at v3.12-rc5 39 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <linux/types.h> 29 30/* 31 * Framework version for util services. 32 */ 33#define UTIL_FW_MINOR 0 34 35#define UTIL_WS2K8_FW_MAJOR 1 36#define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR) 37 38#define UTIL_FW_MAJOR 3 39#define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR) 40 41 42/* 43 * Implementation of host controlled snapshot of the guest. 44 */ 45 46#define VSS_OP_REGISTER 128 47 48enum hv_vss_op { 49 VSS_OP_CREATE = 0, 50 VSS_OP_DELETE, 51 VSS_OP_HOT_BACKUP, 52 VSS_OP_GET_DM_INFO, 53 VSS_OP_BU_COMPLETE, 54 /* 55 * Following operations are only supported with IC version >= 5.0 56 */ 57 VSS_OP_FREEZE, /* Freeze the file systems in the VM */ 58 VSS_OP_THAW, /* Unfreeze the file systems */ 59 VSS_OP_AUTO_RECOVER, 60 VSS_OP_COUNT /* Number of operations, must be last */ 61}; 62 63 64/* 65 * Header for all VSS messages. 66 */ 67struct hv_vss_hdr { 68 __u8 operation; 69 __u8 reserved[7]; 70} __attribute__((packed)); 71 72 73/* 74 * Flag values for the hv_vss_check_feature. Linux supports only 75 * one value. 76 */ 77#define VSS_HBU_NO_AUTO_RECOVERY 0x00000005 78 79struct hv_vss_check_feature { 80 __u32 flags; 81} __attribute__((packed)); 82 83struct hv_vss_check_dm_info { 84 __u32 flags; 85} __attribute__((packed)); 86 87struct hv_vss_msg { 88 union { 89 struct hv_vss_hdr vss_hdr; 90 int error; 91 }; 92 union { 93 struct hv_vss_check_feature vss_cf; 94 struct hv_vss_check_dm_info dm_info; 95 }; 96} __attribute__((packed)); 97 98/* 99 * An implementation of HyperV key value pair (KVP) functionality for Linux. 100 * 101 * 102 * Copyright (C) 2010, Novell, Inc. 103 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 104 * 105 */ 106 107/* 108 * Maximum value size - used for both key names and value data, and includes 109 * any applicable NULL terminators. 110 * 111 * Note: This limit is somewhat arbitrary, but falls easily within what is 112 * supported for all native guests (back to Win 2000) and what is reasonable 113 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 114 * limited to 255 character key names. 115 * 116 * MSDN recommends not storing data values larger than 2048 bytes in the 117 * registry. 118 * 119 * Note: This value is used in defining the KVP exchange message - this value 120 * cannot be modified without affecting the message size and compatibility. 121 */ 122 123/* 124 * bytes, including any null terminators 125 */ 126#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 127 128 129/* 130 * Maximum key size - the registry limit for the length of an entry name 131 * is 256 characters, including the null terminator 132 */ 133 134#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 135 136/* 137 * In Linux, we implement the KVP functionality in two components: 138 * 1) The kernel component which is packaged as part of the hv_utils driver 139 * is responsible for communicating with the host and responsible for 140 * implementing the host/guest protocol. 2) A user level daemon that is 141 * responsible for data gathering. 142 * 143 * Host/Guest Protocol: The host iterates over an index and expects the guest 144 * to assign a key name to the index and also return the value corresponding to 145 * the key. The host will have atmost one KVP transaction outstanding at any 146 * given point in time. The host side iteration stops when the guest returns 147 * an error. Microsoft has specified the following mapping of key names to 148 * host specified index: 149 * 150 * Index Key Name 151 * 0 FullyQualifiedDomainName 152 * 1 IntegrationServicesVersion 153 * 2 NetworkAddressIPv4 154 * 3 NetworkAddressIPv6 155 * 4 OSBuildNumber 156 * 5 OSName 157 * 6 OSMajorVersion 158 * 7 OSMinorVersion 159 * 8 OSVersion 160 * 9 ProcessorArchitecture 161 * 162 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 163 * 164 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 165 * data gathering functionality in a user mode daemon. The user level daemon 166 * is also responsible for binding the key name to the index as well. The 167 * kernel and user-level daemon communicate using a connector channel. 168 * 169 * The user mode component first registers with the 170 * the kernel component. Subsequently, the kernel component requests, data 171 * for the specified keys. In response to this message the user mode component 172 * fills in the value corresponding to the specified key. We overload the 173 * sequence field in the cn_msg header to define our KVP message types. 174 * 175 * 176 * The kernel component simply acts as a conduit for communication between the 177 * Windows host and the user-level daemon. The kernel component passes up the 178 * index received from the Host to the user-level daemon. If the index is 179 * valid (supported), the corresponding key as well as its 180 * value (both are strings) is returned. If the index is invalid 181 * (not supported), a NULL key string is returned. 182 */ 183 184 185/* 186 * Registry value types. 187 */ 188 189#define REG_SZ 1 190#define REG_U32 4 191#define REG_U64 8 192 193/* 194 * As we look at expanding the KVP functionality to include 195 * IP injection functionality, we need to maintain binary 196 * compatibility with older daemons. 