at v3.12-rc7 49 kB view raw
1/* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34#include <linux/cpu.h> 35#include <linux/export.h> 36#include <linux/percpu.h> 37#include <linux/hrtimer.h> 38#include <linux/notifier.h> 39#include <linux/syscalls.h> 40#include <linux/kallsyms.h> 41#include <linux/interrupt.h> 42#include <linux/tick.h> 43#include <linux/seq_file.h> 44#include <linux/err.h> 45#include <linux/debugobjects.h> 46#include <linux/sched.h> 47#include <linux/sched/sysctl.h> 48#include <linux/sched/rt.h> 49#include <linux/timer.h> 50#include <linux/freezer.h> 51 52#include <asm/uaccess.h> 53 54#include <trace/events/timer.h> 55 56/* 57 * The timer bases: 58 * 59 * There are more clockids then hrtimer bases. Thus, we index 60 * into the timer bases by the hrtimer_base_type enum. When trying 61 * to reach a base using a clockid, hrtimer_clockid_to_base() 62 * is used to convert from clockid to the proper hrtimer_base_type. 63 */ 64DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 65{ 66 67 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 68 .clock_base = 69 { 70 { 71 .index = HRTIMER_BASE_MONOTONIC, 72 .clockid = CLOCK_MONOTONIC, 73 .get_time = &ktime_get, 74 .resolution = KTIME_LOW_RES, 75 }, 76 { 77 .index = HRTIMER_BASE_REALTIME, 78 .clockid = CLOCK_REALTIME, 79 .get_time = &ktime_get_real, 80 .resolution = KTIME_LOW_RES, 81 }, 82 { 83 .index = HRTIMER_BASE_BOOTTIME, 84 .clockid = CLOCK_BOOTTIME, 85 .get_time = &ktime_get_boottime, 86 .resolution = KTIME_LOW_RES, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 .resolution = KTIME_LOW_RES, 93 }, 94 } 95}; 96 97static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 98 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 99 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 100 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 101 [CLOCK_TAI] = HRTIMER_BASE_TAI, 102}; 103 104static inline int hrtimer_clockid_to_base(clockid_t clock_id) 105{ 106 return hrtimer_clock_to_base_table[clock_id]; 107} 108 109 110/* 111 * Get the coarse grained time at the softirq based on xtime and 112 * wall_to_monotonic. 113 */ 114static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) 115{ 116 ktime_t xtim, mono, boot; 117 struct timespec xts, tom, slp; 118 s32 tai_offset; 119 120 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp); 121 tai_offset = timekeeping_get_tai_offset(); 122 123 xtim = timespec_to_ktime(xts); 124 mono = ktime_add(xtim, timespec_to_ktime(tom)); 125 boot = ktime_add(mono, timespec_to_ktime(slp)); 126 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; 127 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; 128 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; 129 base->clock_base[HRTIMER_BASE_TAI].softirq_time = 130 ktime_add(xtim, ktime_set(tai_offset, 0)); 131} 132 133/* 134 * Functions and macros which are different for UP/SMP systems are kept in a 135 * single place 136 */ 137#ifdef CONFIG_SMP 138 139/* 140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 141 * means that all timers which are tied to this base via timer->base are 142 * locked, and the base itself is locked too. 143 * 144 * So __run_timers/migrate_timers can safely modify all timers which could 145 * be found on the lists/queues. 146 * 147 * When the timer's base is locked, and the timer removed from list, it is 148 * possible to set timer->base = NULL and drop the lock: the timer remains 149 * locked. 150 */ 151static 152struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 153 unsigned long *flags) 154{ 155 struct hrtimer_clock_base *base; 156 157 for (;;) { 158 base = timer->base; 159 if (likely(base != NULL)) { 160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 161 if (likely(base == timer->base)) 162 return base; 163 /* The timer has migrated to another CPU: */ 164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 165 } 166 cpu_relax(); 167 } 168} 169 170 171/* 172 * Get the preferred target CPU for NOHZ 173 */ 174static int hrtimer_get_target(int this_cpu, int pinned) 175{ 176#ifdef CONFIG_NO_HZ_COMMON 177 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) 178 return get_nohz_timer_target(); 179#endif 180 return this_cpu; 181} 182 183/* 184 * With HIGHRES=y we do not migrate the timer when it is expiring 185 * before the next event on the target cpu because we cannot reprogram 186 * the target cpu hardware and we would cause it to fire late. 187 * 188 * Called with cpu_base->lock of target cpu held. 189 */ 190static int 191hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 192{ 193#ifdef CONFIG_HIGH_RES_TIMERS 194 ktime_t expires; 195 196 if (!new_base->cpu_base->hres_active) 197 return 0; 198 199 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 200 return expires.tv64 <= new_base->cpu_base->expires_next.tv64; 201#else 202 return 0; 203#endif 204} 205 206/* 207 * Switch the timer base to the current CPU when possible. 208 */ 209static inline struct hrtimer_clock_base * 210switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 211 int pinned) 212{ 213 struct hrtimer_clock_base *new_base; 214 struct hrtimer_cpu_base *new_cpu_base; 215 int this_cpu = smp_processor_id(); 216 int cpu = hrtimer_get_target(this_cpu, pinned); 217 int basenum = base->index; 218 219again: 220 new_cpu_base = &per_cpu(hrtimer_bases, cpu); 221 new_base = &new_cpu_base->clock_base[basenum]; 222 223 if (base != new_base) { 224 /* 225 * We are trying to move timer to new_base. 226 * However we can't change timer's base while it is running, 227 * so we keep it on the same CPU. No hassle vs. reprogramming 228 * the event source in the high resolution case. The softirq 229 * code will take care of this when the timer function has 230 * completed. There is no conflict as we hold the lock until 231 * the timer is enqueued. 