at v3.11 81 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/dmaengine.h> 32#include <linux/hrtimer.h> 33#include <linux/dma-mapping.h> 34#include <linux/netdev_features.h> 35#include <net/flow_keys.h> 36 37/* Don't change this without changing skb_csum_unnecessary! */ 38#define CHECKSUM_NONE 0 39#define CHECKSUM_UNNECESSARY 1 40#define CHECKSUM_COMPLETE 2 41#define CHECKSUM_PARTIAL 3 42 43#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 44 ~(SMP_CACHE_BYTES - 1)) 45#define SKB_WITH_OVERHEAD(X) \ 46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 47#define SKB_MAX_ORDER(X, ORDER) \ 48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 49#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 50#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 51 52/* return minimum truesize of one skb containing X bytes of data */ 53#define SKB_TRUESIZE(X) ((X) + \ 54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 56 57/* A. Checksumming of received packets by device. 58 * 59 * NONE: device failed to checksum this packet. 60 * skb->csum is undefined. 61 * 62 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 63 * skb->csum is undefined. 64 * It is bad option, but, unfortunately, many of vendors do this. 65 * Apparently with secret goal to sell you new device, when you 66 * will add new protocol to your host. F.e. IPv6. 8) 67 * 68 * COMPLETE: the most generic way. Device supplied checksum of _all_ 69 * the packet as seen by netif_rx in skb->csum. 70 * NOTE: Even if device supports only some protocols, but 71 * is able to produce some skb->csum, it MUST use COMPLETE, 72 * not UNNECESSARY. 73 * 74 * PARTIAL: identical to the case for output below. This may occur 75 * on a packet received directly from another Linux OS, e.g., 76 * a virtualised Linux kernel on the same host. The packet can 77 * be treated in the same way as UNNECESSARY except that on 78 * output (i.e., forwarding) the checksum must be filled in 79 * by the OS or the hardware. 80 * 81 * B. Checksumming on output. 82 * 83 * NONE: skb is checksummed by protocol or csum is not required. 84 * 85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 86 * from skb->csum_start to the end and to record the checksum 87 * at skb->csum_start + skb->csum_offset. 88 * 89 * Device must show its capabilities in dev->features, set 90 * at device setup time. 91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 92 * everything. 93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 94 * TCP/UDP over IPv4. Sigh. Vendors like this 95 * way by an unknown reason. Though, see comment above 96 * about CHECKSUM_UNNECESSARY. 8) 97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 98 * 99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 100 * that do not want net to perform the checksum calculation should use 101 * this flag in their outgoing skbs. 102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 103 * offload. Correspondingly, the FCoE protocol driver 104 * stack should use CHECKSUM_UNNECESSARY. 105 * 106 * Any questions? No questions, good. --ANK 107 */ 108 109struct net_device; 110struct scatterlist; 111struct pipe_inode_info; 112 113#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 114struct nf_conntrack { 115 atomic_t use; 116}; 117#endif 118 119#ifdef CONFIG_BRIDGE_NETFILTER 120struct nf_bridge_info { 121 atomic_t use; 122 unsigned int mask; 123 struct net_device *physindev; 124 struct net_device *physoutdev; 125 unsigned long data[32 / sizeof(unsigned long)]; 126}; 127#endif 128 129struct sk_buff_head { 130 /* These two members must be first. */ 131 struct sk_buff *next; 132 struct sk_buff *prev; 133 134 __u32 qlen; 135 spinlock_t lock; 136}; 137 138struct sk_buff; 139 140/* To allow 64K frame to be packed as single skb without frag_list we 141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 142 * buffers which do not start on a page boundary. 