at v3.12-rc2 39 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <linux/types.h> 29 30/* 31 * Framework version for util services. 32 */ 33 34#define UTIL_FW_MAJOR 3 35#define UTIL_FW_MINOR 0 36#define UTIL_FW_MAJOR_MINOR (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR) 37 38 39/* 40 * Implementation of host controlled snapshot of the guest. 41 */ 42 43#define VSS_OP_REGISTER 128 44 45enum hv_vss_op { 46 VSS_OP_CREATE = 0, 47 VSS_OP_DELETE, 48 VSS_OP_HOT_BACKUP, 49 VSS_OP_GET_DM_INFO, 50 VSS_OP_BU_COMPLETE, 51 /* 52 * Following operations are only supported with IC version >= 5.0 53 */ 54 VSS_OP_FREEZE, /* Freeze the file systems in the VM */ 55 VSS_OP_THAW, /* Unfreeze the file systems */ 56 VSS_OP_AUTO_RECOVER, 57 VSS_OP_COUNT /* Number of operations, must be last */ 58}; 59 60 61/* 62 * Header for all VSS messages. 63 */ 64struct hv_vss_hdr { 65 __u8 operation; 66 __u8 reserved[7]; 67} __attribute__((packed)); 68 69 70/* 71 * Flag values for the hv_vss_check_feature. Linux supports only 72 * one value. 73 */ 74#define VSS_HBU_NO_AUTO_RECOVERY 0x00000005 75 76struct hv_vss_check_feature { 77 __u32 flags; 78} __attribute__((packed)); 79 80struct hv_vss_check_dm_info { 81 __u32 flags; 82} __attribute__((packed)); 83 84struct hv_vss_msg { 85 union { 86 struct hv_vss_hdr vss_hdr; 87 int error; 88 }; 89 union { 90 struct hv_vss_check_feature vss_cf; 91 struct hv_vss_check_dm_info dm_info; 92 }; 93} __attribute__((packed)); 94 95/* 96 * An implementation of HyperV key value pair (KVP) functionality for Linux. 97 * 98 * 99 * Copyright (C) 2010, Novell, Inc. 100 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 101 * 102 */ 103 104/* 105 * Maximum value size - used for both key names and value data, and includes 106 * any applicable NULL terminators. 107 * 108 * Note: This limit is somewhat arbitrary, but falls easily within what is 109 * supported for all native guests (back to Win 2000) and what is reasonable 110 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 111 * limited to 255 character key names. 112 * 113 * MSDN recommends not storing data values larger than 2048 bytes in the 114 * registry. 115 * 116 * Note: This value is used in defining the KVP exchange message - this value 117 * cannot be modified without affecting the message size and compatibility. 118 */ 119 120/* 121 * bytes, including any null terminators 122 */ 123#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 124 125 126/* 127 * Maximum key size - the registry limit for the length of an entry name 128 * is 256 characters, including the null terminator 129 */ 130 131#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 132 133/* 134 * In Linux, we implement the KVP functionality in two components: 135 * 1) The kernel component which is packaged as part of the hv_utils driver 136 * is responsible for communicating with the host and responsible for 137 * implementing the host/guest protocol. 2) A user level daemon that is 138 * responsible for data gathering. 139 * 140 * Host/Guest Protocol: The host iterates over an index and expects the guest 141 * to assign a key name to the index and also return the value corresponding to 142 * the key. The host will have atmost one KVP transaction outstanding at any 143 * given point in time. The host side iteration stops when the guest returns 144 * an error. Microsoft has specified the following mapping of key names to 145 * host specified index: 146 * 147 * Index Key Name 148 * 0 FullyQualifiedDomainName 149 * 1 IntegrationServicesVersion 150 * 2 NetworkAddressIPv4 151 * 3 NetworkAddressIPv6 152 * 4 OSBuildNumber 153 * 5 OSName 154 * 6 OSMajorVersion 155 * 7 OSMinorVersion 156 * 8 OSVersion 157 * 9 ProcessorArchitecture 158 * 159 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 160 * 161 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 162 * data gathering functionality in a user mode daemon. The user level daemon 163 * is also responsible for binding the key name to the index as well. The 164 * kernel and user-level daemon communicate using a connector channel. 165 * 166 * The user mode component first registers with the 167 * the kernel component. Subsequently, the kernel component requests, data 168 * for the specified keys. In response to this message the user mode component 169 * fills in the value corresponding to the specified key. We overload the 170 * sequence field in the cn_msg header to define our KVP message types. 171 * 172 * 173 * The kernel component simply acts as a conduit for communication between the 174 * Windows host and the user-level daemon. The kernel component passes up the 175 * index received from the Host to the user-level daemon. If the index is 176 * valid (supported), the corresponding key as well as its 177 * value (both are strings) is returned. If the index is invalid 178 * (not supported), a NULL key string is returned. 179 */ 180 181 182/* 183 * Registry value types. 184 */ 185 186#define REG_SZ 1 187#define REG_U32 4 188#define REG_U64 8 189 190/* 191 * As we look at expanding the KVP functionality to include 192 * IP injection functionality, we need to maintain binary 193 * compatibility with older daemons. 