at v3.12 2143 lines 53 kB view raw
1/* 2 * inode.c -- user mode filesystem api for usb gadget controllers 3 * 4 * Copyright (C) 2003-2004 David Brownell 5 * Copyright (C) 2003 Agilent Technologies 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 */ 12 13 14/* #define VERBOSE_DEBUG */ 15 16#include <linux/init.h> 17#include <linux/module.h> 18#include <linux/fs.h> 19#include <linux/pagemap.h> 20#include <linux/uts.h> 21#include <linux/wait.h> 22#include <linux/compiler.h> 23#include <asm/uaccess.h> 24#include <linux/sched.h> 25#include <linux/slab.h> 26#include <linux/poll.h> 27#include <linux/mmu_context.h> 28#include <linux/aio.h> 29 30#include <linux/device.h> 31#include <linux/moduleparam.h> 32 33#include <linux/usb/gadgetfs.h> 34#include <linux/usb/gadget.h> 35 36 37/* 38 * The gadgetfs API maps each endpoint to a file descriptor so that you 39 * can use standard synchronous read/write calls for I/O. There's some 40 * O_NONBLOCK and O_ASYNC/FASYNC style i/o support. Example usermode 41 * drivers show how this works in practice. You can also use AIO to 42 * eliminate I/O gaps between requests, to help when streaming data. 43 * 44 * Key parts that must be USB-specific are protocols defining how the 45 * read/write operations relate to the hardware state machines. There 46 * are two types of files. One type is for the device, implementing ep0. 47 * The other type is for each IN or OUT endpoint. In both cases, the 48 * user mode driver must configure the hardware before using it. 49 * 50 * - First, dev_config() is called when /dev/gadget/$CHIP is configured 51 * (by writing configuration and device descriptors). Afterwards it 52 * may serve as a source of device events, used to handle all control 53 * requests other than basic enumeration. 54 * 55 * - Then, after a SET_CONFIGURATION control request, ep_config() is 56 * called when each /dev/gadget/ep* file is configured (by writing 57 * endpoint descriptors). Afterwards these files are used to write() 58 * IN data or to read() OUT data. To halt the endpoint, a "wrong 59 * direction" request is issued (like reading an IN endpoint). 60 * 61 * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe 62 * not possible on all hardware. For example, precise fault handling with 63 * respect to data left in endpoint fifos after aborted operations; or 64 * selective clearing of endpoint halts, to implement SET_INTERFACE. 65 */ 66 67#define DRIVER_DESC "USB Gadget filesystem" 68#define DRIVER_VERSION "24 Aug 2004" 69 70static const char driver_desc [] = DRIVER_DESC; 71static const char shortname [] = "gadgetfs"; 72 73MODULE_DESCRIPTION (DRIVER_DESC); 74MODULE_AUTHOR ("David Brownell"); 75MODULE_LICENSE ("GPL"); 76 77 78/*----------------------------------------------------------------------*/ 79 80#define GADGETFS_MAGIC 0xaee71ee7 81 82/* /dev/gadget/$CHIP represents ep0 and the whole device */ 83enum ep0_state { 84 /* DISBLED is the initial state. 85 */ 86 STATE_DEV_DISABLED = 0, 87 88 /* Only one open() of /dev/gadget/$CHIP; only one file tracks 89 * ep0/device i/o modes and binding to the controller. Driver 90 * must always write descriptors to initialize the device, then 91 * the device becomes UNCONNECTED until enumeration. 92 */ 93 STATE_DEV_OPENED, 94 95 /* From then on, ep0 fd is in either of two basic modes: 96 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it 97 * - SETUP: read/write will transfer control data and succeed; 98 * or if "wrong direction", performs protocol stall 99 */ 100 STATE_DEV_UNCONNECTED, 101 STATE_DEV_CONNECTED, 102 STATE_DEV_SETUP, 103 104 /* UNBOUND means the driver closed ep0, so the device won't be 105 * accessible again (DEV_DISABLED) until all fds are closed. 106 */ 107 STATE_DEV_UNBOUND, 108}; 109 110/* enough for the whole queue: most events invalidate others */ 111#define N_EVENT 5 112 113struct dev_data { 114 spinlock_t lock; 115 atomic_t count; 116 enum ep0_state state; /* P: lock */ 117 struct usb_gadgetfs_event event [N_EVENT]; 118 unsigned ev_next; 119 struct fasync_struct *fasync; 120 u8 current_config; 121 122 /* drivers reading ep0 MUST handle control requests (SETUP) 123 * reported that way; else the host will time out. 124 */ 125 unsigned usermode_setup : 1, 126 setup_in : 1, 127 setup_can_stall : 1, 128 setup_out_ready : 1, 129 setup_out_error : 1, 130 setup_abort : 1; 131 unsigned setup_wLength; 132 133 /* the rest is basically write-once */ 134 struct usb_config_descriptor *config, *hs_config; 135 struct usb_device_descriptor *dev; 136 struct usb_request *req; 137 struct usb_gadget *gadget; 138 struct list_head epfiles; 139 void *buf; 140 wait_queue_head_t wait; 141 struct super_block *sb; 142 struct dentry *dentry; 143 144 /* except this scratch i/o buffer for ep0 */ 145 u8 rbuf [256]; 146}; 147 148static inline void get_dev (struct dev_data *data) 149{ 150 atomic_inc (&data->count); 151} 152 153static void put_dev (struct dev_data *data) 154{ 155 if (likely (!atomic_dec_and_test (&data->count))) 156 return; 157 /* needs no more cleanup */ 158 BUG_ON (waitqueue_active (&data->wait)); 159 kfree (data); 160} 161 162static struct dev_data *dev_new (void) 163{ 164 struct dev_data *dev; 165 166 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 167 if (!dev) 168 return NULL; 169 dev->state = STATE_DEV_DISABLED; 170 atomic_set (&dev->count, 1); 171 spin_lock_init (&dev->lock); 172 INIT_LIST_HEAD (&dev->epfiles); 173 init_waitqueue_head (&dev->wait); 174 return dev; 175} 176 177/*----------------------------------------------------------------------*/ 178 179/* other /dev/gadget/$ENDPOINT files represent endpoints */ 180enum ep_state { 181 STATE_EP_DISABLED = 0, 182 STATE_EP_READY, 183 STATE_EP_ENABLED, 184 STATE_EP_UNBOUND, 185}; 186 187struct ep_data { 188 struct mutex lock; 189 enum ep_state state; 190 atomic_t count; 191 struct dev_data *dev; 192 /* must hold dev->lock before accessing ep or req */ 193 struct usb_ep *ep; 194 struct usb_request *req; 195 ssize_t status; 196 char name [16]; 197 struct usb_endpoint_descriptor desc, hs_desc; 198 struct list_head epfiles; 199 wait_queue_head_t wait; 200 struct dentry *dentry; 201 struct inode *inode; 202}; 203 204static inline void get_ep (struct ep_data *data) 205{ 206 atomic_inc (&data->count); 207} 208 209static void put_ep (struct ep_data *data) 210{ 211 if (likely (!atomic_dec_and_test (&data->count))) 212 return; 213 put_dev (data->dev); 214 /* needs no more cleanup */ 215 BUG_ON (!list_empty (&data->epfiles)); 216 BUG_ON (waitqueue_active (&data->wait)); 217 kfree (data); 218} 219 220/*----------------------------------------------------------------------*/ 221 222/* most "how to use the hardware" policy choices are in userspace: 223 * mapping endpoint roles (which the driver needs) to the capabilities 224 * which the usb controller has. most of those capabilities are exposed 225 * implicitly, starting with the driver name and then endpoint names. 226 */ 227 228static const char *CHIP; 229 230/*----------------------------------------------------------------------*/ 231 232/* NOTE: don't use dev_printk calls before binding to the gadget 233 * at the end of ep0 configuration, or after unbind. 