143 * 144 * Since GRO uses frags we allocate at least 16 regardless of page 145 * size. 146 */ 147#if (65536/PAGE_SIZE + 1) < 16 148#define MAX_SKB_FRAGS 16UL 149#else 150#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 151#endif 152 153typedef struct skb_frag_struct skb_frag_t; 154 155struct skb_frag_struct { 156 struct { 157 struct page *p; 158 } page; 159#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 160 __u32 page_offset; 161 __u32 size; 162#else 163 __u16 page_offset; 164 __u16 size; 165#endif 166}; 167 168static inline unsigned int skb_frag_size(const skb_frag_t *frag) 169{ 170 return frag->size; 171} 172 173static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 174{ 175 frag->size = size; 176} 177 178static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 179{ 180 frag->size += delta; 181} 182 183static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 184{ 185 frag->size -= delta; 186} 187 188#define HAVE_HW_TIME_STAMP 189 190/** 191 * struct skb_shared_hwtstamps - hardware time stamps 192 * @hwtstamp: hardware time stamp transformed into duration 193 * since arbitrary point in time 194 * @syststamp: hwtstamp transformed to system time base 195 * 196 * Software time stamps generated by ktime_get_real() are stored in 197 * skb->tstamp. The relation between the different kinds of time 198 * stamps is as follows: 199 * 200 * syststamp and tstamp can be compared against each other in 201 * arbitrary combinations. The accuracy of a 202 * syststamp/tstamp/"syststamp from other device" comparison is 203 * limited by the accuracy of the transformation into system time 204 * base. This depends on the device driver and its underlying 205 * hardware. 206 * 207 * hwtstamps can only be compared against other hwtstamps from 208 * the same device. 209 * 210 * This structure is attached to packets as part of the 211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 212 */ 213struct skb_shared_hwtstamps { 214 ktime_t hwtstamp; 215 ktime_t syststamp; 216}; 217 218/* Definitions for tx_flags in struct skb_shared_info */ 219enum { 220 /* generate hardware time stamp */ 221 SKBTX_HW_TSTAMP = 1 << 0, 222 223 /* generate software time stamp */ 224 SKBTX_SW_TSTAMP = 1 << 1, 225 226 /* device driver is going to provide hardware time stamp */ 227 SKBTX_IN_PROGRESS = 1 << 2, 228 229 /* device driver supports TX zero-copy buffers */ 230 SKBTX_DEV_ZEROCOPY = 1 << 3, 231 232 /* generate wifi status information (where possible) */ 233 SKBTX_WIFI_STATUS = 1 << 4, 234 235 /* This indicates at least one fragment might be overwritten 236 * (as in vmsplice(), sendfile() ...) 237 * If we need to compute a TX checksum, we'll need to copy 238 * all frags to avoid possible bad checksum 239 */ 240 SKBTX_SHARED_FRAG = 1 << 5, 241}; 242 243/* 244 * The callback notifies userspace to release buffers when skb DMA is done in 245 * lower device, the skb last reference should be 0 when calling this. 246 * The zerocopy_success argument is true if zero copy transmit occurred, 247 * false on data copy or out of memory error caused by data copy attempt. 248 * The ctx field is used to track device context. 249 * The desc field is used to track userspace buffer index. 250 */ 251struct ubuf_info { 252 void (*callback)(struct ubuf_info *, bool zerocopy_success); 253 void *ctx; 254 unsigned long desc; 255}; 256 257/* This data is invariant across clones and lives at 258 * the end of the header data, ie. at skb->end. 259 */ 260struct skb_shared_info { 261 unsigned char nr_frags; 262 __u8 tx_flags; 263 unsigned short gso_size; 264 /* Warning: this field is not always filled in (UFO)! */ 265 unsigned short gso_segs; 266 unsigned short gso_type; 267 struct sk_buff *frag_list; 268 struct skb_shared_hwtstamps hwtstamps; 269 __be32 ip6_frag_id; 270 271 /* 272 * Warning : all fields before dataref are cleared in __alloc_skb() 273 */ 274 atomic_t dataref; 275 276 /* Intermediate layers must ensure that destructor_arg 277 * remains valid until skb destructor */ 278 void * destructor_arg; 279 280 /* must be last field, see pskb_expand_head() */ 281 skb_frag_t frags[MAX_SKB_FRAGS]; 282}; 283 284/* We divide dataref into two halves. The higher 16 bits hold references 285 * to the payload part of skb->data. The lower 16 bits hold references to 286 * the entire skb->data. A clone of a headerless skb holds the length of 287 * the header in skb->hdr_len. 288 * 289 * All users must obey the rule that the skb->data reference count must be 290 * greater than or equal to the payload reference count. 