194 * 195 * The KVP opcodes are defined by the host and it was unfortunate 196 * that I chose to treat the registration operation as part of the 197 * KVP operations defined by the host. 198 * Here is the level of compatibility 199 * (between the user level daemon and the kernel KVP driver) that we 200 * will implement: 201 * 202 * An older daemon will always be supported on a newer driver. 203 * A given user level daemon will require a minimal version of the 204 * kernel driver. 205 * If we cannot handle the version differences, we will fail gracefully 206 * (this can happen when we have a user level daemon that is more 207 * advanced than the KVP driver. 208 * 209 * We will use values used in this handshake for determining if we have 210 * workable user level daemon and the kernel driver. We begin by taking the 211 * registration opcode out of the KVP opcode namespace. We will however, 212 * maintain compatibility with the existing user-level daemon code. 213 */ 214 215/* 216 * Daemon code not supporting IP injection (legacy daemon). 217 */ 218 219#define KVP_OP_REGISTER 4 220 221/* 222 * Daemon code supporting IP injection. 223 * The KVP opcode field is used to communicate the 224 * registration information; so define a namespace that 225 * will be distinct from the host defined KVP opcode. 226 */ 227 228#define KVP_OP_REGISTER1 100 229 230enum hv_kvp_exchg_op { 231 KVP_OP_GET = 0, 232 KVP_OP_SET, 233 KVP_OP_DELETE, 234 KVP_OP_ENUMERATE, 235 KVP_OP_GET_IP_INFO, 236 KVP_OP_SET_IP_INFO, 237 KVP_OP_COUNT /* Number of operations, must be last. */ 238}; 239 240enum hv_kvp_exchg_pool { 241 KVP_POOL_EXTERNAL = 0, 242 KVP_POOL_GUEST, 243 KVP_POOL_AUTO, 244 KVP_POOL_AUTO_EXTERNAL, 245 KVP_POOL_AUTO_INTERNAL, 246 KVP_POOL_COUNT /* Number of pools, must be last. */ 247}; 248 249/* 250 * Some Hyper-V status codes. 251 */ 252 253#define HV_S_OK 0x00000000 254#define HV_E_FAIL 0x80004005 255#define HV_S_CONT 0x80070103 256#define HV_ERROR_NOT_SUPPORTED 0x80070032 257#define HV_ERROR_MACHINE_LOCKED 0x800704F7 258#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 259#define HV_INVALIDARG 0x80070057 260#define HV_GUID_NOTFOUND 0x80041002 261 262#define ADDR_FAMILY_NONE 0x00 263#define ADDR_FAMILY_IPV4 0x01 264#define ADDR_FAMILY_IPV6 0x02 265 266#define MAX_ADAPTER_ID_SIZE 128 267#define MAX_IP_ADDR_SIZE 1024 268#define MAX_GATEWAY_SIZE 512 269 270 271struct hv_kvp_ipaddr_value { 272 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 273 __u8 addr_family; 274 __u8 dhcp_enabled; 275 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 276 __u16 sub_net[MAX_IP_ADDR_SIZE]; 277 __u16 gate_way[MAX_GATEWAY_SIZE]; 278 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 279} __attribute__((packed)); 280 281 282struct hv_kvp_hdr { 283 __u8 operation; 284 __u8 pool; 285 __u16 pad; 286} __attribute__((packed)); 287 288struct hv_kvp_exchg_msg_value { 289 __u32 value_type; 290 __u32 key_size; 291 __u32 value_size; 292 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 293 union { 294 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 295 __u32 value_u32; 296 __u64 value_u64; 297 }; 298} __attribute__((packed)); 299 300struct hv_kvp_msg_enumerate { 301 __u32 index; 302 struct hv_kvp_exchg_msg_value data; 303} __attribute__((packed)); 304 305struct hv_kvp_msg_get { 306 struct hv_kvp_exchg_msg_value data; 307}; 308 309struct hv_kvp_msg_set { 310 struct hv_kvp_exchg_msg_value data; 311}; 312 313struct hv_kvp_msg_delete { 314 __u32 key_size; 315 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 316}; 317 318struct hv_kvp_register { 319 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 320}; 321 322struct hv_kvp_msg { 323 union { 324 struct hv_kvp_hdr kvp_hdr; 325 int error; 326 }; 327 union { 328 struct hv_kvp_msg_get kvp_get; 329 struct hv_kvp_msg_set kvp_set; 330 struct hv_kvp_msg_delete kvp_delete; 331 struct hv_kvp_msg_enumerate kvp_enum_data; 332 struct hv_kvp_ipaddr_value kvp_ip_val; 333 struct hv_kvp_register kvp_register; 334 } body; 335} __attribute__((packed)); 336 337struct hv_kvp_ip_msg { 338 __u8 operation; 339 __u8 pool; 340 struct hv_kvp_ipaddr_value kvp_ip_val; 341} __attribute__((packed)); 342 343#ifdef __KERNEL__ 344#include <linux/scatterlist.h> 345#include <linux/list.h> 346#include <linux/uuid.h> 347#include <linux/timer.h> 348#include <linux/workqueue.h> 349#include <linux/completion.h> 350#include <linux/device.h> 351#include <linux/mod_devicetable.h> 352 353 354#define MAX_PAGE_BUFFER_COUNT 19 355#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 356 357#pragma pack(push, 1) 358 359/* Single-page buffer */ 360struct hv_page_buffer { 361 u32 len; 362 u32 offset; 363 u64 pfn; 364}; 365 366/* Multiple-page buffer */ 367struct hv_multipage_buffer { 368 /* Length and Offset determines the # of pfns in the array */ 369 u32 len; 370 u32 offset; 371 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 372}; 373 374/* 0x18 includes the proprietary packet header */ 375#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 376 (sizeof(struct hv_page_buffer) * \ 377 MAX_PAGE_BUFFER_COUNT)) 378#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 379 sizeof(struct hv_multipage_buffer)) 380 381 382#pragma pack(pop) 383 384struct hv_ring_buffer { 385 /* Offset in bytes from the start of ring data below */ 386 u32 write_index; 387 388 /* Offset in bytes from the start of ring data below */ 389 u32 read_index; 390 391 u32 interrupt_mask; 392 393 /* 394 * Win8 uses some of the reserved bits to implement 395 * interrupt driven flow management. On the send side 396 * we can request that the receiver interrupt the sender 397 * when the ring transitions from being full to being able 398 * to handle a message of size "pending_send_sz". 