verf, &data->verf, sizeof(*hdr->verf));
1339 else if (memcmp(hdr->verf, &data->verf, sizeof(*hdr->verf)))
1340 set_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags);
1341 spin_unlock(&hdr->lock);
1342 }
1343 nfs_writedata_release(data);
1344}
1345
1346static const struct rpc_call_ops nfs_write_common_ops = {
1347 .rpc_call_prepare = nfs_write_prepare,
1348 .rpc_call_done = nfs_writeback_done_common,
1349 .rpc_release = nfs_writeback_release_common,
1350};
1351
1352
1353/*
1354 * This function is called when the WRITE call is complete.
1355 */
1356void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1357{
1358 struct nfs_writeargs *argp = &data->args;
1359 struct nfs_writeres *resp = &data->res;
1360 struct inode *inode = data->header->inode;
1361 int status;
1362
1363 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1364 task->tk_pid, task->tk_status);
1365
1366 /*
1367 * ->write_done will attempt to use post-op attributes to detect
1368 * conflicting writes by other clients. A strict interpretation
1369 * of close-to-open would allow us to continue caching even if
1370 * another writer had changed the file, but some applications
1371 * depend on tighter cache coherency when writing.
1372 */
1373 status = NFS_PROTO(inode)->write_done(task, data);
1374 if (status != 0)
1375 return;
1376 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1377
1378#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
1379 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1380 /* We tried a write call, but the server did not
1381 * commit data to stable storage even though we
1382 * requested it.
1383 * Note: There is a known bug in Tru64 < 5.0 in which
1384 * the server reports NFS_DATA_SYNC, but performs
1385 * NFS_FILE_SYNC. We therefore implement this checking
1386 * as a dprintk() in order to avoid filling syslog.
1387 */
1388 static unsigned long complain;
1389
1390 /* Note this will print the MDS for a DS write */
1391 if (time_before(complain, jiffies)) {
1392 dprintk("NFS: faulty NFS server %s:"
1393 " (committed = %d) != (stable = %d)\n",
1394 NFS_SERVER(inode)->nfs_client->cl_hostname,
1395 resp->verf->committed, argp->stable);
1396 complain = jiffies + 300 * HZ;
1397 }
1398 }
1399#endif
1400 if (task->tk_status < 0)
1401 nfs_set_pgio_error(data->header, task->tk_status, argp->offset);
1402 else if (resp->count < argp->count) {
1403 static unsigned long complain;
1404
1405 /* This a short write! */
1406 nfs_inc_stats(inode, NFSIOS_SHORTWRITE);
1407
1408 /* Has the server at least made some progress? */
1409 if (resp->count == 0) {
1410 if (time_before(complain, jiffies)) {
1411 printk(KERN_WARNING
1412 "NFS: Server wrote zero bytes, expected %u.\n",
1413 argp->count);
1414 complain = jiffies + 300 * HZ;
1415 }
1416 nfs_set_pgio_error(data->header, -EIO, argp->offset);
1417 task->tk_status = -EIO;
1418 return;
1419 }
1420 /* Was this an NFSv2 write or an NFSv3 stable write? */
1421 if (resp->verf->committed != NFS_UNSTABLE) {
1422 /* Resend from where the server left off */
1423 data->mds_offset += resp->count;
1424 argp->offset += resp->count;
1425 argp->pgbase += resp->count;
1426 argp->count -= resp->count;
1427 } else {
1428 /* Resend as a stable write in order to avoid
1429 * headaches in the case of a server crash.