197 * 198 * The KVP opcodes are defined by the host and it was unfortunate 199 * that I chose to treat the registration operation as part of the 200 * KVP operations defined by the host. 201 * Here is the level of compatibility 202 * (between the user level daemon and the kernel KVP driver) that we 203 * will implement: 204 * 205 * An older daemon will always be supported on a newer driver. 206 * A given user level daemon will require a minimal version of the 207 * kernel driver. 208 * If we cannot handle the version differences, we will fail gracefully 209 * (this can happen when we have a user level daemon that is more 210 * advanced than the KVP driver. 211 * 212 * We will use values used in this handshake for determining if we have 213 * workable user level daemon and the kernel driver. We begin by taking the 214 * registration opcode out of the KVP opcode namespace. We will however, 215 * maintain compatibility with the existing user-level daemon code. 216 */ 217 218/* 219 * Daemon code not supporting IP injection (legacy daemon). 220 */ 221 222#define KVP_OP_REGISTER 4 223 224/* 225 * Daemon code supporting IP injection. 226 * The KVP opcode field is used to communicate the 227 * registration information; so define a namespace that 228 * will be distinct from the host defined KVP opcode. 229 */ 230 231#define KVP_OP_REGISTER1 100 232 233enum hv_kvp_exchg_op { 234 KVP_OP_GET = 0, 235 KVP_OP_SET, 236 KVP_OP_DELETE, 237 KVP_OP_ENUMERATE, 238 KVP_OP_GET_IP_INFO, 239 KVP_OP_SET_IP_INFO, 240 KVP_OP_COUNT /* Number of operations, must be last. */ 241}; 242 243enum hv_kvp_exchg_pool { 244 KVP_POOL_EXTERNAL = 0, 245 KVP_POOL_GUEST, 246 KVP_POOL_AUTO, 247 KVP_POOL_AUTO_EXTERNAL, 248 KVP_POOL_AUTO_INTERNAL, 249 KVP_POOL_COUNT /* Number of pools, must be last. */ 250}; 251 252/* 253 * Some Hyper-V status codes. 254 */ 255 256#define HV_S_OK 0x00000000 257#define HV_E_FAIL 0x80004005 258#define HV_S_CONT 0x80070103 259#define HV_ERROR_NOT_SUPPORTED 0x80070032 260#define HV_ERROR_MACHINE_LOCKED 0x800704F7 261#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 262#define HV_INVALIDARG 0x80070057 263#define HV_GUID_NOTFOUND 0x80041002 264 265#define ADDR_FAMILY_NONE 0x00 266#define ADDR_FAMILY_IPV4 0x01 267#define ADDR_FAMILY_IPV6 0x02 268 269#define MAX_ADAPTER_ID_SIZE 128 270#define MAX_IP_ADDR_SIZE 1024 271#define MAX_GATEWAY_SIZE 512 272 273 274struct hv_kvp_ipaddr_value { 275 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 276 __u8 addr_family; 277 __u8 dhcp_enabled; 278 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 279 __u16 sub_net[MAX_IP_ADDR_SIZE]; 280 __u16 gate_way[MAX_GATEWAY_SIZE]; 281 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 282} __attribute__((packed)); 283 284 285struct hv_kvp_hdr { 286 __u8 operation; 287 __u8 pool; 288 __u16 pad; 289} __attribute__((packed)); 290 291struct hv_kvp_exchg_msg_value { 292 __u32 value_type; 293 __u32 key_size; 294 __u32 value_size; 295 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 296 union { 297 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 298 __u32 value_u32; 299 __u64 value_u64; 300 }; 301} __attribute__((packed)); 302 303struct hv_kvp_msg_enumerate { 304 __u32 index; 305 struct hv_kvp_exchg_msg_value data; 306} __attribute__((packed)); 307 308struct hv_kvp_msg_get { 309 struct hv_kvp_exchg_msg_value data; 310}; 311 312struct hv_kvp_msg_set { 313 struct hv_kvp_exchg_msg_value data; 314}; 315 316struct hv_kvp_msg_delete { 317 __u32 key_size; 318 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 319}; 320 321struct hv_kvp_register { 322 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 323}; 324 325struct hv_kvp_msg { 326 union { 327 struct hv_kvp_hdr kvp_hdr; 328 int error; 329 }; 330 union { 331 struct hv_kvp_msg_get kvp_get; 332 struct hv_kvp_msg_set kvp_set; 333 struct hv_kvp_msg_delete kvp_delete; 334 struct hv_kvp_msg_enumerate kvp_enum_data; 335 struct hv_kvp_ipaddr_value kvp_ip_val; 336 struct hv_kvp_register kvp_register; 337 } body; 338} __attribute__((packed)); 339 340struct hv_kvp_ip_msg { 341 __u8 operation; 342 __u8 pool; 343 struct hv_kvp_ipaddr_value kvp_ip_val; 344} __attribute__((packed)); 345 346#ifdef __KERNEL__ 347#include <linux/scatterlist.h> 348#include <linux/list.h> 349#include <linux/uuid.h> 350#include <linux/timer.h> 351#include <linux/workqueue.h> 352#include <linux/completion.h> 353#include <linux/device.h> 354#include <linux/mod_devicetable.h> 355 356 357#define MAX_PAGE_BUFFER_COUNT 19 358#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 359 360#pragma pack(push, 1) 361 362/* Single-page buffer */ 363struct hv_page_buffer { 364 u32 len; 365 u32 offset; 366 u64 pfn; 367}; 368 369/* Multiple-page buffer */ 370struct hv_multipage_buffer { 371 /* Length and Offset determines the # of pfns in the array */ 372 u32 len; 373 u32 offset; 374 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 375}; 376 377/* 0x18 includes the proprietary packet header */ 378#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 379 (sizeof(struct hv_page_buffer) * \ 380 MAX_PAGE_BUFFER_COUNT)) 381#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 382 sizeof(struct hv_multipage_buffer)) 383 384 385#pragma pack(pop) 386 387struct hv_ring_buffer { 388 /* Offset in bytes from the start of ring data below */ 389 u32 write_index; 390 391 /* Offset in bytes from the start of ring data below */ 392 u32 read_index; 393 394 u32 interrupt_mask; 395 396 /* 397 * Win8 uses some of the reserved bits to implement 398 * interrupt driven flow management. On the send side 399 * we can request that the receiver interrupt the sender 400 * when the ring transitions from being full to being able 401 * to handle a message of size "pending_send_sz". 