399 * 400 * Add necessary state for this enhancement. 401 */ 402 u32 pending_send_sz; 403 404 u32 reserved1[12]; 405 406 union { 407 struct { 408 u32 feat_pending_send_sz:1; 409 }; 410 u32 value; 411 } feature_bits; 412 413 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 414 u8 reserved2[4028]; 415 416 /* 417 * Ring data starts here + RingDataStartOffset 418 * !!! DO NOT place any fields below this !!! 419 */ 420 u8 buffer[0]; 421} __packed; 422 423struct hv_ring_buffer_info { 424 struct hv_ring_buffer *ring_buffer; 425 u32 ring_size; /* Include the shared header */ 426 spinlock_t ring_lock; 427 428 u32 ring_datasize; /* < ring_size */ 429 u32 ring_data_startoffset; 430}; 431 432struct hv_ring_buffer_debug_info { 433 u32 current_interrupt_mask; 434 u32 current_read_index; 435 u32 current_write_index; 436 u32 bytes_avail_toread; 437 u32 bytes_avail_towrite; 438}; 439 440 441/* 442 * 443 * hv_get_ringbuffer_availbytes() 444 * 445 * Get number of bytes available to read and to write to 446 * for the specified ring buffer 447 */ 448static inline void 449hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 450 u32 *read, u32 *write) 451{ 452 u32 read_loc, write_loc, dsize; 453 454 smp_read_barrier_depends(); 455 456 /* Capture the read/write indices before they changed */ 457 read_loc = rbi->ring_buffer->read_index; 458 write_loc = rbi->ring_buffer->write_index; 459 dsize = rbi->ring_datasize; 460 461 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 462 read_loc - write_loc; 463 *read = dsize - *write; 464} 465 466/* 467 * VMBUS version is 32 bit entity broken up into 468 * two 16 bit quantities: major_number. minor_number. 469 * 470 * 0 . 13 (Windows Server 2008) 471 * 1 . 1 (Windows 7) 472 * 2 . 4 (Windows 8) 473 */ 474 475#define VERSION_WS2008 ((0 << 16) | (13)) 476#define VERSION_WIN7 ((1 << 16) | (1)) 477#define VERSION_WIN8 ((2 << 16) | (4)) 478 479#define VERSION_INVAL -1 480 481#define VERSION_CURRENT VERSION_WIN8 482 483/* Make maximum size of pipe payload of 16K */ 484#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 485 486/* Define PipeMode values. */ 487#define VMBUS_PIPE_TYPE_BYTE 0x00000000 488#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 489 490/* The size of the user defined data buffer for non-pipe offers. */ 491#define MAX_USER_DEFINED_BYTES 120 492 493/* The size of the user defined data buffer for pipe offers. */ 494#define MAX_PIPE_USER_DEFINED_BYTES 116 495 496/* 497 * At the center of the Channel Management library is the Channel Offer. This 498 * struct contains the fundamental information about an offer. 499 */ 500struct vmbus_channel_offer { 501 uuid_le if_type; 502 uuid_le if_instance; 503 504 /* 505 * These two fields are not currently used. 506 */ 507 u64 reserved1; 508 u64 reserved2; 509 510 u16 chn_flags; 511 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 512 513 union { 514 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 515 struct { 516 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 517 } std; 518 519 /* 520 * Pipes: 521 * The following sructure is an integrated pipe protocol, which 522 * is implemented on top of standard user-defined data. Pipe 523 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 524 * use. 525 */ 526 struct { 527 u32 pipe_mode; 528 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 529 } pipe; 530 } u; 531 /* 532 * The sub_channel_index is defined in win8. 533 */ 534 u16 sub_channel_index; 535 u16 reserved3; 536} __packed; 537 538/* Server Flags */ 539#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 540#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 541#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 542#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 543#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 544#define VMBUS_CHANNEL_PARENT_OFFER 0x200 545#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 546 547struct vmpacket_descriptor { 548 u16 type; 549 u16 offset8; 550 u16 len8; 551 u16 flags; 552 u64 trans_id; 553} __packed; 554 555struct vmpacket_header { 556 u32 prev_pkt_start_offset; 557 struct vmpacket_descriptor descriptor; 558} __packed; 559 560struct vmtransfer_page_range { 561 u32 byte_count; 562 u32 byte_offset; 563} __packed; 564 565struct vmtransfer_page_packet_header { 566 struct vmpacket_descriptor d; 567 u16 xfer_pageset_id; 568 u8 sender_owns_set; 569 u8 reserved; 570 u32 range_cnt; 571 struct vmtransfer_page_range ranges[1]; 572} __packed; 573 574struct vmgpadl_packet_header { 575 struct vmpacket_descriptor d; 576 u32 gpadl; 577 u32 reserved; 578} __packed; 579 580struct vmadd_remove_transfer_page_set { 581 struct vmpacket_descriptor d; 582 u32 gpadl; 583 u16 xfer_pageset_id; 584 u16 reserved; 585} __packed; 586 587/* 588 * This structure defines a range in guest physical space that can be made to 589 * look virtually contiguous. 