232 */ 233 if (unlikely(hrtimer_callback_running(timer))) 234 return base; 235 236 /* See the comment in lock_timer_base() */ 237 timer->base = NULL; 238 raw_spin_unlock(&base->cpu_base->lock); 239 raw_spin_lock(&new_base->cpu_base->lock); 240 241 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { 242 cpu = this_cpu; 243 raw_spin_unlock(&new_base->cpu_base->lock); 244 raw_spin_lock(&base->cpu_base->lock); 245 timer->base = base; 246 goto again; 247 } 248 timer->base = new_base; 249 } 250 return new_base; 251} 252 253#else /* CONFIG_SMP */ 254 255static inline struct hrtimer_clock_base * 256lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 257{ 258 struct hrtimer_clock_base *base = timer->base; 259 260 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 261 262 return base; 263} 264 265# define switch_hrtimer_base(t, b, p) (b) 266 267#endif /* !CONFIG_SMP */ 268 269/* 270 * Functions for the union type storage format of ktime_t which are 271 * too large for inlining: 272 */ 273#if BITS_PER_LONG < 64 274# ifndef CONFIG_KTIME_SCALAR 275/** 276 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable 277 * @kt: addend 278 * @nsec: the scalar nsec value to add 279 * 280 * Returns the sum of kt and nsec in ktime_t format 281 */ 282ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) 283{ 284 ktime_t tmp; 285 286 if (likely(nsec < NSEC_PER_SEC)) { 287 tmp.tv64 = nsec; 288 } else { 289 unsigned long rem = do_div(nsec, NSEC_PER_SEC); 290 291 /* Make sure nsec fits into long */ 292 if (unlikely(nsec > KTIME_SEC_MAX)) 293 return (ktime_t){ .tv64 = KTIME_MAX }; 294 295 tmp = ktime_set((long)nsec, rem); 296 } 297 298 return ktime_add(kt, tmp); 299} 300 301EXPORT_SYMBOL_GPL(ktime_add_ns); 302 303/** 304 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable 305 * @kt: minuend 306 * @nsec: the scalar nsec value to subtract 307 * 308 * Returns the subtraction of @nsec from @kt in ktime_t format 309 */ 310ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) 311{ 312 ktime_t tmp; 313 314 if (likely(nsec < NSEC_PER_SEC)) { 315 tmp.tv64 = nsec; 316 } else { 317 unsigned long rem = do_div(nsec, NSEC_PER_SEC); 318 319 tmp = ktime_set((long)nsec, rem); 320 } 321 322 return ktime_sub(kt, tmp); 323} 324 325EXPORT_SYMBOL_GPL(ktime_sub_ns); 326# endif /* !CONFIG_KTIME_SCALAR */ 327 328/* 329 * Divide a ktime value by a nanosecond value 330 */ 331u64 ktime_divns(const ktime_t kt, s64 div) 332{ 333 u64 dclc; 334 int sft = 0; 335 336 dclc = ktime_to_ns(kt); 337 /* Make sure the divisor is less than 2^32: */ 338 while (div >> 32) { 339 sft++; 340 div >>= 1; 341 } 342 dclc >>= sft; 343 do_div(dclc, (unsigned long) div); 344 345 return dclc; 346} 347#endif /* BITS_PER_LONG >= 64 */ 348 349/* 350 * Add two ktime values and do a safety check for overflow: 351 */ 352ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 353{ 354 ktime_t res = ktime_add(lhs, rhs); 355 356 /* 357 * We use KTIME_SEC_MAX here, the maximum timeout which we can 358 * return to user space in a timespec: 359 */ 360 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) 361 res = ktime_set(KTIME_SEC_MAX, 0); 362 363 return res; 364} 365 366EXPORT_SYMBOL_GPL(ktime_add_safe); 367 368#ifdef CONFIG_DEBUG_OBJECTS_TIMERS 369 370static struct debug_obj_descr hrtimer_debug_descr; 371 372static void *hrtimer_debug_hint(void *addr) 373{ 374 return ((struct hrtimer *) addr)->function; 375} 376 377/* 378 * fixup_init is called when: 379 * - an active object is initialized 380 */ 381static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) 382{ 383 struct hrtimer *timer = addr; 384 385 switch (state) { 386 case ODEBUG_STATE_ACTIVE: 387 hrtimer_cancel(timer); 388 debug_object_init(timer, &hrtimer_debug_descr); 389 return 1; 390 default: 391 return 0; 392 } 393} 394 395/* 396 * fixup_activate is called when: 397 * - an active object is activated 398 * - an unknown object is activated (might be a statically initialized object) 399 */ 400static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 401{ 402 switch (state) { 403 404 case ODEBUG_STATE_NOTAVAILABLE: 405 WARN_ON_ONCE(1); 406 return 0; 407 408 case ODEBUG_STATE_ACTIVE: 409 WARN_ON(1); 410 411 default: 412 return 0; 413 } 414} 415 416/* 417 * fixup_free is called when: 418 * - an active object is freed 419 */ 420static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) 421{ 422 struct hrtimer *timer = addr; 423 424 switch (state) { 425 case ODEBUG_STATE_ACTIVE: 426 hrtimer_cancel(timer); 427 debug_object_free(timer, &hrtimer_debug_descr); 428 return 1; 429 default: 430 return 0; 431 } 432} 433 434static struct debug_obj_descr hrtimer_debug_descr = { 435 .name = "hrtimer", 436 .debug_hint = hrtimer_debug_hint, 437 .fixup_init = hrtimer_fixup_init, 438 .fixup_activate = hrtimer_fixup_activate, 439 .fixup_free = hrtimer_fixup_free, 440}; 441 442static inline void debug_hrtimer_init(struct hrtimer *timer) 443{ 444 debug_object_init(timer, &hrtimer_debug_descr); 445} 446 447static inline void debug_hrtimer_activate(struct hrtimer *timer) 448{ 449 debug_object_activate(timer, &hrtimer_debug_descr); 450} 451 452static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 453{ 454 debug_object_deactivate(timer, &hrtimer_debug_descr); 455} 456 457static inline void debug_hrtimer_free(struct hrtimer *timer) 458{ 459 debug_object_free(timer, &hrtimer_debug_descr); 460} 461 462static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 463 enum hrtimer_mode mode); 464 465void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 466 enum hrtimer_mode mode) 467{ 468 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 469 __hrtimer_init(timer, clock_id, mode); 470} 471EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 472 473void destroy_hrtimer_on_stack(struct hrtimer *timer) 474{ 475 debug_object_free(timer, &hrtimer_debug_descr); 476} 477 478#else 479static inline void debug_hrtimer_init(struct hrtimer *timer) { } 480static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 481static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 482#endif 483 484static inline void 485debug_init(struct hrtimer *timer, clockid_t clockid, 486 enum hrtimer_mode mode) 487{ 488 debug_hrtimer_init(timer); 489 trace_hrtimer_init(timer, clockid, mode); 490} 491 492static inline void debug_activate(struct hrtimer *timer) 493{ 494 debug_hrtimer_activate(timer); 495 trace_hrtimer_start(timer); 496} 497 498static inline void debug_deactivate(struct hrtimer *timer) 499{ 500 debug_hrtimer_deactivate(timer); 501 trace_hrtimer_cancel(timer); 502} 503 504/* High resolution timer related functions */ 505#ifdef CONFIG_HIGH_RES_TIMERS 506 507/* 508 * High resolution timer enabled ? 509 */ 510static int hrtimer_hres_enabled __read_mostly = 1; 511 512/* 513 * Enable / Disable high resolution mode 514 */ 515static int __init setup_hrtimer_hres(char *str) 516{ 517 if (!strcmp(str, "off")) 518 hrtimer_hres_enabled = 0; 519 else if (!strcmp(str, "on")) 520 hrtimer_hres_enabled = 1; 521 else 522 return 0; 523 return 1; 524} 525 526__setup("highres=", setup_hrtimer_hres); 527 528/* 529 * hrtimer_high_res_enabled - query, if the highres mode is enabled 530 */ 531static inline int hrtimer_is_hres_enabled(void) 532{ 533 return hrtimer_hres_enabled; 534} 535 536/* 537 * Is the high resolution mode active ? 