291 * 292 * Holding a reference to the payload part means that the user does not 293 * care about modifications to the header part of skb->data. 294 */ 295#define SKB_DATAREF_SHIFT 16 296#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 297 298 299enum { 300 SKB_FCLONE_UNAVAILABLE, 301 SKB_FCLONE_ORIG, 302 SKB_FCLONE_CLONE, 303}; 304 305enum { 306 SKB_GSO_TCPV4 = 1 << 0, 307 SKB_GSO_UDP = 1 << 1, 308 309 /* This indicates the skb is from an untrusted source. */ 310 SKB_GSO_DODGY = 1 << 2, 311 312 /* This indicates the tcp segment has CWR set. */ 313 SKB_GSO_TCP_ECN = 1 << 3, 314 315 SKB_GSO_TCPV6 = 1 << 4, 316 317 SKB_GSO_FCOE = 1 << 5, 318 319 SKB_GSO_GRE = 1 << 6, 320 321 SKB_GSO_UDP_TUNNEL = 1 << 7, 322 323 SKB_GSO_MPLS = 1 << 8, 324}; 325 326#if BITS_PER_LONG > 32 327#define NET_SKBUFF_DATA_USES_OFFSET 1 328#endif 329 330#ifdef NET_SKBUFF_DATA_USES_OFFSET 331typedef unsigned int sk_buff_data_t; 332#else 333typedef unsigned char *sk_buff_data_t; 334#endif 335 336#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 337 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 338#define NET_SKBUFF_NF_DEFRAG_NEEDED 1 339#endif 340 341/** 342 * struct sk_buff - socket buffer 343 * @next: Next buffer in list 344 * @prev: Previous buffer in list 345 * @tstamp: Time we arrived 346 * @sk: Socket we are owned by 347 * @dev: Device we arrived on/are leaving by 348 * @cb: Control buffer. Free for use by every layer. Put private vars here 349 * @_skb_refdst: destination entry (with norefcount bit) 350 * @sp: the security path, used for xfrm 351 * @len: Length of actual data 352 * @data_len: Data length 353 * @mac_len: Length of link layer header 354 * @hdr_len: writable header length of cloned skb 355 * @csum: Checksum (must include start/offset pair) 356 * @csum_start: Offset from skb->head where checksumming should start 357 * @csum_offset: Offset from csum_start where checksum should be stored 358 * @priority: Packet queueing priority 359 * @local_df: allow local fragmentation 360 * @cloned: Head may be cloned (check refcnt to be sure) 361 * @ip_summed: Driver fed us an IP checksum 362 * @nohdr: Payload reference only, must not modify header 363 * @nfctinfo: Relationship of this skb to the connection 364 * @pkt_type: Packet class 365 * @fclone: skbuff clone status 366 * @ipvs_property: skbuff is owned by ipvs 367 * @peeked: this packet has been seen already, so stats have been 368 * done for it, don't do them again 369 * @nf_trace: netfilter packet trace flag 370 * @protocol: Packet protocol from driver 371 * @destructor: Destruct function 372 * @nfct: Associated connection, if any 373 * @nfct_reasm: netfilter conntrack re-assembly pointer 374 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 375 * @skb_iif: ifindex of device we arrived on 376 * @tc_index: Traffic control index 377 * @tc_verd: traffic control verdict 378 * @rxhash: the packet hash computed on receive 379 * @queue_mapping: Queue mapping for multiqueue devices 380 * @ndisc_nodetype: router type (from link layer) 381 * @ooo_okay: allow the mapping of a socket to a queue to be changed 382 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 383 * ports. 384 * @wifi_acked_valid: wifi_acked was set 385 * @wifi_acked: whether frame was acked on wifi or not 386 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 387 * @dma_cookie: a cookie to one of several possible DMA operations 388 * done by skb DMA functions 389 * @napi_id: id of the NAPI struct this skb came from 390 * @secmark: security marking 391 * @mark: Generic packet mark 392 * @dropcount: total number of sk_receive_queue overflows 393 * @vlan_proto: vlan encapsulation protocol 394 * @vlan_tci: vlan tag control information 395 * @inner_protocol: Protocol (encapsulation) 396 * @inner_transport_header: Inner transport layer header (encapsulation) 397 * @inner_network_header: Network layer header (encapsulation) 398 * @inner_mac_header: Link layer header (encapsulation) 399 * @transport_header: Transport layer header 400 * @network_header: Network layer header 401 * @mac_header: Link layer header 402 * @tail: Tail pointer 403 * @end: End pointer 404 * @head: Head of buffer 405 * @data: Data head pointer 406 * @truesize: Buffer size 407 * @users: User count - see {datagram,tcp}.c 408 */ 409 410struct sk_buff { 411 /* These two members must be first. */ 412 struct sk_buff *next; 413 struct sk_buff *prev; 414 415 ktime_t tstamp; 416 417 struct sock *sk; 418 struct net_device *dev; 419 420 /* 421 * This is the control buffer. It is free to use for every 422 * layer. Please put your private variables there. If you 423 * want to keep them across layers you have to do a skb_clone() 424 * first. This is owned by whoever has the skb queued ATM. 425 */ 426 char cb[48] __aligned(8); 427 428 unsigned long _skb_refdst; 429#ifdef CONFIG_XFRM 430 struct sec_path *sp; 431#endif 432 unsigned int len, 433 data_len; 434 __u16 mac_len, 435 hdr_len; 436 union { 437 __wsum csum; 438 struct { 439 __u16 csum_start; 440 __u16 csum_offset; 441 }; 442 }; 443 __u32 priority; 444 kmemcheck_bitfield_begin(flags1); 445 __u8 local_df:1, 446 cloned:1, 447 ip_summed:2, 448 nohdr:1, 449 nfctinfo:3; 450 __u8 pkt_type:3, 451 fclone:2, 452 ipvs_property:1, 453 peeked:1, 454 nf_trace:1; 455 kmemcheck_bitfield_end(flags1); 456 __be16 protocol; 457 458 void (*destructor)(struct sk_buff *skb); 459#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 460 struct nf_conntrack *nfct; 461#endif 462#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 463 struct sk_buff *nfct_reasm; 464#endif 465#ifdef CONFIG_BRIDGE_NETFILTER 466 struct nf_bridge_info *nf_bridge; 467#endif 468 469 int skb_iif; 470 471 __u32 rxhash; 472 473 __be16 vlan_proto; 474 __u16 vlan_tci; 475 476#ifdef CONFIG_NET_SCHED 477 __u16 tc_index; /* traffic control index */ 478#ifdef CONFIG_NET_CLS_ACT 479 __u16 tc_verd; /* traffic control verdict */ 480#endif 481#endif 482 483 __u16 queue_mapping; 484 kmemcheck_bitfield_begin(flags2); 485#ifdef CONFIG_IPV6_NDISC_NODETYPE 486 __u8 ndisc_nodetype:2; 487#endif 488 __u8 pfmemalloc:1; 489 __u8 ooo_okay:1; 490 __u8 l4_rxhash:1; 491 __u8 wifi_acked_valid:1; 492 __u8 wifi_acked:1; 493 __u8 no_fcs:1; 494 __u8 head_frag:1; 495 /* Encapsulation protocol and NIC drivers should use 496 * this flag to indicate to each other if the skb contains 497 * encapsulated packet or not and maybe use the inner packet 498 * headers if needed 499 */ 500 __u8 encapsulation:1; 501 /* 7/9 bit hole (depending on ndisc_nodetype presence) */ 502 kmemcheck_bitfield_end(flags2); 503 504#if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL 505 union { 506 unsigned int napi_id; 507 dma_cookie_t dma_cookie; 508 }; 509#endif 510#ifdef CONFIG_NETWORK_SECMARK 511 __u32 secmark; 512#endif 513 union { 514 __u32 mark; 515 __u32 dropcount; 516 __u32 reserved_tailroom; 517 }; 518 519 __be16 inner_protocol; 520 __u16 inner_transport_header; 521 __u16 inner_network_header; 522 __u16 inner_mac_header; 523 __u16 transport_header; 524 __u16 network_header; 525 __u16 mac_header; 526 /* These elements must be at the end, see alloc_skb() for details. */ 527 sk_buff_data_t tail; 528 sk_buff_data_t end; 529 unsigned char *head, 530 *data; 531 unsigned int truesize; 532 atomic_t users; 533}; 534 535#ifdef __KERNEL__ 536/* 537 * Handling routines are only of interest to the kernel 538 */ 539#include <linux/slab.h> 540 541 542#define SKB_ALLOC_FCLONE 0x01 543#define SKB_ALLOC_RX 0x02 544 545/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 546static inline bool skb_pfmemalloc(const struct sk_buff *skb) 547{ 548 return unlikely(skb->pfmemalloc); 549} 550 551/* 552 * skb might have a dst pointer attached, refcounted or not. 553 * _skb_refdst low order bit is set if refcount was _not_ taken 554 */ 555#define SKB_DST_NOREF 1UL 556#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 557 558/** 559 * skb_dst - returns skb dst_entry 560 * @skb: buffer 561 * 562 * Returns skb dst_entry, regardless of reference taken or not. 563 */ 564static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 565{ 566 /* If refdst was not refcounted, check we still are in a 567 * rcu_read_lock section 568 */ 569 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 570 !rcu_read_lock_held() && 571 !rcu_read_lock_bh_held()); 572 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 573} 574 575/** 576 * skb_dst_set - sets skb dst 577 * @skb: buffer 578 * @dst: dst entry 579 * 580 * Sets skb dst, assuming a reference was taken on dst and should 581 * be released by skb_dst_drop() 582 */ 583static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 584{ 585 skb->_skb_refdst = (unsigned long)dst; 586} 587 588extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 589 bool force); 590 591/** 592 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 593 * @skb: buffer 594 * @dst: dst entry 595 * 596 * Sets skb dst, assuming a reference was not taken on dst. 597 * If dst entry is cached, we do not take reference and dst_release 598 * will be avoided by refdst_drop. If dst entry is not cached, we take 599 * reference, so that last dst_release can destroy the dst immediately. 