Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _ASM_POWERPC_PGALLOC_64_H
2#define _ASM_POWERPC_PGALLOC_64_H
3/*
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
9
10#include <linux/slab.h>
11#include <linux/cpumask.h>
12#include <linux/percpu.h>
13
14struct vmemmap_backing {
15 struct vmemmap_backing *list;
16 unsigned long phys;
17 unsigned long virt_addr;
18};
19
20/*
21 * Functions that deal with pagetables that could be at any level of
22 * the table need to be passed an "index_size" so they know how to
23 * handle allocation. For PTE pages (which are linked to a struct
24 * page for now, and drawn from the main get_free_pages() pool), the
25 * allocation size will be (2^index_size * sizeof(pointer)) and
26 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
27 *
28 * The maximum index size needs to be big enough to allow any
29 * pagetable sizes we need, but small enough to fit in the low bits of
30 * any page table pointer. In other words all pagetables, even tiny
31 * ones, must be aligned to allow at least enough low 0 bits to
32 * contain this value. This value is also used as a mask, so it must
33 * be one less than a power of two.
34 */
35#define MAX_PGTABLE_INDEX_SIZE 0xf
36
37extern struct kmem_cache *pgtable_cache[];
38#define PGT_CACHE(shift) ({ \
39 BUG_ON(!(shift)); \
40 pgtable_cache[(shift) - 1]; \
41 })
42
43static inline pgd_t *pgd_alloc(struct mm_struct *mm)
44{
45 return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL);
46}
47
48static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
49{
50 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
51}
52
53#ifndef CONFIG_PPC_64K_PAGES
54
55#define pgd_populate(MM, PGD, PUD) pgd_set(PGD, PUD)
56
57static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
58{
59 return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
60 GFP_KERNEL|__GFP_REPEAT);
61}
62
63static inline void pud_free(struct mm_struct *mm, pud_t *pud)
64{
65 kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
66}
67
68static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
69{
70 pud_set(pud, (unsigned long)pmd);
71}
72
73#define pmd_populate(mm, pmd, pte_page) \
74 pmd_populate_kernel(mm, pmd, page_address(pte_page))
75#define pmd_populate_kernel(mm, pmd, pte) pmd_set(pmd, (unsigned long)(pte))
76#define pmd_pgtable(pmd) pmd_page(pmd)
77
78static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
79 unsigned long address)
80{
81 return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
82}
83
84static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
85 unsigned long address)
86{
87 struct page *page;
88 pte_t *pte;
89
90 pte = pte_alloc_one_kernel(mm, address);
91 if (!pte)
92 return NULL;
93 page = virt_to_page(pte);
94 pgtable_page_ctor(page);
95 return page;
96}
97
98static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
99{
100 free_page((unsigned long)pte);
101}
102
103static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
104{
105 pgtable_page_dtor(ptepage);
106 __free_page(ptepage);
107}
108
109static inline void pgtable_free(void *table, unsigned index_size)
110{
111 if (!index_size)
112 free_page((unsigned long)table);
113 else {
114 BUG_ON(index_size > MAX_PGTABLE_INDEX_SIZE);
115 kmem_cache_free(PGT_CACHE(index_size), table);
116 }
117}
118
119#ifdef CONFIG_SMP
120static inline void pgtable_free_tlb(struct mmu_gather *tlb,
121 void *table, int shift)
122{
123 unsigned long pgf = (unsigned long)table;
124 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
125 pgf |= shift;
126 tlb_remove_table(tlb, (void *)pgf);
127}
128
129static inline void __tlb_remove_table(void *_table)
130{
131 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
132 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
133
134 pgtable_free(table, shift);
135}
136#else /* !CONFIG_SMP */
137static inline void pgtable_free_tlb(struct mmu_gather *tlb,
138 void *table, int shift)
139{
140 pgtable_free(table, shift);
141}
142#endif /* CONFIG_SMP */
143
144static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
145 unsigned long address)
146{
147 struct page *page = page_address(table);
148
149 tlb_flush_pgtable(tlb, address);
150 pgtable_page_dtor(page);
151 pgtable_free_tlb(tlb, page, 0);
152}
153
154#else /* if CONFIG_PPC_64K_PAGES */
155/*
156 * we support 16 fragments per PTE page.
157 */
158#define PTE_FRAG_NR 16
159/*
160 * We use a 2K PTE page fragment and another 2K for storing
161 * real_pte_t hash index
162 */
163#define PTE_FRAG_SIZE_SHIFT 12
164#define PTE_FRAG_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t))
165
166extern pte_t *page_table_alloc(struct mm_struct *, unsigned long, int);
167extern void page_table_free(struct mm_struct *, unsigned long *, int);
168extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
169#ifdef CONFIG_SMP
170extern void __tlb_remove_table(void *_table);
171#endif
172
173#define pud_populate(mm, pud, pmd) pud_set(pud, (unsigned long)pmd)
174
175static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
176 pte_t *pte)
177{
178 pmd_set(pmd, (unsigned long)pte);
179}
180
181static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
182 pgtable_t pte_page)
183{
184 pmd_set(pmd, (unsigned long)pte_page);
185}
186
187static inline pgtable_t pmd_pgtable(pmd_t pmd)
188{
189 return (pgtable_t)(pmd_val(pmd) & ~PMD_MASKED_BITS);
190}
191
192static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
193 unsigned long address)
194{
195 return (pte_t *)page_table_alloc(mm, address, 1);
196}
197
198static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
199 unsigned long address)
200{
201 return (pgtable_t)page_table_alloc(mm, address, 0);
202}
203
204static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
205{
206 page_table_free(mm, (unsigned long *)pte, 1);
207}
208
209static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
210{
211 page_table_free(mm, (unsigned long *)ptepage, 0);
212}
213
214static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
215 unsigned long address)
216{
217 tlb_flush_pgtable(tlb, address);
218 pgtable_free_tlb(tlb, table, 0);
219}
220#endif /* CONFIG_PPC_64K_PAGES */
221
222static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
223{
224 return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
225 GFP_KERNEL|__GFP_REPEAT);
226}
227
228static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
229{
230 kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
231}
232
233#define __pmd_free_tlb(tlb, pmd, addr) \
234 pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX)
235#ifndef CONFIG_PPC_64K_PAGES
236#define __pud_free_tlb(tlb, pud, addr) \
237 pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE)
238
239#endif /* CONFIG_PPC_64K_PAGES */
240
241#define check_pgt_cache() do { } while (0)
242
243#endif /* _ASM_POWERPC_PGALLOC_64_H */