at v3.11 37 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/dcache.h> 16#include <linux/module.h> 17#include <linux/init.h> 18#include <linux/kernel.h> 19#include <linux/security.h> 20#include <linux/integrity.h> 21#include <linux/ima.h> 22#include <linux/evm.h> 23#include <linux/fsnotify.h> 24#include <linux/mman.h> 25#include <linux/mount.h> 26#include <linux/personality.h> 27#include <linux/backing-dev.h> 28#include <net/flow.h> 29 30#define MAX_LSM_EVM_XATTR 2 31 32/* Boot-time LSM user choice */ 33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 34 CONFIG_DEFAULT_SECURITY; 35 36static struct security_operations *security_ops; 37static struct security_operations default_security_ops = { 38 .name = "default", 39}; 40 41static inline int __init verify(struct security_operations *ops) 42{ 43 /* verify the security_operations structure exists */ 44 if (!ops) 45 return -EINVAL; 46 security_fixup_ops(ops); 47 return 0; 48} 49 50static void __init do_security_initcalls(void) 51{ 52 initcall_t *call; 53 call = __security_initcall_start; 54 while (call < __security_initcall_end) { 55 (*call) (); 56 call++; 57 } 58} 59 60/** 61 * security_init - initializes the security framework 62 * 63 * This should be called early in the kernel initialization sequence. 64 */ 65int __init security_init(void) 66{ 67 printk(KERN_INFO "Security Framework initialized\n"); 68 69 security_fixup_ops(&default_security_ops); 70 security_ops = &default_security_ops; 71 do_security_initcalls(); 72 73 return 0; 74} 75 76void reset_security_ops(void) 77{ 78 security_ops = &default_security_ops; 79} 80 81/* Save user chosen LSM */ 82static int __init choose_lsm(char *str) 83{ 84 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 85 return 1; 86} 87__setup("security=", choose_lsm); 88 89/** 90 * security_module_enable - Load given security module on boot ? 91 * @ops: a pointer to the struct security_operations that is to be checked. 92 * 93 * Each LSM must pass this method before registering its own operations 94 * to avoid security registration races. This method may also be used 95 * to check if your LSM is currently loaded during kernel initialization. 96 * 97 * Return true if: 98 * -The passed LSM is the one chosen by user at boot time, 99 * -or the passed LSM is configured as the default and the user did not 100 * choose an alternate LSM at boot time. 101 * Otherwise, return false. 102 */ 103int __init security_module_enable(struct security_operations *ops) 104{ 105 return !strcmp(ops->name, chosen_lsm); 106} 107 108/** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120int __init register_security(struct security_operations *ops) 121{ 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134} 135 136/* Security operations */ 137 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 139{ 140#ifdef CONFIG_SECURITY_YAMA_STACKED 141 int rc; 142 rc = yama_ptrace_access_check(child, mode); 143 if (rc) 144 return rc; 145#endif 146 return security_ops->ptrace_access_check(child, mode); 147} 148 149int security_ptrace_traceme(struct task_struct *parent) 150{ 151#ifdef CONFIG_SECURITY_YAMA_STACKED 152 int rc; 153 rc = yama_ptrace_traceme(parent); 154 if (rc) 155 return rc; 156#endif 157 return security_ops->ptrace_traceme(parent); 158} 159 160int security_capget(struct task_struct *target, 161 kernel_cap_t *effective, 162 kernel_cap_t *inheritable, 163 kernel_cap_t *permitted) 164{ 165 return security_ops->capget(target, effective, inheritable, permitted); 166} 167 168int security_capset(struct cred *new, const struct cred *old, 169 const kernel_cap_t *effective, 170 const kernel_cap_t *inheritable, 171 const kernel_cap_t *permitted) 172{ 173 return security_ops->capset(new, old, 174 effective, inheritable, permitted); 175} 176 177int security_capable(const struct cred *cred, struct user_namespace *ns, 178 int cap) 179{ 180 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 181} 182 183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 184 int cap) 185{ 186 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 187} 188 189int security_quotactl(int cmds, int type, int id, struct super_block *sb) 190{ 191 return security_ops->quotactl(cmds, type, id, sb); 192} 193 194int security_quota_on(struct dentry *dentry) 195{ 196 return security_ops->quota_on(dentry); 197} 198 199int security_syslog(int type) 200{ 201 return security_ops->syslog(type); 202} 203 204int security_settime(const struct timespec *ts, const struct timezone *tz) 205{ 206 return security_ops->settime(ts, tz); 207} 208 209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 210{ 211 return security_ops->vm_enough_memory(mm, pages); 212} 213 214int security_bprm_set_creds(struct linux_binprm *bprm) 215{ 216 return security_ops->bprm_set_creds(bprm); 