at v3.12-rc2 1530 lines 39 kB view raw
1/* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the 18 Free Software Foundation, Inc., 19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22/* 23 Module: rt2x00lib 24 Abstract: rt2x00 generic device routines. 25 */ 26 27#include <linux/kernel.h> 28#include <linux/module.h> 29#include <linux/slab.h> 30#include <linux/log2.h> 31 32#include "rt2x00.h" 33#include "rt2x00lib.h" 34 35/* 36 * Utility functions. 37 */ 38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40{ 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48} 49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51/* 52 * Radio control handlers. 53 */ 54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55{ 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 rt2x00link_start_agc(rt2x00dev); 91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 92 rt2x00link_start_vcocal(rt2x00dev); 93 94 /* 95 * Start watchdog monitoring. 96 */ 97 rt2x00link_start_watchdog(rt2x00dev); 98 99 return 0; 100} 101 102void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 103{ 104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 105 return; 106 107 /* 108 * Stop watchdog monitoring. 109 */ 110 rt2x00link_stop_watchdog(rt2x00dev); 111 112 /* 113 * Stop all queues 114 */ 115 rt2x00link_stop_agc(rt2x00dev); 116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 117 rt2x00link_stop_vcocal(rt2x00dev); 118 rt2x00link_stop_tuner(rt2x00dev); 119 rt2x00queue_stop_queues(rt2x00dev); 120 rt2x00queue_flush_queues(rt2x00dev, true); 121 122 /* 123 * Disable radio. 124 */ 125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 127 rt2x00led_led_activity(rt2x00dev, false); 128 rt2x00leds_led_radio(rt2x00dev, false); 129} 130 131static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 132 struct ieee80211_vif *vif) 133{ 134 struct rt2x00_dev *rt2x00dev = data; 135 struct rt2x00_intf *intf = vif_to_intf(vif); 136 137 /* 138 * It is possible the radio was disabled while the work had been 139 * scheduled. If that happens we should return here immediately, 140 * note that in the spinlock protected area above the delayed_flags 141 * have been cleared correctly. 142 */ 143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 144 return; 145 146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) 147 rt2x00queue_update_beacon(rt2x00dev, vif); 148} 149 150static void rt2x00lib_intf_scheduled(struct work_struct *work) 151{ 152 struct rt2x00_dev *rt2x00dev = 153 container_of(work, struct rt2x00_dev, intf_work); 154 155 /* 156 * Iterate over each interface and perform the 157 * requested configurations. 158 */ 159 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 160 IEEE80211_IFACE_ITER_RESUME_ALL, 161 rt2x00lib_intf_scheduled_iter, 162 rt2x00dev); 163} 164 165static void rt2x00lib_autowakeup(struct work_struct *work) 166{ 167 struct rt2x00_dev *rt2x00dev = 168 container_of(work, struct rt2x00_dev, autowakeup_work.work); 169 170 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 171 return; 172 173 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 174 rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); 175 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 176} 177 178/* 179 * Interrupt context handlers. 180 */ 181static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 182 struct ieee80211_vif *vif) 183{ 184 struct rt2x00_dev *rt2x00dev = data; 185 struct sk_buff *skb; 186 187 /* 188 * Only AP mode interfaces do broad- and multicast buffering 189 */ 190 if (vif->type != NL80211_IFTYPE_AP) 191 return; 192 193 /* 194 * Send out buffered broad- and multicast frames 195 */ 196 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 197 while (skb) { 198 rt2x00mac_tx(rt2x00dev->hw, NULL, skb); 199 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 200 } 201} 202 203static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 204 struct ieee80211_vif *vif) 205{ 206 struct rt2x00_dev *rt2x00dev = data; 207 208 if (vif->type != NL80211_IFTYPE_AP && 209 vif->type != NL80211_IFTYPE_ADHOC && 210 vif->type != NL80211_IFTYPE_MESH_POINT && 211 vif->type != NL80211_IFTYPE_WDS) 212 return; 213 214 /* 215 * Update the beacon without locking. This is safe on PCI devices 216 * as they only update the beacon periodically here. This should 217 * never be called for USB devices. 218 */ 219 WARN_ON(rt2x00_is_usb(rt2x00dev)); 220 rt2x00queue_update_beacon_locked(rt2x00dev, vif); 221} 222 223void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 224{ 225 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 226 return; 227 228 /* send buffered bc/mc frames out for every bssid */ 229 ieee80211_iterate_active_interfaces_atomic( 230 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 231 rt2x00lib_bc_buffer_iter, rt2x00dev); 232 /* 233 * Devices with pre tbtt interrupt don't need to update the beacon 234 * here as they will fetch the next beacon directly prior to 235 * transmission. 