234 */ 235 236/* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */ 237#define xprintk(d,level,fmt,args...) \ 238 printk(level "%s: " fmt , shortname , ## args) 239 240#ifdef DEBUG 241#define DBG(dev,fmt,args...) \ 242 xprintk(dev , KERN_DEBUG , fmt , ## args) 243#else 244#define DBG(dev,fmt,args...) \ 245 do { } while (0) 246#endif /* DEBUG */ 247 248#ifdef VERBOSE_DEBUG 249#define VDEBUG DBG 250#else 251#define VDEBUG(dev,fmt,args...) \ 252 do { } while (0) 253#endif /* DEBUG */ 254 255#define ERROR(dev,fmt,args...) \ 256 xprintk(dev , KERN_ERR , fmt , ## args) 257#define INFO(dev,fmt,args...) \ 258 xprintk(dev , KERN_INFO , fmt , ## args) 259 260 261/*----------------------------------------------------------------------*/ 262 263/* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso) 264 * 265 * After opening, configure non-control endpoints. Then use normal 266 * stream read() and write() requests; and maybe ioctl() to get more 267 * precise FIFO status when recovering from cancellation. 268 */ 269 270static void epio_complete (struct usb_ep *ep, struct usb_request *req) 271{ 272 struct ep_data *epdata = ep->driver_data; 273 274 if (!req->context) 275 return; 276 if (req->status) 277 epdata->status = req->status; 278 else 279 epdata->status = req->actual; 280 complete ((struct completion *)req->context); 281} 282 283/* tasklock endpoint, returning when it's connected. 284 * still need dev->lock to use epdata->ep. 285 */ 286static int 287get_ready_ep (unsigned f_flags, struct ep_data *epdata) 288{ 289 int val; 290 291 if (f_flags & O_NONBLOCK) { 292 if (!mutex_trylock(&epdata->lock)) 293 goto nonblock; 294 if (epdata->state != STATE_EP_ENABLED) { 295 mutex_unlock(&epdata->lock); 296nonblock: 297 val = -EAGAIN; 298 } else 299 val = 0; 300 return val; 301 } 302 303 val = mutex_lock_interruptible(&epdata->lock); 304 if (val < 0) 305 return val; 306 307 switch (epdata->state) { 308 case STATE_EP_ENABLED: 309 break; 310 // case STATE_EP_DISABLED: /* "can't happen" */ 311 // case STATE_EP_READY: /* "can't happen" */ 312 default: /* error! */ 313 pr_debug ("%s: ep %p not available, state %d\n", 314 shortname, epdata, epdata->state); 315 // FALLTHROUGH 316 case STATE_EP_UNBOUND: /* clean disconnect */ 317 val = -ENODEV; 318 mutex_unlock(&epdata->lock); 319 } 320 return val; 321} 322 323static ssize_t 324ep_io (struct ep_data *epdata, void *buf, unsigned len) 325{ 326 DECLARE_COMPLETION_ONSTACK (done); 327 int value; 328 329 spin_lock_irq (&epdata->dev->lock); 330 if (likely (epdata->ep != NULL)) { 331 struct usb_request *req = epdata->req; 332 333 req->context = &done; 334 req->complete = epio_complete; 335 req->buf = buf; 336 req->length = len; 337 value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC); 338 } else 339 value = -ENODEV; 340 spin_unlock_irq (&epdata->dev->lock); 341 342 if (likely (value == 0)) { 343 value = wait_event_interruptible (done.wait, done.done); 344 if (value != 0) { 345 spin_lock_irq (&epdata->dev->lock); 346 if (likely (epdata->ep != NULL)) { 347 DBG (epdata->dev, "%s i/o interrupted\n", 348 epdata->name); 349 usb_ep_dequeue (epdata->ep, epdata->req); 350 spin_unlock_irq (&epdata->dev->lock); 351 352 wait_event (done.wait, done.done); 353 if (epdata->status == -ECONNRESET) 354 epdata->status = -EINTR; 355 } else { 356 spin_unlock_irq (&epdata->dev->lock); 357 358 DBG (epdata->dev, "endpoint gone\n"); 359 epdata->status = -ENODEV; 360 } 361 } 362 return epdata->status; 363 } 364 return value; 365} 366 367 368/* handle a synchronous OUT bulk/intr/iso transfer */ 369static ssize_t 370ep_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr) 371{ 372 struct ep_data *data = fd->private_data; 373 void *kbuf; 374 ssize_t value; 375 376 if ((value = get_ready_ep (fd->f_flags, data)) < 0) 377 return value; 378 379 /* halt any endpoint by doing a "wrong direction" i/o call */ 380 if (usb_endpoint_dir_in(&data->desc)) { 381 if (usb_endpoint_xfer_isoc(&data->desc)) { 382 mutex_unlock(&data->lock); 383 return -EINVAL; 384 } 385 DBG (data->dev, "%s halt\n", data->name); 386 spin_lock_irq (&data->dev->lock); 387 if (likely (data->ep != NULL)) 388 usb_ep_set_halt (data->ep); 389 spin_unlock_irq (&data->dev->lock); 390 mutex_unlock(&data->lock); 391 return -EBADMSG; 392 } 393 394 /* FIXME readahead for O_NONBLOCK and poll(); careful with ZLPs */ 395 396 value = -ENOMEM; 397 kbuf = kmalloc (len, GFP_KERNEL); 398 if (unlikely (!kbuf)) 399 goto free1; 400 401 value = ep_io (data, kbuf, len); 402 VDEBUG (data->dev, "%s read %zu OUT, status %d\n", 403 data->name, len, (int) value); 404 if (value >= 0 && copy_to_user (buf, kbuf, value)) 405 value = -EFAULT; 406 407free1: 408 mutex_unlock(&data->lock); 409 kfree (kbuf); 410 return value; 411} 412 413/* handle a synchronous IN bulk/intr/iso transfer */ 414static ssize_t 415ep_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr) 416{ 417 struct ep_data *data = fd->private_data; 418 void *kbuf; 419 ssize_t value; 420 421 if ((value = get_ready_ep (fd->f_flags, data)) < 0) 422 return value; 423 424 /* halt any endpoint by doing a "wrong direction" i/o call */ 425 if (!usb_endpoint_dir_in(&data->desc)) { 426 if (usb_endpoint_xfer_isoc(&data->desc)) { 427 mutex_unlock(&data->lock); 428 return -EINVAL; 429 } 430 DBG (data->dev, "%s halt\n", data->name); 431 spin_lock_irq (&data->dev->lock); 432 if (likely (data->ep != NULL)) 433 usb_ep_set_halt (data->ep); 434 spin_unlock_irq (&data->dev->lock); 435 mutex_unlock(&data->lock); 436 return -EBADMSG; 437 } 438 439 /* FIXME writebehind for O_NONBLOCK and poll(), qlen = 1 */ 440 441 value = -ENOMEM; 442 kbuf = kmalloc (len, GFP_KERNEL); 443 if (!kbuf) 444 goto free1; 445 if (copy_from_user (kbuf, buf, len)) { 446 value = -EFAULT; 447 goto free1; 448 } 449 450 value = ep_io (data, kbuf, len); 451 VDEBUG (data->dev, "%s write %zu IN, status %d\n", 452 data->name, len, (int) value); 453free1: 454 mutex_unlock(&data->lock); 455 kfree (kbuf); 456 return value; 457} 458 459static int 460ep_release (struct inode *inode, struct file *fd) 461{ 462 struct ep_data *data = fd->private_data; 463 int value; 464 465 value = mutex_lock_interruptible(&data->lock); 466 if (value < 0) 467 return value; 468 469 /* clean up if this can be reopened */ 470 if (data->state != STATE_EP_UNBOUND) { 471 data->state = STATE_EP_DISABLED; 472 data->desc.bDescriptorType = 0; 473 data->hs_desc.bDescriptorType = 0; 474 usb_ep_disable(data->ep); 475 } 476 mutex_unlock(&data->lock); 477 put_ep (data); 478 return 0; 479} 480 481static long ep_ioctl(struct file *fd, unsigned code, unsigned long value) 482{ 483 struct ep_data *data = fd->private_data; 484 int status; 485 486 if ((status = get_ready_ep (fd->f_flags, data)) < 0) 487 return status; 488 489 spin_lock_irq (&data->dev->lock); 490 if (likely (data->ep != NULL)) { 491 switch (code) { 492 case GADGETFS_FIFO_STATUS: 493 status = usb_ep_fifo_status (data->ep); 494 break; 495 case GADGETFS_FIFO_FLUSH: 496 usb_ep_fifo_flush (data->ep); 497 break; 498 case GADGETFS_CLEAR_HALT: 499 status = usb_ep_clear_halt (data->ep); 500 break; 501 default: 502 status = -ENOTTY; 503 } 504 } else 505 status = -ENODEV; 506 spin_unlock_irq (&data->dev->lock); 507 mutex_unlock(&data->lock); 508 return status; 509} 510 511/*----------------------------------------------------------------------*/ 512 513/* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */ 514 515struct kiocb_priv { 516 struct usb_request *req; 517 struct ep_data *epdata; 518 struct kiocb *iocb; 519 struct mm_struct *mm; 520 struct work_struct work; 521 void *buf; 522 const struct iovec *iv; 523 unsigned long nr_segs; 524 unsigned actual; 525}; 526 527static int ep_aio_cancel(struct kiocb *iocb) 528{ 529 struct kiocb_priv *priv = iocb->private; 530 struct ep_data *epdata; 531 int value; 532 533 local_irq_disable(); 534 epdata = priv->epdata; 535 // spin_lock(&epdata->dev->lock); 536 if (likely(epdata && epdata->ep && priv->req)) 537 value = usb_ep_dequeue (epdata->ep, priv->req); 538 else 539 value = -EINVAL; 540 // spin_unlock(&epdata->dev->lock); 541 local_irq_enable(); 542 543 return value; 544} 545 546static ssize_t ep_copy_to_user(struct kiocb_priv *priv) 547{ 548 ssize_t len, total; 549 void *to_copy; 550 int i; 551 552 /* copy stuff into user buffers */ 553 total = priv->actual; 554 len = 0; 555 to_copy = priv->buf; 556 for (i=0; i < priv->nr_segs; i++) { 557 ssize_t this = min((ssize_t)(priv->iv[i].iov_len), total); 558 559 if (copy_to_user(priv->iv[i].iov_base, to_copy, this)) { 560 if (len == 0) 561 len = -EFAULT; 562 break; 563 } 564 565 total -= this; 566 len += this; 567 to_copy += this; 568 if (total == 0) 569 break; 570 } 571 572 return len; 573} 574 575static void ep_user_copy_worker(struct work_struct *work) 576{ 577 struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work); 578 struct mm_struct *mm = priv->mm; 579 struct kiocb *iocb = priv->iocb; 580 size_t ret; 581 582 use_mm(mm); 583 ret = ep_copy_to_user(priv); 584 unuse_mm(mm); 585 586 /* completing the iocb can drop the ctx and mm, don't touch mm after */ 587 aio_complete(iocb, ret, ret); 588 589 kfree(priv->buf); 590 kfree(priv); 591} 592 593static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req) 594{ 595 struct kiocb *iocb = req->context; 596 struct kiocb_priv *priv = iocb->private; 597 struct ep_data *epdata = priv->epdata; 598 599 /* lock against disconnect (and ideally, cancel) */ 600 spin_lock(&epdata->dev->lock); 601 priv->req = NULL; 602 priv->epdata = NULL; 603 604 /* if this was a write or a read returning no data then we 605 * don't need to copy anything to userspace, so we can 606 * complete the aio request immediately. 607 */ 608 if (priv->iv == NULL || unlikely(req->actual == 0)) { 609 kfree(req->buf); 610 kfree(priv); 611 iocb->private = NULL; 612 /* aio_complete() reports bytes-transferred _and_ faults */ 613 aio_complete(iocb, req->actual ? req->actual : req->status, 614 req->status); 615 } else { 616 /* ep_copy_to_user() won't report both; we hide some faults */ 617 if (unlikely(0 != req->status)) 618 DBG(epdata->dev, "%s fault %d len %d\n", 619 ep->name, req->status, req->actual); 620 621 priv->buf = req->buf; 622 priv->actual = req->actual; 623 schedule_work(&priv->work); 624 } 625 spin_unlock(&epdata->dev->lock); 626 627 usb_ep_free_request(ep, req); 628 put_ep(epdata); 629} 630 631static ssize_t 632ep_aio_rwtail( 633 struct kiocb *iocb, 634 char *buf, 635 size_t len, 636 struct ep_data *epdata, 637 const struct iovec *iv, 638 unsigned long nr_segs 639) 640{ 641 struct kiocb_priv *priv; 642 struct usb_request *req; 643 ssize_t value; 644 645 priv = kmalloc(sizeof *priv, GFP_KERNEL); 646 if (!priv) { 647 value = -ENOMEM; 648fail: 649 kfree(buf); 650 return value; 651 } 652 iocb->private = priv; 653 priv->iocb = iocb; 654 priv->iv = iv; 655 priv->nr_segs = nr_segs; 656 INIT_WORK(&priv->work, ep_user_copy_worker); 657 658 value = get_ready_ep(iocb->ki_filp->f_flags, epdata); 659 if (unlikely(value < 0)) { 660 kfree(priv); 661 goto fail; 662 } 663 664 kiocb_set_cancel_fn(iocb, ep_aio_cancel); 665 get_ep(epdata); 666 priv->epdata = epdata; 667 priv->actual = 0; 668 priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */ 669 670 /* each kiocb is coupled to one usb_request, but we can't 671 * allocate or submit those if the host disconnected. 672 */ 673 spin_lock_irq(&epdata->dev->lock); 674 if (likely(epdata->ep)) { 675 req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC); 676 if (likely(req)) { 677 priv->req = req; 678 req->buf = buf; 679 req->length = len; 680 req->complete = ep_aio_complete; 681 req->context = iocb; 682 value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC); 683 if (unlikely(0 != value)) 684 usb_ep_free_request(epdata->ep, req); 685 } else 686 value = -EAGAIN; 687 } else 688 value = -ENODEV; 689 spin_unlock_irq(&epdata->dev->lock); 690 691 mutex_unlock(&epdata->lock); 692 693 if (unlikely(value)) { 694 kfree(priv); 695 put_ep(epdata); 696 } else 697 value = -EIOCBQUEUED; 698 return value; 699} 700 701static ssize_t 702ep_aio_read(struct kiocb *iocb, const struct iovec *iov, 703 unsigned long nr_segs, loff_t o) 704{ 705 struct ep_data *epdata = iocb->ki_filp->private_data; 706 char *buf; 707 708 if (unlikely(usb_endpoint_dir_in(&epdata->desc))) 709 return -EINVAL; 710 711 buf = kmalloc(iocb->ki_nbytes, GFP_KERNEL); 712 if (unlikely(!buf)) 713 return -ENOMEM; 714 715 return ep_aio_rwtail(iocb, buf, iocb->ki_nbytes, epdata, iov, nr_segs); 716} 717 718static ssize_t 719ep_aio_write(struct kiocb *iocb, const struct iovec *iov, 720 unsigned long nr_segs, loff_t o) 721{ 722 struct ep_data *epdata = iocb->ki_filp->private_data; 723 char *buf; 724 size_t len = 0; 725 int i = 0; 726 727 if (unlikely(!usb_endpoint_dir_in(&epdata->desc))) 728 return -EINVAL; 729 730 buf = kmalloc(iocb->ki_nbytes, GFP_KERNEL); 731 if (unlikely(!buf)) 732 return -ENOMEM; 733 734 for (i=0; i < nr_segs; i++) { 735 if (unlikely(copy_from_user(&buf[len], iov[i].iov_base, 736 iov[i].iov_len) != 0)) { 737 kfree(buf); 738 return -EFAULT; 739 } 740 len += iov[i].iov_len; 741 } 742 return ep_aio_rwtail(iocb, buf, len, epdata, NULL, 0); 743} 744 745/*----------------------------------------------------------------------*/ 746 747/* used after endpoint configuration */ 748static const struct file_operations ep_io_operations = { 749 .owner = THIS_MODULE, 750 .llseek = no_llseek, 751 752 .read = ep_read, 753 .write = ep_write, 754 .unlocked_ioctl = ep_ioctl, 755 .release = ep_release, 756 757 .aio_read = ep_aio_read, 758 .aio_write = ep_aio_write, 759}; 760 761/* ENDPOINT INITIALIZATION 762 * 763 * fd = open ("/dev/gadget/$ENDPOINT", O_RDWR) 764 * status = write (fd, descriptors, sizeof descriptors) 765 * 766 * That write establishes the endpoint configuration, configuring 767 * the controller to process bulk, interrupt, or isochronous transfers 768 * at the right maxpacket size, and so on. 769 * 770 * The descriptors are message type 1, identified by a host order u32 771 * at the beginning of what's written. Descriptor order is: full/low 772 * speed descriptor, then optional high speed descriptor. 773 */ 774static ssize_t 775ep_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr) 776{ 777 struct ep_data *data = fd->private_data; 778 struct usb_ep *ep; 779 u32 tag; 780 int value, length = len; 781 782 value = mutex_lock_interruptible(&data->lock); 783 if (value < 0) 784 return value; 785 786 if (data->state != STATE_EP_READY) { 787 value = -EL2HLT; 788 goto fail; 789 } 790 791 value = len; 792 if (len < USB_DT_ENDPOINT_SIZE + 4) 793 goto fail0; 794 795 /* we might need to change message format someday */ 796 if (copy_from_user (&tag, buf, 4)) { 797 goto fail1; 798 } 799 if (tag != 1) { 800 DBG(data->dev, "config %s, bad tag %d\n", data->name, tag); 801 goto fail0; 802 } 803 buf += 4; 804 len -= 4; 805 806 /* NOTE: audio endpoint extensions not accepted here; 807 * just don't include the extra bytes. 