590 */ 591struct gpa_range { 592 u32 byte_count; 593 u32 byte_offset; 594 u64 pfn_array[0]; 595}; 596 597/* 598 * This is the format for an Establish Gpadl packet, which contains a handle by 599 * which this GPADL will be known and a set of GPA ranges associated with it. 600 * This can be converted to a MDL by the guest OS. If there are multiple GPA 601 * ranges, then the resulting MDL will be "chained," representing multiple VA 602 * ranges. 603 */ 604struct vmestablish_gpadl { 605 struct vmpacket_descriptor d; 606 u32 gpadl; 607 u32 range_cnt; 608 struct gpa_range range[1]; 609} __packed; 610 611/* 612 * This is the format for a Teardown Gpadl packet, which indicates that the 613 * GPADL handle in the Establish Gpadl packet will never be referenced again. 614 */ 615struct vmteardown_gpadl { 616 struct vmpacket_descriptor d; 617 u32 gpadl; 618 u32 reserved; /* for alignment to a 8-byte boundary */ 619} __packed; 620 621/* 622 * This is the format for a GPA-Direct packet, which contains a set of GPA 623 * ranges, in addition to commands and/or data. 624 */ 625struct vmdata_gpa_direct { 626 struct vmpacket_descriptor d; 627 u32 reserved; 628 u32 range_cnt; 629 struct gpa_range range[1]; 630} __packed; 631 632/* This is the format for a Additional Data Packet. */ 633struct vmadditional_data { 634 struct vmpacket_descriptor d; 635 u64 total_bytes; 636 u32 offset; 637 u32 byte_cnt; 638 unsigned char data[1]; 639} __packed; 640 641union vmpacket_largest_possible_header { 642 struct vmpacket_descriptor simple_hdr; 643 struct vmtransfer_page_packet_header xfer_page_hdr; 644 struct vmgpadl_packet_header gpadl_hdr; 645 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 646 struct vmestablish_gpadl establish_gpadl_hdr; 647 struct vmteardown_gpadl teardown_gpadl_hdr; 648 struct vmdata_gpa_direct data_gpa_direct_hdr; 649}; 650 651#define VMPACKET_DATA_START_ADDRESS(__packet) \ 652 (void *)(((unsigned char *)__packet) + \ 653 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 654 655#define VMPACKET_DATA_LENGTH(__packet) \ 656 ((((struct vmpacket_descriptor)__packet)->len8 - \ 657 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 658 659#define VMPACKET_TRANSFER_MODE(__packet) \ 660 (((struct IMPACT)__packet)->type) 661 662enum vmbus_packet_type { 663 VM_PKT_INVALID = 0x0, 664 VM_PKT_SYNCH = 0x1, 665 VM_PKT_ADD_XFER_PAGESET = 0x2, 666 VM_PKT_RM_XFER_PAGESET = 0x3, 667 VM_PKT_ESTABLISH_GPADL = 0x4, 668 VM_PKT_TEARDOWN_GPADL = 0x5, 669 VM_PKT_DATA_INBAND = 0x6, 670 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 671 VM_PKT_DATA_USING_GPADL = 0x8, 672 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 673 VM_PKT_CANCEL_REQUEST = 0xa, 674 VM_PKT_COMP = 0xb, 675 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 676 VM_PKT_ADDITIONAL_DATA = 0xd 677}; 678 679#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 680 681 682/* Version 1 messages */ 683enum vmbus_channel_message_type { 684 CHANNELMSG_INVALID = 0, 685 CHANNELMSG_OFFERCHANNEL = 1, 686 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 687 CHANNELMSG_REQUESTOFFERS = 3, 688 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 689 CHANNELMSG_OPENCHANNEL = 5, 690 CHANNELMSG_OPENCHANNEL_RESULT = 6, 691 CHANNELMSG_CLOSECHANNEL = 7, 692 CHANNELMSG_GPADL_HEADER = 8, 693 CHANNELMSG_GPADL_BODY = 9, 694 CHANNELMSG_GPADL_CREATED = 10, 695 CHANNELMSG_GPADL_TEARDOWN = 11, 696 CHANNELMSG_GPADL_TORNDOWN = 12, 697 CHANNELMSG_RELID_RELEASED = 13, 698 CHANNELMSG_INITIATE_CONTACT = 14, 699 CHANNELMSG_VERSION_RESPONSE = 15, 700 CHANNELMSG_UNLOAD = 16, 701#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 702 CHANNELMSG_VIEWRANGE_ADD = 17, 703 CHANNELMSG_VIEWRANGE_REMOVE = 18, 704#endif 705 CHANNELMSG_COUNT 706}; 707 708struct vmbus_channel_message_header { 709 enum vmbus_channel_message_type msgtype; 710 u32 padding; 711} __packed; 712 713/* Query VMBus Version parameters */ 714struct vmbus_channel_query_vmbus_version { 715 struct vmbus_channel_message_header header; 716 u32 version; 717} __packed; 718 719/* VMBus Version Supported parameters */ 720struct vmbus_channel_version_supported { 721 struct vmbus_channel_message_header header; 722 u8 version_supported; 723} __packed; 724 725/* Offer Channel parameters */ 726struct vmbus_channel_offer_channel { 727 struct vmbus_channel_message_header header; 728 struct vmbus_channel_offer offer; 729 u32 child_relid; 730 u8 monitorid; 731 /* 732 * win7 and beyond splits this field into a bit field. 733 */ 734 u8 monitor_allocated:1; 735 u8 reserved:7; 736 /* 737 * These are new fields added in win7 and later. 738 * Do not access these fields without checking the 739 * negotiated protocol. 