236 */ 237 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags)) 238 return; 239 240 /* fetch next beacon */ 241 ieee80211_iterate_active_interfaces_atomic( 242 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 243 rt2x00lib_beaconupdate_iter, rt2x00dev); 244} 245EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 246 247void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 248{ 249 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 250 return; 251 252 /* fetch next beacon */ 253 ieee80211_iterate_active_interfaces_atomic( 254 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 255 rt2x00lib_beaconupdate_iter, rt2x00dev); 256} 257EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 258 259void rt2x00lib_dmastart(struct queue_entry *entry) 260{ 261 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 262 rt2x00queue_index_inc(entry, Q_INDEX); 263} 264EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 265 266void rt2x00lib_dmadone(struct queue_entry *entry) 267{ 268 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 269 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 270 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 271} 272EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 273 274static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 275{ 276 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 277 struct ieee80211_bar *bar = (void *) entry->skb->data; 278 struct rt2x00_bar_list_entry *bar_entry; 279 int ret; 280 281 if (likely(!ieee80211_is_back_req(bar->frame_control))) 282 return 0; 283 284 /* 285 * Unlike all other frames, the status report for BARs does 286 * not directly come from the hardware as it is incapable of 287 * matching a BA to a previously send BAR. The hardware will 288 * report all BARs as if they weren't acked at all. 289 * 290 * Instead the RX-path will scan for incoming BAs and set the 291 * block_acked flag if it sees one that was likely caused by 292 * a BAR from us. 293 * 294 * Remove remaining BARs here and return their status for 295 * TX done processing. 296 */ 297 ret = 0; 298 rcu_read_lock(); 299 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 300 if (bar_entry->entry != entry) 301 continue; 302 303 spin_lock_bh(&rt2x00dev->bar_list_lock); 304 /* Return whether this BAR was blockacked or not */ 305 ret = bar_entry->block_acked; 306 /* Remove the BAR from our checklist */ 307 list_del_rcu(&bar_entry->list); 308 spin_unlock_bh(&rt2x00dev->bar_list_lock); 309 kfree_rcu(bar_entry, head); 310 311 break; 312 } 313 rcu_read_unlock(); 314 315 return ret; 316} 317 318void rt2x00lib_txdone(struct queue_entry *entry, 319 struct txdone_entry_desc *txdesc) 320{ 321 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 322 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 323 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 324 unsigned int header_length, i; 325 u8 rate_idx, rate_flags, retry_rates; 326 u8 skbdesc_flags = skbdesc->flags; 327 bool success; 328 329 /* 330 * Unmap the skb. 331 */ 332 rt2x00queue_unmap_skb(entry); 333 334 /* 335 * Remove the extra tx headroom from the skb. 336 */ 337 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); 338 339 /* 340 * Signal that the TX descriptor is no longer in the skb. 341 */ 342 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 343 344 /* 345 * Determine the length of 802.11 header. 346 */ 347 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 348 349 /* 350 * Remove L2 padding which was added during 351 */ 352 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 353 rt2x00queue_remove_l2pad(entry->skb, header_length); 354 355 /* 356 * If the IV/EIV data was stripped from the frame before it was 357 * passed to the hardware, we should now reinsert it again because 358 * mac80211 will expect the same data to be present it the 359 * frame as it was passed to us. 360 */ 361 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) 362 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 363 364 /* 365 * Send frame to debugfs immediately, after this call is completed 366 * we are going to overwrite the skb->cb array. 367 */ 368 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); 369 370 /* 371 * Determine if the frame has been successfully transmitted and 372 * remove BARs from our check list while checking for their 373 * TX status. 374 */ 375 success = 376 rt2x00lib_txdone_bar_status(entry) || 377 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 378 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 379 380 /* 381 * Update TX statistics. 382 */ 383 rt2x00dev->link.qual.tx_success += success; 384 rt2x00dev->link.qual.tx_failed += !success; 385 386 rate_idx = skbdesc->tx_rate_idx; 387 rate_flags = skbdesc->tx_rate_flags; 388 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 389 (txdesc->retry + 1) : 1; 390 391 /* 392 * Initialize TX status 393 */ 394 memset(&tx_info->status, 0, sizeof(tx_info->status)); 395 tx_info->status.ack_signal = 0; 396 397 /* 398 * Frame was send with retries, hardware tried 399 * different rates to send out the frame, at each 400 * retry it lowered the rate 1 step except when the 401 * lowest rate was used. 402 */ 403 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 404 tx_info->status.rates[i].idx = rate_idx - i; 405 tx_info->status.rates[i].flags = rate_flags; 406 407 if (rate_idx - i == 0) { 408 /* 409 * The lowest rate (index 0) was used until the 410 * number of max retries was reached. 