808 */ 809 810 /* full/low speed descriptor, then high speed */ 811 if (copy_from_user (&data->desc, buf, USB_DT_ENDPOINT_SIZE)) { 812 goto fail1; 813 } 814 if (data->desc.bLength != USB_DT_ENDPOINT_SIZE 815 || data->desc.bDescriptorType != USB_DT_ENDPOINT) 816 goto fail0; 817 if (len != USB_DT_ENDPOINT_SIZE) { 818 if (len != 2 * USB_DT_ENDPOINT_SIZE) 819 goto fail0; 820 if (copy_from_user (&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE, 821 USB_DT_ENDPOINT_SIZE)) { 822 goto fail1; 823 } 824 if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE 825 || data->hs_desc.bDescriptorType 826 != USB_DT_ENDPOINT) { 827 DBG(data->dev, "config %s, bad hs length or type\n", 828 data->name); 829 goto fail0; 830 } 831 } 832 833 spin_lock_irq (&data->dev->lock); 834 if (data->dev->state == STATE_DEV_UNBOUND) { 835 value = -ENOENT; 836 goto gone; 837 } else if ((ep = data->ep) == NULL) { 838 value = -ENODEV; 839 goto gone; 840 } 841 switch (data->dev->gadget->speed) { 842 case USB_SPEED_LOW: 843 case USB_SPEED_FULL: 844 ep->desc = &data->desc; 845 value = usb_ep_enable(ep); 846 if (value == 0) 847 data->state = STATE_EP_ENABLED; 848 break; 849 case USB_SPEED_HIGH: 850 /* fails if caller didn't provide that descriptor... */ 851 ep->desc = &data->hs_desc; 852 value = usb_ep_enable(ep); 853 if (value == 0) 854 data->state = STATE_EP_ENABLED; 855 break; 856 default: 857 DBG(data->dev, "unconnected, %s init abandoned\n", 858 data->name); 859 value = -EINVAL; 860 } 861 if (value == 0) { 862 fd->f_op = &ep_io_operations; 863 value = length; 864 } 865gone: 866 spin_unlock_irq (&data->dev->lock); 867 if (value < 0) { 868fail: 869 data->desc.bDescriptorType = 0; 870 data->hs_desc.bDescriptorType = 0; 871 } 872 mutex_unlock(&data->lock); 873 return value; 874fail0: 875 value = -EINVAL; 876 goto fail; 877fail1: 878 value = -EFAULT; 879 goto fail; 880} 881 882static int 883ep_open (struct inode *inode, struct file *fd) 884{ 885 struct ep_data *data = inode->i_private; 886 int value = -EBUSY; 887 888 if (mutex_lock_interruptible(&data->lock) != 0) 889 return -EINTR; 890 spin_lock_irq (&data->dev->lock); 891 if (data->dev->state == STATE_DEV_UNBOUND) 892 value = -ENOENT; 893 else if (data->state == STATE_EP_DISABLED) { 894 value = 0; 895 data->state = STATE_EP_READY; 896 get_ep (data); 897 fd->private_data = data; 898 VDEBUG (data->dev, "%s ready\n", data->name); 899 } else 900 DBG (data->dev, "%s state %d\n", 901 data->name, data->state); 902 spin_unlock_irq (&data->dev->lock); 903 mutex_unlock(&data->lock); 904 return value; 905} 906 907/* used before endpoint configuration */ 908static const struct file_operations ep_config_operations = { 909 .llseek = no_llseek, 910 911 .open = ep_open, 912 .write = ep_config, 913 .release = ep_release, 914}; 915 916/*----------------------------------------------------------------------*/ 917 918/* EP0 IMPLEMENTATION can be partly in userspace. 919 * 920 * Drivers that use this facility receive various events, including 921 * control requests the kernel doesn't handle. Drivers that don't 922 * use this facility may be too simple-minded for real applications. 923 */ 924 925static inline void ep0_readable (struct dev_data *dev) 926{ 927 wake_up (&dev->wait); 928 kill_fasync (&dev->fasync, SIGIO, POLL_IN); 929} 930 931static void clean_req (struct usb_ep *ep, struct usb_request *req) 932{ 933 struct dev_data *dev = ep->driver_data; 934 935 if (req->buf != dev->rbuf) { 936 kfree(req->buf); 937 req->buf = dev->rbuf; 938 } 939 req->complete = epio_complete; 940 dev->setup_out_ready = 0; 941} 942 943static void ep0_complete (struct usb_ep *ep, struct usb_request *req) 944{ 945 struct dev_data *dev = ep->driver_data; 946 unsigned long flags; 947 int free = 1; 948 949 /* for control OUT, data must still get to userspace */ 950 spin_lock_irqsave(&dev->lock, flags); 951 if (!dev->setup_in) { 952 dev->setup_out_error = (req->status != 0); 953 if (!dev->setup_out_error) 954 free = 0; 955 dev->setup_out_ready = 1; 956 ep0_readable (dev); 957 } 958 959 /* clean up as appropriate */ 960 if (free && req->buf != &dev->rbuf) 961 clean_req (ep, req); 962 req->complete = epio_complete; 963 spin_unlock_irqrestore(&dev->lock, flags); 964} 965 966static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len) 967{ 968 struct dev_data *dev = ep->driver_data; 969 970 if (dev->setup_out_ready) { 971 DBG (dev, "ep0 request busy!\n"); 972 return -EBUSY; 973 } 974 if (len > sizeof (dev->rbuf)) 975 req->buf = kmalloc(len, GFP_ATOMIC); 976 if (req->buf == NULL) { 977 req->buf = dev->rbuf; 978 return -ENOMEM; 979 } 980 req->complete = ep0_complete; 981 req->length = len; 982 req->zero = 0; 983 return 0; 984} 985 986static ssize_t 987ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr) 988{ 989 struct dev_data *dev = fd->private_data; 990 ssize_t retval; 991 enum ep0_state state; 992 993 spin_lock_irq (&dev->lock); 994 995 /* report fd mode change before acting on it */ 996 if (dev->setup_abort) { 997 dev->setup_abort = 0; 998 retval = -EIDRM; 999 goto done; 1000 } 1001 1002 /* control DATA stage */ 1003 if ((state = dev->state) == STATE_DEV_SETUP) { 1004 1005 if (dev->setup_in) { /* stall IN */ 1006 VDEBUG(dev, "ep0in stall\n"); 1007 (void) usb_ep_set_halt (dev->gadget->ep0); 1008 retval = -EL2HLT; 1009 dev->state = STATE_DEV_CONNECTED; 1010 1011 } else if (len == 0) { /* ack SET_CONFIGURATION etc */ 1012 struct usb_ep *ep = dev->gadget->ep0; 1013 struct usb_request *req = dev->req; 1014 1015 if ((retval = setup_req (ep, req, 0)) == 0) 1016 retval = usb_ep_queue (ep, req, GFP_ATOMIC); 1017 dev->state = STATE_DEV_CONNECTED; 1018 1019 /* assume that was SET_CONFIGURATION */ 1020 if (dev->current_config) { 1021 unsigned power; 1022 1023 if (gadget_is_dualspeed(dev->gadget) 1024 && (dev->gadget->speed 1025 == USB_SPEED_HIGH)) 1026 power = dev->hs_config->bMaxPower; 1027 else 1028 power = dev->config->bMaxPower; 1029 usb_gadget_vbus_draw(dev->gadget, 2 * power); 1030 } 1031 1032 } else { /* collect OUT data */ 1033 if ((fd->f_flags & O_NONBLOCK) != 0 1034 && !dev->setup_out_ready) { 1035 retval = -EAGAIN; 1036 goto done; 1037 } 1038 spin_unlock_irq (&dev->lock); 1039 retval = wait_event_interruptible (dev->wait, 1040 dev->setup_out_ready != 0); 1041 1042 /* FIXME state could change from under us */ 1043 spin_lock_irq (&dev->lock); 1044 if (retval) 1045 goto done; 1046 1047 if (dev->state != STATE_DEV_SETUP) { 1048 retval = -ECANCELED; 1049 goto done; 1050 } 1051 dev->state = STATE_DEV_CONNECTED; 1052 1053 if (dev->setup_out_error) 1054 retval = -EIO; 1055 else { 1056 len = min (len, (size_t)dev->req->actual); 1057// FIXME don't call this with the spinlock held ... 1058 if (copy_to_user (buf, dev->req->buf, len)) 1059 retval = -EFAULT; 1060 else 1061 retval = len; 1062 clean_req (dev->gadget->ep0, dev->req); 1063 /* NOTE userspace can't yet choose to stall */ 1064 } 1065 } 1066 goto done; 1067 } 1068 1069 /* else normal: return event data */ 1070 if (len < sizeof dev->event [0]) { 1071 retval = -EINVAL; 1072 goto done; 1073 } 1074 len -= len % sizeof (struct usb_gadgetfs_event); 1075 dev->usermode_setup = 1; 1076 1077scan: 1078 /* return queued events right away */ 1079 if (dev->ev_next != 0) { 1080 unsigned i, n; 1081 1082 n = len / sizeof (struct usb_gadgetfs_event); 1083 if (dev->ev_next < n) 1084 n = dev->ev_next; 1085 1086 /* ep0 i/o has special semantics during STATE_DEV_SETUP */ 1087 for (i = 0; i < n; i++) { 1088 if (dev->event [i].type == GADGETFS_SETUP) { 1089 dev->state = STATE_DEV_SETUP; 1090 n = i + 1; 1091 break; 1092 } 1093 } 1094 spin_unlock_irq (&dev->lock); 1095 len = n * sizeof (struct usb_gadgetfs_event); 1096 if (copy_to_user (buf, &dev->event, len)) 1097 retval = -EFAULT; 1098 else 1099 retval = len; 1100 if (len > 0) { 1101 /* NOTE this doesn't guard against broken drivers; 1102 * concurrent ep0 readers may lose events. 