1430 */
1431 argp->stable = NFS_FILE_SYNC;
1432 }
1433 rpc_restart_call_prepare(task);
1434 }
1435}
1436
1437
1438#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
1439static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1440{
1441 int ret;
1442
1443 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1444 return 1;
1445 if (!may_wait)
1446 return 0;
1447 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1448 NFS_INO_COMMIT,
1449 nfs_wait_bit_killable,
1450 TASK_KILLABLE);
1451 return (ret < 0) ? ret : 1;
1452}
1453
1454static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1455{
1456 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1457 smp_mb__after_clear_bit();
1458 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1459}
1460
1461void nfs_commitdata_release(struct nfs_commit_data *data)
1462{
1463 put_nfs_open_context(data->context);
1464 nfs_commit_free(data);
1465}
1466EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1467
1468int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1469 const struct rpc_call_ops *call_ops,
1470 int how, int flags)
1471{
1472 struct rpc_task *task;
1473 int priority = flush_task_priority(how);
1474 struct rpc_message msg = {
1475 .rpc_argp = &data->args,
1476 .rpc_resp = &data->res,
1477 .rpc_cred = data->cred,
1478 };
1479 struct rpc_task_setup task_setup_data = {
1480 .task = &data->task,
1481 .rpc_client = clnt,
1482 .rpc_message = &msg,
1483 .callback_ops = call_ops,
1484 .callback_data = data,
1485 .workqueue = nfsiod_workqueue,
1486 .flags = RPC_TASK_ASYNC | flags,
1487 .priority = priority,
1488 };
1489 /* Set up the initial task struct. */
1490 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1491
1492 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1493
1494 nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1495 NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1496
1497 task = rpc_run_task(&task_setup_data);
1498 if (IS_ERR(task))
1499 return PTR_ERR(task);
1500 if (how & FLUSH_SYNC)
1501 rpc_wait_for_completion_task(task);
1502 rpc_put_task(task);
1503 return 0;
1504}
1505EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1506
1507/*
1508 * Set up the argument/result storage required for the RPC call.
1509 */
1510void nfs_init_commit(struct nfs_commit_data *data,
1511 struct list_head *head,
1512 struct pnfs_layout_segment *lseg,
1513 struct nfs_commit_info *cinfo)
1514{
1515 struct nfs_page *first = nfs_list_entry(head->next);
1516 struct inode *inode = first->wb_context->dentry->d_inode;
1517
1518 /* Set up the RPC argument and reply structs
1519 * NB: take care not to mess about with data->commit et al. */
1520
1521 list_splice_init(head, &data->pages);
1522
1523 data->inode = inode;
1524 data->cred = first->wb_context->cred;
1525 data->lseg = lseg; /* reference transferred */
1526 data->mds_ops = &nfs_commit_ops;
1527 data->completion_ops = cinfo->completion_ops;
1528 data->dreq = cinfo->dreq;
1529
1530 data->args.fh = NFS_FH(data->inode);
1531 /* Note: we always request a commit of the entire inode */
1532 data->args.offset = 0;
1533 data->args.count = 0;
1534 data->context = get_nfs_open_context(first->wb_context);
1535 data->res.fattr = &data->fattr;
1536 data->res.verf = &data->verf;
1537 nfs_fattr_init(&data->fattr);
1538}
1539EXPORT_SYMBOL_GPL(nfs_init_commit);
1540
1541void nfs_retry_commit(struct list_head *page_list,
1542 struct pnfs_layout_segment *lseg,
1543 struct nfs_commit_info *cinfo)
1544{
1545 struct nfs_page *req;
1546
1547 while (!list_empty(page_list)) {
1548 req = nfs_list_entry(page_list->next);
1549 nfs_list_remove_request(req);
1550 nfs_mark_request_commit(req, lseg, cinfo);
1551 if (!cinfo->dreq) {
1552 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1553 dec_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
1554 BDI_RECLAIMABLE);
1555 }
1556 nfs_unlock_and_release_request(req);
1557 }
1558}
1559EXPORT_SYMBOL_GPL(nfs_retry_commit);
1560
1561/*
1562 * Commit dirty pages
1563 */
1564static int
1565nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1566 struct nfs_commit_info *cinfo)
1567{
1568 struct nfs_commit_data *data;
1569