217} 218 219int security_bprm_check(struct linux_binprm *bprm) 220{ 221 int ret; 222 223 ret = security_ops->bprm_check_security(bprm); 224 if (ret) 225 return ret; 226 return ima_bprm_check(bprm); 227} 228 229void security_bprm_committing_creds(struct linux_binprm *bprm) 230{ 231 security_ops->bprm_committing_creds(bprm); 232} 233 234void security_bprm_committed_creds(struct linux_binprm *bprm) 235{ 236 security_ops->bprm_committed_creds(bprm); 237} 238 239int security_bprm_secureexec(struct linux_binprm *bprm) 240{ 241 return security_ops->bprm_secureexec(bprm); 242} 243 244int security_sb_alloc(struct super_block *sb) 245{ 246 return security_ops->sb_alloc_security(sb); 247} 248 249void security_sb_free(struct super_block *sb) 250{ 251 security_ops->sb_free_security(sb); 252} 253 254int security_sb_copy_data(char *orig, char *copy) 255{ 256 return security_ops->sb_copy_data(orig, copy); 257} 258EXPORT_SYMBOL(security_sb_copy_data); 259 260int security_sb_remount(struct super_block *sb, void *data) 261{ 262 return security_ops->sb_remount(sb, data); 263} 264 265int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 266{ 267 return security_ops->sb_kern_mount(sb, flags, data); 268} 269 270int security_sb_show_options(struct seq_file *m, struct super_block *sb) 271{ 272 return security_ops->sb_show_options(m, sb); 273} 274 275int security_sb_statfs(struct dentry *dentry) 276{ 277 return security_ops->sb_statfs(dentry); 278} 279 280int security_sb_mount(const char *dev_name, struct path *path, 281 const char *type, unsigned long flags, void *data) 282{ 283 return security_ops->sb_mount(dev_name, path, type, flags, data); 284} 285 286int security_sb_umount(struct vfsmount *mnt, int flags) 287{ 288 return security_ops->sb_umount(mnt, flags); 289} 290 291int security_sb_pivotroot(struct path *old_path, struct path *new_path) 292{ 293 return security_ops->sb_pivotroot(old_path, new_path); 294} 295 296int security_sb_set_mnt_opts(struct super_block *sb, 297 struct security_mnt_opts *opts, 298 unsigned long kern_flags, 299 unsigned long *set_kern_flags) 300{ 301 return security_ops->sb_set_mnt_opts(sb, opts, kern_flags, 302 set_kern_flags); 303} 304EXPORT_SYMBOL(security_sb_set_mnt_opts); 305 306int security_sb_clone_mnt_opts(const struct super_block *oldsb, 307 struct super_block *newsb) 308{ 309 return security_ops->sb_clone_mnt_opts(oldsb, newsb); 310} 311EXPORT_SYMBOL(security_sb_clone_mnt_opts); 312 313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 314{ 315 return security_ops->sb_parse_opts_str(options, opts); 316} 317EXPORT_SYMBOL(security_sb_parse_opts_str); 318 319int security_inode_alloc(struct inode *inode) 320{ 321 inode->i_security = NULL; 322 return security_ops->inode_alloc_security(inode); 323} 324 325void security_inode_free(struct inode *inode) 326{ 327 integrity_inode_free(inode); 328 security_ops->inode_free_security(inode); 329} 330 331int security_dentry_init_security(struct dentry *dentry, int mode, 332 struct qstr *name, void **ctx, 333 u32 *ctxlen) 334{ 335 return security_ops->dentry_init_security(dentry, mode, name, 336 ctx, ctxlen); 337} 338EXPORT_SYMBOL(security_dentry_init_security); 339 340int security_inode_init_security(struct inode *inode, struct inode *dir, 341 const struct qstr *qstr, 342 const initxattrs initxattrs, void *fs_data) 343{ 344 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 345 struct xattr *lsm_xattr, *evm_xattr, *xattr; 346 int ret; 347 348 if (unlikely(IS_PRIVATE(inode))) 349 return 0; 350 351 memset(new_xattrs, 0, sizeof new_xattrs); 352 if (!initxattrs) 353 return security_ops->inode_init_security(inode, dir, qstr, 354 NULL, NULL, NULL); 355 lsm_xattr = new_xattrs; 356 ret = security_ops->inode_init_security(inode, dir, qstr, 357 &lsm_xattr->name, 358 &lsm_xattr->value, 359 &lsm_xattr->value_len); 360 if (ret) 361 goto out; 362 363 evm_xattr = lsm_xattr + 1; 364 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 365 if (ret) 366 goto out; 367 ret = initxattrs(inode, new_xattrs, fs_data); 368out: 369 for (xattr = new_xattrs; xattr->name != NULL; xattr++) { 370 kfree(xattr->name); 371 kfree(xattr->value); 372 } 373 return (ret == -EOPNOTSUPP) ? 