1103 */ 1104 spin_lock_irq (&dev->lock); 1105 if (dev->ev_next > n) { 1106 memmove(&dev->event[0], &dev->event[n], 1107 sizeof (struct usb_gadgetfs_event) 1108 * (dev->ev_next - n)); 1109 } 1110 dev->ev_next -= n; 1111 spin_unlock_irq (&dev->lock); 1112 } 1113 return retval; 1114 } 1115 if (fd->f_flags & O_NONBLOCK) { 1116 retval = -EAGAIN; 1117 goto done; 1118 } 1119 1120 switch (state) { 1121 default: 1122 DBG (dev, "fail %s, state %d\n", __func__, state); 1123 retval = -ESRCH; 1124 break; 1125 case STATE_DEV_UNCONNECTED: 1126 case STATE_DEV_CONNECTED: 1127 spin_unlock_irq (&dev->lock); 1128 DBG (dev, "%s wait\n", __func__); 1129 1130 /* wait for events */ 1131 retval = wait_event_interruptible (dev->wait, 1132 dev->ev_next != 0); 1133 if (retval < 0) 1134 return retval; 1135 spin_lock_irq (&dev->lock); 1136 goto scan; 1137 } 1138 1139done: 1140 spin_unlock_irq (&dev->lock); 1141 return retval; 1142} 1143 1144static struct usb_gadgetfs_event * 1145next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type) 1146{ 1147 struct usb_gadgetfs_event *event; 1148 unsigned i; 1149 1150 switch (type) { 1151 /* these events purge the queue */ 1152 case GADGETFS_DISCONNECT: 1153 if (dev->state == STATE_DEV_SETUP) 1154 dev->setup_abort = 1; 1155 // FALL THROUGH 1156 case GADGETFS_CONNECT: 1157 dev->ev_next = 0; 1158 break; 1159 case GADGETFS_SETUP: /* previous request timed out */ 1160 case GADGETFS_SUSPEND: /* same effect */ 1161 /* these events can't be repeated */ 1162 for (i = 0; i != dev->ev_next; i++) { 1163 if (dev->event [i].type != type) 1164 continue; 1165 DBG(dev, "discard old event[%d] %d\n", i, type); 1166 dev->ev_next--; 1167 if (i == dev->ev_next) 1168 break; 1169 /* indices start at zero, for simplicity */ 1170 memmove (&dev->event [i], &dev->event [i + 1], 1171 sizeof (struct usb_gadgetfs_event) 1172 * (dev->ev_next - i)); 1173 } 1174 break; 1175 default: 1176 BUG (); 1177 } 1178 VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type); 1179 event = &dev->event [dev->ev_next++]; 1180 BUG_ON (dev->ev_next > N_EVENT); 1181 memset (event, 0, sizeof *event); 1182 event->type = type; 1183 return event; 1184} 1185 1186static ssize_t 1187ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr) 1188{ 1189 struct dev_data *dev = fd->private_data; 1190 ssize_t retval = -ESRCH; 1191 1192 spin_lock_irq (&dev->lock); 1193 1194 /* report fd mode change before acting on it */ 1195 if (dev->setup_abort) { 1196 dev->setup_abort = 0; 1197 retval = -EIDRM; 1198 1199 /* data and/or status stage for control request */ 1200 } else if (dev->state == STATE_DEV_SETUP) { 1201 1202 /* IN DATA+STATUS caller makes len <= wLength */ 1203 if (dev->setup_in) { 1204 retval = setup_req (dev->gadget->ep0, dev->req, len); 1205 if (retval == 0) { 1206 dev->state = STATE_DEV_CONNECTED; 1207 spin_unlock_irq (&dev->lock); 1208 if (copy_from_user (dev->req->buf, buf, len)) 1209 retval = -EFAULT; 1210 else { 1211 if (len < dev->setup_wLength) 1212 dev->req->zero = 1; 1213 retval = usb_ep_queue ( 1214 dev->gadget->ep0, dev->req, 1215 GFP_KERNEL); 1216 } 1217 if (retval < 0) { 1218 spin_lock_irq (&dev->lock); 1219 clean_req (dev->gadget->ep0, dev->req); 1220 spin_unlock_irq (&dev->lock); 1221 } else 1222 retval = len; 1223 1224 return retval; 1225 } 1226 1227 /* can stall some OUT transfers */ 1228 } else if (dev->setup_can_stall) { 1229 VDEBUG(dev, "ep0out stall\n"); 1230 (void) usb_ep_set_halt (dev->gadget->ep0); 1231 retval = -EL2HLT; 1232 dev->state = STATE_DEV_CONNECTED; 1233 } else { 1234 DBG(dev, "bogus ep0out stall!\n"); 1235 } 1236 } else 1237 DBG (dev, "fail %s, state %d\n", __func__, dev->state); 1238 1239 spin_unlock_irq (&dev->lock); 1240 return retval; 1241} 1242 1243static int 1244ep0_fasync (int f, struct file *fd, int on) 1245{ 1246 struct dev_data *dev = fd->private_data; 1247 // caller must F_SETOWN before signal delivery happens 1248 VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off"); 1249 return fasync_helper (f, fd, on, &dev->fasync); 1250} 1251 1252static struct usb_gadget_driver gadgetfs_driver; 1253 1254static int 1255dev_release (struct inode *inode, struct file *fd) 1256{ 1257 struct dev_data *dev = fd->private_data; 1258 1259 /* closing ep0 === shutdown all */ 1260 1261 usb_gadget_unregister_driver (&gadgetfs_driver); 1262 1263 /* at this point "good" hardware has disconnected the 1264 * device from USB; the host won't see it any more. 1265 * alternatively, all host requests will time out. 1266 */ 1267 1268 kfree (dev->buf); 1269 dev->buf = NULL; 1270 put_dev (dev); 1271 1272 return 0; 1273} 1274 1275static unsigned int 1276ep0_poll (struct file *fd, poll_table *wait) 1277{ 1278 struct dev_data *dev = fd->private_data; 1279 int mask = 0; 1280 1281 poll_wait(fd, &dev->wait, wait); 1282 1283 spin_lock_irq (&dev->lock); 1284 1285 /* report fd mode change before acting on it */ 1286 if (dev->setup_abort) { 1287 dev->setup_abort = 0; 1288 mask = POLLHUP; 1289 goto out; 1290 } 1291 1292 if (dev->state == STATE_DEV_SETUP) { 1293 if (dev->setup_in || dev->setup_can_stall) 1294 mask = POLLOUT; 1295 } else { 1296 if (dev->ev_next != 0) 1297 mask = POLLIN; 1298 } 1299out: 1300 spin_unlock_irq(&dev->lock); 1301 return mask; 1302} 1303 1304static long dev_ioctl (struct file *fd, unsigned code, unsigned long value) 1305{ 1306 struct dev_data *dev = fd->private_data; 1307 struct usb_gadget *gadget = dev->gadget; 1308 long ret = -ENOTTY; 1309 1310 if (gadget->ops->ioctl) 1311 ret = gadget->ops->ioctl (gadget, code, value); 1312 1313 return ret; 1314} 1315 1316/* used after device configuration */ 1317static const struct file_operations ep0_io_operations = { 1318 .owner = THIS_MODULE, 1319 .llseek = no_llseek, 1320 1321 .read = ep0_read, 1322 .write = ep0_write, 1323 .fasync = ep0_fasync, 1324 .poll = ep0_poll, 1325 .unlocked_ioctl = dev_ioctl, 1326 .release = dev_release, 1327}; 1328 1329/*----------------------------------------------------------------------*/ 1330 1331/* The in-kernel gadget driver handles most ep0 issues, in particular 1332 * enumerating the single configuration (as provided from user space). 1333 * 1334 * Unrecognized ep0 requests may be handled in user space. 