538 */ 539static inline int hrtimer_hres_active(void) 540{ 541 return __this_cpu_read(hrtimer_bases.hres_active); 542} 543 544/* 545 * Reprogram the event source with checking both queues for the 546 * next event 547 * Called with interrupts disabled and base->lock held 548 */ 549static void 550hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 551{ 552 int i; 553 struct hrtimer_clock_base *base = cpu_base->clock_base; 554 ktime_t expires, expires_next; 555 556 expires_next.tv64 = KTIME_MAX; 557 558 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 559 struct hrtimer *timer; 560 struct timerqueue_node *next; 561 562 next = timerqueue_getnext(&base->active); 563 if (!next) 564 continue; 565 timer = container_of(next, struct hrtimer, node); 566 567 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 568 /* 569 * clock_was_set() has changed base->offset so the 570 * result might be negative. Fix it up to prevent a 571 * false positive in clockevents_program_event() 572 */ 573 if (expires.tv64 < 0) 574 expires.tv64 = 0; 575 if (expires.tv64 < expires_next.tv64) 576 expires_next = expires; 577 } 578 579 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) 580 return; 581 582 cpu_base->expires_next.tv64 = expires_next.tv64; 583 584 if (cpu_base->expires_next.tv64 != KTIME_MAX) 585 tick_program_event(cpu_base->expires_next, 1); 586} 587 588/* 589 * Shared reprogramming for clock_realtime and clock_monotonic 590 * 591 * When a timer is enqueued and expires earlier than the already enqueued 592 * timers, we have to check, whether it expires earlier than the timer for 593 * which the clock event device was armed. 594 * 595 * Called with interrupts disabled and base->cpu_base.lock held 596 */ 597static int hrtimer_reprogram(struct hrtimer *timer, 598 struct hrtimer_clock_base *base) 599{ 600 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 601 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 602 int res; 603 604 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 605 606 /* 607 * When the callback is running, we do not reprogram the clock event 608 * device. The timer callback is either running on a different CPU or 609 * the callback is executed in the hrtimer_interrupt context. The 610 * reprogramming is handled either by the softirq, which called the 611 * callback or at the end of the hrtimer_interrupt. 612 */ 613 if (hrtimer_callback_running(timer)) 614 return 0; 615 616 /* 617 * CLOCK_REALTIME timer might be requested with an absolute 618 * expiry time which is less than base->offset. Nothing wrong 619 * about that, just avoid to call into the tick code, which 620 * has now objections against negative expiry values. 621 */ 622 if (expires.tv64 < 0) 623 return -ETIME; 624 625 if (expires.tv64 >= cpu_base->expires_next.tv64) 626 return 0; 627 628 /* 629 * If a hang was detected in the last timer interrupt then we 630 * do not schedule a timer which is earlier than the expiry 631 * which we enforced in the hang detection. We want the system 632 * to make progress. 633 */ 634 if (cpu_base->hang_detected) 635 return 0; 636 637 /* 638 * Clockevents returns -ETIME, when the event was in the past. 639 */ 640 res = tick_program_event(expires, 0); 641 if (!IS_ERR_VALUE(res)) 642 cpu_base->expires_next = expires; 643 return res; 644} 645 646/* 647 * Initialize the high resolution related parts of cpu_base 648 */ 649static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 650{ 651 base->expires_next.tv64 = KTIME_MAX; 652 base->hres_active = 0; 653} 654 655/* 656 * When High resolution timers are active, try to reprogram. Note, that in case 657 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry 658 * check happens. The timer gets enqueued into the rbtree. The reprogramming 659 * and expiry check is done in the hrtimer_interrupt or in the softirq. 660 */ 661static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, 662 struct hrtimer_clock_base *base) 663{ 664 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base); 665} 666 667static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 668{ 669 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 670 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 671 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 672 673 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai); 674} 675 676/* 677 * Retrigger next event is called after clock was set 678 * 679 * Called with interrupts disabled via on_each_cpu() 680 */ 681static void retrigger_next_event(void *arg) 682{ 683 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases); 684 685 if (!hrtimer_hres_active()) 686 return; 687 688 raw_spin_lock(&base->lock); 689 hrtimer_update_base(base); 690 hrtimer_force_reprogram(base, 0); 691 raw_spin_unlock(&base->lock); 692} 693 694/* 695 * Switch to high resolution mode 696 */ 697static int hrtimer_switch_to_hres(void) 698{ 699 int i, cpu = smp_processor_id(); 700 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); 701 unsigned long flags; 702 703 if (base->hres_active) 704 return 1; 705 706 local_irq_save(flags); 707 708 if (tick_init_highres()) { 709 local_irq_restore(flags); 710 printk(KERN_WARNING "Could not switch to high resolution " 711 "mode on CPU %d\n", cpu); 712 return 0; 713 } 714 base->hres_active = 1; 715 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) 716 base->clock_base[i].resolution = KTIME_HIGH_RES; 717 718 tick_setup_sched_timer(); 719 /* "Retrigger" the interrupt to get things going */ 720 retrigger_next_event(NULL); 721 local_irq_restore(flags); 722 return 1; 723} 724 725static void clock_was_set_work(struct work_struct *work) 726{ 727 clock_was_set(); 728} 729 730static DECLARE_WORK(hrtimer_work, clock_was_set_work); 731 732/* 733 * Called from timekeeping and resume code to reprogramm the hrtimer 734 * interrupt device on all cpus. 735 */ 736void clock_was_set_delayed(void) 737{ 738 schedule_work(&hrtimer_work); 739} 740 741#else 742 743static inline int hrtimer_hres_active(void) { return 0; } 744static inline int hrtimer_is_hres_enabled(void) { return 0; } 745static inline int hrtimer_switch_to_hres(void) { return 0; } 746static inline void 747hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 748static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, 749 struct hrtimer_clock_base *base) 750{ 751 return 0; 752} 753static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 754static inline void retrigger_next_event(void *arg) { } 755 756#endif /* CONFIG_HIGH_RES_TIMERS */ 757 758/* 759 * Clock realtime was set 760 * 761 * Change the offset of the realtime clock vs. the monotonic 762 * clock. 