0 : ret; 374} 375EXPORT_SYMBOL(security_inode_init_security); 376 377int security_old_inode_init_security(struct inode *inode, struct inode *dir, 378 const struct qstr *qstr, char **name, 379 void **value, size_t *len) 380{ 381 if (unlikely(IS_PRIVATE(inode))) 382 return -EOPNOTSUPP; 383 return security_ops->inode_init_security(inode, dir, qstr, name, value, 384 len); 385} 386EXPORT_SYMBOL(security_old_inode_init_security); 387 388#ifdef CONFIG_SECURITY_PATH 389int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 390 unsigned int dev) 391{ 392 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 393 return 0; 394 return security_ops->path_mknod(dir, dentry, mode, dev); 395} 396EXPORT_SYMBOL(security_path_mknod); 397 398int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 399{ 400 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 401 return 0; 402 return security_ops->path_mkdir(dir, dentry, mode); 403} 404EXPORT_SYMBOL(security_path_mkdir); 405 406int security_path_rmdir(struct path *dir, struct dentry *dentry) 407{ 408 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 409 return 0; 410 return security_ops->path_rmdir(dir, dentry); 411} 412 413int security_path_unlink(struct path *dir, struct dentry *dentry) 414{ 415 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 416 return 0; 417 return security_ops->path_unlink(dir, dentry); 418} 419EXPORT_SYMBOL(security_path_unlink); 420 421int security_path_symlink(struct path *dir, struct dentry *dentry, 422 const char *old_name) 423{ 424 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 425 return 0; 426 return security_ops->path_symlink(dir, dentry, old_name); 427} 428 429int security_path_link(struct dentry *old_dentry, struct path *new_dir, 430 struct dentry *new_dentry) 431{ 432 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 433 return 0; 434 return security_ops->path_link(old_dentry, new_dir, new_dentry); 435} 436 437int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 438 struct path *new_dir, struct dentry *new_dentry) 439{ 440 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 441 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 442 return 0; 443 return security_ops->path_rename(old_dir, old_dentry, new_dir, 444 new_dentry); 445} 446EXPORT_SYMBOL(security_path_rename); 447 448int security_path_truncate(struct path *path) 449{ 450 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 451 return 0; 452 return security_ops->path_truncate(path); 453} 454 455int security_path_chmod(struct path *path, umode_t mode) 456{ 457 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 458 return 0; 459 return security_ops->path_chmod(path, mode); 460} 461 462int security_path_chown(struct path *path, kuid_t uid, kgid_t gid) 463{ 464 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 465 return 0; 466 return security_ops->path_chown(path, uid, gid); 467} 468 469int security_path_chroot(struct path *path) 470{ 471 return security_ops->path_chroot(path); 472} 473#endif 474 475int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 476{ 477 if (unlikely(IS_PRIVATE(dir))) 478 return 0; 479 return security_ops->inode_create(dir, dentry, mode); 480} 481EXPORT_SYMBOL_GPL(security_inode_create); 482 483int security_inode_link(struct dentry *old_dentry, struct inode *dir, 484 struct dentry *new_dentry) 485{ 486 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 487 return 0; 488 return security_ops->inode_link(old_dentry, dir, new_dentry); 489} 490 491int security_inode_unlink(struct inode *dir, struct dentry *dentry) 492{ 493 if (unlikely(IS_PRIVATE(dentry->d_inode))) 494 return 0; 495 return security_ops->inode_unlink(dir, dentry); 496} 497 498int security_inode_symlink(struct inode *dir, struct dentry *dentry, 499 const char *old_name) 500{ 501 if (unlikely(IS_PRIVATE(dir))) 502 return 0; 503 return security_ops->inode_symlink(dir, dentry, old_name); 504} 505 506int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 507{ 508 if (unlikely(IS_PRIVATE(dir))) 509 return 0; 510 return security_ops->inode_mkdir(dir, dentry, mode); 511} 512EXPORT_SYMBOL_GPL(security_inode_mkdir); 513 514int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 515{ 516 if (unlikely(IS_PRIVATE(dentry->d_inode))) 517 return 0; 518 return security_ops->inode_rmdir(dir, dentry); 519} 520 521int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 522{ 523 if (unlikely(IS_PRIVATE(dir))) 524 return 0; 525 return security_ops->inode_mknod(dir, dentry, mode, dev); 526} 527 528int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 529 struct inode *new_dir, struct dentry *new_dentry) 530{ 531 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 532 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 533 return 0; 534 return security_ops->inode_rename(old_dir, old_dentry, 535 new_dir, new_dentry); 536} 537 538int security_inode_readlink(struct dentry *dentry) 539{ 540 if (unlikely(IS_PRIVATE(dentry->d_inode))) 541 return 0; 542 return security_ops->inode_readlink(dentry); 543} 544 545int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 546{ 547 if (unlikely(IS_PRIVATE(dentry->d_inode))) 548 return 0; 549 return security_ops->inode_follow_link(dentry, nd); 550} 551 552int security_inode_permission(struct inode *inode, int mask) 553{ 554 if (unlikely(IS_PRIVATE(inode))) 555 return 0; 556 return