600 */ 601static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 602{ 603 __skb_dst_set_noref(skb, dst, false); 604} 605 606/** 607 * skb_dst_set_noref_force - sets skb dst, without taking reference 608 * @skb: buffer 609 * @dst: dst entry 610 * 611 * Sets skb dst, assuming a reference was not taken on dst. 612 * No reference is taken and no dst_release will be called. While for 613 * cached dsts deferred reclaim is a basic feature, for entries that are 614 * not cached it is caller's job to guarantee that last dst_release for 615 * provided dst happens when nobody uses it, eg. after a RCU grace period. 616 */ 617static inline void skb_dst_set_noref_force(struct sk_buff *skb, 618 struct dst_entry *dst) 619{ 620 __skb_dst_set_noref(skb, dst, true); 621} 622 623/** 624 * skb_dst_is_noref - Test if skb dst isn't refcounted 625 * @skb: buffer 626 */ 627static inline bool skb_dst_is_noref(const struct sk_buff *skb) 628{ 629 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 630} 631 632static inline struct rtable *skb_rtable(const struct sk_buff *skb) 633{ 634 return (struct rtable *)skb_dst(skb); 635} 636 637extern void kfree_skb(struct sk_buff *skb); 638extern void kfree_skb_list(struct sk_buff *segs); 639extern void skb_tx_error(struct sk_buff *skb); 640extern void consume_skb(struct sk_buff *skb); 641extern void __kfree_skb(struct sk_buff *skb); 642extern struct kmem_cache *skbuff_head_cache; 643 644extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 645extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 646 bool *fragstolen, int *delta_truesize); 647 648extern struct sk_buff *__alloc_skb(unsigned int size, 649 gfp_t priority, int flags, int node); 650extern struct sk_buff *build_skb(void *data, unsigned int frag_size); 651static inline struct sk_buff *alloc_skb(unsigned int size, 652 gfp_t priority) 653{ 654 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 655} 656 657static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 658 gfp_t priority) 659{ 660 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 661} 662 663extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 664static inline struct sk_buff *alloc_skb_head(gfp_t priority) 665{ 666 return __alloc_skb_head(priority, -1); 667} 668 669extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 670extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 671extern struct sk_buff *skb_clone(struct sk_buff *skb, 672 gfp_t priority); 673extern struct sk_buff *skb_copy(const struct sk_buff *skb, 674 gfp_t priority); 675extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 676 int headroom, gfp_t gfp_mask); 677 678extern int pskb_expand_head(struct sk_buff *skb, 679 int nhead, int ntail, 680 gfp_t gfp_mask); 681extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 682 unsigned int headroom); 683extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 684 int newheadroom, int newtailroom, 685 gfp_t priority); 686extern int skb_to_sgvec(struct sk_buff *skb, 687 struct scatterlist *sg, int offset, 688 int len); 689extern int skb_cow_data(struct sk_buff *skb, int tailbits, 690 struct sk_buff **trailer); 691extern int skb_pad(struct sk_buff *skb, int pad); 692#define dev_kfree_skb(a) consume_skb(a) 693 694extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 695 int getfrag(void *from, char *to, int offset, 696 int len,int odd, struct sk_buff *skb), 697 void *from, int length); 698 699struct skb_seq_state { 700 __u32 lower_offset; 701 __u32 upper_offset; 702 __u32 frag_idx; 703 __u32 stepped_offset; 704 struct sk_buff *root_skb; 705 struct sk_buff *cur_skb; 706 __u8 *frag_data; 707}; 708 709extern void skb_prepare_seq_read(struct sk_buff *skb, 710 unsigned int from, unsigned int to, 711 struct skb_seq_state *st); 712extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 713 struct skb_seq_state *st); 714extern void skb_abort_seq_read(struct skb_seq_state *st); 715 716extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 717 unsigned int to, struct ts_config *config, 718 struct ts_state *state); 719 720extern