763 * 764 * We might have to reprogram the high resolution timer interrupt. On 765 * SMP we call the architecture specific code to retrigger _all_ high 766 * resolution timer interrupts. On UP we just disable interrupts and 767 * call the high resolution interrupt code. 768 */ 769void clock_was_set(void) 770{ 771#ifdef CONFIG_HIGH_RES_TIMERS 772 /* Retrigger the CPU local events everywhere */ 773 on_each_cpu(retrigger_next_event, NULL, 1); 774#endif 775 timerfd_clock_was_set(); 776} 777 778/* 779 * During resume we might have to reprogram the high resolution timer 780 * interrupt on all online CPUs. However, all other CPUs will be 781 * stopped with IRQs interrupts disabled so the clock_was_set() call 782 * must be deferred. 783 */ 784void hrtimers_resume(void) 785{ 786 WARN_ONCE(!irqs_disabled(), 787 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 788 789 /* Retrigger on the local CPU */ 790 retrigger_next_event(NULL); 791 /* And schedule a retrigger for all others */ 792 clock_was_set_delayed(); 793} 794 795static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) 796{ 797#ifdef CONFIG_TIMER_STATS 798 if (timer->start_site) 799 return; 800 timer->start_site = __builtin_return_address(0); 801 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 802 timer->start_pid = current->pid; 803#endif 804} 805 806static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) 807{ 808#ifdef CONFIG_TIMER_STATS 809 timer->start_site = NULL; 810#endif 811} 812 813static inline void timer_stats_account_hrtimer(struct hrtimer *timer) 814{ 815#ifdef CONFIG_TIMER_STATS 816 if (likely(!timer_stats_active)) 817 return; 818 timer_stats_update_stats(timer, timer->start_pid, timer->start_site, 819 timer->function, timer->start_comm, 0); 820#endif 821} 822 823/* 824 * Counterpart to lock_hrtimer_base above: 825 */ 826static inline 827void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 828{ 829 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 830} 831 832/** 833 * hrtimer_forward - forward the timer expiry 834 * @timer: hrtimer to forward 835 * @now: forward past this time 836 * @interval: the interval to forward 837 * 838 * Forward the timer expiry so it will expire in the future. 839 * Returns the number of overruns. 840 */ 841u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 842{ 843 u64 orun = 1; 844 ktime_t delta; 845 846 delta = ktime_sub(now, hrtimer_get_expires(timer)); 847 848 if (delta.tv64 < 0) 849 return 0; 850 851 if (interval.tv64 < timer->base->resolution.tv64) 852 interval.tv64 = timer->base->resolution.tv64; 853 854 if (unlikely(delta.tv64 >= interval.tv64)) { 855 s64 incr = ktime_to_ns(interval); 856 857 orun = ktime_divns(delta, incr); 858 hrtimer_add_expires_ns(timer, incr * orun); 859 if (hrtimer_get_expires_tv64(timer) > now.tv64) 860 return orun; 861 /* 862 * This (and the ktime_add() below) is the 863 * correction for exact: 864 */ 865 orun++; 866 } 867 hrtimer_add_expires(timer, interval); 868 869 return orun; 870} 871EXPORT_SYMBOL_GPL(hrtimer_forward); 872 873/* 874 * enqueue_hrtimer - internal function to (re)start a timer 875 * 876 * The timer is inserted in expiry order. Insertion into the 877 * red black tree is O(log(n)). Must hold the base lock. 878 * 879 * Returns 1 when the new timer is the leftmost timer in the tree. 880 */ 881static int enqueue_hrtimer(struct hrtimer *timer, 882 struct hrtimer_clock_base *base) 883{ 884 debug_activate(timer); 885 886 timerqueue_add(&base->active, &timer->node); 887 base->cpu_base->active_bases |= 1 << base->index; 888 889 /* 890 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the 891 * state of a possibly running callback. 892 */ 893 timer->state |= HRTIMER_STATE_ENQUEUED; 894 895 return (&timer->node == base->active.next); 896} 897 898/* 899 * __remove_hrtimer - internal function to remove a timer 900 * 901 * Caller must hold the base lock. 902 * 903 * High resolution timer mode reprograms the clock event device when the 904 * timer is the one which expires next. The caller can disable this by setting 905 * reprogram to zero. This is useful, when the context does a reprogramming 906 * anyway (e.g. timer interrupt) 907 */ 908static void __remove_hrtimer(struct hrtimer *timer, 909 struct hrtimer_clock_base *base, 910 unsigned long newstate, int reprogram) 911{ 912 struct timerqueue_node *next_timer; 913 if (!(timer->state & HRTIMER_STATE_ENQUEUED)) 914 goto out; 915 916 next_timer = timerqueue_getnext(&base->active); 917 timerqueue_del(&base->active, &timer->node); 918 if (&timer->node == next_timer) { 919#ifdef CONFIG_HIGH_RES_TIMERS 920 /* Reprogram the clock event device. if enabled */ 921 if (reprogram && hrtimer_hres_active()) { 922 ktime_t expires; 923 924 expires = ktime_sub(hrtimer_get_expires(timer), 925 base->offset); 926 if (base->cpu_base->expires_next.tv64 == expires.tv64) 927 hrtimer_force_reprogram(base->cpu_base, 1); 928 } 929#endif 930 } 931 if (!timerqueue_getnext(&base->active)) 932 base->cpu_base->active_bases &= ~(1 << base->index); 933out: 934 timer->state = newstate; 935} 936 937/* 938 * remove hrtimer, called with base lock held 939 */ 940static inline int 941remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) 942{ 943 if (hrtimer_is_queued(timer)) { 944 unsigned long state; 945 int reprogram; 946 947 /* 948 * Remove the timer and force reprogramming when high 949 * resolution mode is active and the timer is on the current 950 * CPU. If we remove a timer on another CPU, reprogramming is 951 * skipped. The interrupt event on this CPU is fired and 952 * reprogramming happens in the interrupt handler. This is a 953 * rare case and less expensive than a smp call. 954 */ 955 debug_deactivate(timer); 956 timer_stats_hrtimer_clear_start_info(timer); 957 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); 958 /* 959 * We must preserve the CALLBACK state flag here, 960 * otherwise we could move the timer base in 961 * switch_hrtimer_base. 962 */ 963 state = timer->state & HRTIMER_STATE_CALLBACK; 964 __remove_hrtimer(timer, base, state, reprogram); 965 return 1; 966 } 967 return 0; 968} 969 970int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 971 unsigned long delta_ns, const enum hrtimer_mode mode, 972 int wakeup) 973{ 974 struct hrtimer_clock_base *base, *new_base; 975 unsigned long flags; 976 int ret, leftmost; 977 978 base = lock_hrtimer_base(timer, &flags); 979 980 /* Remove an active timer from the queue: */ 981 ret = remove_hrtimer(timer, base); 982 983 /* Switch the timer base, if necessary: */ 984 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 985 986 if (mode & HRTIMER_MODE_REL) { 987 tim = ktime_add_safe(tim, new_base->get_time()); 988 /* 989 * CONFIG_TIME_LOW_RES is a temporary way for architectures 990 * to signal that they simply return xtime in 991 * do_gettimeoffset(). In this case we want to round up by 992 * resolution when starting a relative timer, to avoid short 993 * timeouts. This will go away with the GTOD framework. 