security_ops->inode_permission(inode, mask); 557} 558 559int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 560{ 561 int ret; 562 563 if (unlikely(IS_PRIVATE(dentry->d_inode))) 564 return 0; 565 ret = security_ops->inode_setattr(dentry, attr); 566 if (ret) 567 return ret; 568 return evm_inode_setattr(dentry, attr); 569} 570EXPORT_SYMBOL_GPL(security_inode_setattr); 571 572int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 573{ 574 if (unlikely(IS_PRIVATE(dentry->d_inode))) 575 return 0; 576 return security_ops->inode_getattr(mnt, dentry); 577} 578 579int security_inode_setxattr(struct dentry *dentry, const char *name, 580 const void *value, size_t size, int flags) 581{ 582 int ret; 583 584 if (unlikely(IS_PRIVATE(dentry->d_inode))) 585 return 0; 586 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 587 if (ret) 588 return ret; 589 ret = ima_inode_setxattr(dentry, name, value, size); 590 if (ret) 591 return ret; 592 return evm_inode_setxattr(dentry, name, value, size); 593} 594 595void security_inode_post_setxattr(struct dentry *dentry, const char *name, 596 const void *value, size_t size, int flags) 597{ 598 if (unlikely(IS_PRIVATE(dentry->d_inode))) 599 return; 600 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 601 evm_inode_post_setxattr(dentry, name, value, size); 602} 603 604int security_inode_getxattr(struct dentry *dentry, const char *name) 605{ 606 if (unlikely(IS_PRIVATE(dentry->d_inode))) 607 return 0; 608 return security_ops->inode_getxattr(dentry, name); 609} 610 611int security_inode_listxattr(struct dentry *dentry) 612{ 613 if (unlikely(IS_PRIVATE(dentry->d_inode))) 614 return 0; 615 return security_ops->inode_listxattr(dentry); 616} 617 618int security_inode_removexattr(struct dentry *dentry, const char *name) 619{ 620 int ret; 621 622 if (unlikely(IS_PRIVATE(dentry->d_inode))) 623 return 0; 624 ret = security_ops->inode_removexattr(dentry, name); 625 if (ret) 626 return ret; 627 ret = ima_inode_removexattr(dentry, name); 628 if (ret) 629 return ret; 630 return evm_inode_removexattr(dentry, name); 631} 632 633int security_inode_need_killpriv(struct dentry *dentry) 634{ 635 return security_ops->inode_need_killpriv(dentry); 636} 637 638int security_inode_killpriv(struct dentry *dentry) 639{ 640 return security_ops->inode_killpriv(dentry); 641} 642 643int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 644{ 645 if (unlikely(IS_PRIVATE(inode))) 646 return -EOPNOTSUPP; 647 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 648} 649 650int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 651{ 652 if (unlikely(IS_PRIVATE(inode))) 653 return -EOPNOTSUPP; 654 return security_ops->inode_setsecurity(inode, name, value, size, flags); 655} 656 657int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 658{ 659 if (unlikely(IS_PRIVATE(inode))) 660 return 0; 661 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 662} 663EXPORT_SYMBOL(security_inode_listsecurity); 664 665void security_inode_getsecid(const struct inode *inode, u32 *secid) 666{ 667 security_ops->inode_getsecid(inode, secid); 668} 669 670int security_file_permission(struct file *file, int mask) 671{ 672 int ret; 673 674 ret = security_ops->file_permission(file, mask); 675 if (ret) 676 return ret; 677 678 return fsnotify_perm(file, mask); 679} 680 681int security_file_alloc(struct file *file) 682{ 683 return security_ops->file_alloc_security(file); 684} 685 686void security_file_free(struct file *file) 687{ 688 security_ops->file_free_security(file); 689} 690 691int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 692{ 693 return security_ops->file_ioctl(file, cmd, arg); 694} 695 696static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 697{ 698 /* 699 * Does we have PROT_READ and does the application expect 700 * it to imply PROT_EXEC? If not, nothing to talk about... 701 */ 702 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 703 return prot; 704 if (!(current->personality & READ_IMPLIES_EXEC)) 705 return prot; 706 /* 707 * if that's an anonymous mapping, let it. 708 */ 709 if (!file) 710 return prot | PROT_EXEC; 711 /* 712 * ditto if it's not on noexec mount, except that on !MMU we need 713 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case 714 */ 715 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) { 716#ifndef CONFIG_MMU 717 unsigned long caps = 0; 718 struct address_space *mapping = file->f_mapping; 719 if (mapping && mapping->backing_dev_info) 720 caps = mapping->backing_dev_info->capabilities; 721 if (!