void __skb_get_rxhash(struct sk_buff *skb); 721static inline __u32 skb_get_rxhash(struct sk_buff *skb) 722{ 723 if (!skb->l4_rxhash) 724 __skb_get_rxhash(skb); 725 726 return skb->rxhash; 727} 728 729#ifdef NET_SKBUFF_DATA_USES_OFFSET 730static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 731{ 732 return skb->head + skb->end; 733} 734 735static inline unsigned int skb_end_offset(const struct sk_buff *skb) 736{ 737 return skb->end; 738} 739#else 740static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 741{ 742 return skb->end; 743} 744 745static inline unsigned int skb_end_offset(const struct sk_buff *skb) 746{ 747 return skb->end - skb->head; 748} 749#endif 750 751/* Internal */ 752#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 753 754static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 755{ 756 return &skb_shinfo(skb)->hwtstamps; 757} 758 759/** 760 * skb_queue_empty - check if a queue is empty 761 * @list: queue head 762 * 763 * Returns true if the queue is empty, false otherwise. 764 */ 765static inline int skb_queue_empty(const struct sk_buff_head *list) 766{ 767 return list->next == (struct sk_buff *)list; 768} 769 770/** 771 * skb_queue_is_last - check if skb is the last entry in the queue 772 * @list: queue head 773 * @skb: buffer 774 * 775 * Returns true if @skb is the last buffer on the list. 776 */ 777static inline bool skb_queue_is_last(const struct sk_buff_head *list, 778 const struct sk_buff *skb) 779{ 780 return skb->next == (struct sk_buff *)list; 781} 782 783/** 784 * skb_queue_is_first - check if skb is the first entry in the queue 785 * @list: queue head 786 * @skb: buffer 787 * 788 * Returns true if @skb is the first buffer on the list. 789 */ 790static inline bool skb_queue_is_first(const struct sk_buff_head *list, 791 const struct sk_buff *skb) 792{ 793 return skb->prev == (struct sk_buff *)list; 794} 795 796/** 797 * skb_queue_next - return the next packet in the queue 798 * @list: queue head 799 * @skb: current buffer 800 * 801 * Return the next packet in @list after @skb. It is only valid to 802 * call this if skb_queue_is_last() evaluates to false. 803 */ 804static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 805 const struct sk_buff *skb) 806{ 807 /* This BUG_ON may seem severe, but if we just return then we 808 * are going to dereference garbage. 809 */ 810 BUG_ON(skb_queue_is_last(list, skb)); 811 return skb->next; 812} 813 814/** 815 * skb_queue_prev - return the prev packet in the queue 816 * @list: queue head 817 * @skb: current buffer 818 * 819 * Return the prev packet in @list before @skb. It is only valid to 820 * call this if skb_queue_is_first() evaluates to false. 821 */ 822static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 823 const struct sk_buff *skb) 824{ 825 /* This BUG_ON may seem severe, but if we just return then we 826 * are going to dereference garbage. 827 */ 828 BUG_ON(skb_queue_is_first(list, skb)); 829 return skb->prev; 830} 831 832/** 833 * skb_get - reference buffer 834 * @skb: buffer to reference 835 * 836 * Makes another reference to a socket buffer and returns a pointer 837 * to the buffer. 838 */ 839static inline struct sk_buff *skb_get(struct sk_buff *skb) 840{ 841 atomic_inc(&skb->users); 842 return skb; 843} 844 845/* 846 * If users == 1, we are the only owner and are can avoid redundant 847 * atomic change. 848 */ 849 850/** 851 * skb_cloned - is the buffer a clone 852 * @skb: buffer to check 853 * 854 * Returns true if the buffer was generated with skb_clone() and is 855 * one of multiple shared copies of the buffer. Cloned buffers are 856 * shared data so must not be written to under normal circumstances. 857 */ 858static inline int skb_cloned(const struct sk_buff *skb) 859{ 860 return skb->cloned && 861 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 862} 863 864static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 865{ 866 might_sleep_if(pri & __GFP_WAIT); 867 868 if (skb_cloned(skb)) 869 return pskb_expand_head(skb, 0, 0, pri); 870 871 return 0; 872} 873 874/** 875 * skb_header_cloned - is the header a clone 876 * @skb: buffer to check 877 * 878 * Returns true if modifying the header part of the buffer requires 879 * the data to be copied. 