Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef __LINUX_SEQLOCK_H
2#define __LINUX_SEQLOCK_H
3/*
4 * Reader/writer consistent mechanism without starving writers. This type of
5 * lock for data where the reader wants a consistent set of information
6 * and is willing to retry if the information changes. There are two types
7 * of readers:
8 * 1. Sequence readers which never block a writer but they may have to retry
9 * if a writer is in progress by detecting change in sequence number.
10 * Writers do not wait for a sequence reader.
11 * 2. Locking readers which will wait if a writer or another locking reader
12 * is in progress. A locking reader in progress will also block a writer
13 * from going forward. Unlike the regular rwlock, the read lock here is
14 * exclusive so that only one locking reader can get it.
15 *
16 * This is not as cache friendly as brlock. Also, this may not work well
17 * for data that contains pointers, because any writer could
18 * invalidate a pointer that a reader was following.
19 *
20 * Expected non-blocking reader usage:
21 * do {
22 * seq = read_seqbegin(&foo);
23 * ...
24 * } while (read_seqretry(&foo, seq));
25 *
26 *
27 * On non-SMP the spin locks disappear but the writer still needs
28 * to increment the sequence variables because an interrupt routine could
29 * change the state of the data.
30 *
31 * Based on x86_64 vsyscall gettimeofday
32 * by Keith Owens and Andrea Arcangeli
33 */
34
35#include <linux/spinlock.h>
36#include <linux/preempt.h>
37#include <asm/processor.h>
38
39/*
40 * Version using sequence counter only.
41 * This can be used when code has its own mutex protecting the
42 * updating starting before the write_seqcountbeqin() and ending
43 * after the write_seqcount_end().
44 */
45typedef struct seqcount {
46 unsigned sequence;
47} seqcount_t;
48
49#define SEQCNT_ZERO { 0 }
50#define seqcount_init(x) do { *(x) = (seqcount_t) SEQCNT_ZERO; } while (0)
51
52/**
53 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
54 * @s: pointer to seqcount_t
55 * Returns: count to be passed to read_seqcount_retry
56 *
57 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
58 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
59 * provided before actually loading any of the variables that are to be
60 * protected in this critical section.
61 *
62 * Use carefully, only in critical code, and comment how the barrier is
63 * provided.
64 */
65static inline unsigned __read_seqcount_begin(const seqcount_t *s)
66{
67 unsigned ret;
68
69repeat:
70 ret = ACCESS_ONCE(s->sequence);
71 if (unlikely(ret & 1)) {
72 cpu_relax();
73 goto repeat;
74 }
75 return ret;
76}
77
78/**
79 * read_seqcount_begin - begin a seq-read critical section
80 * @s: pointer to seqcount_t
81 * Returns: count to be passed to read_seqcount_retry
82 *
83 * read_seqcount_begin opens a read critical section of the given seqcount.
84 * Validity of the critical section is tested by checking read_seqcount_retry
85 * function.
86 */
87static inline unsigned read_seqcount_begin(const seqcount_t *s)
88{
89 unsigned ret = __read_seqcount_begin(s);
90 smp_rmb();
91 return ret;
92}
93
94/**
95 * raw_seqcount_begin - begin a seq-read critical section
96 * @s: pointer to seqcount_t
97 * Returns: count to be passed to read_seqcount_retry
98 *
99 * raw_seqcount_begin opens a read critical section of the given seqcount.
100 * Validity of the critical section is tested by checking read_seqcount_retry
101 * function.
102 *
103 * Unlike read_seqcount_begin(), this function will not wait for the count
104 * to stabilize. If a writer is active when we begin, we will fail the
105 * read_seqcount_retry() instead of stabilizing at the beginning of the
106 * critical section.
107 */
108static inline unsigned raw_seqcount_begin(const seqcount_t *s)
109{
110 unsigned ret = ACCESS_ONCE(s->sequence);
111 smp_rmb();
112 return ret & ~1;
113}
114
115/**
116 * __read_seqcount_retry - end a seq-read critical section (without barrier)
117 * @s: pointer to seqcount_t
118 * @start: count, from read_seqcount_begin
119 * Returns: 1 if retry is required, else 0
120 *
121 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
122 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
123 * provided before actually loading any of the variables that are to be
124 * protected in this critical section.
125 *
126 * Use carefully, only in critical code, and comment how the barrier is
127 * provided.
128 */
129static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
130{
131 return unlikely(s->sequence != start);
132}
133
134/**
135 * read_seqcount_retry - end a seq-read critical section
136 * @s: pointer to seqcount_t
137 * @start: count, from read_seqcount_begin
138 * Returns: 1 if retry is required, else 0
139 *
140 * read_seqcount_retry closes a read critical section of the given seqcount.
141 * If the critical section was invalid, it must be ignored (and typically
142 * retried).
143 */
144static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
145{
146 smp_rmb();
147 return __read_seqcount_retry(s, start);
148}
149
150
151/*
152 * Sequence counter only version assumes that callers are using their
153 * own mutexing.