411 */ 412 tx_info->status.rates[i].count = retry_rates - i; 413 i++; 414 break; 415 } 416 tx_info->status.rates[i].count = 1; 417 } 418 if (i < (IEEE80211_TX_MAX_RATES - 1)) 419 tx_info->status.rates[i].idx = -1; /* terminate */ 420 421 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 422 if (success) 423 tx_info->flags |= IEEE80211_TX_STAT_ACK; 424 else 425 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 426 } 427 428 /* 429 * Every single frame has it's own tx status, hence report 430 * every frame as ampdu of size 1. 431 * 432 * TODO: if we can find out how many frames were aggregated 433 * by the hw we could provide the real ampdu_len to mac80211 434 * which would allow the rc algorithm to better decide on 435 * which rates are suitable. 436 */ 437 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 438 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 439 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 440 tx_info->status.ampdu_len = 1; 441 tx_info->status.ampdu_ack_len = success ? 1 : 0; 442 443 if (!success) 444 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 445 } 446 447 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 448 if (success) 449 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 450 else 451 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 452 } 453 454 /* 455 * Only send the status report to mac80211 when it's a frame 456 * that originated in mac80211. If this was a extra frame coming 457 * through a mac80211 library call (RTS/CTS) then we should not 458 * send the status report back. 459 */ 460 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 461 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags)) 462 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 463 else 464 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 465 } else 466 dev_kfree_skb_any(entry->skb); 467 468 /* 469 * Make this entry available for reuse. 470 */ 471 entry->skb = NULL; 472 entry->flags = 0; 473 474 rt2x00dev->ops->lib->clear_entry(entry); 475 476 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 477 478 /* 479 * If the data queue was below the threshold before the txdone 480 * handler we must make sure the packet queue in the mac80211 stack 481 * is reenabled when the txdone handler has finished. This has to be 482 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 483 * before it was stopped. 484 */ 485 spin_lock_bh(&entry->queue->tx_lock); 486 if (!rt2x00queue_threshold(entry->queue)) 487 rt2x00queue_unpause_queue(entry->queue); 488 spin_unlock_bh(&entry->queue->tx_lock); 489} 490EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 491 492void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 493{ 494 struct txdone_entry_desc txdesc; 495 496 txdesc.flags = 0; 497 __set_bit(status, &txdesc.flags); 498 txdesc.retry = 0; 499 500 rt2x00lib_txdone(entry, &txdesc); 501} 502EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 503 504static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 505{ 506 struct ieee80211_mgmt *mgmt = (void *)data; 507 u8 *pos, *end; 508 509 pos = (u8 *)mgmt->u.beacon.variable; 510 end = data + len; 511 while (pos < end) { 512 if (pos + 2 + pos[1] > end) 513 return NULL; 514 515 if (pos[0] == ie) 516 return pos; 517 518 pos += 2 + pos[1]; 519 } 520 521 return NULL; 522} 523 524static void rt2x00lib_sleep(struct work_struct *work) 525{ 526 struct rt2x00_dev *rt2x00dev = 527 container_of(work, struct rt2x00_dev, sleep_work); 528 529 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 530 return; 531 532 /* 533 * Check again is powersaving is enabled, to prevent races from delayed 534 * work execution. 535 */ 536 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 537 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 538 IEEE80211_CONF_CHANGE_PS); 539} 540 541static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 542 struct sk_buff *skb, 543 struct rxdone_entry_desc *rxdesc) 544{ 545 struct rt2x00_bar_list_entry *entry; 546 struct ieee80211_bar *ba = (void *)skb->data; 547 548 if (likely(!ieee80211_is_back(ba->frame_control))) 549 return; 550 551 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 552 return; 553 554 rcu_read_lock(); 555 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 556 557 if (ba->start_seq_num != entry->start_seq_num) 558 continue; 559 560#define TID_CHECK(a, b) ( \ 561 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 562 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 563 564 if (!TID_CHECK(ba->control, entry->control)) 565 continue; 566 567#undef TID_CHECK 568 569 if (!ether_addr_equal(ba->ra, entry->ta)) 570 continue; 571 572 if (!ether_addr_equal(ba->ta, entry->ra)) 573 continue; 574 575 /* Mark BAR since we received the according BA */ 576 spin_lock_bh(&rt2x00dev->bar_list_lock); 577 entry->block_acked = 1; 578 spin_unlock_bh(&rt2x00dev->bar_list_lock); 579 break; 580 } 581 rcu_read_unlock(); 582 583} 584 585static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 586 struct sk_buff *skb, 587 struct rxdone_entry_desc *rxdesc) 588{ 589 struct ieee80211_hdr *hdr = (void *) skb->data; 590 struct ieee80211_tim_ie *tim_ie; 