880 */ 881static inline int skb_header_cloned(const struct sk_buff *skb) 882{ 883 int dataref; 884 885 if (!skb->cloned) 886 return 0; 887 888 dataref = atomic_read(&skb_shinfo(skb)->dataref); 889 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 890 return dataref != 1; 891} 892 893/** 894 * skb_header_release - release reference to header 895 * @skb: buffer to operate on 896 * 897 * Drop a reference to the header part of the buffer. This is done 898 * by acquiring a payload reference. You must not read from the header 899 * part of skb->data after this. 900 */ 901static inline void skb_header_release(struct sk_buff *skb) 902{ 903 BUG_ON(skb->nohdr); 904 skb->nohdr = 1; 905 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 906} 907 908/** 909 * skb_shared - is the buffer shared 910 * @skb: buffer to check 911 * 912 * Returns true if more than one person has a reference to this 913 * buffer. 914 */ 915static inline int skb_shared(const struct sk_buff *skb) 916{ 917 return atomic_read(&skb->users) != 1; 918} 919 920/** 921 * skb_share_check - check if buffer is shared and if so clone it 922 * @skb: buffer to check 923 * @pri: priority for memory allocation 924 * 925 * If the buffer is shared the buffer is cloned and the old copy 926 * drops a reference. A new clone with a single reference is returned. 927 * If the buffer is not shared the original buffer is returned. When 928 * being called from interrupt status or with spinlocks held pri must 929 * be GFP_ATOMIC. 930 * 931 * NULL is returned on a memory allocation failure. 932 */ 933static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 934{ 935 might_sleep_if(pri & __GFP_WAIT); 936 if (skb_shared(skb)) { 937 struct sk_buff *nskb = skb_clone(skb, pri); 938 939 if (likely(nskb)) 940 consume_skb(skb); 941 else 942 kfree_skb(skb); 943 skb = nskb; 944 } 945 return skb; 946} 947 948/* 949 * Copy shared buffers into a new sk_buff. We effectively do COW on 950 * packets to handle cases where we have a local reader and forward 951 * and a couple of other messy ones. The normal one is tcpdumping 952 * a packet thats being forwarded. 953 */ 954 955/** 956 * skb_unshare - make a copy of a shared buffer 957 * @skb: buffer to check 958 * @pri: priority for memory allocation 959 * 960 * If the socket buffer is a clone then this function creates a new 961 * copy of the data, drops a reference count on the old copy and returns 962 * the new copy with the reference count at 1. If the buffer is not a clone 963 * the original buffer is returned. When called with a spinlock held or 964 * from interrupt state @pri must be %GFP_ATOMIC 965 * 966 * %NULL is returned on a memory allocation failure. 967 */ 968static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 969 gfp_t pri) 970{ 971 might_sleep_if(pri & __GFP_WAIT); 972 if (skb_cloned(skb)) { 973 struct sk_buff *nskb = skb_copy(skb, pri); 974 kfree_skb(skb); /* Free our shared copy */ 975 skb = nskb; 976 } 977 return skb; 978} 979 980/** 981 * skb_peek - peek at the head of an &sk_buff_head 982 * @list_: list to peek at 983 * 984 * Peek an &sk_buff. Unlike most other operations you _MUST_ 985 * be careful with this one. A peek leaves the buffer on the 986 * list and someone else may run off with it. You must hold 987 * the appropriate locks or have a private queue to do this. 988 * 989 * Returns %NULL for an empty list or a pointer to the head element. 990 * The reference count is not incremented and the reference is therefore 991 * volatile. Use with caution. 992 */ 993static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 994{ 995 struct sk_buff *skb = list_->next; 996 997 if (skb == (struct sk_buff *)list_) 998 skb = NULL; 999 return skb; 1000} 1001 1002/** 1003 * skb_peek_next - peek skb following the given one from a queue 1004 * @skb: skb to start from 1005 * @list_: list to peek at 1006 * 1007 * Returns %NULL when the end of the list is met or a pointer to the 1008 * next element. The reference count is not incremented and the 1009 * reference is therefore volatile. Use with caution. 1010 */ 1011static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1012 const struct sk_buff_head *list_) 1013{ 1014 struct sk_buff *next = skb->next; 1015 1016 if (next == (struct sk_buff *)list_) 1017 next = NULL; 1018 return next; 1019} 1020 1021/** 1022 * skb_peek_tail - peek at the tail of an &sk_buff_head 1023 * @list_: list to peek at 1024 * 1025 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1026 * be careful with this one. A peek leaves the buffer on the 1027 * list and someone else may run off with it. You must hold 1028 * the appropriate locks or have a private queue to do this. 1029 * 1030 * Returns %NULL for an empty list or a pointer to the tail element. 