740 * 741 * If "is_dedicated_interrupt" is set, we must not set the 742 * associated bit in the channel bitmap while sending the 743 * interrupt to the host. 744 * 745 * connection_id is to be used in signaling the host. 746 */ 747 u16 is_dedicated_interrupt:1; 748 u16 reserved1:15; 749 u32 connection_id; 750} __packed; 751 752/* Rescind Offer parameters */ 753struct vmbus_channel_rescind_offer { 754 struct vmbus_channel_message_header header; 755 u32 child_relid; 756} __packed; 757 758/* 759 * Request Offer -- no parameters, SynIC message contains the partition ID 760 * Set Snoop -- no parameters, SynIC message contains the partition ID 761 * Clear Snoop -- no parameters, SynIC message contains the partition ID 762 * All Offers Delivered -- no parameters, SynIC message contains the partition 763 * ID 764 * Flush Client -- no parameters, SynIC message contains the partition ID 765 */ 766 767/* Open Channel parameters */ 768struct vmbus_channel_open_channel { 769 struct vmbus_channel_message_header header; 770 771 /* Identifies the specific VMBus channel that is being opened. */ 772 u32 child_relid; 773 774 /* ID making a particular open request at a channel offer unique. */ 775 u32 openid; 776 777 /* GPADL for the channel's ring buffer. */ 778 u32 ringbuffer_gpadlhandle; 779 780 /* 781 * Starting with win8, this field will be used to specify 782 * the target virtual processor on which to deliver the interrupt for 783 * the host to guest communication. 784 * Prior to win8, incoming channel interrupts would only 785 * be delivered on cpu 0. Setting this value to 0 would 786 * preserve the earlier behavior. 787 */ 788 u32 target_vp; 789 790 /* 791 * The upstream ring buffer begins at offset zero in the memory 792 * described by RingBufferGpadlHandle. The downstream ring buffer 793 * follows it at this offset (in pages). 794 */ 795 u32 downstream_ringbuffer_pageoffset; 796 797 /* User-specific data to be passed along to the server endpoint. */ 798 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 799} __packed; 800 801/* Open Channel Result parameters */ 802struct vmbus_channel_open_result { 803 struct vmbus_channel_message_header header; 804 u32 child_relid; 805 u32 openid; 806 u32 status; 807} __packed; 808 809/* Close channel parameters; */ 810struct vmbus_channel_close_channel { 811 struct vmbus_channel_message_header header; 812 u32 child_relid; 813} __packed; 814 815/* Channel Message GPADL */ 816#define GPADL_TYPE_RING_BUFFER 1 817#define GPADL_TYPE_SERVER_SAVE_AREA 2 818#define GPADL_TYPE_TRANSACTION 8 819 820/* 821 * The number of PFNs in a GPADL message is defined by the number of 822 * pages that would be spanned by ByteCount and ByteOffset. If the 823 * implied number of PFNs won't fit in this packet, there will be a 824 * follow-up packet that contains more. 825 */ 826struct vmbus_channel_gpadl_header { 827 struct vmbus_channel_message_header header; 828 u32 child_relid; 829 u32 gpadl; 830 u16 range_buflen; 831 u16 rangecount; 832 struct gpa_range range[0]; 833} __packed; 834 835/* This is the followup packet that contains more PFNs. */ 836struct vmbus_channel_gpadl_body { 837 struct vmbus_channel_message_header header; 838 u32 msgnumber; 839 u32 gpadl; 840 u64 pfn[0]; 841} __packed; 842 843struct vmbus_channel_gpadl_created { 844 struct vmbus_channel_message_header header; 845 u32 child_relid; 846 u32 gpadl; 847 u32 creation_status; 848} __packed; 849 850struct vmbus_channel_gpadl_teardown { 851 struct vmbus_channel_message_header header; 852 u32 child_relid; 853 u32 gpadl; 854} __packed; 855 856struct vmbus_channel_gpadl_torndown { 857 struct vmbus_channel_message_header header; 858 u32 gpadl; 859} __packed; 860 861#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 862struct vmbus_channel_view_range_add { 863 struct vmbus_channel_message_header header; 864 PHYSICAL_ADDRESS viewrange_base; 865 u64 viewrange_length; 866 u32 child_relid; 867} __packed; 868 869struct vmbus_channel_view_range_remove { 870 struct vmbus_channel_message_header header; 871 PHYSICAL_ADDRESS viewrange_base; 872 u32 child_relid; 873} __packed; 874#endif 875 876struct vmbus_channel_relid_released { 877 struct vmbus_channel_message_header header; 878 u32 child_relid; 879} __packed; 880 881struct vmbus_channel_initiate_contact { 882 struct vmbus_channel_message_header header; 883 u32 vmbus_version_requested; 884 u32 padding2; 885 u64 interrupt_page; 886 u64 monitor_page1; 887 u64 monitor_page2; 888} __packed; 889 890struct vmbus_channel_version_response { 891 struct vmbus_channel_message_header header; 892 u8 version_supported; 893} __packed; 894 895enum vmbus_channel_state { 896 CHANNEL_OFFER_STATE, 897 CHANNEL_OPENING_STATE, 898 CHANNEL_OPEN_STATE, 899 CHANNEL_OPENED_STATE, 900}; 901 902struct vmbus_channel_debug_info { 903 u32 relid; 904 enum vmbus_channel_state state; 905 uuid_le interfacetype; 906 uuid_le interface_instance; 907 u32 monitorid; 908 u32 servermonitor_pending; 909 u32 servermonitor_latency; 910 u32 servermonitor_connectionid; 911 u32 clientmonitor_pending; 912 u32 clientmonitor_latency; 913 u32 clientmonitor_connectionid; 914 915 struct hv_ring_buffer_debug_info inbound; 916 struct hv_ring_buffer_debug_info outbound; 917}; 918 919/* 920 * Represents each channel msg on the vmbus connection This is a 921 * variable-size data structure depending on the msg type itself 922 */ 923struct vmbus_channel_msginfo { 924 /* Bookkeeping stuff */ 925 struct list_head msglistentry; 926 927 /* So far, this is only used to handle gpadl body message */ 928 struct list_head submsglist; 929 930 /* Synchronize the request/response if needed */ 931 struct completion waitevent; 932 union { 933 struct vmbus_channel_version_supported version_supported; 934 struct vmbus_channel_open_result open_result; 935 struct vmbus_channel_gpadl_torndown gpadl_torndown; 936 struct vmbus_channel_gpadl_created gpadl_created; 937 struct vmbus_channel_version_response version_response; 938 } response; 939 940 u32 msgsize; 941 /* 942 * The channel message that goes out on the "wire". 