994 */ 995#ifdef CONFIG_TIME_LOW_RES 996 tim = ktime_add_safe(tim, base->resolution); 997#endif 998 } 999 1000 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1001 1002 timer_stats_hrtimer_set_start_info(timer); 1003 1004 leftmost = enqueue_hrtimer(timer, new_base); 1005 1006 /* 1007 * Only allow reprogramming if the new base is on this CPU. 1008 * (it might still be on another CPU if the timer was pending) 1009 * 1010 * XXX send_remote_softirq() ? 1011 */ 1012 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases) 1013 && hrtimer_enqueue_reprogram(timer, new_base)) { 1014 if (wakeup) { 1015 /* 1016 * We need to drop cpu_base->lock to avoid a 1017 * lock ordering issue vs. rq->lock. 1018 */ 1019 raw_spin_unlock(&new_base->cpu_base->lock); 1020 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1021 local_irq_restore(flags); 1022 return ret; 1023 } else { 1024 __raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1025 } 1026 } 1027 1028 unlock_hrtimer_base(timer, &flags); 1029 1030 return ret; 1031} 1032 1033/** 1034 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 1035 * @timer: the timer to be added 1036 * @tim: expiry time 1037 * @delta_ns: "slack" range for the timer 1038 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 1039 * relative (HRTIMER_MODE_REL) 1040 * 1041 * Returns: 1042 * 0 on success 1043 * 1 when the timer was active 1044 */ 1045int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1046 unsigned long delta_ns, const enum hrtimer_mode mode) 1047{ 1048 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); 1049} 1050EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1051 1052/** 1053 * hrtimer_start - (re)start an hrtimer on the current CPU 1054 * @timer: the timer to be added 1055 * @tim: expiry time 1056 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 1057 * relative (HRTIMER_MODE_REL) 1058 * 1059 * Returns: 1060 * 0 on success 1061 * 1 when the timer was active 1062 */ 1063int 1064hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) 1065{ 1066 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); 1067} 1068EXPORT_SYMBOL_GPL(hrtimer_start); 1069 1070 1071/** 1072 * hrtimer_try_to_cancel - try to deactivate a timer 1073 * @timer: hrtimer to stop 1074 * 1075 * Returns: 1076 * 0 when the timer was not active 1077 * 1 when the timer was active 1078 * -1 when the timer is currently excuting the callback function and 1079 * cannot be stopped 1080 */ 1081int hrtimer_try_to_cancel(struct hrtimer *timer) 1082{ 1083 struct hrtimer_clock_base *base; 1084 unsigned long flags; 1085 int ret = -1; 1086 1087 base = lock_hrtimer_base(timer, &flags); 1088 1089 if (!hrtimer_callback_running(timer)) 1090 ret = remove_hrtimer(timer, base); 1091 1092 unlock_hrtimer_base(timer, &flags); 1093 1094 return ret; 1095 1096} 1097EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1098 1099/** 1100 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1101 * @timer: the timer to be cancelled 1102 * 1103 * Returns: 1104 * 0 when the timer was not active 1105 * 1 when the timer was active 1106 */ 1107int hrtimer_cancel(struct hrtimer *timer) 1108{ 1109 for (;;) { 1110 int ret = hrtimer_try_to_cancel(timer); 1111 1112 if (ret >= 0) 1113 return ret; 1114 cpu_relax(); 1115 } 1116} 1117EXPORT_SYMBOL_GPL(hrtimer_cancel); 1118 1119/** 1120 * hrtimer_get_remaining - get remaining time for the timer 1121 * @timer: the timer to read 1122 */ 1123ktime_t hrtimer_get_remaining(const struct hrtimer *timer) 1124{ 1125 unsigned long flags; 1126 ktime_t rem; 1127 1128 lock_hrtimer_base(timer, &flags); 1129 rem = hrtimer_expires_remaining(timer); 1130 unlock_hrtimer_base(timer, &flags); 1131 1132 return rem; 1133} 1134EXPORT_SYMBOL_GPL(hrtimer_get_remaining); 1135 1136#ifdef CONFIG_NO_HZ_COMMON 1137/** 1138 * hrtimer_get_next_event - get the time until next expiry event 1139 * 1140 * Returns the delta to the next expiry event or KTIME_MAX if no timer 1141 * is pending. 1142 */ 1143ktime_t hrtimer_get_next_event(void) 1144{ 1145 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1146 struct hrtimer_clock_base *base = cpu_base->clock_base; 1147 ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; 1148 unsigned long flags; 1149 int i; 1150 1151 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1152 1153 if (!hrtimer_hres_active()) { 1154 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 1155 struct hrtimer *timer; 1156 struct timerqueue_node *next; 1157 1158 next = timerqueue_getnext(&base->active); 1159 if (!next) 1160 continue; 1161 1162 timer = container_of(next, struct hrtimer, node); 1163 delta.tv64 = hrtimer_get_expires_tv64(timer); 1164 delta = ktime_sub(delta, base->get_time()); 1165 if (delta.tv64 < mindelta.tv64) 1166 mindelta.tv64 = delta.tv64; 1167 } 1168 } 1169 1170 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1171 1172 if (mindelta.tv64 < 0) 1173 mindelta.tv64 = 0; 1174 return mindelta; 1175} 1176#endif 1177 1178static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1179 enum hrtimer_mode mode) 1180{ 1181 struct hrtimer_cpu_base *cpu_base; 1182 int base; 1183 1184 memset(timer, 0, sizeof(struct hrtimer)); 1185 1186 cpu_base = &__raw_get_cpu_var(hrtimer_bases); 1187 1188 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1189 clock_id = CLOCK_MONOTONIC; 1190 1191 base = hrtimer_clockid_to_base(clock_id); 1192 timer->base = &cpu_base->clock_base[base]; 1193 timerqueue_init(&timer->node); 1194 1195#ifdef CONFIG_TIMER_STATS 1196 timer->start_site = NULL; 1197 timer->start_pid = -1; 1198 memset(timer->start_comm, 0, TASK_COMM_LEN); 1199#endif 1200} 1201 1202/** 1203 * hrtimer_init - initialize a timer to the given clock 1204 * @timer: the timer to be initialized 1205 * @clock_id: the clock to be used 1206 * @mode: timer mode abs/rel 1207 */ 1208void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1209 enum hrtimer_mode mode) 1210{ 1211 debug_init(timer, clock_id, mode); 1212 __hrtimer_init(timer, clock_id, mode); 1213} 1214EXPORT_SYMBOL_GPL(hrtimer_init); 1215 1216/** 1217 * hrtimer_get_res - get the timer resolution for a clock 1218 * @which_clock: which clock to query 1219 * @tp: pointer to timespec variable to store the resolution 1220 * 1221 * Store the resolution of the clock