154 */
155static inline void write_seqcount_begin(seqcount_t *s)
156{
157 s->sequence++;
158 smp_wmb();
159}
160
161static inline void write_seqcount_end(seqcount_t *s)
162{
163 smp_wmb();
164 s->sequence++;
165}
166
167/**
168 * write_seqcount_barrier - invalidate in-progress read-side seq operations
169 * @s: pointer to seqcount_t
170 *
171 * After write_seqcount_barrier, no read-side seq operations will complete
172 * successfully and see data older than this.
173 */
174static inline void write_seqcount_barrier(seqcount_t *s)
175{
176 smp_wmb();
177 s->sequence+=2;
178}
179
180typedef struct {
181 struct seqcount seqcount;
182 spinlock_t lock;
183} seqlock_t;
184
185/*
186 * These macros triggered gcc-3.x compile-time problems. We think these are
187 * OK now. Be cautious.
188 */
189#define __SEQLOCK_UNLOCKED(lockname) \
190 { \
191 .seqcount = SEQCNT_ZERO, \
192 .lock = __SPIN_LOCK_UNLOCKED(lockname) \
193 }
194
195#define seqlock_init(x) \
196 do { \
197 seqcount_init(&(x)->seqcount); \
198 spin_lock_init(&(x)->lock); \
199 } while (0)
200
201#define DEFINE_SEQLOCK(x) \
202 seqlock_t x = __SEQLOCK_UNLOCKED(x)
203
204/*
205 * Read side functions for starting and finalizing a read side section.
206 */
207static inline unsigned read_seqbegin(const seqlock_t *sl)
208{
209 return read_seqcount_begin(&sl->seqcount);
210}
211
212static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
213{
214 return read_seqcount_retry(&sl->seqcount, start);
215}
216
217/*
218 * Lock out other writers and update the count.
219 * Acts like a normal spin_lock/unlock.
220 * Don't need preempt_disable() because that is in the spin_lock already.
221 */
222static inline void write_seqlock(seqlock_t *sl)
223{
224 spin_lock(&sl->lock);
225 write_seqcount_begin(&sl->seqcount);
226}
227
228static inline void write_sequnlock(seqlock_t *sl)
229{
230 write_seqcount_end(&sl->seqcount);
231 spin_unlock(&sl->lock);
232}
233
234static inline void write_seqlock_bh(seqlock_t *sl)
235{
236 spin_lock_bh(&sl->lock);
237 write_seqcount_begin(&sl->seqcount);
238}
239
240static inline void write_sequnlock_bh(seqlock_t *sl)
241{
242 write_seqcount_end(&sl->seqcount);
243 spin_unlock_bh(&sl->lock);
244}
245
246static inline void write_seqlock_irq(seqlock_t *sl)
247{
248 spin_lock_irq(&sl->lock);
249 write_seqcount_begin(&sl->seqcount);
250}
251
252static inline void write_sequnlock_irq(seqlock_t *sl)
253{
254 write_seqcount_end(&sl->seqcount);
255 spin_unlock_irq(&sl->lock);
256}
257
258static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
259{
260 unsigned long flags;
261
262 spin_lock_irqsave(&sl->lock, flags);
263 write_seqcount_begin(&sl->seqcount);
264 return flags;
265}
266
267#define write_seqlock_irqsave(lock, flags) \
268 do { flags = __write_seqlock_irqsave(lock); } while (0)
269
270static inline void
271write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
272{
273 write_seqcount_end(&sl->seqcount);
274 spin_unlock_irqrestore(&sl->lock, flags);
275}
276
277/*
278 * A locking reader exclusively locks out other writers and locking readers,
279 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
280 * Don't need preempt_disable() because that is in the spin_lock already.
281 */
282static inline void read_seqlock_excl(seqlock_t *sl)
283{
284 spin_lock(&sl->lock);
285}
286
287static inline void read_sequnlock_excl(seqlock_t *sl)
288{
289 spin_unlock(&sl->lock);
290}
291
292static inline void read_seqlock_excl_bh(seqlock_t *sl)
293{
294 spin_lock_bh(&sl->lock);
295}
296
297static inline void read_sequnlock_excl_bh(seqlock_t *sl)
298{
299 spin_unlock_bh(&sl->lock);
300}
301
302static inline void read_seqlock_excl_irq(seqlock_t *sl)
303{
304 spin_lock_irq(&sl->lock);
305}
306
307static inline void read_sequnlock_excl_irq(seqlock_t *sl)
308{
309 spin_unlock_irq(&sl->lock);
310}
311
312static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
313{
314 unsigned long flags;
315
316 spin_lock_irqsave(&sl->lock, flags);
317 return flags;
318}
319
320#define read_seqlock_excl_irqsave(lock, flags) \
321 do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
322
323static inline void
324read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
325{
326 spin_unlock_irqrestore(&sl->lock, flags);
327}
328
329#endif /* __LINUX_SEQLOCK_H */