402 * 403 * Add necessary state for this enhancement. 404 */ 405 u32 pending_send_sz; 406 407 u32 reserved1[12]; 408 409 union { 410 struct { 411 u32 feat_pending_send_sz:1; 412 }; 413 u32 value; 414 } feature_bits; 415 416 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 417 u8 reserved2[4028]; 418 419 /* 420 * Ring data starts here + RingDataStartOffset 421 * !!! DO NOT place any fields below this !!! 422 */ 423 u8 buffer[0]; 424} __packed; 425 426struct hv_ring_buffer_info { 427 struct hv_ring_buffer *ring_buffer; 428 u32 ring_size; /* Include the shared header */ 429 spinlock_t ring_lock; 430 431 u32 ring_datasize; /* < ring_size */ 432 u32 ring_data_startoffset; 433}; 434 435struct hv_ring_buffer_debug_info { 436 u32 current_interrupt_mask; 437 u32 current_read_index; 438 u32 current_write_index; 439 u32 bytes_avail_toread; 440 u32 bytes_avail_towrite; 441}; 442 443 444/* 445 * 446 * hv_get_ringbuffer_availbytes() 447 * 448 * Get number of bytes available to read and to write to 449 * for the specified ring buffer 450 */ 451static inline void 452hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 453 u32 *read, u32 *write) 454{ 455 u32 read_loc, write_loc, dsize; 456 457 smp_read_barrier_depends(); 458 459 /* Capture the read/write indices before they changed */ 460 read_loc = rbi->ring_buffer->read_index; 461 write_loc = rbi->ring_buffer->write_index; 462 dsize = rbi->ring_datasize; 463 464 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 465 read_loc - write_loc; 466 *read = dsize - *write; 467} 468 469/* 470 * VMBUS version is 32 bit entity broken up into 471 * two 16 bit quantities: major_number. minor_number. 472 * 473 * 0 . 13 (Windows Server 2008) 474 * 1 . 1 (Windows 7) 475 * 2 . 4 (Windows 8) 476 */ 477 478#define VERSION_WS2008 ((0 << 16) | (13)) 479#define VERSION_WIN7 ((1 << 16) | (1)) 480#define VERSION_WIN8 ((2 << 16) | (4)) 481 482#define VERSION_INVAL -1 483 484#define VERSION_CURRENT VERSION_WIN8 485 486/* Make maximum size of pipe payload of 16K */ 487#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 488 489/* Define PipeMode values. */ 490#define VMBUS_PIPE_TYPE_BYTE 0x00000000 491#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 492 493/* The size of the user defined data buffer for non-pipe offers. */ 494#define MAX_USER_DEFINED_BYTES 120 495 496/* The size of the user defined data buffer for pipe offers. */ 497#define MAX_PIPE_USER_DEFINED_BYTES 116 498 499/* 500 * At the center of the Channel Management library is the Channel Offer. This 501 * struct contains the fundamental information about an offer. 502 */ 503struct vmbus_channel_offer { 504 uuid_le if_type; 505 uuid_le if_instance; 506 507 /* 508 * These two fields are not currently used. 509 */ 510 u64 reserved1; 511 u64 reserved2; 512 513 u16 chn_flags; 514 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 515 516 union { 517 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 518 struct { 519 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 520 } std; 521 522 /* 523 * Pipes: 524 * The following sructure is an integrated pipe protocol, which 525 * is implemented on top of standard user-defined data. Pipe 526 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 527 * use. 528 */ 529 struct { 530 u32 pipe_mode; 531 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 532 } pipe; 533 } u; 534 /* 535 * The sub_channel_index is defined in win8. 536 */ 537 u16 sub_channel_index; 538 u16 reserved3; 539} __packed; 540 541/* Server Flags */ 542#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 543#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 544#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 545#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 546#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 547#define VMBUS_CHANNEL_PARENT_OFFER 0x200 548#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 549 550struct vmpacket_descriptor { 551 u16 type; 552 u16 offset8; 553 u16 len8; 554 u16 flags; 555 u64 trans_id; 556} __packed; 557 558struct vmpacket_header { 559 u32 prev_pkt_start_offset; 560 struct vmpacket_descriptor descriptor; 561} __packed; 562 563struct vmtransfer_page_range { 564 u32 byte_count; 565 u32 byte_offset; 566} __packed; 567 568struct vmtransfer_page_packet_header { 569 struct vmpacket_descriptor d; 570 u16 xfer_pageset_id; 571 u8 sender_owns_set; 572 u8 reserved; 573 u32 range_cnt; 574 struct vmtransfer_page_range ranges[1]; 575} __packed; 576 577struct vmgpadl_packet_header { 578 struct vmpacket_descriptor d; 579 u32 gpadl; 580 u32 reserved; 581} __packed; 582 583struct vmadd_remove_transfer_page_set { 584 struct vmpacket_descriptor d; 585 u32 gpadl; 586 u16 xfer_pageset_id; 587 u16 reserved; 588} __packed; 589 590/* 591 * This structure defines a range in guest physical space that can be made to 592 * look virtually contiguous. 