943 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 944 */ 945 unsigned char msg[0]; 946}; 947 948struct vmbus_close_msg { 949 struct vmbus_channel_msginfo info; 950 struct vmbus_channel_close_channel msg; 951}; 952 953/* Define connection identifier type. */ 954union hv_connection_id { 955 u32 asu32; 956 struct { 957 u32 id:24; 958 u32 reserved:8; 959 } u; 960}; 961 962/* Definition of the hv_signal_event hypercall input structure. */ 963struct hv_input_signal_event { 964 union hv_connection_id connectionid; 965 u16 flag_number; 966 u16 rsvdz; 967}; 968 969struct hv_input_signal_event_buffer { 970 u64 align8; 971 struct hv_input_signal_event event; 972}; 973 974struct vmbus_channel { 975 struct list_head listentry; 976 977 struct hv_device *device_obj; 978 979 struct work_struct work; 980 981 enum vmbus_channel_state state; 982 983 struct vmbus_channel_offer_channel offermsg; 984 /* 985 * These are based on the OfferMsg.MonitorId. 986 * Save it here for easy access. 987 */ 988 u8 monitor_grp; 989 u8 monitor_bit; 990 991 u32 ringbuffer_gpadlhandle; 992 993 /* Allocated memory for ring buffer */ 994 void *ringbuffer_pages; 995 u32 ringbuffer_pagecount; 996 struct hv_ring_buffer_info outbound; /* send to parent */ 997 struct hv_ring_buffer_info inbound; /* receive from parent */ 998 spinlock_t inbound_lock; 999 struct workqueue_struct *controlwq; 1000 1001 struct vmbus_close_msg close_msg; 1002 1003 /* Channel callback are invoked in this workqueue context */ 1004 /* HANDLE dataWorkQueue; */ 1005 1006 void (*onchannel_callback)(void *context); 1007 void *channel_callback_context; 1008 1009 /* 1010 * A channel can be marked for efficient (batched) 1011 * reading: 1012 * If batched_reading is set to "true", we read until the 1013 * channel is empty and hold off interrupts from the host 1014 * during the entire read process. 1015 * If batched_reading is set to "false", the client is not 1016 * going to perform batched reading. 1017 * 1018 * By default we will enable batched reading; specific 1019 * drivers that don't want this behavior can turn it off. 1020 */ 1021 1022 bool batched_reading; 1023 1024 bool is_dedicated_interrupt; 1025 struct hv_input_signal_event_buffer sig_buf; 1026 struct hv_input_signal_event *sig_event; 1027 1028 /* 1029 * Starting with win8, this field will be used to specify 1030 * the target virtual processor on which to deliver the interrupt for 1031 * the host to guest communication. 1032 * Prior to win8, incoming channel interrupts would only 1033 * be delivered on cpu 0. Setting this value to 0 would 1034 * preserve the earlier behavior. 1035 */ 1036 u32 target_vp; 1037 /* 1038 * Support for sub-channels. For high performance devices, 1039 * it will be useful to have multiple sub-channels to support 1040 * a scalable communication infrastructure with the host. 1041 * The support for sub-channels is implemented as an extention 1042 * to the current infrastructure. 1043 * The initial offer is considered the primary channel and this 1044 * offer message will indicate if the host supports sub-channels. 1045 * The guest is free to ask for sub-channels to be offerred and can 1046 * open these sub-channels as a normal "primary" channel. However, 1047 * all sub-channels will have the same type and instance guids as the 1048 * primary channel. Requests sent on a given channel will result in a 1049 * response on the same channel. 1050 */ 1051 1052 /* 1053 * Sub-channel creation callback. This callback will be called in 1054 * process context when a sub-channel offer is received from the host. 1055 * The guest can open the sub-channel in the context of this callback. 1056 */ 1057 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 1058 1059 spinlock_t sc_lock; 1060 /* 1061 * All Sub-channels of a primary channel are linked here. 1062 */ 1063 struct list_head sc_list; 1064 /* 1065 * The primary channel this sub-channel belongs to. 1066 * This will be NULL for the primary channel. 1067 */ 1068 struct vmbus_channel *primary_channel; 1069}; 1070 1071static inline void set_channel_read_state(struct vmbus_channel *c, bool state) 1072{ 1073 c->batched_reading = state; 1074} 1075 1076void vmbus_onmessage(void *context); 1077 1078int vmbus_request_offers(void); 1079 1080/* 1081 * APIs for managing sub-channels. 1082 */ 1083 1084void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1085 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1086 1087/* 1088 * Retrieve the (sub) channel on which to send an outgoing request. 1089 * When a primary channel has multiple sub-channels, we choose a 1090 * channel whose VCPU binding is closest to the VCPU on which 1091 * this call is being made. 1092 */ 1093struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 1094 1095/* 1096 * Check if sub-channels have already been offerred. This API will be useful 1097 * when the driver is unloaded after establishing sub-channels. In this case, 1098 * when the driver is re-loaded, the driver would have to check if the 1099 * subchannels have already been established before attempting to request 1100 * the creation of sub-channels. 