1570 data = nfs_commitdata_alloc();
1571
1572 if (!data)
1573 goto out_bad;
1574
1575 /* Set up the argument struct */
1576 nfs_init_commit(data, head, NULL, cinfo);
1577 atomic_inc(&cinfo->mds->rpcs_out);
1578 return nfs_initiate_commit(NFS_CLIENT(inode), data, data->mds_ops,
1579 how, 0);
1580 out_bad:
1581 nfs_retry_commit(head, NULL, cinfo);
1582 cinfo->completion_ops->error_cleanup(NFS_I(inode));
1583 return -ENOMEM;
1584}
1585
1586/*
1587 * COMMIT call returned
1588 */
1589static void nfs_commit_done(struct rpc_task *task, void *calldata)
1590{
1591 struct nfs_commit_data *data = calldata;
1592
1593 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1594 task->tk_pid, task->tk_status);
1595
1596 /* Call the NFS version-specific code */
1597 NFS_PROTO(data->inode)->commit_done(task, data);
1598}
1599
1600static void nfs_commit_release_pages(struct nfs_commit_data *data)
1601{
1602 struct nfs_page *req;
1603 int status = data->task.tk_status;
1604 struct nfs_commit_info cinfo;
1605
1606 while (!list_empty(&data->pages)) {
1607 req = nfs_list_entry(data->pages.next);
1608 nfs_list_remove_request(req);
1609 nfs_clear_page_commit(req->wb_page);
1610
1611 dprintk("NFS: commit (%s/%lld %d@%lld)",
1612 req->wb_context->dentry->d_sb->s_id,
1613 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1614 req->wb_bytes,
1615 (long long)req_offset(req));
1616 if (status < 0) {
1617 nfs_context_set_write_error(req->wb_context, status);
1618 nfs_inode_remove_request(req);
1619 dprintk(", error = %d\n", status);
1620 goto next;
1621 }
1622
1623 /* Okay, COMMIT succeeded, apparently. Check the verifier
1624 * returned by the server against all stored verfs. */
1625 if (!memcmp(&req->wb_verf, &data->verf.verifier, sizeof(req->wb_verf))) {
1626 /* We have a match */
1627 nfs_inode_remove_request(req);
1628 dprintk(" OK\n");
1629 goto next;
1630 }
1631 /* We have a mismatch. Write the page again */
1632 dprintk(" mismatch\n");
1633 nfs_mark_request_dirty(req);
1634 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1635 next:
1636 nfs_unlock_and_release_request(req);
1637 }
1638 nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1639 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
1640 nfs_commit_clear_lock(NFS_I(data->inode));
1641}
1642
1643static void nfs_commit_release(void *calldata)
1644{
1645 struct nfs_commit_data *data = calldata;
1646
1647 data->completion_ops->completion(data);
1648 nfs_commitdata_release(calldata);
1649}
1650
1651static const struct rpc_call_ops nfs_commit_ops = {
1652 .rpc_call_prepare = nfs_commit_prepare,
1653 .rpc_call_done = nfs_commit_done,
1654 .rpc_release = nfs_commit_release,
1655};
1656
1657static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1658 .completion = nfs_commit_release_pages,
1659 .error_cleanup = nfs_commit_clear_lock,
1660};
1661
1662int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1663 int how, struct nfs_commit_info *cinfo)
1664{
1665 int status;
1666
1667 status = pnfs_commit_list(inode, head, how, cinfo);
1668 if (status == PNFS_NOT_ATTEMPTED)
1669 status = nfs_commit_list(inode, head, how, cinfo);
1670 return status;
1671}
1672
1673int nfs_commit_inode(struct inode *inode, int how)
1674{
1675 LIST_HEAD(head);
1676 struct nfs_commit_info cinfo;
1677 int may_wait = how & FLUSH_SYNC;
1678 int res;
1679
1680 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1681 if (res <= 0)
1682 goto out_mark_dirty;
1683 nfs_init_cinfo_from_inode(&cinfo, inode);
1684 res = nfs_scan_commit(inode, &head, &cinfo);
1685 if (res) {
1686 int error;
1687
1688 error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1689 if (error < 0)
1690 return error;
1691 if (!may_wait)
1692 goto out_mark_dirty;
1693 error = wait_on_bit(&NFS_I(inode)->flags,
1694 NFS_INO_COMMIT,
1695 nfs_wait_bit_killable,
1696 TASK_KILLABLE);
1697 if (error < 0)
1698 return error;
1699 } else
1700 nfs_commit_clear_lock(NFS_I(inode));
1701 return res;
1702 /* Note: If we exit without ensuring that the commit is complete,
1703 * we must mark the inode as dirty. Otherwise, future calls to
1704 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1705 * that the data is on the disk.