(caps & BDI_CAP_EXEC_MAP)) 722 return prot; 723#endif 724 return prot | PROT_EXEC; 725 } 726 /* anything on noexec mount won't get PROT_EXEC */ 727 return prot; 728} 729 730int security_mmap_file(struct file *file, unsigned long prot, 731 unsigned long flags) 732{ 733 int ret; 734 ret = security_ops->mmap_file(file, prot, 735 mmap_prot(file, prot), flags); 736 if (ret) 737 return ret; 738 return ima_file_mmap(file, prot); 739} 740 741int security_mmap_addr(unsigned long addr) 742{ 743 return security_ops->mmap_addr(addr); 744} 745 746int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 747 unsigned long prot) 748{ 749 return security_ops->file_mprotect(vma, reqprot, prot); 750} 751 752int security_file_lock(struct file *file, unsigned int cmd) 753{ 754 return security_ops->file_lock(file, cmd); 755} 756 757int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 758{ 759 return security_ops->file_fcntl(file, cmd, arg); 760} 761 762int security_file_set_fowner(struct file *file) 763{ 764 return security_ops->file_set_fowner(file); 765} 766 767int security_file_send_sigiotask(struct task_struct *tsk, 768 struct fown_struct *fown, int sig) 769{ 770 return security_ops->file_send_sigiotask(tsk, fown, sig); 771} 772 773int security_file_receive(struct file *file) 774{ 775 return security_ops->file_receive(file); 776} 777 778int security_file_open(struct file *file, const struct cred *cred) 779{ 780 int ret; 781 782 ret = security_ops->file_open(file, cred); 783 if (ret) 784 return ret; 785 786 return fsnotify_perm(file, MAY_OPEN); 787} 788 789int security_task_create(unsigned long clone_flags) 790{ 791 return security_ops->task_create(clone_flags); 792} 793 794void security_task_free(struct task_struct *task) 795{ 796#ifdef CONFIG_SECURITY_YAMA_STACKED 797 yama_task_free(task); 798#endif 799 security_ops->task_free(task); 800} 801 802int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 803{ 804 return security_ops->cred_alloc_blank(cred, gfp); 805} 806 807void security_cred_free(struct cred *cred) 808{ 809 security_ops->cred_free(cred); 810} 811 812int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 813{ 814 return security_ops->cred_prepare(new, old, gfp); 815} 816 817void security_transfer_creds(struct cred *new, const struct cred *old) 818{ 819 security_ops->cred_transfer(new, old); 820} 821 822int security_kernel_act_as(struct cred *new, u32 secid) 823{ 824 return security_ops->kernel_act_as(new, secid); 825} 826 827int security_kernel_create_files_as(struct cred *new, struct inode *inode) 828{ 829 return security_ops->kernel_create_files_as(new, inode); 830} 831 832int security_kernel_module_request(char *kmod_name) 833{ 834 return security_ops->kernel_module_request(kmod_name); 835} 836 837int security_kernel_module_from_file(struct file *file) 838{ 839 int ret; 840 841 ret = security_ops->kernel_module_from_file(file); 842 if (ret) 843 return ret; 844 return ima_module_check(file); 845} 846 847int security_task_fix_setuid(struct cred *new, const struct cred *old, 848 int flags) 849{ 850 return security_ops->task_fix_setuid(new, old, flags); 851} 852 853int security_task_setpgid(struct task_struct *p, pid_t pgid) 854{ 855 return security_ops->task_setpgid(p, pgid); 856} 857 858int security_task_getpgid(struct task_struct *p) 859{ 860 return security_ops->task_getpgid(p); 861} 862 863int security_task_getsid(struct task_struct *p) 864{ 865 return security_ops->task_getsid(p); 866} 867 868void security_task_getsecid(struct task_struct *p, u32 *secid) 869{ 870 security_ops->task_getsecid(p, secid); 871} 872EXPORT_SYMBOL(security_task_getsecid); 873 874int security_task_setnice(struct task_struct *p, int nice) 875{ 876 return security_ops->task_setnice(p, nice); 877} 878 879int security_task_setioprio(struct task_struct *p, int ioprio) 880{ 881 return security_ops->task_setioprio(p, ioprio); 882} 883 884int security_task_getioprio(struct task_struct *p) 885{ 886 return security_ops->task_getioprio(p); 887} 888 889int security_task_setrlimit(struct task_struct *p, unsigned int resource, 890 struct rlimit *new_rlim) 891{ 892 return security_ops->task_setrlimit(p, resource, new_rlim); 893} 894 895int security_task_setscheduler(struct task_struct *p) 896{ 897 return security_ops->task_setscheduler(p); 898} 899 900int security_task_getscheduler(struct task_struct *p) 901{ 902 return security_ops->task_getscheduler(p); 903} 904 905int security_task_movememory(struct task_struct *p) 906{ 907 return security_ops->task_movememory(p); 908} 909 910int security_task_kill(struct task_struct *p, struct siginfo *info, 911 int sig, u32 secid) 912{ 913 return security_ops->task_kill(p, info, sig, secid); 914} 915 916int security_task_wait(struct task_struct *p) 917{ 918 return security_ops->task_wait(p); 919} 920 921int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 922 unsigned long arg4, unsigned long arg5) 923{ 924#ifdef CONFIG_SECURITY_YAMA_STACKED 925 int rc; 926 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5); 927 