1101 * This function returns TRUE to indicate that subchannels have already been 1102 * created. 1103 * This function should be invoked after setting the callback function for 1104 * sub-channel creation. 1105 */ 1106bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 1107 1108/* The format must be the same as struct vmdata_gpa_direct */ 1109struct vmbus_channel_packet_page_buffer { 1110 u16 type; 1111 u16 dataoffset8; 1112 u16 length8; 1113 u16 flags; 1114 u64 transactionid; 1115 u32 reserved; 1116 u32 rangecount; 1117 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1118} __packed; 1119 1120/* The format must be the same as struct vmdata_gpa_direct */ 1121struct vmbus_channel_packet_multipage_buffer { 1122 u16 type; 1123 u16 dataoffset8; 1124 u16 length8; 1125 u16 flags; 1126 u64 transactionid; 1127 u32 reserved; 1128 u32 rangecount; /* Always 1 in this case */ 1129 struct hv_multipage_buffer range; 1130} __packed; 1131 1132 1133extern int vmbus_open(struct vmbus_channel *channel, 1134 u32 send_ringbuffersize, 1135 u32 recv_ringbuffersize, 1136 void *userdata, 1137 u32 userdatalen, 1138 void(*onchannel_callback)(void *context), 1139 void *context); 1140 1141extern void vmbus_close(struct vmbus_channel *channel); 1142 1143extern int vmbus_sendpacket(struct vmbus_channel *channel, 1144 const void *buffer, 1145 u32 bufferLen, 1146 u64 requestid, 1147 enum vmbus_packet_type type, 1148 u32 flags); 1149 1150extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1151 struct hv_page_buffer pagebuffers[], 1152 u32 pagecount, 1153 void *buffer, 1154 u32 bufferlen, 1155 u64 requestid); 1156 1157extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1158 struct hv_multipage_buffer *mpb, 1159 void *buffer, 1160 u32 bufferlen, 1161 u64 requestid); 1162 1163extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1164 void *kbuffer, 1165 u32 size, 1166 u32 *gpadl_handle); 1167 1168extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1169 u32 gpadl_handle); 1170 1171extern int vmbus_recvpacket(struct vmbus_channel *channel, 1172 void *buffer, 1173 u32 bufferlen, 1174 u32 *buffer_actual_len, 1175 u64 *requestid); 1176 1177extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1178 void *buffer, 1179 u32 bufferlen, 1180 u32 *buffer_actual_len, 1181 u64 *requestid); 1182 1183 1184extern void vmbus_get_debug_info(struct vmbus_channel *channel, 1185 struct vmbus_channel_debug_info *debug); 1186 1187extern void vmbus_ontimer(unsigned long data); 1188 1189struct hv_dev_port_info { 1190 u32 int_mask; 1191 u32 read_idx; 1192 u32 write_idx; 1193 u32 bytes_avail_toread; 1194 u32 bytes_avail_towrite; 1195}; 1196 1197/* Base driver object */ 1198struct hv_driver { 1199 const char *name; 1200 1201 /* the device type supported by this driver */ 1202 uuid_le dev_type; 1203 const struct hv_vmbus_device_id *id_table; 1204 1205 struct device_driver driver; 1206 1207 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1208 int (*remove)(struct hv_device *); 1209 void (*shutdown)(struct hv_device *); 1210 1211}; 1212 1213/* Base device object */ 1214struct hv_device { 1215 /* the device type id of this device */ 1216 uuid_le dev_type; 1217 1218 /* the device instance id of this device */ 1219 uuid_le dev_instance; 1220 1221 struct device device; 1222 1223 struct vmbus_channel *channel; 1224}; 1225 1226 1227static inline struct hv_device *device_to_hv_device(struct device *d) 1228{ 1229 return container_of(d, struct hv_device, device); 1230} 1231 1232static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1233{ 1234 return container_of(d, struct hv_driver, driver); 1235} 1236 1237static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1238{ 1239 dev_set_drvdata(&dev->device, data); 1240} 1241 1242static inline void *hv_get_drvdata(struct hv_device *dev) 1243{ 1244 return dev_get_drvdata(&dev->device); 1245} 1246 1247/* Vmbus interface */ 1248#define vmbus_driver_register(driver) \ 1249 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1250int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1251 struct module *owner, 1252 const char *mod_name); 1253void vmbus_driver_unregister(struct hv_driver *hv_driver); 1254 1255/** 1256 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device 1257 * 1258 * This macro is used to create a struct hv_vmbus_device_id that matches a 1259 * specific device. 1260 */ 1261#define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \ 1262 g8, g9, ga, gb, gc, gd, ge, gf) \ 1263 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \ 1264 g8, g9, ga, gb, gc, gd, ge, gf }, 1265 1266/* 1267 * GUID definitions of various offer types - services offered to the guest. 