593 */ 594struct gpa_range { 595 u32 byte_count; 596 u32 byte_offset; 597 u64 pfn_array[0]; 598}; 599 600/* 601 * This is the format for an Establish Gpadl packet, which contains a handle by 602 * which this GPADL will be known and a set of GPA ranges associated with it. 603 * This can be converted to a MDL by the guest OS. If there are multiple GPA 604 * ranges, then the resulting MDL will be "chained," representing multiple VA 605 * ranges. 606 */ 607struct vmestablish_gpadl { 608 struct vmpacket_descriptor d; 609 u32 gpadl; 610 u32 range_cnt; 611 struct gpa_range range[1]; 612} __packed; 613 614/* 615 * This is the format for a Teardown Gpadl packet, which indicates that the 616 * GPADL handle in the Establish Gpadl packet will never be referenced again. 617 */ 618struct vmteardown_gpadl { 619 struct vmpacket_descriptor d; 620 u32 gpadl; 621 u32 reserved; /* for alignment to a 8-byte boundary */ 622} __packed; 623 624/* 625 * This is the format for a GPA-Direct packet, which contains a set of GPA 626 * ranges, in addition to commands and/or data. 627 */ 628struct vmdata_gpa_direct { 629 struct vmpacket_descriptor d; 630 u32 reserved; 631 u32 range_cnt; 632 struct gpa_range range[1]; 633} __packed; 634 635/* This is the format for a Additional Data Packet. */ 636struct vmadditional_data { 637 struct vmpacket_descriptor d; 638 u64 total_bytes; 639 u32 offset; 640 u32 byte_cnt; 641 unsigned char data[1]; 642} __packed; 643 644union vmpacket_largest_possible_header { 645 struct vmpacket_descriptor simple_hdr; 646 struct vmtransfer_page_packet_header xfer_page_hdr; 647 struct vmgpadl_packet_header gpadl_hdr; 648 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 649 struct vmestablish_gpadl establish_gpadl_hdr; 650 struct vmteardown_gpadl teardown_gpadl_hdr; 651 struct vmdata_gpa_direct data_gpa_direct_hdr; 652}; 653 654#define VMPACKET_DATA_START_ADDRESS(__packet) \ 655 (void *)(((unsigned char *)__packet) + \ 656 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 657 658#define VMPACKET_DATA_LENGTH(__packet) \ 659 ((((struct vmpacket_descriptor)__packet)->len8 - \ 660 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 661 662#define VMPACKET_TRANSFER_MODE(__packet) \ 663 (((struct IMPACT)__packet)->type) 664 665enum vmbus_packet_type { 666 VM_PKT_INVALID = 0x0, 667 VM_PKT_SYNCH = 0x1, 668 VM_PKT_ADD_XFER_PAGESET = 0x2, 669 VM_PKT_RM_XFER_PAGESET = 0x3, 670 VM_PKT_ESTABLISH_GPADL = 0x4, 671 VM_PKT_TEARDOWN_GPADL = 0x5, 672 VM_PKT_DATA_INBAND = 0x6, 673 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 674 VM_PKT_DATA_USING_GPADL = 0x8, 675 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 676 VM_PKT_CANCEL_REQUEST = 0xa, 677 VM_PKT_COMP = 0xb, 678 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 679 VM_PKT_ADDITIONAL_DATA = 0xd 680}; 681 682#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 683 684 685/* Version 1 messages */ 686enum vmbus_channel_message_type { 687 CHANNELMSG_INVALID = 0, 688 CHANNELMSG_OFFERCHANNEL = 1, 689 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 690 CHANNELMSG_REQUESTOFFERS = 3, 691 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 692 CHANNELMSG_OPENCHANNEL = 5, 693 CHANNELMSG_OPENCHANNEL_RESULT = 6, 694 CHANNELMSG_CLOSECHANNEL = 7, 695 CHANNELMSG_GPADL_HEADER = 8, 696 CHANNELMSG_GPADL_BODY = 9, 697 CHANNELMSG_GPADL_CREATED = 10, 698 CHANNELMSG_GPADL_TEARDOWN = 11, 699 CHANNELMSG_GPADL_TORNDOWN = 12, 700 CHANNELMSG_RELID_RELEASED = 13, 701 CHANNELMSG_INITIATE_CONTACT = 14, 702 CHANNELMSG_VERSION_RESPONSE = 15, 703 CHANNELMSG_UNLOAD = 16, 704#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 705 CHANNELMSG_VIEWRANGE_ADD = 17, 706 CHANNELMSG_VIEWRANGE_REMOVE = 18, 707#endif 708 CHANNELMSG_COUNT 709}; 710 711struct vmbus_channel_message_header { 712 enum vmbus_channel_message_type msgtype; 713 u32 padding; 714} __packed; 715 716/* Query VMBus Version parameters */ 717struct vmbus_channel_query_vmbus_version { 718 struct vmbus_channel_message_header header; 719 u32 version; 720} __packed; 721 722/* VMBus Version Supported parameters */ 723struct vmbus_channel_version_supported { 724 struct vmbus_channel_message_header header; 725 u8 version_supported; 726} __packed; 727 728/* Offer Channel parameters */ 729struct vmbus_channel_offer_channel { 730 struct vmbus_channel_message_header header; 731 struct vmbus_channel_offer offer; 732 u32 child_relid; 733 u8 monitorid; 734 /* 735 * win7 and beyond splits this field into a bit field. 736 */ 737 u8 monitor_allocated:1; 738 u8 reserved:7; 739 /* 740 * These are new fields added in win7 and later. 741 * Do not access these fields without checking the 742 * negotiated protocol. 