if (rc != -ENOSYS) 928 return rc; 929#endif 930 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 931} 932 933void security_task_to_inode(struct task_struct *p, struct inode *inode) 934{ 935 security_ops->task_to_inode(p, inode); 936} 937 938int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 939{ 940 return security_ops->ipc_permission(ipcp, flag); 941} 942 943void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 944{ 945 security_ops->ipc_getsecid(ipcp, secid); 946} 947 948int security_msg_msg_alloc(struct msg_msg *msg) 949{ 950 return security_ops->msg_msg_alloc_security(msg); 951} 952 953void security_msg_msg_free(struct msg_msg *msg) 954{ 955 security_ops->msg_msg_free_security(msg); 956} 957 958int security_msg_queue_alloc(struct msg_queue *msq) 959{ 960 return security_ops->msg_queue_alloc_security(msq); 961} 962 963void security_msg_queue_free(struct msg_queue *msq) 964{ 965 security_ops->msg_queue_free_security(msq); 966} 967 968int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 969{ 970 return security_ops->msg_queue_associate(msq, msqflg); 971} 972 973int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 974{ 975 return security_ops->msg_queue_msgctl(msq, cmd); 976} 977 978int security_msg_queue_msgsnd(struct msg_queue *msq, 979 struct msg_msg *msg, int msqflg) 980{ 981 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 982} 983 984int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 985 struct task_struct *target, long type, int mode) 986{ 987 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 988} 989 990int security_shm_alloc(struct shmid_kernel *shp) 991{ 992 return security_ops->shm_alloc_security(shp); 993} 994 995void security_shm_free(struct shmid_kernel *shp) 996{ 997 security_ops->shm_free_security(shp); 998} 999 1000int security_shm_associate(struct shmid_kernel *shp, int shmflg) 1001{ 1002 return security_ops->shm_associate(shp, shmflg); 1003} 1004 1005int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 1006{ 1007 return security_ops->shm_shmctl(shp, cmd); 1008} 1009 1010int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 1011{ 1012 return security_ops->shm_shmat(shp, shmaddr, shmflg); 1013} 1014 1015int security_sem_alloc(struct sem_array *sma) 1016{ 1017 return security_ops->sem_alloc_security(sma); 1018} 1019 1020void security_sem_free(struct sem_array *sma) 1021{ 1022 security_ops->sem_free_security(sma); 1023} 1024 1025int security_sem_associate(struct sem_array *sma, int semflg) 1026{ 1027 return security_ops->sem_associate(sma, semflg); 1028} 1029 1030int security_sem_semctl(struct sem_array *sma, int cmd) 1031{ 1032 return security_ops->sem_semctl(sma, cmd); 1033} 1034 1035int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1036 unsigned nsops, int alter) 1037{ 1038 return security_ops->sem_semop(sma, sops, nsops, alter); 1039} 1040 1041void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1042{ 1043 if (unlikely(inode && IS_PRIVATE(inode))) 1044 return; 1045 security_ops->d_instantiate(dentry, inode); 1046} 1047EXPORT_SYMBOL(security_d_instantiate); 1048 1049int security_getprocattr(struct task_struct *p, char *name, char **value) 1050{ 1051 return security_ops->getprocattr(p, name, value); 1052} 1053 1054int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1055{ 1056 return security_ops->setprocattr(p, name, value, size); 1057} 1058 1059int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1060{ 1061 return security_ops->netlink_send(sk, skb); 1062} 1063 1064int security_ismaclabel(const char *name) 1065{ 1066 return security_ops->ismaclabel(name); 1067} 1068EXPORT_SYMBOL(security_ismaclabel); 1069 1070int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1071{ 1072 return security_ops->secid_to_secctx(secid, secdata, seclen); 1073} 1074EXPORT_SYMBOL(security_secid_to_secctx); 1075 1076int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1077{ 1078 return security_ops->secctx_to_secid(secdata, seclen, secid); 1079} 1080EXPORT_SYMBOL(security_secctx_to_secid); 1081 1082void security_release_secctx(char *secdata, u32 seclen) 1083{ 1084 security_ops->release_secctx(secdata, seclen); 1085} 1086EXPORT_SYMBOL(security_release_secctx); 1087 1088int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1089{ 1090 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1091} 1092EXPORT_SYMBOL(security_inode_notifysecctx); 1093 1094int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1095{ 1096 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1097} 1098EXPORT_SYMBOL(security_inode_setsecctx); 1099 1100int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1101{ 1102 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1103} 1104EXPORT_SYMBOL(security_inode_getsecctx); 1105 1106#ifdef CONFIG_SECURITY_NETWORK 