1268 */ 1269 1270/* 1271 * Network GUID 1272 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1273 */ 1274#define HV_NIC_GUID \ 1275 .guid = { \ 1276 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \ 1277 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \ 1278 } 1279 1280/* 1281 * IDE GUID 1282 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1283 */ 1284#define HV_IDE_GUID \ 1285 .guid = { \ 1286 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \ 1287 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \ 1288 } 1289 1290/* 1291 * SCSI GUID 1292 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1293 */ 1294#define HV_SCSI_GUID \ 1295 .guid = { \ 1296 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \ 1297 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \ 1298 } 1299 1300/* 1301 * Shutdown GUID 1302 * {0e0b6031-5213-4934-818b-38d90ced39db} 1303 */ 1304#define HV_SHUTDOWN_GUID \ 1305 .guid = { \ 1306 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \ 1307 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \ 1308 } 1309 1310/* 1311 * Time Synch GUID 1312 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1313 */ 1314#define HV_TS_GUID \ 1315 .guid = { \ 1316 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \ 1317 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \ 1318 } 1319 1320/* 1321 * Heartbeat GUID 1322 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1323 */ 1324#define HV_HEART_BEAT_GUID \ 1325 .guid = { \ 1326 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \ 1327 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \ 1328 } 1329 1330/* 1331 * KVP GUID 1332 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1333 */ 1334#define HV_KVP_GUID \ 1335 .guid = { \ 1336 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \ 1337 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \ 1338 } 1339 1340/* 1341 * Dynamic memory GUID 1342 * {525074dc-8985-46e2-8057-a307dc18a502} 1343 */ 1344#define HV_DM_GUID \ 1345 .guid = { \ 1346 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \ 1347 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \ 1348 } 1349 1350/* 1351 * Mouse GUID 1352 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1353 */ 1354#define HV_MOUSE_GUID \ 1355 .guid = { \ 1356 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \ 1357 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \ 1358 } 1359 1360/* 1361 * VSS (Backup/Restore) GUID 1362 */ 1363#define HV_VSS_GUID \ 1364 .guid = { \ 1365 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \ 1366 0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 \ 1367 } 1368/* 1369 * Synthetic Video GUID 1370 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1371 */ 1372#define HV_SYNTHVID_GUID \ 1373 .guid = { \ 1374 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \ 1375 0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \ 1376 } 1377 1378/* 1379 * Synthetic FC GUID 1380 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1381 */ 1382#define HV_SYNTHFC_GUID \ 1383 .guid = { \ 1384 0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \ 1385 0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \ 1386 } 1387 1388/* 1389 * Common header for Hyper-V ICs 1390 */ 1391 1392#define ICMSGTYPE_NEGOTIATE 0 1393#define ICMSGTYPE_HEARTBEAT 1 1394#define ICMSGTYPE_KVPEXCHANGE 2 1395#define ICMSGTYPE_SHUTDOWN 3 1396#define ICMSGTYPE_TIMESYNC 4 1397#define ICMSGTYPE_VSS 5 1398 1399#define ICMSGHDRFLAG_TRANSACTION 1 1400#define ICMSGHDRFLAG_REQUEST 2 1401#define ICMSGHDRFLAG_RESPONSE 4 1402 1403 1404/* 1405 * While we want to handle util services as regular devices, 1406 * there is only one instance of each of these services; so 1407 * we statically allocate the service specific state. 1408 */ 1409 1410struct hv_util_service { 1411 u8 *recv_buffer; 1412 void (*util_cb)(void *); 1413 int (*util_init)(struct hv_util_service *); 1414 void (*util_deinit)(void); 1415}; 1416 1417struct vmbuspipe_hdr { 1418 u32 flags; 1419 u32 msgsize; 1420} __packed; 1421 1422struct ic_version { 1423 u16 major; 1424 u16 minor; 1425} __packed; 1426 1427struct icmsg_hdr { 1428 struct ic_version icverframe; 1429 u16 icmsgtype; 1430 struct ic_version icvermsg; 1431 u16 icmsgsize; 1432 u32 status; 1433 u8 ictransaction_id; 1434 u8 icflags; 1435 u8 reserved[2]; 1436} __packed; 1437 1438struct icmsg_negotiate { 1439 u16 icframe_vercnt; 1440 u16 icmsg_vercnt; 1441 u32 reserved; 1442 struct ic_version icversion_data[1]; /* any size array */ 1443} __packed; 1444 1445struct shutdown_msg_data { 1446 u32 reason_code; 1447 u32 timeout_seconds; 1448 u32 flags; 1449 u8 display_message[2048]; 1450} __packed; 1451 1452struct heartbeat_msg_data { 1453 u64 seq_num; 1454 u32 reserved[8]; 1455} __packed; 1456 1457/* Time Sync IC defs */ 1458#define ICTIMESYNCFLAG_PROBE 0 1459#define ICTIMESYNCFLAG_SYNC 1 1460#define ICTIMESYNCFLAG_SAMPLE 2 1461 1462#ifdef __x86_64__ 1463#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1464#else 1465#define WLTIMEDELTA 116444736000000000LL 1466#endif 1467 1468struct ictimesync_data { 1469 u64 parenttime; 1470 u64 childtime; 1471 u64 roundtriptime; 1472 u8 flags; 1473} __packed; 1474 1475struct hyperv_service_callback { 1476 u8 msg_type; 1477 char *log_msg; 1478 uuid_le data; 1479 struct vmbus_channel *channel; 1480 void (*callback) (void *context); 1481}; 1482 1483#define MAX_SRV_VER 0x7ffffff 1484extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1485 struct icmsg_negotiate *, u8 *, int, 1486 int); 1487 1488int hv_kvp_init(struct hv_util_service *); 1489void hv_kvp_deinit(void); 1490void hv_kvp_onchannelcallback(void *); 1491 1492int hv_vss_init(struct hv_util_service *); 1493void hv_vss_deinit(void); 1494void hv_vss_onchannelcallback(void *); 1495 1496/* 1497 * Negotiated version with the Host. 1498 */ 1499 1500extern __u32 vmbus_proto_version; 1501 1502#endif /* __KERNEL__ */ 1503#endif /* _HYPERV_H */