743 * 744 * If "is_dedicated_interrupt" is set, we must not set the 745 * associated bit in the channel bitmap while sending the 746 * interrupt to the host. 747 * 748 * connection_id is to be used in signaling the host. 749 */ 750 u16 is_dedicated_interrupt:1; 751 u16 reserved1:15; 752 u32 connection_id; 753} __packed; 754 755/* Rescind Offer parameters */ 756struct vmbus_channel_rescind_offer { 757 struct vmbus_channel_message_header header; 758 u32 child_relid; 759} __packed; 760 761/* 762 * Request Offer -- no parameters, SynIC message contains the partition ID 763 * Set Snoop -- no parameters, SynIC message contains the partition ID 764 * Clear Snoop -- no parameters, SynIC message contains the partition ID 765 * All Offers Delivered -- no parameters, SynIC message contains the partition 766 * ID 767 * Flush Client -- no parameters, SynIC message contains the partition ID 768 */ 769 770/* Open Channel parameters */ 771struct vmbus_channel_open_channel { 772 struct vmbus_channel_message_header header; 773 774 /* Identifies the specific VMBus channel that is being opened. */ 775 u32 child_relid; 776 777 /* ID making a particular open request at a channel offer unique. */ 778 u32 openid; 779 780 /* GPADL for the channel's ring buffer. */ 781 u32 ringbuffer_gpadlhandle; 782 783 /* 784 * Starting with win8, this field will be used to specify 785 * the target virtual processor on which to deliver the interrupt for 786 * the host to guest communication. 787 * Prior to win8, incoming channel interrupts would only 788 * be delivered on cpu 0. Setting this value to 0 would 789 * preserve the earlier behavior. 790 */ 791 u32 target_vp; 792 793 /* 794 * The upstream ring buffer begins at offset zero in the memory 795 * described by RingBufferGpadlHandle. The downstream ring buffer 796 * follows it at this offset (in pages). 797 */ 798 u32 downstream_ringbuffer_pageoffset; 799 800 /* User-specific data to be passed along to the server endpoint. */ 801 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 802} __packed; 803 804/* Open Channel Result parameters */ 805struct vmbus_channel_open_result { 806 struct vmbus_channel_message_header header; 807 u32 child_relid; 808 u32 openid; 809 u32 status; 810} __packed; 811 812/* Close channel parameters; */ 813struct vmbus_channel_close_channel { 814 struct vmbus_channel_message_header header; 815 u32 child_relid; 816} __packed; 817 818/* Channel Message GPADL */ 819#define GPADL_TYPE_RING_BUFFER 1 820#define GPADL_TYPE_SERVER_SAVE_AREA 2 821#define GPADL_TYPE_TRANSACTION 8 822 823/* 824 * The number of PFNs in a GPADL message is defined by the number of 825 * pages that would be spanned by ByteCount and ByteOffset. If the 826 * implied number of PFNs won't fit in this packet, there will be a 827 * follow-up packet that contains more. 828 */ 829struct vmbus_channel_gpadl_header { 830 struct vmbus_channel_message_header header; 831 u32 child_relid; 832 u32 gpadl; 833 u16 range_buflen; 834 u16 rangecount; 835 struct gpa_range range[0]; 836} __packed; 837 838/* This is the followup packet that contains more PFNs. */ 839struct vmbus_channel_gpadl_body { 840 struct vmbus_channel_message_header header; 841 u32 msgnumber; 842 u32 gpadl; 843 u64 pfn[0]; 844} __packed; 845 846struct vmbus_channel_gpadl_created { 847 struct vmbus_channel_message_header header; 848 u32 child_relid; 849 u32 gpadl; 850 u32 creation_status; 851} __packed; 852 853struct vmbus_channel_gpadl_teardown { 854 struct vmbus_channel_message_header header; 855 u32 child_relid; 856 u32 gpadl; 857} __packed; 858 859struct vmbus_channel_gpadl_torndown { 860 struct vmbus_channel_message_header header; 861 u32 gpadl; 862} __packed; 863 864#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 865struct vmbus_channel_view_range_add { 866 struct vmbus_channel_message_header header; 867 PHYSICAL_ADDRESS viewrange_base; 868 u64 viewrange_length; 869 u32 child_relid; 870} __packed; 871 872struct vmbus_channel_view_range_remove { 873 struct vmbus_channel_message_header header; 874 PHYSICAL_ADDRESS viewrange_base; 875 u32 child_relid; 876} __packed; 877#endif 878 879struct vmbus_channel_relid_released { 880 struct vmbus_channel_message_header header; 881 u32 child_relid; 882} __packed; 883 884struct vmbus_channel_initiate_contact { 885 struct vmbus_channel_message_header header; 886 u32 vmbus_version_requested; 887 u32 padding2; 888 u64 interrupt_page; 889 u64 monitor_page1; 890 u64 monitor_page2; 891} __packed; 892 893struct vmbus_channel_version_response { 894 struct vmbus_channel_message_header header; 895 u8 version_supported; 896} __packed; 897 898enum vmbus_channel_state { 899 CHANNEL_OFFER_STATE, 900 CHANNEL_OPENING_STATE, 901 CHANNEL_OPEN_STATE, 902 CHANNEL_OPENED_STATE, 903}; 904 905struct vmbus_channel_debug_info { 906 u32 relid; 907 enum vmbus_channel_state state; 908 uuid_le interfacetype; 909 uuid_le interface_instance; 910 u32 monitorid; 911 u32 servermonitor_pending; 912 u32 servermonitor_latency; 913 u32 servermonitor_connectionid; 914 u32 clientmonitor_pending; 915 u32 clientmonitor_latency; 916 u32 clientmonitor_connectionid; 917 918 struct hv_ring_buffer_debug_info inbound; 919 struct hv_ring_buffer_debug_info outbound; 920}; 921 922/* 923 * Represents each channel msg on the vmbus connection This is a 924 * variable-size data structure depending on the msg type itself 925 */ 926struct vmbus_channel_msginfo { 927 /* Bookkeeping stuff */ 928 struct list_head msglistentry; 929 930 /* So far, this is only used to handle gpadl body message */ 931 struct list_head submsglist; 932 933 /* Synchronize the request/response if needed */ 934 struct completion waitevent; 935 union { 936 struct vmbus_channel_version_supported version_supported; 937 struct vmbus_channel_open_result open_result; 938 struct vmbus_channel_gpadl_torndown gpadl_torndown; 939 struct vmbus_channel_gpadl_created gpadl_created; 940 struct vmbus_channel_version_response version_response; 941 } response; 942 943 u32 msgsize; 944 /* 945 * The channel message that goes out on the "wire". 