1335 */ 1336 1337static void make_qualifier (struct dev_data *dev) 1338{ 1339 struct usb_qualifier_descriptor qual; 1340 struct usb_device_descriptor *desc; 1341 1342 qual.bLength = sizeof qual; 1343 qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER; 1344 qual.bcdUSB = cpu_to_le16 (0x0200); 1345 1346 desc = dev->dev; 1347 qual.bDeviceClass = desc->bDeviceClass; 1348 qual.bDeviceSubClass = desc->bDeviceSubClass; 1349 qual.bDeviceProtocol = desc->bDeviceProtocol; 1350 1351 /* assumes ep0 uses the same value for both speeds ... */ 1352 qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket; 1353 1354 qual.bNumConfigurations = 1; 1355 qual.bRESERVED = 0; 1356 1357 memcpy (dev->rbuf, &qual, sizeof qual); 1358} 1359 1360static int 1361config_buf (struct dev_data *dev, u8 type, unsigned index) 1362{ 1363 int len; 1364 int hs = 0; 1365 1366 /* only one configuration */ 1367 if (index > 0) 1368 return -EINVAL; 1369 1370 if (gadget_is_dualspeed(dev->gadget)) { 1371 hs = (dev->gadget->speed == USB_SPEED_HIGH); 1372 if (type == USB_DT_OTHER_SPEED_CONFIG) 1373 hs = !hs; 1374 } 1375 if (hs) { 1376 dev->req->buf = dev->hs_config; 1377 len = le16_to_cpu(dev->hs_config->wTotalLength); 1378 } else { 1379 dev->req->buf = dev->config; 1380 len = le16_to_cpu(dev->config->wTotalLength); 1381 } 1382 ((u8 *)dev->req->buf) [1] = type; 1383 return len; 1384} 1385 1386static int 1387gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl) 1388{ 1389 struct dev_data *dev = get_gadget_data (gadget); 1390 struct usb_request *req = dev->req; 1391 int value = -EOPNOTSUPP; 1392 struct usb_gadgetfs_event *event; 1393 u16 w_value = le16_to_cpu(ctrl->wValue); 1394 u16 w_length = le16_to_cpu(ctrl->wLength); 1395 1396 spin_lock (&dev->lock); 1397 dev->setup_abort = 0; 1398 if (dev->state == STATE_DEV_UNCONNECTED) { 1399 if (gadget_is_dualspeed(gadget) 1400 && gadget->speed == USB_SPEED_HIGH 1401 && dev->hs_config == NULL) { 1402 spin_unlock(&dev->lock); 1403 ERROR (dev, "no high speed config??\n"); 1404 return -EINVAL; 1405 } 1406 1407 dev->state = STATE_DEV_CONNECTED; 1408 1409 INFO (dev, "connected\n"); 1410 event = next_event (dev, GADGETFS_CONNECT); 1411 event->u.speed = gadget->speed; 1412 ep0_readable (dev); 1413 1414 /* host may have given up waiting for response. we can miss control 1415 * requests handled lower down (device/endpoint status and features); 1416 * then ep0_{read,write} will report the wrong status. controller 1417 * driver will have aborted pending i/o. 1418 */ 1419 } else if (dev->state == STATE_DEV_SETUP) 1420 dev->setup_abort = 1; 1421 1422 req->buf = dev->rbuf; 1423 req->context = NULL; 1424 value = -EOPNOTSUPP; 1425 switch (ctrl->bRequest) { 1426 1427 case USB_REQ_GET_DESCRIPTOR: 1428 if (ctrl->bRequestType != USB_DIR_IN) 1429 goto unrecognized; 1430 switch (w_value >> 8) { 1431 1432 case USB_DT_DEVICE: 1433 value = min (w_length, (u16) sizeof *dev->dev); 1434 dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket; 1435 req->buf = dev->dev; 1436 break; 1437 case USB_DT_DEVICE_QUALIFIER: 1438 if (!dev->hs_config) 1439 break; 1440 value = min (w_length, (u16) 1441 sizeof (struct usb_qualifier_descriptor)); 1442 make_qualifier (dev); 1443 break; 1444 case USB_DT_OTHER_SPEED_CONFIG: 1445 // FALLTHROUGH 1446 case USB_DT_CONFIG: 1447 value = config_buf (dev, 1448 w_value >> 8, 1449 w_value & 0xff); 1450 if (value >= 0) 1451 value = min (w_length, (u16) value); 1452 break; 1453 case USB_DT_STRING: 1454 goto unrecognized; 1455 1456 default: // all others are errors 1457 break; 1458 } 1459 break; 1460 1461 /* currently one config, two speeds */ 1462 case USB_REQ_SET_CONFIGURATION: 1463 if (ctrl->bRequestType != 0) 1464 goto unrecognized; 1465 if (0 == (u8) w_value) { 1466 value = 0; 1467 dev->current_config = 0; 1468 usb_gadget_vbus_draw(gadget, 8 /* mA */ ); 1469 // user mode expected to disable endpoints 1470 } else { 1471 u8 config, power; 1472 1473 if (gadget_is_dualspeed(gadget) 1474 && gadget->speed == USB_SPEED_HIGH) { 1475 config = dev->hs_config->bConfigurationValue; 1476 power = dev->hs_config->bMaxPower; 1477 } else { 1478 config = dev->config->bConfigurationValue; 1479 power = dev->config->bMaxPower; 1480 } 1481 1482 if (config == (u8) w_value) { 1483 value = 0; 1484 dev->current_config = config; 1485 usb_gadget_vbus_draw(gadget, 2 * power); 1486 } 1487 } 1488 1489 /* report SET_CONFIGURATION like any other control request, 1490 * except that usermode may not stall this. the next 1491 * request mustn't be allowed start until this finishes: 1492 * endpoints and threads set up, etc. 1493 * 1494 * NOTE: older PXA hardware (before PXA 255: without UDCCFR) 1495 * has bad/racey automagic that prevents synchronizing here. 1496 * even kernel mode drivers often miss them. 1497 */ 1498 if (value == 0) { 1499 INFO (dev, "configuration #%d\n", dev->current_config); 1500 if (dev->usermode_setup) { 1501 dev->setup_can_stall = 0; 1502 goto delegate; 1503 } 1504 } 1505 break; 1506 1507#ifndef CONFIG_USB_GADGET_PXA25X 1508 /* PXA automagically handles this request too */ 1509 case USB_REQ_GET_CONFIGURATION: 1510 if (ctrl->bRequestType != 0x80) 1511 goto unrecognized; 1512 *(u8 *)req->buf = dev->current_config; 1513 value = min (w_length, (u16) 1); 1514 break; 1515#endif 1516 1517 default: 1518unrecognized: 1519 VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n", 1520 dev->usermode_setup ? "delegate" : "fail", 1521 ctrl->bRequestType, ctrl->bRequest, 1522 w_value, le16_to_cpu(ctrl->wIndex), w_length); 1523 1524 /* if there's an ep0 reader, don't stall */ 1525 if (dev->usermode_setup) { 1526 dev->setup_can_stall = 1; 1527delegate: 1528 dev->setup_in = (ctrl->bRequestType & USB_DIR_IN) 1529 ? 1 : 0; 1530 dev->setup_wLength = w_length; 1531 dev->setup_out_ready = 0; 1532 dev->setup_out_error = 0; 1533 value = 0; 1534 1535 /* read DATA stage for OUT right away */ 1536 if (unlikely (!dev->setup_in && w_length)) { 1537 value = setup_req (gadget->ep0, dev->req, 1538 w_length); 1539 if (value < 0) 1540 break; 1541 value = usb_ep_queue (gadget->ep0, dev->req, 1542 GFP_ATOMIC); 1543 if (value < 0) { 1544 clean_req (gadget->ep0, dev->req); 1545 break; 1546 } 1547 1548 /* we can't currently stall these */ 1549 dev->setup_can_stall = 0; 1550 } 1551 1552 /* state changes when reader collects event */ 1553 event = next_event (dev, GADGETFS_SETUP); 1554 event->u.setup = *ctrl; 1555 ep0_readable (dev); 1556 spin_unlock (&dev->lock); 1557 return 0; 1558 } 1559 } 1560 1561 /* proceed with data transfer and status phases? */ 1562 if (value >= 0 && dev->state != STATE_DEV_SETUP) { 1563 req->length = value; 1564 req->zero = value < w_length; 1565 value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC); 1566 if (value < 0) { 1567 DBG (dev, "ep_queue --> %d\n", value); 1568 req->status = 0; 1569 } 1570 } 1571 1572 /* device stalls when value < 0 */ 1573 spin_unlock (&dev->lock); 1574 return value; 1575} 1576 1577static void destroy_ep_files (struct dev_data *dev) 1578{ 1579 DBG (dev, "%s %d\n", __func__, dev->state); 1580 1581 /* dev->state must prevent interference */ 1582 spin_lock_irq (&dev->lock); 1583 while (!list_empty(&dev->epfiles)) { 1584 struct ep_data *ep; 1585 struct inode *parent; 1586 struct dentry *dentry; 1587 1588 /* break link to FS */ 1589 ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles); 1590 list_del_init (&ep->epfiles); 1591 dentry = ep->dentry; 1592 ep->dentry = NULL; 1593 parent = dentry->d_parent->d_inode; 1594 1595 /* break link to controller */ 1596 if (ep->state == STATE_EP_ENABLED) 1597 (void) usb_ep_disable (ep->ep); 1598 ep->state = STATE_EP_UNBOUND; 1599 usb_ep_free_request (ep->ep, ep->req); 1600 ep->ep = NULL; 1601 wake_up (&ep->wait); 1602 put_ep (ep); 1603 1604 spin_unlock_irq (&dev->lock); 1605 1606 /* break link to dcache */ 1607 mutex_lock (&parent->i_mutex); 1608 d_delete (dentry); 1609 dput (dentry); 1610 mutex_unlock (&parent->i_mutex); 1611 1612 spin_lock_irq (&dev->lock); 1613 } 1614 spin_unlock_irq (&dev->lock); 1615} 1616 1617 1618static struct inode * 1619gadgetfs_create_file (struct