591 u8 *tim; 592 u8 tim_len; 593 bool cam; 594 595 /* If this is not a beacon, or if mac80211 has no powersaving 596 * configured, or if the device is already in powersaving mode 597 * we can exit now. */ 598 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 599 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 600 return; 601 602 /* min. beacon length + FCS_LEN */ 603 if (skb->len <= 40 + FCS_LEN) 604 return; 605 606 /* and only beacons from the associated BSSID, please */ 607 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 608 !rt2x00dev->aid) 609 return; 610 611 rt2x00dev->last_beacon = jiffies; 612 613 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 614 if (!tim) 615 return; 616 617 if (tim[1] < sizeof(*tim_ie)) 618 return; 619 620 tim_len = tim[1]; 621 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 622 623 /* Check whenever the PHY can be turned off again. */ 624 625 /* 1. What about buffered unicast traffic for our AID? */ 626 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 627 628 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 629 cam |= (tim_ie->bitmap_ctrl & 0x01); 630 631 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 632 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 633} 634 635static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 636 struct rxdone_entry_desc *rxdesc) 637{ 638 struct ieee80211_supported_band *sband; 639 const struct rt2x00_rate *rate; 640 unsigned int i; 641 int signal = rxdesc->signal; 642 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 643 644 switch (rxdesc->rate_mode) { 645 case RATE_MODE_CCK: 646 case RATE_MODE_OFDM: 647 /* 648 * For non-HT rates the MCS value needs to contain the 649 * actually used rate modulation (CCK or OFDM). 650 */ 651 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 652 signal = RATE_MCS(rxdesc->rate_mode, signal); 653 654 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 655 for (i = 0; i < sband->n_bitrates; i++) { 656 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 657 if (((type == RXDONE_SIGNAL_PLCP) && 658 (rate->plcp == signal)) || 659 ((type == RXDONE_SIGNAL_BITRATE) && 660 (rate->bitrate == signal)) || 661 ((type == RXDONE_SIGNAL_MCS) && 662 (rate->mcs == signal))) { 663 return i; 664 } 665 } 666 break; 667 case RATE_MODE_HT_MIX: 668 case RATE_MODE_HT_GREENFIELD: 669 if (signal >= 0 && signal <= 76) 670 return signal; 671 break; 672 default: 673 break; 674 } 675 676 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", 677 rxdesc->rate_mode, signal, type); 678 return 0; 679} 680 681void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 682{ 683 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 684 struct rxdone_entry_desc rxdesc; 685 struct sk_buff *skb; 686 struct ieee80211_rx_status *rx_status; 687 unsigned int header_length; 688 int rate_idx; 689 690 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 691 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 692 goto submit_entry; 693 694 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 695 goto submit_entry; 696 697 /* 698 * Allocate a new sk_buffer. If no new buffer available, drop the 699 * received frame and reuse the existing buffer. 700 */ 701 skb = rt2x00queue_alloc_rxskb(entry, gfp); 702 if (!skb) 703 goto submit_entry; 704 705 /* 706 * Unmap the skb. 707 */ 708 rt2x00queue_unmap_skb(entry); 709 710 /* 711 * Extract the RXD details. 712 */ 713 memset(&rxdesc, 0, sizeof(rxdesc)); 714 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 715 716 /* 717 * Check for valid size in case we get corrupted descriptor from 718 * hardware. 719 */ 720 if (unlikely(rxdesc.size == 0 || 721 rxdesc.size > entry->queue->data_size)) { 722 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", 723 rxdesc.size, entry->queue->data_size); 724 dev_kfree_skb(entry->skb); 725 goto renew_skb; 726 } 727 728 /* 729 * The data behind the ieee80211 header must be 730 * aligned on a 4 byte boundary. 731 */ 732 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 733 734 /* 735 * Hardware might have stripped the IV/EIV/ICV data, 736 * in that case it is possible that the data was 737 * provided separately (through hardware descriptor) 738 * in which case we should reinsert the data into the frame. 739 */ 740 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 741 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 742 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 743 &rxdesc); 744 else if (header_length && 745 (rxdesc.size > header_length) && 746 (rxdesc.dev_flags & RXDONE_L2PAD)) 747 rt2x00queue_remove_l2pad(entry->skb, header_length); 748 749 /* Trim buffer to correct size */ 750 skb_trim(entry->skb, rxdesc.size); 751 752 /* 753 * Translate the signal to the correct bitrate index. 