1706 */
1707out_mark_dirty:
1708 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1709 return res;
1710}
1711
1712static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1713{
1714 struct nfs_inode *nfsi = NFS_I(inode);
1715 int flags = FLUSH_SYNC;
1716 int ret = 0;
1717
1718 /* no commits means nothing needs to be done */
1719 if (!nfsi->commit_info.ncommit)
1720 return ret;
1721
1722 if (wbc->sync_mode == WB_SYNC_NONE) {
1723 /* Don't commit yet if this is a non-blocking flush and there
1724 * are a lot of outstanding writes for this mapping.
1725 */
1726 if (nfsi->commit_info.ncommit <= (nfsi->npages >> 1))
1727 goto out_mark_dirty;
1728
1729 /* don't wait for the COMMIT response */
1730 flags = 0;
1731 }
1732
1733 ret = nfs_commit_inode(inode, flags);
1734 if (ret >= 0) {
1735 if (wbc->sync_mode == WB_SYNC_NONE) {
1736 if (ret < wbc->nr_to_write)
1737 wbc->nr_to_write -= ret;
1738 else
1739 wbc->nr_to_write = 0;
1740 }
1741 return 0;
1742 }
1743out_mark_dirty:
1744 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1745 return ret;
1746}
1747#else
1748static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1749{
1750 return 0;
1751}
1752#endif
1753
1754int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1755{
1756 return nfs_commit_unstable_pages(inode, wbc);
1757}
1758EXPORT_SYMBOL_GPL(nfs_write_inode);
1759
1760/*
1761 * flush the inode to disk.
1762 */
1763int nfs_wb_all(struct inode *inode)
1764{
1765 struct writeback_control wbc = {
1766 .sync_mode = WB_SYNC_ALL,
1767 .nr_to_write = LONG_MAX,
1768 .range_start = 0,
1769 .range_end = LLONG_MAX,
1770 };
1771 int ret;
1772
1773 trace_nfs_writeback_inode_enter(inode);
1774
1775 ret = sync_inode(inode, &wbc);
1776
1777 trace_nfs_writeback_inode_exit(inode, ret);
1778 return ret;
1779}
1780EXPORT_SYMBOL_GPL(nfs_wb_all);
1781
1782int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1783{
1784 struct nfs_page *req;
1785 int ret = 0;
1786
1787 for (;;) {
1788 wait_on_page_writeback(page);
1789 req = nfs_page_find_request(page);
1790 if (req == NULL)
1791 break;
1792 if (nfs_lock_request(req)) {
1793 nfs_clear_request_commit(req);
1794 nfs_inode_remove_request(req);
1795 /*
1796 * In case nfs_inode_remove_request has marked the
1797 * page as being dirty
1798 */
1799 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1800 nfs_unlock_and_release_request(req);
1801 break;
1802 }
1803 ret = nfs_wait_on_request(req);
1804 nfs_release_request(req);
1805 if (ret < 0)
1806 break;
1807 }
1808 return ret;
1809}
1810
1811/*
1812 * Write back all requests on one page - we do this before reading it.