super_block *sb, char const *name, 1620 void *data, const struct file_operations *fops, 1621 struct dentry **dentry_p); 1622 1623static int activate_ep_files (struct dev_data *dev) 1624{ 1625 struct usb_ep *ep; 1626 struct ep_data *data; 1627 1628 gadget_for_each_ep (ep, dev->gadget) { 1629 1630 data = kzalloc(sizeof(*data), GFP_KERNEL); 1631 if (!data) 1632 goto enomem0; 1633 data->state = STATE_EP_DISABLED; 1634 mutex_init(&data->lock); 1635 init_waitqueue_head (&data->wait); 1636 1637 strncpy (data->name, ep->name, sizeof (data->name) - 1); 1638 atomic_set (&data->count, 1); 1639 data->dev = dev; 1640 get_dev (dev); 1641 1642 data->ep = ep; 1643 ep->driver_data = data; 1644 1645 data->req = usb_ep_alloc_request (ep, GFP_KERNEL); 1646 if (!data->req) 1647 goto enomem1; 1648 1649 data->inode = gadgetfs_create_file (dev->sb, data->name, 1650 data, &ep_config_operations, 1651 &data->dentry); 1652 if (!data->inode) 1653 goto enomem2; 1654 list_add_tail (&data->epfiles, &dev->epfiles); 1655 } 1656 return 0; 1657 1658enomem2: 1659 usb_ep_free_request (ep, data->req); 1660enomem1: 1661 put_dev (dev); 1662 kfree (data); 1663enomem0: 1664 DBG (dev, "%s enomem\n", __func__); 1665 destroy_ep_files (dev); 1666 return -ENOMEM; 1667} 1668 1669static void 1670gadgetfs_unbind (struct usb_gadget *gadget) 1671{ 1672 struct dev_data *dev = get_gadget_data (gadget); 1673 1674 DBG (dev, "%s\n", __func__); 1675 1676 spin_lock_irq (&dev->lock); 1677 dev->state = STATE_DEV_UNBOUND; 1678 spin_unlock_irq (&dev->lock); 1679 1680 destroy_ep_files (dev); 1681 gadget->ep0->driver_data = NULL; 1682 set_gadget_data (gadget, NULL); 1683 1684 /* we've already been disconnected ... no i/o is active */ 1685 if (dev->req) 1686 usb_ep_free_request (gadget->ep0, dev->req); 1687 DBG (dev, "%s done\n", __func__); 1688 put_dev (dev); 1689} 1690 1691static struct dev_data *the_device; 1692 1693static int gadgetfs_bind(struct usb_gadget *gadget, 1694 struct usb_gadget_driver *driver) 1695{ 1696 struct dev_data *dev = the_device; 1697 1698 if (!dev) 1699 return -ESRCH; 1700 if (0 != strcmp (CHIP, gadget->name)) { 1701 pr_err("%s expected %s controller not %s\n", 1702 shortname, CHIP, gadget->name); 1703 return -ENODEV; 1704 } 1705 1706 set_gadget_data (gadget, dev); 1707 dev->gadget = gadget; 1708 gadget->ep0->driver_data = dev; 1709 1710 /* preallocate control response and buffer */ 1711 dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL); 1712 if (!dev->req) 1713 goto enomem; 1714 dev->req->context = NULL; 1715 dev->req->complete = epio_complete; 1716 1717 if (activate_ep_files (dev) < 0) 1718 goto enomem; 1719 1720 INFO (dev, "bound to %s driver\n", gadget->name); 1721 spin_lock_irq(&dev->lock); 1722 dev->state = STATE_DEV_UNCONNECTED; 1723 spin_unlock_irq(&dev->lock); 1724 get_dev (dev); 1725 return 0; 1726 1727enomem: 1728 gadgetfs_unbind (gadget); 1729 return -ENOMEM; 1730} 1731 1732static void 1733gadgetfs_disconnect (struct usb_gadget *gadget) 1734{ 1735 struct dev_data *dev = get_gadget_data (gadget); 1736 unsigned long flags; 1737 1738 spin_lock_irqsave (&dev->lock, flags); 1739 if (dev->state == STATE_DEV_UNCONNECTED) 1740 goto exit; 1741 dev->state = STATE_DEV_UNCONNECTED; 1742 1743 INFO (dev, "disconnected\n"); 1744 next_event (dev, GADGETFS_DISCONNECT); 1745 ep0_readable (dev); 1746exit: 1747 spin_unlock_irqrestore (&dev->lock, flags); 1748} 1749 1750static void 1751gadgetfs_suspend (struct usb_gadget *gadget) 1752{ 1753 struct dev_data *dev = get_gadget_data (gadget); 1754 1755 INFO (dev, "suspended from state %d\n", dev->state); 1756 spin_lock (&dev->lock); 1757 switch (dev->state) { 1758 case STATE_DEV_SETUP: // VERY odd... host died?? 1759 case STATE_DEV_CONNECTED: 1760 case STATE_DEV_UNCONNECTED: 1761 next_event (dev, GADGETFS_SUSPEND); 1762 ep0_readable (dev); 1763 /* FALLTHROUGH */ 1764 default: 1765 break; 1766 } 1767 spin_unlock (&dev->lock); 1768} 1769 1770static struct usb_gadget_driver gadgetfs_driver = { 1771 .function = (char *) driver_desc, 1772 .bind = gadgetfs_bind, 1773 .unbind = gadgetfs_unbind, 1774 .setup = gadgetfs_setup, 1775 .disconnect = gadgetfs_disconnect, 1776 .suspend = gadgetfs_suspend, 1777 1778 .driver = { 1779 .name = (char *) shortname, 1780 }, 1781}; 1782 1783/*----------------------------------------------------------------------*/ 1784 1785static void gadgetfs_nop(struct usb_gadget *arg) { } 1786 1787static int gadgetfs_probe(struct usb_gadget *gadget, 1788 struct usb_gadget_driver *driver) 1789{ 1790 CHIP = gadget->name; 1791 return -EISNAM; 1792} 1793 1794static struct usb_gadget_driver probe_driver = { 1795 .max_speed = USB_SPEED_HIGH, 1796 .bind = gadgetfs_probe, 1797 .unbind = gadgetfs_nop, 1798 .setup = (void *)gadgetfs_nop, 1799 .disconnect = gadgetfs_nop, 1800 .driver = { 1801 .name = "nop", 1802 }, 1803}; 1804 1805 1806/* DEVICE INITIALIZATION 1807 * 1808 * fd = open ("/dev/gadget/$CHIP", O_RDWR) 1809 * status = write (fd, descriptors, sizeof descriptors) 1810 * 1811 * That write establishes the device configuration, so the kernel can 1812 * bind to the controller ... guaranteeing it can handle enumeration 1813 * at all necessary speeds. Descriptor order is: 1814 * 1815 * . message tag (u32, host order) ... for now, must be zero; it 1816 * would change to support features like multi-config devices 1817 * . full/low speed config ... all wTotalLength bytes (with interface, 1818 * class, altsetting, endpoint, and other descriptors) 1819 * . high speed config ... all descriptors, for high speed operation; 1820 * this one's optional except for high-speed hardware 1821 * . device descriptor 1822 * 1823 * Endpoints are not yet enabled. Drivers must wait until device 1824 * configuration and interface altsetting changes create 1825 * the need to configure (or unconfigure) them. 1826 * 1827 * After initialization, the device stays active for as long as that 1828 * $CHIP file is open. Events must then be read from that descriptor, 1829 * such as configuration notifications. 1830 */ 1831 1832static int is_valid_config (struct usb_config_descriptor *config) 1833{ 1834 return config->bDescriptorType == USB_DT_CONFIG 1835 && config->bLength == USB_DT_CONFIG_SIZE 1836 && config->bConfigurationValue != 0 1837 && (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0 1838 && (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0; 1839 /* FIXME if gadget->is_otg, _must_ include an otg descriptor */ 1840 /* FIXME check lengths: walk to end */ 1841} 1842 1843static ssize_t 1844dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr) 1845{ 1846 struct dev_data *dev = fd->private_data; 1847 ssize_t value = len, length = len; 1848 unsigned total; 1849 u32 tag; 1850 char *kbuf; 1851 1852 if (len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4)) 1853 return -EINVAL; 1854 1855 /* we might need to change message format someday */ 1856 if (copy_from_user (&tag, buf, 4)) 1857 return -EFAULT; 1858 if (tag != 0) 1859 return -EINVAL; 1860 buf += 4; 1861 length -= 4; 1862 1863 kbuf = memdup_user(buf, length); 1864 if (IS_ERR(kbuf)) 1865 return PTR_ERR(kbuf); 1866 1867 spin_lock_irq (&dev->lock); 1868 value = -EINVAL; 1869 if (dev->buf) 1870 goto fail; 1871 dev->buf = kbuf; 1872 1873 /* full or low speed config */ 1874 dev->config = (void *) kbuf; 1875 total = le16_to_cpu(dev->config->wTotalLength); 1876 if (!is_valid_config (dev->config) || total >= length) 1877 goto fail; 1878 kbuf += total; 1879 length -= total; 1880 1881 /* optional high speed config */ 1882 if (kbuf [1] == USB_DT_CONFIG) { 1883 dev->hs_config = (void *) kbuf; 1884 total = le16_to_cpu(dev->hs_config->wTotalLength); 1885 if (!is_valid_config (dev->hs_config) || total >= length) 1886 goto fail; 1887 kbuf += total; 1888 length -= total; 1889 } 1890 1891 /* could support multiple configs, using another encoding! */ 1892 1893 /* device descriptor (tweaked for paranoia) */ 1894 if (length != USB_DT_DEVICE_SIZE) 1895 goto fail; 1896 dev->dev = (void *)kbuf; 1897 if (dev->dev->bLength != USB_DT_DEVICE_SIZE 1898 || dev->dev->bDescriptorType != USB_DT_DEVICE 1899 || dev->dev->bNumConfigurations != 1) 1900 goto fail; 1901 dev->dev->bNumConfigurations = 1; 1902 dev->dev->bcdUSB = cpu_to_le16 (0x0200); 1903 1904 /* triggers gadgetfs_bind(); then we can enumerate. */ 1905 spin_unlock_irq (&dev->lock); 1906 if (dev->hs_config) 1907 gadgetfs_driver.max_speed = USB_SPEED_HIGH; 1908 else 1909 gadgetfs_driver.max_speed = USB_SPEED_FULL; 1910 1911 value = usb_gadget_probe_driver(&gadgetfs_driver); 1912 if (value != 0) { 1913 kfree (dev->buf); 1914 dev->buf = NULL; 1915 } else { 1916 /* at this point "good" hardware has for the first time 1917 * let the USB the host see us. alternatively, if users 1918 * unplug/replug that will clear all the error state. 1919 * 1920 * note: everything running before here was guaranteed 1921 * to choke driver model style diagnostics. from here 1922 * on, they can work ... except in cleanup paths that 1923 * kick in after the ep0 descriptor is closed. 1924 */ 1925 fd->f_op = &ep0_io_operations; 1926 value = len; 1927 } 1928 return value; 1929 1930fail: 1931 spin_unlock_irq (&dev->lock); 1932 pr_debug ("%s: %s fail %Zd, %p\n", shortname, __func__, value, dev); 1933 kfree (dev->buf); 1934 dev->buf = NULL; 1935 return value; 1936} 1937 1938static int 1939dev_open (struct inode *inode, struct file *fd) 1940{ 1941 struct dev_data *dev = inode->i_private; 1942 int value = -EBUSY; 1943 1944 spin_lock_irq(&dev->lock); 1945 if (dev->state == STATE_DEV_DISABLED) { 1946 dev->ev_next = 0; 1947 dev->state = STATE_DEV_OPENED; 1948 fd->private_data = dev; 1949 get_dev (dev); 1950 value = 0; 1951 } 1952 spin_unlock_irq(&dev->lock); 1953 return value; 1954} 1955 1956static const struct file_operations dev_init_operations = { 1957 .llseek = no_llseek, 1958 1959 .open = dev_open, 1960 .write = dev_config, 1961 .fasync = ep0_fasync, 1962 .unlocked_ioctl = dev_ioctl, 1963 .release = dev_release, 1964}; 1965 1966/*----------------------------------------------------------------------*/ 1967 1968/* FILESYSTEM AND SUPERBLOCK OPERATIONS 1969 * 1970 * Mounting the filesystem creates a controller file, used first for 1971 * device configuration then later for event monitoring. 1972 */ 1973 1974 1975/* FIXME PAM etc could set this security policy without mount options 1976 * if epfiles inherited ownership and permissons from ep0 ... 1977 */ 1978 1979static unsigned default_uid; 1980static unsigned default_gid; 1981static unsigned default_perm = S_IRUSR | S_IWUSR; 1982 1983module_param (default_uid, uint, 0644); 1984module_param (default_gid, uint, 0644); 1985module_param (default_perm, uint, 0644); 1986 1987 1988static struct inode * 1989gadgetfs_make_inode (struct super_block *sb, 1990 void *data, const struct file_operations *fops, 1991 int mode) 1992{ 1993 struct inode *inode = new_inode (sb); 1994 1995 if (inode) { 1996 inode->i_ino = get_next_ino(); 1997 inode->i_mode = mode; 1998 inode->i_uid = make_kuid(&init_user_ns, default_uid); 1999 inode->i_gid = make_kgid(&init_user_ns, default_gid); 2000 inode->i_atime = inode->i_mtime = inode->i_ctime 2001 = CURRENT_TIME; 2002 inode->i_private = data; 2003 inode->i_fop = fops; 2004 } 2005 return inode; 2006} 2007 2008/* creates in fs root directory, so non-renamable and non-linkable. 2009 * so inode and dentry are paired, until device reconfig. 2010 */ 2011static struct inode * 2012gadgetfs_create_file (struct super_block *sb, char const *name, 2013 void *data, const struct file_operations *fops, 2014 struct dentry **dentry_p) 2015{ 2016 struct dentry *dentry; 2017 struct inode *inode; 2018 2019 dentry = d_alloc_name(sb->s_root, name); 2020 if (!dentry) 2021 return NULL; 2022 2023 inode = gadgetfs_make_inode (sb, data, fops, 2024 S_IFREG | (default_perm & S_IRWXUGO)); 2025 if (!inode) { 2026 dput(dentry); 2027 return NULL; 2028 } 2029 d_add (dentry, inode); 2030 *dentry_p = dentry; 2031 return inode; 2032} 2033 2034static const struct super_operations gadget_fs_operations = { 2035 .statfs = simple_statfs, 2036 .drop_inode = generic_delete_inode, 2037}; 2038 2039static int 2040gadgetfs_fill_super (struct super_block *sb, void *opts, int silent) 2041{ 2042 struct inode *inode; 2043 struct dev_data *dev; 2044 2045 if (the_device) 2046 return -ESRCH; 2047 2048 /* fake probe to determine $CHIP */ 2049 usb_gadget_probe_driver(&probe_driver); 2050 if (!CHIP) 2051 return -ENODEV; 2052 2053 /* superblock */ 2054 sb->s_blocksize = PAGE_CACHE_SIZE; 2055 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2056 sb->s_magic = GADGETFS_MAGIC; 2057 sb->s_op = &gadget_fs_operations; 2058 sb->s_time_gran = 1; 2059 2060 /* root inode */ 2061 inode = gadgetfs_make_inode (sb, 2062 NULL, &simple_dir_operations, 2063 S_IFDIR | S_IRUGO | S_IXUGO); 2064 if (!inode) 2065 goto Enomem; 2066 inode->i_op = &simple_dir_inode_operations; 2067 if (!(sb->s_root = d_make_root (inode))) 2068 goto Enomem; 2069 2070 /* the ep0 file is named after the controller we expect; 2071 * user mode code can use it for sanity checks, like we do. 2072 */ 2073 dev = dev_new (); 2074 if (!dev) 2075 goto Enomem; 2076 2077 dev->sb = sb; 2078 if (!gadgetfs_create_file (sb, CHIP, 2079 dev, &dev_init_operations, 2080 &dev->dentry)) { 2081 put_dev(dev); 2082 goto Enomem; 2083 } 2084 2085 /* other endpoint files are available after hardware setup, 2086 * from binding to a controller. 2087 */ 2088 the_device = dev; 2089 return 0; 2090 2091Enomem: 2092 return -ENOMEM; 2093} 2094 2095/* "mount -t gadgetfs path /dev/gadget" ends up here */ 2096static struct dentry * 2097gadgetfs_mount (struct file_system_type *t, int flags, 2098 const char *path, void *opts) 2099{ 2100 return mount_single (t, flags, opts, gadgetfs_fill_super); 2101} 2102 2103static void 2104gadgetfs_kill_sb (struct super_block *sb) 2105{ 2106 kill_litter_super (sb); 2107 if (the_device) { 2108 put_dev (the_device); 2109 the_device = NULL; 2110 } 2111} 2112 2113/*----------------------------------------------------------------------*/ 2114 2115static struct file_system_type gadgetfs_type = { 2116 .owner = THIS_MODULE, 2117 .name = shortname, 2118 .mount = gadgetfs_mount, 2119 .kill_sb = gadgetfs_kill_sb, 2120}; 2121MODULE_ALIAS_FS("gadgetfs"); 2122 2123/*----------------------------------------------------------------------*/ 2124 2125static int __init init (void) 2126{ 2127 int status; 2128 2129 status = register_filesystem (&gadgetfs_type); 2130 if (status == 0) 2131 pr_info ("%s: %s, version " DRIVER_VERSION "\n", 2132 shortname, driver_desc); 2133 return status; 2134} 2135module_init (init); 2136 2137static void __exit cleanup (void) 2138{ 2139 pr_debug ("unregister %s\n", shortname); 2140 unregister_filesystem (&gadgetfs_type); 2141} 2142module_exit (cleanup); 2143