946 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 947 */ 948 unsigned char msg[0]; 949}; 950 951struct vmbus_close_msg { 952 struct vmbus_channel_msginfo info; 953 struct vmbus_channel_close_channel msg; 954}; 955 956/* Define connection identifier type. */ 957union hv_connection_id { 958 u32 asu32; 959 struct { 960 u32 id:24; 961 u32 reserved:8; 962 } u; 963}; 964 965/* Definition of the hv_signal_event hypercall input structure. */ 966struct hv_input_signal_event { 967 union hv_connection_id connectionid; 968 u16 flag_number; 969 u16 rsvdz; 970}; 971 972struct hv_input_signal_event_buffer { 973 u64 align8; 974 struct hv_input_signal_event event; 975}; 976 977struct vmbus_channel { 978 struct list_head listentry; 979 980 struct hv_device *device_obj; 981 982 struct work_struct work; 983 984 enum vmbus_channel_state state; 985 986 struct vmbus_channel_offer_channel offermsg; 987 /* 988 * These are based on the OfferMsg.MonitorId. 989 * Save it here for easy access. 990 */ 991 u8 monitor_grp; 992 u8 monitor_bit; 993 994 u32 ringbuffer_gpadlhandle; 995 996 /* Allocated memory for ring buffer */ 997 void *ringbuffer_pages; 998 u32 ringbuffer_pagecount; 999 struct hv_ring_buffer_info outbound; /* send to parent */ 1000 struct hv_ring_buffer_info inbound; /* receive from parent */ 1001 spinlock_t inbound_lock; 1002 struct workqueue_struct *controlwq; 1003 1004 struct vmbus_close_msg close_msg; 1005 1006 /* Channel callback are invoked in this workqueue context */ 1007 /* HANDLE dataWorkQueue; */ 1008 1009 void (*onchannel_callback)(void *context); 1010 void *channel_callback_context; 1011 1012 /* 1013 * A channel can be marked for efficient (batched) 1014 * reading: 1015 * If batched_reading is set to "true", we read until the 1016 * channel is empty and hold off interrupts from the host 1017 * during the entire read process. 1018 * If batched_reading is set to "false", the client is not 1019 * going to perform batched reading. 1020 * 1021 * By default we will enable batched reading; specific 1022 * drivers that don't want this behavior can turn it off. 1023 */ 1024 1025 bool batched_reading; 1026 1027 bool is_dedicated_interrupt; 1028 struct hv_input_signal_event_buffer sig_buf; 1029 struct hv_input_signal_event *sig_event; 1030 1031 /* 1032 * Starting with win8, this field will be used to specify 1033 * the target virtual processor on which to deliver the interrupt for 1034 * the host to guest communication. 1035 * Prior to win8, incoming channel interrupts would only 1036 * be delivered on cpu 0. Setting this value to 0 would 1037 * preserve the earlier behavior. 1038 */ 1039 u32 target_vp; 1040 /* 1041 * Support for sub-channels. For high performance devices, 1042 * it will be useful to have multiple sub-channels to support 1043 * a scalable communication infrastructure with the host. 1044 * The support for sub-channels is implemented as an extention 1045 * to the current infrastructure. 1046 * The initial offer is considered the primary channel and this 1047 * offer message will indicate if the host supports sub-channels. 1048 * The guest is free to ask for sub-channels to be offerred and can 1049 * open these sub-channels as a normal "primary" channel. However, 1050 * all sub-channels will have the same type and instance guids as the 1051 * primary channel. Requests sent on a given channel will result in a 1052 * response on the same channel. 1053 */ 1054 1055 /* 1056 * Sub-channel creation callback. This callback will be called in 1057 * process context when a sub-channel offer is received from the host. 1058 * The guest can open the sub-channel in the context of this callback. 1059 */ 1060 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 1061 1062 spinlock_t sc_lock; 1063 /* 1064 * All Sub-channels of a primary channel are linked here. 1065 */ 1066 struct list_head sc_list; 1067 /* 1068 * The primary channel this sub-channel belongs to. 1069 * This will be NULL for the primary channel. 1070 */ 1071 struct vmbus_channel *primary_channel; 1072}; 1073 1074static inline void set_channel_read_state(struct vmbus_channel *c, bool state) 1075{ 1076 c->batched_reading = state; 1077} 1078 1079void vmbus_onmessage(void *context); 1080 1081int vmbus_request_offers(void); 1082 1083/* 1084 * APIs for managing sub-channels. 1085 */ 1086 1087void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1088 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1089 1090/* 1091 * Retrieve the (sub) channel on which to send an outgoing request. 1092 * When a primary channel has multiple sub-channels, we choose a 1093 * channel whose VCPU binding is closest to the VCPU on which 1094 * this call is being made. 1095 */ 1096struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 1097 1098/* 1099 * Check if sub-channels have already been offerred. This API will be useful 1100 * when the driver is unloaded after establishing sub-channels. In this case, 1101 * when the driver is re-loaded, the driver would have to check if the 1102 * subchannels have already been established before attempting to request 1103 * the creation of sub-channels. 