1107 1108int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1109{ 1110 return security_ops->unix_stream_connect(sock, other, newsk); 1111} 1112EXPORT_SYMBOL(security_unix_stream_connect); 1113 1114int security_unix_may_send(struct socket *sock, struct socket *other) 1115{ 1116 return security_ops->unix_may_send(sock, other); 1117} 1118EXPORT_SYMBOL(security_unix_may_send); 1119 1120int security_socket_create(int family, int type, int protocol, int kern) 1121{ 1122 return security_ops->socket_create(family, type, protocol, kern); 1123} 1124 1125int security_socket_post_create(struct socket *sock, int family, 1126 int type, int protocol, int kern) 1127{ 1128 return security_ops->socket_post_create(sock, family, type, 1129 protocol, kern); 1130} 1131 1132int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1133{ 1134 return security_ops->socket_bind(sock, address, addrlen); 1135} 1136 1137int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1138{ 1139 return security_ops->socket_connect(sock, address, addrlen); 1140} 1141 1142int security_socket_listen(struct socket *sock, int backlog) 1143{ 1144 return security_ops->socket_listen(sock, backlog); 1145} 1146 1147int security_socket_accept(struct socket *sock, struct socket *newsock) 1148{ 1149 return security_ops->socket_accept(sock, newsock); 1150} 1151 1152int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1153{ 1154 return security_ops->socket_sendmsg(sock, msg, size); 1155} 1156 1157int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1158 int size, int flags) 1159{ 1160 return security_ops->socket_recvmsg(sock, msg, size, flags); 1161} 1162 1163int security_socket_getsockname(struct socket *sock) 1164{ 1165 return security_ops->socket_getsockname(sock); 1166} 1167 1168int security_socket_getpeername(struct socket *sock) 1169{ 1170 return security_ops->socket_getpeername(sock); 1171} 1172 1173int security_socket_getsockopt(struct socket *sock, int level, int optname) 1174{ 1175 return security_ops->socket_getsockopt(sock, level, optname); 1176} 1177 1178int security_socket_setsockopt(struct socket *sock, int level, int optname) 1179{ 1180 return security_ops->socket_setsockopt(sock, level, optname); 1181} 1182 1183int security_socket_shutdown(struct socket *sock, int how) 1184{ 1185 return security_ops->socket_shutdown(sock, how); 1186} 1187 1188int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1189{ 1190 return security_ops->socket_sock_rcv_skb(sk, skb); 1191} 1192EXPORT_SYMBOL(security_sock_rcv_skb); 1193 1194int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1195 int __user *optlen, unsigned len) 1196{ 1197 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1198} 1199 1200int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1201{ 1202 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1203} 1204EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1205 1206int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1207{ 1208 return security_ops->sk_alloc_security(sk, family, priority); 1209} 1210 1211void security_sk_free(struct sock *sk) 1212{ 1213 security_ops->sk_free_security(sk); 1214} 1215 1216void security_sk_clone(const struct sock *sk, struct sock *newsk) 1217{ 1218 security_ops->sk_clone_security(sk, newsk); 1219} 1220EXPORT_SYMBOL(security_sk_clone); 1221 1222void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1223{ 1224 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1225} 1226EXPORT_SYMBOL(security_sk_classify_flow); 1227 1228void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1229{ 1230 security_ops->req_classify_flow(req, fl); 1231} 1232EXPORT_SYMBOL(security_req_classify_flow); 1233 1234void security_sock_graft(struct sock *sk, struct socket *parent) 1235{ 1236 security_ops->sock_graft(sk, parent); 1237} 1238EXPORT_SYMBOL(security_sock_graft); 1239 1240int security_inet_conn_request(struct sock *sk, 1241 struct sk_buff *skb, struct request_sock *req) 1242{ 1243 return security_ops->inet_conn_request(sk, skb, req); 1244} 1245EXPORT_SYMBOL(security_inet_conn_request); 1246 1247void security_inet_csk_clone(struct sock *newsk, 1248 const struct request_sock *req) 1249{ 1250 security_ops->inet_csk_clone(newsk, req); 1251} 1252 1253void security_inet_conn_established(struct sock *sk, 1254 struct sk_buff *skb) 1255{ 1256 security_ops->inet_conn_established(sk, skb); 1257} 1258 1259int security_secmark_relabel_packet(u32 secid) 1260{ 1261 return security_ops->secmark_relabel_packet(secid); 1262} 1263EXPORT_SYMBOL(security_secmark_relabel_packet); 1264 1265void security_secmark_refcount_inc(void) 1266{ 1267 security_ops->secmark_refcount_inc(); 1268} 1269EXPORT_SYMBOL(security_secmark_refcount_inc); 1270 1271void security_secmark_refcount_dec(void) 1272{ 1273 