selected by @which_clock in the 1222 * variable pointed to by @tp. 1223 */ 1224int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) 1225{ 1226 struct hrtimer_cpu_base *cpu_base; 1227 int base = hrtimer_clockid_to_base(which_clock); 1228 1229 cpu_base = &__raw_get_cpu_var(hrtimer_bases); 1230 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); 1231 1232 return 0; 1233} 1234EXPORT_SYMBOL_GPL(hrtimer_get_res); 1235 1236static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) 1237{ 1238 struct hrtimer_clock_base *base = timer->base; 1239 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1240 enum hrtimer_restart (*fn)(struct hrtimer *); 1241 int restart; 1242 1243 WARN_ON(!irqs_disabled()); 1244 1245 debug_deactivate(timer); 1246 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); 1247 timer_stats_account_hrtimer(timer); 1248 fn = timer->function; 1249 1250 /* 1251 * Because we run timers from hardirq context, there is no chance 1252 * they get migrated to another cpu, therefore its safe to unlock 1253 * the timer base. 1254 */ 1255 raw_spin_unlock(&cpu_base->lock); 1256 trace_hrtimer_expire_entry(timer, now); 1257 restart = fn(timer); 1258 trace_hrtimer_expire_exit(timer); 1259 raw_spin_lock(&cpu_base->lock); 1260 1261 /* 1262 * Note: We clear the CALLBACK bit after enqueue_hrtimer and 1263 * we do not reprogramm the event hardware. Happens either in 1264 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1265 */ 1266 if (restart != HRTIMER_NORESTART) { 1267 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 1268 enqueue_hrtimer(timer, base); 1269 } 1270 1271 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); 1272 1273 timer->state &= ~HRTIMER_STATE_CALLBACK; 1274} 1275 1276#ifdef CONFIG_HIGH_RES_TIMERS 1277 1278/* 1279 * High resolution timer interrupt 1280 * Called with interrupts disabled 1281 */ 1282void hrtimer_interrupt(struct clock_event_device *dev) 1283{ 1284 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1285 ktime_t expires_next, now, entry_time, delta; 1286 int i, retries = 0; 1287 1288 BUG_ON(!cpu_base->hres_active); 1289 cpu_base->nr_events++; 1290 dev->next_event.tv64 = KTIME_MAX; 1291 1292 raw_spin_lock(&cpu_base->lock); 1293 entry_time = now = hrtimer_update_base(cpu_base); 1294retry: 1295 expires_next.tv64 = KTIME_MAX; 1296 /* 1297 * We set expires_next to KTIME_MAX here with cpu_base->lock 1298 * held to prevent that a timer is enqueued in our queue via 1299 * the migration code. This does not affect enqueueing of 1300 * timers which run their callback and need to be requeued on 1301 * this CPU. 1302 */ 1303 cpu_base->expires_next.tv64 = KTIME_MAX; 1304 1305 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1306 struct hrtimer_clock_base *base; 1307 struct timerqueue_node *node; 1308 ktime_t basenow; 1309 1310 if (!(cpu_base->active_bases & (1 << i))) 1311 continue; 1312 1313 base = cpu_base->clock_base + i; 1314 basenow = ktime_add(now, base->offset); 1315 1316 while ((node = timerqueue_getnext(&base->active))) { 1317 struct hrtimer *timer; 1318 1319 timer = container_of(node, struct hrtimer, node); 1320 1321 /* 1322 * The immediate goal for using the softexpires is 1323 * minimizing wakeups, not running timers at the 1324 * earliest interrupt after their soft expiration. 1325 * This allows us to avoid using a Priority Search 1326 * Tree, which can answer a stabbing querry for 1327 * overlapping intervals and instead use the simple 1328 * BST we already have. 1329 * We don't add extra wakeups by delaying timers that 1330 * are right-of a not yet expired timer, because that 1331 * timer will have to trigger a wakeup anyway. 1332 */ 1333 1334 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { 1335 ktime_t expires; 1336 1337 expires = ktime_sub(hrtimer_get_expires(timer), 1338 base->offset); 1339 if (expires.tv64 < 0) 1340 expires.tv64 = KTIME_MAX; 1341 if (expires.tv64 < expires_next.tv64) 1342 expires_next = expires; 1343 break; 1344 } 1345 1346 __run_hrtimer(timer, &basenow); 1347 } 1348 } 1349 1350 /* 1351 * Store the new expiry value so the migration code can verify 1352 * against it. 1353 */ 1354 cpu_base->expires_next = expires_next; 1355 raw_spin_unlock(&cpu_base->lock); 1356 1357 /* Reprogramming necessary ? */ 1358 if (expires_next.tv64 == KTIME_MAX || 1359 !tick_program_event(expires_next, 0)) { 1360 cpu_base->hang_detected = 0; 1361 return; 1362 } 1363 1364 /* 1365 * The next timer was already expired due to: 1366 * - tracing 1367 * - long lasting callbacks 1368 * - being scheduled away when running in a VM 1369 * 1370 * We need to prevent that we loop forever in the hrtimer 1371 * interrupt routine. We give it 3 attempts to avoid 1372 * overreacting on some spurious event. 1373 * 1374 * Acquire base lock for updating the offsets and retrieving 1375 * the current time. 1376 */ 1377 raw_spin_lock(&cpu_base->lock); 1378 now = hrtimer_update_base(cpu_base); 1379 cpu_base->nr_retries++; 1380 if (++retries < 3) 1381 goto retry; 1382 /* 1383 * Give the system a chance to do something else than looping 1384 * here. We stored the entry time, so we know exactly how long 1385 * we spent here. We schedule the next event this amount of 1386 * time away. 1387 */ 1388 cpu_base->nr_hangs++; 1389 cpu_base->hang_detected = 1; 1390 raw_spin_unlock(&cpu_base->lock); 1391 delta = ktime_sub(now, entry_time); 1392 if (delta.tv64 > cpu_base->max_hang_time.tv64) 1393 cpu_base->max_hang_time = delta; 1394 /* 1395 * Limit it to a sensible value as we enforce a longer 1396 * delay. Give the CPU at least 100ms to catch up. 1397 */ 1398 if (delta.tv64 > 100 * NSEC_PER_MSEC) 1399 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1400 else 1401 expires_next = ktime_add(now, delta); 1402 tick_program_event(expires_next, 1); 1403 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1404 ktime_to_ns(delta)); 1405} 1406 1407/* 1408 * local version of hrtimer_peek_ahead_timers() called with interrupts 1409 * disabled. 1410 */ 1411static void __hrtimer_peek_ahead_timers(void) 1412{ 1413 struct tick_device *td; 1414 1415 if (!hrtimer_hres_active()) 1416 return; 1417 1418 td = &__get_cpu_var(tick_cpu_device); 1419 if (td && td->evtdev) 1420 hrtimer_interrupt(td->evtdev); 1421} 1422 1423/** 1424 * hrtimer_peek_ahead_timers -- run soft-expired timers now 1425 * 1426 * hrtimer_peek_ahead_timers will peek at the timer queue of 1427 * the current cpu and check if there are any timers for which 1428 * the soft expires time has passed. If any such timers exist, 1429 * they are run immediately and then removed from the timer queue. 