754 */ 755 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 756 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 757 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 758 rxdesc.flags |= RX_FLAG_HT; 759 760 /* 761 * Check if this is a beacon, and more frames have been 762 * buffered while we were in powersaving mode. 763 */ 764 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 765 766 /* 767 * Check for incoming BlockAcks to match to the BlockAckReqs 768 * we've send out. 769 */ 770 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 771 772 /* 773 * Update extra components 774 */ 775 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 776 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 777 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); 778 779 /* 780 * Initialize RX status information, and send frame 781 * to mac80211. 782 */ 783 rx_status = IEEE80211_SKB_RXCB(entry->skb); 784 785 /* Ensure that all fields of rx_status are initialized 786 * properly. The skb->cb array was used for driver 787 * specific informations, so rx_status might contain 788 * garbage. 789 */ 790 memset(rx_status, 0, sizeof(*rx_status)); 791 792 rx_status->mactime = rxdesc.timestamp; 793 rx_status->band = rt2x00dev->curr_band; 794 rx_status->freq = rt2x00dev->curr_freq; 795 rx_status->rate_idx = rate_idx; 796 rx_status->signal = rxdesc.rssi; 797 rx_status->flag = rxdesc.flags; 798 rx_status->antenna = rt2x00dev->link.ant.active.rx; 799 800 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 801 802renew_skb: 803 /* 804 * Replace the skb with the freshly allocated one. 805 */ 806 entry->skb = skb; 807 808submit_entry: 809 entry->flags = 0; 810 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 811 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 812 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 813 rt2x00dev->ops->lib->clear_entry(entry); 814} 815EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 816 817/* 818 * Driver initialization handlers. 819 */ 820const struct rt2x00_rate rt2x00_supported_rates[12] = { 821 { 822 .flags = DEV_RATE_CCK, 823 .bitrate = 10, 824 .ratemask = BIT(0), 825 .plcp = 0x00, 826 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 827 }, 828 { 829 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 830 .bitrate = 20, 831 .ratemask = BIT(1), 832 .plcp = 0x01, 833 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 834 }, 835 { 836 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 837 .bitrate = 55, 838 .ratemask = BIT(2), 839 .plcp = 0x02, 840 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 841 }, 842 { 843 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 844 .bitrate = 110, 845 .ratemask = BIT(3), 846 .plcp = 0x03, 847 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 848 }, 849 { 850 .flags = DEV_RATE_OFDM, 851 .bitrate = 60, 852 .ratemask = BIT(4), 853 .plcp = 0x0b, 854 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 855 }, 856 { 857 .flags = DEV_RATE_OFDM, 858 .bitrate = 90, 859 .ratemask = BIT(5), 860 .plcp = 0x0f, 861 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 862 }, 863 { 864 .flags = DEV_RATE_OFDM, 865 .bitrate = 120, 866 .ratemask = BIT(6), 867 .plcp = 0x0a, 868 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 869 }, 870 { 871 .flags = DEV_RATE_OFDM, 872 .bitrate = 180, 873 .ratemask = BIT(7), 874 .plcp = 0x0e, 875 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 876 }, 877 { 878 .flags = DEV_RATE_OFDM, 879 .bitrate = 240, 880 .ratemask = BIT(8), 881 .plcp = 0x09, 882 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 883 }, 884 { 885 .flags = DEV_RATE_OFDM, 886 .bitrate = 360, 887 .ratemask = BIT(9), 888 .plcp = 0x0d, 889 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 890 }, 891 { 892 .flags = DEV_RATE_OFDM, 893 .bitrate = 480, 894 .ratemask = BIT(10), 895 .plcp = 0x08, 896 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 897 }, 898 { 899 .flags = DEV_RATE_OFDM, 900 .bitrate = 540, 901 .ratemask = BIT(11), 902 .plcp = 0x0c, 903 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 904 }, 905}; 906 907static void rt2x00lib_channel(struct ieee80211_channel *entry, 908 const int channel, const int tx_power, 909 const int value) 910{ 911 /* XXX: this assumption about the band is wrong for 802.11j */ 912 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 913 entry->center_freq = ieee80211_channel_to_frequency(channel, 914 entry->band); 915 entry->hw_value = value; 916 entry->max_power = tx_power; 917 entry->max_antenna_gain = 0xff; 918} 919 920static void rt2x00lib_rate(struct ieee80211_rate *entry, 921 const u16 index, const struct rt2x00_rate *rate) 922{ 923 entry->flags = 0; 924 entry->bitrate = rate->bitrate; 925 entry->hw_value = index; 926 entry->hw_value_short = index; 927 928 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 929 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 930} 931 932static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 933 struct hw_mode_spec *spec) 934{ 935 struct ieee80211_hw *hw = rt2x00dev->hw; 936 struct ieee80211_channel *channels; 937 struct ieee80211_rate *rates; 938 unsigned int num_rates; 939 unsigned int i; 940 941 num_rates = 0; 942 if (spec->supported_rates & SUPPORT_RATE_CCK) 943 num_rates += 4; 944 if (spec->supported_rates & SUPPORT_RATE_OFDM) 945 num_rates += 8; 946 947 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 948 if (!channels) 949 return -ENOMEM; 950 951 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 952 if (!rates) 953 goto exit_free_channels; 954 955 /* 956 * Initialize Rate list. 957 */ 958 for (i = 0; i < num_rates; i++) 959 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 960 961 /* 962 * Initialize Channel list. 963 */ 964 for (i = 0; i < spec->num_channels; i++) { 965 rt2x00lib_channel(&channels[i], 966 spec->channels[i].channel, 967 spec->channels_info[i].max_power, i); 968 } 969 970 /* 971 * Intitialize 802.11b, 802.11g 972 * Rates: CCK, OFDM. 973 * Channels: 2.4 GHz 974 */ 975 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 976 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; 977 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; 978 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; 979 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; 980 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = 981 &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; 982 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, 983 &spec->ht, sizeof(spec->ht)); 984 } 985 986 /* 987 * Intitialize 802.11a 988 * Rates: OFDM. 989 * Channels: OFDM, UNII, HiperLAN2. 990 */ 991 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 992 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = 993 spec->num_channels - 14; 994 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = 995 num_rates - 4; 996 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; 997 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; 998 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = 999 &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; 1000 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, 1001 &spec->ht, sizeof(spec->ht)); 1002 } 1003 1004 return 0; 1005 1006 exit_free_channels: 1007 kfree(channels); 1008 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); 1009 return -ENOMEM; 1010} 1011 1012static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1013{ 1014 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1015 ieee80211_unregister_hw(rt2x00dev->hw); 1016 1017 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { 1018 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); 1019 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); 1020 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; 1021 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; 1022 } 1023 1024 kfree(rt2x00dev->spec.channels_info); 1025} 1026 1027static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1028{ 1029 struct hw_mode_spec *spec = &rt2x00dev->spec; 1030 int status; 1031 1032 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1033 return 0; 1034 1035 /* 1036 * Initialize HW modes. 1037 */ 1038 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1039 if (status) 1040 return status; 1041 1042 /* 1043 * Initialize HW fields. 1044 */ 1045 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1046 1047 /* 1048 * Initialize extra TX headroom required. 1049 */ 1050 rt2x00dev->hw->extra_tx_headroom = 1051 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1052 rt2x00dev->extra_tx_headroom); 1053 1054 /* 1055 * Take TX headroom required for alignment into account. 1056 */ 1057 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 1058 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1059 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) 1060 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1061 1062 /* 1063 * Tell mac80211 about the size of our private STA structure. 1064 */ 1065 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1066 1067 /* 1068 * Allocate tx status FIFO for driver use. 1069 */ 1070 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) { 1071 /* 1072 * Allocate the txstatus fifo. In the worst case the tx 1073 * status fifo has to hold the tx status of all entries 1074 * in all tx queues. Hence, calculate the kfifo size as 1075 * tx_queues * entry_num and round up to the nearest 1076 * power of 2. 1077 */ 1078 int kfifo_size = 1079 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1080 rt2x00dev->tx->limit * 1081 sizeof(u32)); 1082 1083 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1084 GFP_KERNEL); 1085 if (status) 1086 return status; 1087 } 1088 1089 /* 1090 * Initialize tasklets if used by the driver. Tasklets are 1091 * disabled until the interrupts are turned on. The driver 1092 * has to handle that. 1093 */ 1094#define RT2X00_TASKLET_INIT(taskletname) \ 1095 if (rt2x00dev->ops->lib->taskletname) { \ 1096 tasklet_init(&rt2x00dev->taskletname, \ 1097 rt2x00dev->ops->lib->taskletname, \ 1098 (unsigned long)rt2x00dev); \ 1099 } 1100 1101 RT2X00_TASKLET_INIT(txstatus_tasklet); 1102 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1103 RT2X00_TASKLET_INIT(tbtt_tasklet); 1104 RT2X00_TASKLET_INIT(rxdone_tasklet); 1105 RT2X00_TASKLET_INIT(autowake_tasklet); 1106 1107#undef RT2X00_TASKLET_INIT 1108 1109 /* 1110 * Register HW. 1111 */ 1112 status = ieee80211_register_hw(rt2x00dev->hw); 1113 if (status) 1114 return status; 1115 1116 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1117 1118 return 0; 1119} 1120 1121/* 1122 * Initialization/uninitialization handlers. 1123 */ 1124static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1125{ 1126 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1127 return; 1128 1129 /* 1130 * Unregister extra components. 