security_ops->secmark_refcount_dec(); 1274} 1275EXPORT_SYMBOL(security_secmark_refcount_dec); 1276 1277int security_tun_dev_alloc_security(void **security) 1278{ 1279 return security_ops->tun_dev_alloc_security(security); 1280} 1281EXPORT_SYMBOL(security_tun_dev_alloc_security); 1282 1283void security_tun_dev_free_security(void *security) 1284{ 1285 security_ops->tun_dev_free_security(security); 1286} 1287EXPORT_SYMBOL(security_tun_dev_free_security); 1288 1289int security_tun_dev_create(void) 1290{ 1291 return security_ops->tun_dev_create(); 1292} 1293EXPORT_SYMBOL(security_tun_dev_create); 1294 1295int security_tun_dev_attach_queue(void *security) 1296{ 1297 return security_ops->tun_dev_attach_queue(security); 1298} 1299EXPORT_SYMBOL(security_tun_dev_attach_queue); 1300 1301int security_tun_dev_attach(struct sock *sk, void *security) 1302{ 1303 return security_ops->tun_dev_attach(sk, security); 1304} 1305EXPORT_SYMBOL(security_tun_dev_attach); 1306 1307int security_tun_dev_open(void *security) 1308{ 1309 return security_ops->tun_dev_open(security); 1310} 1311EXPORT_SYMBOL(security_tun_dev_open); 1312 1313void security_skb_owned_by(struct sk_buff *skb, struct sock *sk) 1314{ 1315 security_ops->skb_owned_by(skb, sk); 1316} 1317 1318#endif /* CONFIG_SECURITY_NETWORK */ 1319 1320#ifdef CONFIG_SECURITY_NETWORK_XFRM 1321 1322int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1323{ 1324 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1325} 1326EXPORT_SYMBOL(security_xfrm_policy_alloc); 1327 1328int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1329 struct xfrm_sec_ctx **new_ctxp) 1330{ 1331 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1332} 1333 1334void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1335{ 1336 security_ops->xfrm_policy_free_security(ctx); 1337} 1338EXPORT_SYMBOL(security_xfrm_policy_free); 1339 1340int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1341{ 1342 return security_ops->xfrm_policy_delete_security(ctx); 1343} 1344 1345int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1346{ 1347 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1348} 1349EXPORT_SYMBOL(security_xfrm_state_alloc); 1350 1351int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1352 struct xfrm_sec_ctx *polsec, u32 secid) 1353{ 1354 if (!polsec) 1355 return 0; 1356 /* 1357 * We want the context to be taken from secid which is usually 1358 * from the sock. 1359 */ 1360 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1361} 1362 1363int security_xfrm_state_delete(struct xfrm_state *x) 1364{ 1365 return security_ops->xfrm_state_delete_security(x); 1366} 1367EXPORT_SYMBOL(security_xfrm_state_delete); 1368 1369void security_xfrm_state_free(struct xfrm_state *x) 1370{ 1371 security_ops->xfrm_state_free_security(x); 1372} 1373 1374int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1375{ 1376 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1377} 1378 1379int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1380 struct xfrm_policy *xp, 1381 const struct flowi *fl) 1382{ 1383 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1384} 1385 1386int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1387{ 1388 return security_ops->xfrm_decode_session(skb, secid, 1); 1389} 1390 1391void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1392{ 1393 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1394 1395 BUG_ON(rc); 1396} 1397EXPORT_SYMBOL(security_skb_classify_flow); 1398 1399#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1400 1401#ifdef CONFIG_KEYS 1402 1403int security_key_alloc(struct key *key, const struct cred *cred, 1404 unsigned long flags) 1405{ 1406 return security_ops->key_alloc(key, cred, flags); 1407} 1408 1409void security_key_free(struct key *key) 1410{ 1411 security_ops->key_free(key); 1412} 1413 1414int security_key_permission(key_ref_t key_ref, 1415 const struct cred *cred, key_perm_t perm) 1416{ 1417 return security_ops->key_permission(key_ref, cred, perm); 1418} 1419 1420int security_key_getsecurity(struct key *key, char **_buffer) 1421{ 1422 return security_ops->key_getsecurity(key, _buffer); 1423} 1424 1425#endif /* CONFIG_KEYS */ 1426 1427#ifdef CONFIG_AUDIT 1428 1429int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1430{ 1431 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1432} 1433 1434int security_audit_rule_known(struct audit_krule *krule) 1435{ 1436 return security_ops->audit_rule_known(krule); 1437} 1438 1439void security_audit_rule_free(void *lsmrule) 1440{ 1441 security_ops->audit_rule_free(lsmrule); 1442} 1443 1444int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1445 struct audit_context *actx) 1446{ 1447 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1448} 1449 1450#endif /* CONFIG_AUDIT */