1430 * 1431 */ 1432void hrtimer_peek_ahead_timers(void) 1433{ 1434 unsigned long flags; 1435 1436 local_irq_save(flags); 1437 __hrtimer_peek_ahead_timers(); 1438 local_irq_restore(flags); 1439} 1440 1441static void run_hrtimer_softirq(struct softirq_action *h) 1442{ 1443 hrtimer_peek_ahead_timers(); 1444} 1445 1446#else /* CONFIG_HIGH_RES_TIMERS */ 1447 1448static inline void __hrtimer_peek_ahead_timers(void) { } 1449 1450#endif /* !CONFIG_HIGH_RES_TIMERS */ 1451 1452/* 1453 * Called from timer softirq every jiffy, expire hrtimers: 1454 * 1455 * For HRT its the fall back code to run the softirq in the timer 1456 * softirq context in case the hrtimer initialization failed or has 1457 * not been done yet. 1458 */ 1459void hrtimer_run_pending(void) 1460{ 1461 if (hrtimer_hres_active()) 1462 return; 1463 1464 /* 1465 * This _is_ ugly: We have to check in the softirq context, 1466 * whether we can switch to highres and / or nohz mode. The 1467 * clocksource switch happens in the timer interrupt with 1468 * xtime_lock held. Notification from there only sets the 1469 * check bit in the tick_oneshot code, otherwise we might 1470 * deadlock vs. xtime_lock. 1471 */ 1472 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) 1473 hrtimer_switch_to_hres(); 1474} 1475 1476/* 1477 * Called from hardirq context every jiffy 1478 */ 1479void hrtimer_run_queues(void) 1480{ 1481 struct timerqueue_node *node; 1482 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1483 struct hrtimer_clock_base *base; 1484 int index, gettime = 1; 1485 1486 if (hrtimer_hres_active()) 1487 return; 1488 1489 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { 1490 base = &cpu_base->clock_base[index]; 1491 if (!timerqueue_getnext(&base->active)) 1492 continue; 1493 1494 if (gettime) { 1495 hrtimer_get_softirq_time(cpu_base); 1496 gettime = 0; 1497 } 1498 1499 raw_spin_lock(&cpu_base->lock); 1500 1501 while ((node = timerqueue_getnext(&base->active))) { 1502 struct hrtimer *timer; 1503 1504 timer = container_of(node, struct hrtimer, node); 1505 if (base->softirq_time.tv64 <= 1506 hrtimer_get_expires_tv64(timer)) 1507 break; 1508 1509 __run_hrtimer(timer, &base->softirq_time); 1510 } 1511 raw_spin_unlock(&cpu_base->lock); 1512 } 1513} 1514 1515/* 1516 * Sleep related functions: 1517 */ 1518static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1519{ 1520 struct hrtimer_sleeper *t = 1521 container_of(timer, struct hrtimer_sleeper, timer); 1522 struct task_struct *task = t->task; 1523 1524 t->task = NULL; 1525 if (task) 1526 wake_up_process(task); 1527 1528 return HRTIMER_NORESTART; 1529} 1530 1531void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1532{ 1533 sl->timer.function = hrtimer_wakeup; 1534 sl->task = task; 1535} 1536EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1537 1538static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1539{ 1540 hrtimer_init_sleeper(t, current); 1541 1542 do { 1543 set_current_state(TASK_INTERRUPTIBLE); 1544 hrtimer_start_expires(&t->timer, mode); 1545 if (!hrtimer_active(&t->timer)) 1546 t->task = NULL; 1547 1548 if (likely(t->task)) 1549 freezable_schedule(); 1550 1551 hrtimer_cancel(&t->timer); 1552 mode = HRTIMER_MODE_ABS; 1553 1554 } while (t->task && !signal_pending(current)); 1555 1556 __set_current_state(TASK_RUNNING); 1557 1558 return t->task == NULL; 1559} 1560 1561static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1562{ 1563 struct timespec rmt; 1564 ktime_t rem; 1565 1566 rem = hrtimer_expires_remaining(timer); 1567 if (rem.tv64 <= 0) 1568 return 0; 1569 rmt = ktime_to_timespec(rem); 1570 1571 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1572 return -EFAULT; 1573 1574 return 1; 1575} 1576 1577long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1578{ 1579 struct hrtimer_sleeper t; 1580 struct timespec __user *rmtp; 1581 int ret = 0; 1582 1583 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1584 HRTIMER_MODE_ABS); 1585 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1586 1587 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1588 goto out; 1589 1590 rmtp = restart->nanosleep.rmtp; 1591 if (rmtp) { 1592 ret = update_rmtp(&t.timer, rmtp); 1593 if (ret <= 0) 1594 goto out; 1595 } 1596 1597 /* The other values in restart are already filled in */ 1598 ret = -ERESTART_RESTARTBLOCK; 1599out: 1600 destroy_hrtimer_on_stack(&t.timer); 1601 return ret; 1602} 1603 1604long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1605 const enum hrtimer_mode mode, const clockid_t clockid) 1606{ 1607 struct restart_block *restart; 1608 struct hrtimer_sleeper t; 1609 int ret = 0; 1610 unsigned long slack; 1611 1612 slack = current->timer_slack_ns; 1613 if (rt_task(current)) 1614 slack = 0; 1615 1616 hrtimer_init_on_stack(&t.timer, clockid, mode); 1617 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1618 if (do_nanosleep(&t, mode)) 1619 goto out; 1620 1621 /* Absolute timers do not update the rmtp value and restart: */ 1622 if (mode == HRTIMER_MODE_ABS) { 1623 ret = -ERESTARTNOHAND; 1624 goto out; 1625 } 1626 1627 if (rmtp) { 1628 ret = update_rmtp(&t.timer, rmtp); 1629 if (ret <= 0) 1630 goto out; 1631 } 1632 1633 restart = &current_thread_info()->restart_block; 1634 restart->fn = hrtimer_nanosleep_restart; 1635 restart->nanosleep.clockid = t.timer.base->clockid; 1636 restart->nanosleep.rmtp = rmtp; 1637 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1638 1639 ret = -ERESTART_RESTARTBLOCK; 1640out: 1641 destroy_hrtimer_on_stack(&t.timer); 1642 return ret; 1643} 1644 1645SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1646 struct timespec __user *, rmtp) 1647{ 1648 struct timespec tu; 1649 1650 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1651 return -EFAULT; 1652 1653 if (!timespec_valid(&tu)) 1654 return -EINVAL; 1655 1656 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1657} 1658 1659/* 1660 * Functions related to boot-time initialization: 1661 */ 1662static void init_hrtimers_cpu(int cpu) 1663{ 1664 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1665 int i; 1666 1667 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1668 cpu_base->clock_base[i].cpu_base = cpu_base; 1669 timerqueue_init_head(&cpu_base->clock_base[i].active); 1670 } 1671 1672 hrtimer_init_hres(cpu_base); 1673} 1674 1675#ifdef CONFIG_HOTPLUG_CPU 1676 1677static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1678 struct hrtimer_clock_base *new_base) 1679{ 1680 struct hrtimer *timer; 1681 struct timerqueue_node *node; 1682 1683 while ((node = timerqueue_getnext(&old_base->active))) { 1684 timer = container_of(node, struct hrtimer, node); 1685 BUG_ON(hrtimer_callback_running(timer)); 1686 debug_deactivate(timer); 1687 1688 /* 1689 * Mark it as STATE_MIGRATE not INACTIVE otherwise the 1690 * timer could be seen as !active and just vanish away 1691 * under us on another CPU 1692 */ 1693 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); 1694 timer->base = new_base; 1695 /* 1696 * Enqueue the timers on the new cpu. This does not 1697 * reprogram the event device in case the timer 1698 * expires before the earliest on this CPU, but we run 1699 * hrtimer_interrupt after we migrated everything to 1700 * sort out already expired timers and reprogram the 1701 * event device. 