1104 * This function returns TRUE to indicate that subchannels have already been 1105 * created. 1106 * This function should be invoked after setting the callback function for 1107 * sub-channel creation. 1108 */ 1109bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 1110 1111/* The format must be the same as struct vmdata_gpa_direct */ 1112struct vmbus_channel_packet_page_buffer { 1113 u16 type; 1114 u16 dataoffset8; 1115 u16 length8; 1116 u16 flags; 1117 u64 transactionid; 1118 u32 reserved; 1119 u32 rangecount; 1120 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1121} __packed; 1122 1123/* The format must be the same as struct vmdata_gpa_direct */ 1124struct vmbus_channel_packet_multipage_buffer { 1125 u16 type; 1126 u16 dataoffset8; 1127 u16 length8; 1128 u16 flags; 1129 u64 transactionid; 1130 u32 reserved; 1131 u32 rangecount; /* Always 1 in this case */ 1132 struct hv_multipage_buffer range; 1133} __packed; 1134 1135 1136extern int vmbus_open(struct vmbus_channel *channel, 1137 u32 send_ringbuffersize, 1138 u32 recv_ringbuffersize, 1139 void *userdata, 1140 u32 userdatalen, 1141 void(*onchannel_callback)(void *context), 1142 void *context); 1143 1144extern void vmbus_close(struct vmbus_channel *channel); 1145 1146extern int vmbus_sendpacket(struct vmbus_channel *channel, 1147 const void *buffer, 1148 u32 bufferLen, 1149 u64 requestid, 1150 enum vmbus_packet_type type, 1151 u32 flags); 1152 1153extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1154 struct hv_page_buffer pagebuffers[], 1155 u32 pagecount, 1156 void *buffer, 1157 u32 bufferlen, 1158 u64 requestid); 1159 1160extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1161 struct hv_multipage_buffer *mpb, 1162 void *buffer, 1163 u32 bufferlen, 1164 u64 requestid); 1165 1166extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1167 void *kbuffer, 1168 u32 size, 1169 u32 *gpadl_handle); 1170 1171extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1172 u32 gpadl_handle); 1173 1174extern int vmbus_recvpacket(struct vmbus_channel *channel, 1175 void *buffer, 1176 u32 bufferlen, 1177 u32 *buffer_actual_len, 1178 u64 *requestid); 1179 1180extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1181 void *buffer, 1182 u32 bufferlen, 1183 u32 *buffer_actual_len, 1184 u64 *requestid); 1185 1186 1187extern void vmbus_get_debug_info(struct vmbus_channel *channel, 1188 struct vmbus_channel_debug_info *debug); 1189 1190extern void vmbus_ontimer(unsigned long data); 1191 1192struct hv_dev_port_info { 1193 u32 int_mask; 1194 u32 read_idx; 1195 u32 write_idx; 1196 u32 bytes_avail_toread; 1197 u32 bytes_avail_towrite; 1198}; 1199 1200/* Base driver object */ 1201struct hv_driver { 1202 const char *name; 1203 1204 /* the device type supported by this driver */ 1205 uuid_le dev_type; 1206 const struct hv_vmbus_device_id *id_table; 1207 1208 struct device_driver driver; 1209 1210 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1211 int (*remove)(struct hv_device *); 1212 void (*shutdown)(struct hv_device *); 1213 1214}; 1215 1216/* Base device object */ 1217struct hv_device { 1218 /* the device type id of this device */ 1219 uuid_le dev_type; 1220 1221 /* the device instance id of this device */ 1222 uuid_le dev_instance; 1223 1224 struct device device; 1225 1226 struct vmbus_channel *channel; 1227}; 1228 1229 1230static inline struct hv_device *device_to_hv_device(struct device *d) 1231{ 1232 return container_of(d, struct hv_device, device); 1233} 1234 1235static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1236{ 1237 return container_of(d, struct hv_driver, driver); 1238} 1239 1240static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1241{ 1242 dev_set_drvdata(&dev->device, data); 1243} 1244 1245static inline void *hv_get_drvdata(struct hv_device *dev) 1246{ 1247 return dev_get_drvdata(&dev->device); 1248} 1249 1250/* Vmbus interface */ 1251#define vmbus_driver_register(driver) \ 1252 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1253int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1254 struct module *owner, 1255 const char *mod_name); 1256void vmbus_driver_unregister(struct hv_driver *hv_driver); 1257 1258/** 1259 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device 1260 * 1261 * This macro is used to create a struct hv_vmbus_device_id that matches a 1262 * specific device. 1263 */ 1264#define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \ 1265 g8, g9, ga, gb, gc, gd, ge, gf) \ 1266 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \ 1267 g8, g9, ga, gb, gc, gd, ge, gf }, 1268 1269/* 1270 * GUID definitions of various offer types - services offered to the guest. 