1131 */ 1132 rt2x00rfkill_unregister(rt2x00dev); 1133 1134 /* 1135 * Allow the HW to uninitialize. 1136 */ 1137 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1138 1139 /* 1140 * Free allocated queue entries. 1141 */ 1142 rt2x00queue_uninitialize(rt2x00dev); 1143} 1144 1145static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1146{ 1147 int status; 1148 1149 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1150 return 0; 1151 1152 /* 1153 * Allocate all queue entries. 1154 */ 1155 status = rt2x00queue_initialize(rt2x00dev); 1156 if (status) 1157 return status; 1158 1159 /* 1160 * Initialize the device. 1161 */ 1162 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1163 if (status) { 1164 rt2x00queue_uninitialize(rt2x00dev); 1165 return status; 1166 } 1167 1168 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1169 1170 return 0; 1171} 1172 1173int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1174{ 1175 int retval; 1176 1177 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1178 return 0; 1179 1180 /* 1181 * If this is the first interface which is added, 1182 * we should load the firmware now. 1183 */ 1184 retval = rt2x00lib_load_firmware(rt2x00dev); 1185 if (retval) 1186 return retval; 1187 1188 /* 1189 * Initialize the device. 1190 */ 1191 retval = rt2x00lib_initialize(rt2x00dev); 1192 if (retval) 1193 return retval; 1194 1195 rt2x00dev->intf_ap_count = 0; 1196 rt2x00dev->intf_sta_count = 0; 1197 rt2x00dev->intf_associated = 0; 1198 1199 /* Enable the radio */ 1200 retval = rt2x00lib_enable_radio(rt2x00dev); 1201 if (retval) 1202 return retval; 1203 1204 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1205 1206 return 0; 1207} 1208 1209void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1210{ 1211 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1212 return; 1213 1214 /* 1215 * Perhaps we can add something smarter here, 1216 * but for now just disabling the radio should do. 1217 */ 1218 rt2x00lib_disable_radio(rt2x00dev); 1219 1220 rt2x00dev->intf_ap_count = 0; 1221 rt2x00dev->intf_sta_count = 0; 1222 rt2x00dev->intf_associated = 0; 1223} 1224 1225static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1226{ 1227 struct ieee80211_iface_limit *if_limit; 1228 struct ieee80211_iface_combination *if_combination; 1229 1230 if (rt2x00dev->ops->max_ap_intf < 2) 1231 return; 1232 1233 /* 1234 * Build up AP interface limits structure. 1235 */ 1236 if_limit = &rt2x00dev->if_limits_ap; 1237 if_limit->max = rt2x00dev->ops->max_ap_intf; 1238 if_limit->types = BIT(NL80211_IFTYPE_AP); 1239#ifdef CONFIG_MAC80211_MESH 1240 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1241#endif 1242 1243 /* 1244 * Build up AP interface combinations structure. 1245 */ 1246 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1247 if_combination->limits = if_limit; 1248 if_combination->n_limits = 1; 1249 if_combination->max_interfaces = if_limit->max; 1250 if_combination->num_different_channels = 1; 1251 1252 /* 1253 * Finally, specify the possible combinations to mac80211. 1254 */ 1255 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1256 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1257} 1258 1259static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) 1260{ 1261 if (WARN_ON(!rt2x00dev->tx)) 1262 return 0; 1263 1264 if (rt2x00_is_usb(rt2x00dev)) 1265 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; 1266 1267 return rt2x00dev->tx[0].winfo_size; 1268} 1269 1270/* 1271 * driver allocation handlers. 1272 */ 1273int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1274{ 1275 int retval = -ENOMEM; 1276 1277 /* 1278 * Set possible interface combinations. 1279 */ 1280 rt2x00lib_set_if_combinations(rt2x00dev); 1281 1282 /* 1283 * Allocate the driver data memory, if necessary. 1284 */ 1285 if (rt2x00dev->ops->drv_data_size > 0) { 1286 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1287 GFP_KERNEL); 1288 if (!rt2x00dev->drv_data) { 1289 retval = -ENOMEM; 1290 goto exit; 1291 } 1292 } 1293 1294 spin_lock_init(&rt2x00dev->irqmask_lock); 1295 mutex_init(&rt2x00dev->csr_mutex); 1296 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1297 spin_lock_init(&rt2x00dev->bar_list_lock); 1298 1299 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1300 1301 /* 1302 * Make room for rt2x00_intf inside the per-interface 1303 * structure ieee80211_vif. 1304 */ 1305 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1306 1307 /* 1308 * rt2x00 devices can only use the last n bits of the MAC address 1309 * for virtual interfaces. 1310 */ 1311 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1312 (rt2x00dev->ops->max_ap_intf - 1); 1313 1314 /* 1315 * Initialize work. 1316 */ 1317 rt2x00dev->workqueue = 1318 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); 1319 if (!rt2x00dev->workqueue) { 1320 retval = -ENOMEM; 1321 goto exit; 1322 } 1323 1324 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1325 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1326 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1327 1328 /* 1329 * Let the driver probe the device to detect the capabilities. 