1702 */ 1703 enqueue_hrtimer(timer, new_base); 1704 1705 /* Clear the migration state bit */ 1706 timer->state &= ~HRTIMER_STATE_MIGRATE; 1707 } 1708} 1709 1710static void migrate_hrtimers(int scpu) 1711{ 1712 struct hrtimer_cpu_base *old_base, *new_base; 1713 int i; 1714 1715 BUG_ON(cpu_online(scpu)); 1716 tick_cancel_sched_timer(scpu); 1717 1718 local_irq_disable(); 1719 old_base = &per_cpu(hrtimer_bases, scpu); 1720 new_base = &__get_cpu_var(hrtimer_bases); 1721 /* 1722 * The caller is globally serialized and nobody else 1723 * takes two locks at once, deadlock is not possible. 1724 */ 1725 raw_spin_lock(&new_base->lock); 1726 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1727 1728 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1729 migrate_hrtimer_list(&old_base->clock_base[i], 1730 &new_base->clock_base[i]); 1731 } 1732 1733 raw_spin_unlock(&old_base->lock); 1734 raw_spin_unlock(&new_base->lock); 1735 1736 /* Check, if we got expired work to do */ 1737 __hrtimer_peek_ahead_timers(); 1738 local_irq_enable(); 1739} 1740 1741#endif /* CONFIG_HOTPLUG_CPU */ 1742 1743static int hrtimer_cpu_notify(struct notifier_block *self, 1744 unsigned long action, void *hcpu) 1745{ 1746 int scpu = (long)hcpu; 1747 1748 switch (action) { 1749 1750 case CPU_UP_PREPARE: 1751 case CPU_UP_PREPARE_FROZEN: 1752 init_hrtimers_cpu(scpu); 1753 break; 1754 1755#ifdef CONFIG_HOTPLUG_CPU 1756 case CPU_DYING: 1757 case CPU_DYING_FROZEN: 1758 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu); 1759 break; 1760 case CPU_DEAD: 1761 case CPU_DEAD_FROZEN: 1762 { 1763 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); 1764 migrate_hrtimers(scpu); 1765 break; 1766 } 1767#endif 1768 1769 default: 1770 break; 1771 } 1772 1773 return NOTIFY_OK; 1774} 1775 1776static struct notifier_block hrtimers_nb = { 1777 .notifier_call = hrtimer_cpu_notify, 1778}; 1779 1780void __init hrtimers_init(void) 1781{ 1782 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1783 (void *)(long)smp_processor_id()); 1784 register_cpu_notifier(&hrtimers_nb); 1785#ifdef CONFIG_HIGH_RES_TIMERS 1786 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); 1787#endif 1788} 1789 1790/** 1791 * schedule_hrtimeout_range_clock - sleep until timeout 1792 * @expires: timeout value (ktime_t) 1793 * @delta: slack in expires timeout (ktime_t) 1794 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1795 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1796 */ 1797int __sched 1798schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, 1799 const enum hrtimer_mode mode, int clock) 1800{ 1801 struct hrtimer_sleeper t; 1802 1803 /* 1804 * Optimize when a zero timeout value is given. It does not 1805 * matter whether this is an absolute or a relative time. 1806 */ 1807 if (expires && !expires->tv64) { 1808 __set_current_state(TASK_RUNNING); 1809 return 0; 1810 } 1811 1812 /* 1813 * A NULL parameter means "infinite" 1814 */ 1815 if (!expires) { 1816 schedule(); 1817 __set_current_state(TASK_RUNNING); 1818 return -EINTR; 1819 } 1820 1821 hrtimer_init_on_stack(&t.timer, clock, mode); 1822 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1823 1824 hrtimer_init_sleeper(&t, current); 1825 1826 hrtimer_start_expires(&t.timer, mode); 1827 if (!hrtimer_active(&t.timer)) 1828 t.task = NULL; 1829 1830 if (likely(t.task)) 1831 schedule(); 1832 1833 hrtimer_cancel(&t.timer); 1834 destroy_hrtimer_on_stack(&t.timer); 1835 1836 __set_current_state(TASK_RUNNING); 1837 1838 return !t.task ? 0 : -EINTR; 1839} 1840 1841/** 1842 * schedule_hrtimeout_range - sleep until timeout 1843 * @expires: timeout value (ktime_t) 1844 * @delta: slack in expires timeout (ktime_t) 1845 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1846 * 1847 * Make the current task sleep until the given expiry time has 1848 * elapsed. The routine will return immediately unless 1849 * the current task state has been set (see set_current_state()). 1850 * 1851 * The @delta argument gives the kernel the freedom to schedule the 1852 * actual wakeup to a time that is both power and performance friendly. 1853 * The kernel give the normal best effort behavior for "@expires+@delta", 1854 * but may decide to fire the timer earlier, but no earlier than @expires. 1855 * 1856 * You can set the task state as follows - 1857 * 1858 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1859 * pass before the routine returns. 1860 * 1861 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1862 * delivered to the current task. 1863 * 1864 * The current task state is guaranteed to be TASK_RUNNING when this 1865 * routine returns. 1866 * 1867 * Returns 0 when the timer has expired otherwise -EINTR 1868 */ 1869int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, 1870 const enum hrtimer_mode mode) 1871{ 1872 return schedule_hrtimeout_range_clock(expires, delta, mode, 1873 CLOCK_MONOTONIC); 1874} 1875EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1876 1877/** 1878 * schedule_hrtimeout - sleep until timeout 1879 * @expires: timeout value (ktime_t) 1880 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1881 * 1882 * Make the current task sleep until the given expiry time has 1883 * elapsed. The routine will return immediately unless 1884 * the current task state has been set (see set_current_state()). 1885 * 1886 * You can set the task state as follows - 1887 * 1888 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1889 * pass before the routine returns. 1890 * 1891 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1892 * delivered to the current task. 1893 * 1894 * The current task state is guaranteed to be TASK_RUNNING when this 1895 * routine returns. 1896 * 1897 * Returns 0 when the timer has expired otherwise -EINTR 1898 */ 1899int __sched schedule_hrtimeout(ktime_t *expires, 1900 const enum hrtimer_mode mode) 1901{ 1902 return schedule_hrtimeout_range(expires, 0, mode); 1903} 1904EXPORT_SYMBOL_GPL(schedule_hrtimeout);