1271 */ 1272 1273/* 1274 * Network GUID 1275 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1276 */ 1277#define HV_NIC_GUID \ 1278 .guid = { \ 1279 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \ 1280 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \ 1281 } 1282 1283/* 1284 * IDE GUID 1285 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1286 */ 1287#define HV_IDE_GUID \ 1288 .guid = { \ 1289 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \ 1290 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \ 1291 } 1292 1293/* 1294 * SCSI GUID 1295 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1296 */ 1297#define HV_SCSI_GUID \ 1298 .guid = { \ 1299 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \ 1300 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \ 1301 } 1302 1303/* 1304 * Shutdown GUID 1305 * {0e0b6031-5213-4934-818b-38d90ced39db} 1306 */ 1307#define HV_SHUTDOWN_GUID \ 1308 .guid = { \ 1309 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \ 1310 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \ 1311 } 1312 1313/* 1314 * Time Synch GUID 1315 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1316 */ 1317#define HV_TS_GUID \ 1318 .guid = { \ 1319 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \ 1320 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \ 1321 } 1322 1323/* 1324 * Heartbeat GUID 1325 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1326 */ 1327#define HV_HEART_BEAT_GUID \ 1328 .guid = { \ 1329 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \ 1330 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \ 1331 } 1332 1333/* 1334 * KVP GUID 1335 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1336 */ 1337#define HV_KVP_GUID \ 1338 .guid = { \ 1339 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \ 1340 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \ 1341 } 1342 1343/* 1344 * Dynamic memory GUID 1345 * {525074dc-8985-46e2-8057-a307dc18a502} 1346 */ 1347#define HV_DM_GUID \ 1348 .guid = { \ 1349 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \ 1350 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \ 1351 } 1352 1353/* 1354 * Mouse GUID 1355 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1356 */ 1357#define HV_MOUSE_GUID \ 1358 .guid = { \ 1359 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \ 1360 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \ 1361 } 1362 1363/* 1364 * VSS (Backup/Restore) GUID 1365 */ 1366#define HV_VSS_GUID \ 1367 .guid = { \ 1368 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \ 1369 0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 \ 1370 } 1371/* 1372 * Synthetic Video GUID 1373 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1374 */ 1375#define HV_SYNTHVID_GUID \ 1376 .guid = { \ 1377 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \ 1378 0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \ 1379 } 1380 1381/* 1382 * Synthetic FC GUID 1383 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1384 */ 1385#define HV_SYNTHFC_GUID \ 1386 .guid = { \ 1387 0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \ 1388 0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \ 1389 } 1390 1391/* 1392 * Common header for Hyper-V ICs 1393 */ 1394 1395#define ICMSGTYPE_NEGOTIATE 0 1396#define ICMSGTYPE_HEARTBEAT 1 1397#define ICMSGTYPE_KVPEXCHANGE 2 1398#define ICMSGTYPE_SHUTDOWN 3 1399#define ICMSGTYPE_TIMESYNC 4 1400#define ICMSGTYPE_VSS 5 1401 1402#define ICMSGHDRFLAG_TRANSACTION 1 1403#define ICMSGHDRFLAG_REQUEST 2 1404#define ICMSGHDRFLAG_RESPONSE 4 1405 1406 1407/* 1408 * While we want to handle util services as regular devices, 1409 * there is only one instance of each of these services; so 1410 * we statically allocate the service specific state. 1411 */ 1412 1413struct hv_util_service { 1414 u8 *recv_buffer; 1415 void (*util_cb)(void *); 1416 int (*util_init)(struct hv_util_service *); 1417 void (*util_deinit)(void); 1418}; 1419 1420struct vmbuspipe_hdr { 1421 u32 flags; 1422 u32 msgsize; 1423} __packed; 1424 1425struct ic_version { 1426 u16 major; 1427 u16 minor; 1428} __packed; 1429 1430struct icmsg_hdr { 1431 struct ic_version icverframe; 1432 u16 icmsgtype; 1433 struct ic_version icvermsg; 1434 u16 icmsgsize; 1435 u32 status; 1436 u8 ictransaction_id; 1437 u8 icflags; 1438 u8 reserved[2]; 1439} __packed; 1440 1441struct icmsg_negotiate { 1442 u16 icframe_vercnt; 1443 u16 icmsg_vercnt; 1444 u32 reserved; 1445 struct ic_version icversion_data[1]; /* any size array */ 1446} __packed; 1447 1448struct shutdown_msg_data { 1449 u32 reason_code; 1450 u32 timeout_seconds; 1451 u32 flags; 1452 u8 display_message[2048]; 1453} __packed; 1454 1455struct heartbeat_msg_data { 1456 u64 seq_num; 1457 u32 reserved[8]; 1458} __packed; 1459 1460/* Time Sync IC defs */ 1461#define ICTIMESYNCFLAG_PROBE 0 1462#define ICTIMESYNCFLAG_SYNC 1 1463#define ICTIMESYNCFLAG_SAMPLE 2 1464 1465#ifdef __x86_64__ 1466#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1467#else 1468#define WLTIMEDELTA 116444736000000000LL 1469#endif 1470 1471struct ictimesync_data { 1472 u64 parenttime; 1473 u64 childtime; 1474 u64 roundtriptime; 1475 u8 flags; 1476} __packed; 1477 1478struct hyperv_service_callback { 1479 u8 msg_type; 1480 char *log_msg; 1481 uuid_le data; 1482 struct vmbus_channel *channel; 1483 void (*callback) (void *context); 1484}; 1485 1486#define MAX_SRV_VER 0x7ffffff 1487extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1488 struct icmsg_negotiate *, u8 *, int, 1489 int); 1490 1491int hv_kvp_init(struct hv_util_service *); 1492void hv_kvp_deinit(void); 1493void hv_kvp_onchannelcallback(void *); 1494 1495int hv_vss_init(struct hv_util_service *); 1496void hv_vss_deinit(void); 1497void hv_vss_onchannelcallback(void *); 1498 1499/* 1500 * Negotiated version with the Host. 1501 */ 1502 1503extern __u32 vmbus_proto_version; 1504 1505#endif /* __KERNEL__ */ 1506#endif /* _HYPERV_H */