1330 */ 1331 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1332 if (retval) { 1333 rt2x00_err(rt2x00dev, "Failed to allocate device\n"); 1334 goto exit; 1335 } 1336 1337 /* 1338 * Allocate queue array. 1339 */ 1340 retval = rt2x00queue_allocate(rt2x00dev); 1341 if (retval) 1342 goto exit; 1343 1344 /* Cache TX headroom value */ 1345 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); 1346 1347 /* 1348 * Determine which operating modes are supported, all modes 1349 * which require beaconing, depend on the availability of 1350 * beacon entries. 1351 */ 1352 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1353 if (rt2x00dev->bcn->limit > 0) 1354 rt2x00dev->hw->wiphy->interface_modes |= 1355 BIT(NL80211_IFTYPE_ADHOC) | 1356 BIT(NL80211_IFTYPE_AP) | 1357#ifdef CONFIG_MAC80211_MESH 1358 BIT(NL80211_IFTYPE_MESH_POINT) | 1359#endif 1360 BIT(NL80211_IFTYPE_WDS); 1361 1362 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1363 1364 /* 1365 * Initialize ieee80211 structure. 1366 */ 1367 retval = rt2x00lib_probe_hw(rt2x00dev); 1368 if (retval) { 1369 rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); 1370 goto exit; 1371 } 1372 1373 /* 1374 * Register extra components. 1375 */ 1376 rt2x00link_register(rt2x00dev); 1377 rt2x00leds_register(rt2x00dev); 1378 rt2x00debug_register(rt2x00dev); 1379 rt2x00rfkill_register(rt2x00dev); 1380 1381 return 0; 1382 1383exit: 1384 rt2x00lib_remove_dev(rt2x00dev); 1385 1386 return retval; 1387} 1388EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1389 1390void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1391{ 1392 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1393 1394 /* 1395 * Disable radio. 1396 */ 1397 rt2x00lib_disable_radio(rt2x00dev); 1398 1399 /* 1400 * Stop all work. 1401 */ 1402 cancel_work_sync(&rt2x00dev->intf_work); 1403 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1404 cancel_work_sync(&rt2x00dev->sleep_work); 1405 if (rt2x00_is_usb(rt2x00dev)) { 1406 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1407 cancel_work_sync(&rt2x00dev->rxdone_work); 1408 cancel_work_sync(&rt2x00dev->txdone_work); 1409 } 1410 if (rt2x00dev->workqueue) 1411 destroy_workqueue(rt2x00dev->workqueue); 1412 1413 /* 1414 * Free the tx status fifo. 1415 */ 1416 kfifo_free(&rt2x00dev->txstatus_fifo); 1417 1418 /* 1419 * Kill the tx status tasklet. 1420 */ 1421 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1422 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1423 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1424 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1425 tasklet_kill(&rt2x00dev->autowake_tasklet); 1426 1427 /* 1428 * Uninitialize device. 1429 */ 1430 rt2x00lib_uninitialize(rt2x00dev); 1431 1432 /* 1433 * Free extra components 1434 */ 1435 rt2x00debug_deregister(rt2x00dev); 1436 rt2x00leds_unregister(rt2x00dev); 1437 1438 /* 1439 * Free ieee80211_hw memory. 1440 */ 1441 rt2x00lib_remove_hw(rt2x00dev); 1442 1443 /* 1444 * Free firmware image. 1445 */ 1446 rt2x00lib_free_firmware(rt2x00dev); 1447 1448 /* 1449 * Free queue structures. 1450 */ 1451 rt2x00queue_free(rt2x00dev); 1452 1453 /* 1454 * Free the driver data. 1455 */ 1456 if (rt2x00dev->drv_data) 1457 kfree(rt2x00dev->drv_data); 1458} 1459EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1460 1461/* 1462 * Device state handlers 1463 */ 1464#ifdef CONFIG_PM 1465int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1466{ 1467 rt2x00_dbg(rt2x00dev, "Going to sleep\n"); 1468 1469 /* 1470 * Prevent mac80211 from accessing driver while suspended. 1471 */ 1472 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1473 return 0; 1474 1475 /* 1476 * Cleanup as much as possible. 1477 */ 1478 rt2x00lib_uninitialize(rt2x00dev); 1479 1480 /* 1481 * Suspend/disable extra components. 1482 */ 1483 rt2x00leds_suspend(rt2x00dev); 1484 rt2x00debug_deregister(rt2x00dev); 1485 1486 /* 1487 * Set device mode to sleep for power management, 1488 * on some hardware this call seems to consistently fail. 1489 * From the specifications it is hard to tell why it fails, 1490 * and if this is a "bad thing". 1491 * Overall it is safe to just ignore the failure and 1492 * continue suspending. The only downside is that the 1493 * device will not be in optimal power save mode, but with 1494 * the radio and the other components already disabled the 1495 * device is as good as disabled. 1496 */ 1497 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1498 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); 1499 1500 return 0; 1501} 1502EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1503 1504int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1505{ 1506 rt2x00_dbg(rt2x00dev, "Waking up\n"); 1507 1508 /* 1509 * Restore/enable extra components. 1510 */ 1511 rt2x00debug_register(rt2x00dev); 1512 rt2x00leds_resume(rt2x00dev); 1513 1514 /* 1515 * We are ready again to receive requests from mac80211. 1516 */ 1517 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1518 1519 return 0; 1520} 1521EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1522#endif /* CONFIG_PM */ 1523 1524/* 1525 * rt2x00lib module information. 1526 */ 1527MODULE_AUTHOR(DRV_PROJECT); 1528MODULE_VERSION(DRV_VERSION); 1529MODULE_DESCRIPTION("rt2x00 library"); 1530MODULE_LICENSE("GPL");