1813 */
1814int nfs_wb_page(struct inode *inode, struct page *page)
1815{
1816 loff_t range_start = page_file_offset(page);
1817 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1818 struct writeback_control wbc = {
1819 .sync_mode = WB_SYNC_ALL,
1820 .nr_to_write = 0,
1821 .range_start = range_start,
1822 .range_end = range_end,
1823 };
1824 int ret;
1825
1826 trace_nfs_writeback_page_enter(inode);
1827
1828 for (;;) {
1829 wait_on_page_writeback(page);
1830 if (clear_page_dirty_for_io(page)) {
1831 ret = nfs_writepage_locked(page, &wbc);
1832 if (ret < 0)
1833 goto out_error;
1834 continue;
1835 }
1836 ret = 0;
1837 if (!PagePrivate(page))
1838 break;
1839 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1840 if (ret < 0)
1841 goto out_error;
1842 }
1843out_error:
1844 trace_nfs_writeback_page_exit(inode, ret);
1845 return ret;
1846}
1847
1848#ifdef CONFIG_MIGRATION
1849int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1850 struct page *page, enum migrate_mode mode)
1851{
1852 /*
1853 * If PagePrivate is set, then the page is currently associated with
1854 * an in-progress read or write request. Don't try to migrate it.
1855 *
1856 * FIXME: we could do this in principle, but we'll need a way to ensure
1857 * that we can safely release the inode reference while holding
1858 * the page lock.
1859 */
1860 if (PagePrivate(page))
1861 return -EBUSY;
1862
1863 if (!nfs_fscache_release_page(page, GFP_KERNEL))
1864 return -EBUSY;
1865
1866 return migrate_page(mapping, newpage, page, mode);
1867}
1868#endif
1869
1870int __init nfs_init_writepagecache(void)
1871{
1872 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1873 sizeof(struct nfs_write_header),
1874 0, SLAB_HWCACHE_ALIGN,
1875 NULL);
1876 if (nfs_wdata_cachep == NULL)
1877 return -ENOMEM;
1878
1879 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1880 nfs_wdata_cachep);
1881 if (nfs_wdata_mempool == NULL)
1882 goto out_destroy_write_cache;
1883
1884 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
1885 sizeof(struct nfs_commit_data),
1886 0, SLAB_HWCACHE_ALIGN,
1887 NULL);
1888 if (nfs_cdata_cachep == NULL)
1889 goto out_destroy_write_mempool;
1890
1891 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1892 nfs_cdata_cachep);
1893 if (nfs_commit_mempool == NULL)
1894 goto out_destroy_commit_cache;
1895
1896 /*
1897 * NFS congestion size, scale with available memory.
1898 *
1899 * 64MB: 8192k
1900 * 128MB: 11585k
1901 * 256MB: 16384k
1902 * 512MB: 23170k
1903 * 1GB: 32768k
1904 * 2GB: 46340k
1905 * 4GB: 65536k
1906 * 8GB: 92681k
1907 * 16GB: 131072k
1908 *
1909 * This allows larger machines to have larger/more transfers.
1910 * Limit the default to 256M
1911 */
1912 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1913 if (nfs_congestion_kb > 256*1024)
1914 nfs_congestion_kb = 256*1024;
1915
1916 return 0;
1917
1918out_destroy_commit_cache:
1919 kmem_cache_destroy(nfs_cdata_cachep);
1920out_destroy_write_mempool:
1921 mempool_destroy(nfs_wdata_mempool);
1922out_destroy_write_cache:
1923 kmem_cache_destroy(nfs_wdata_cachep);
1924 return -ENOMEM;
1925}
1926
1927void nfs_destroy_writepagecache(void)
1928{
1929 mempool_destroy(nfs_commit_mempool);
1930 kmem_cache_destroy(nfs_cdata_cachep);
1931 mempool_destroy(nfs_wdata_mempool);
1932 kmem_cache_destroy(nfs_wdata_cachep);
1933}
1934