1031 * The reference count is not incremented and the reference is therefore 1032 * volatile. Use with caution. 1033 */ 1034static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1035{ 1036 struct sk_buff *skb = list_->prev; 1037 1038 if (skb == (struct sk_buff *)list_) 1039 skb = NULL; 1040 return skb; 1041 1042} 1043 1044/** 1045 * skb_queue_len - get queue length 1046 * @list_: list to measure 1047 * 1048 * Return the length of an &sk_buff queue. 1049 */ 1050static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1051{ 1052 return list_->qlen; 1053} 1054 1055/** 1056 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1057 * @list: queue to initialize 1058 * 1059 * This initializes only the list and queue length aspects of 1060 * an sk_buff_head object. This allows to initialize the list 1061 * aspects of an sk_buff_head without reinitializing things like 1062 * the spinlock. It can also be used for on-stack sk_buff_head 1063 * objects where the spinlock is known to not be used. 1064 */ 1065static inline void __skb_queue_head_init(struct sk_buff_head *list) 1066{ 1067 list->prev = list->next = (struct sk_buff *)list; 1068 list->qlen = 0; 1069} 1070 1071/* 1072 * This function creates a split out lock class for each invocation; 1073 * this is needed for now since a whole lot of users of the skb-queue 1074 * infrastructure in drivers have different locking usage (in hardirq) 1075 * than the networking core (in softirq only). In the long run either the 1076 * network layer or drivers should need annotation to consolidate the 1077 * main types of usage into 3 classes. 1078 */ 1079static inline void skb_queue_head_init(struct sk_buff_head *list) 1080{ 1081 spin_lock_init(&list->lock); 1082 __skb_queue_head_init(list); 1083} 1084 1085static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1086 struct lock_class_key *class) 1087{ 1088 skb_queue_head_init(list); 1089 lockdep_set_class(&list->lock, class); 1090} 1091 1092/* 1093 * Insert an sk_buff on a list. 1094 * 1095 * The "__skb_xxxx()" functions are the non-atomic ones that 1096 * can only be called with interrupts disabled. 1097 */ 1098extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 1099static inline void __skb_insert(struct sk_buff *newsk, 1100 struct sk_buff *prev, struct sk_buff *next, 1101 struct sk_buff_head *list) 1102{ 1103 newsk->next = next; 1104 newsk->prev = prev; 1105 next->prev = prev->next = newsk; 1106 list->qlen++; 1107} 1108 1109static inline void __skb_queue_splice(const struct sk_buff_head *list, 1110 struct sk_buff *prev, 1111 struct sk_buff *next) 1112{ 1113 struct sk_buff *first = list->next; 1114 struct sk_buff *last = list->prev; 1115 1116 first->prev = prev; 1117 prev->next = first; 1118 1119 last->next = next; 1120 next->prev = last; 1121} 1122 1123/** 1124 * skb_queue_splice - join two skb lists, this is designed for stacks 1125 * @list: the new list to add 1126 * @head: the place to add it in the first list 1127 */ 1128static inline void skb_queue_splice(const struct sk_buff_head *list, 1129 struct sk_buff_head *head) 1130{ 1131 if (!skb_queue_empty(list)) { 1132 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1133 head->qlen += list->qlen; 1134 } 1135} 1136 1137/** 1138 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1139 * @list: the new list to add 1140 * @head: the place to add it in the first list 1141 * 1142 * The list at @list is reinitialised 1143 */ 1144static inline void skb_queue_splice_init(struct sk_buff_head *list, 1145 struct sk_buff_head *head) 1146{ 1147 if (!skb_queue_empty(list)) { 1148 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1149 head->qlen += list->qlen; 1150 __skb_queue_head_init(list); 1151 } 1152} 1153 1154/** 1155 * skb_queue_splice_tail - join two skb lists, each list being a queue 1156 * @list: the new list to add 1157 * @head: the place to add it in the first list 1158 */ 1159static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1160 struct sk_buff_head *head) 1161{ 1162 if (!skb_queue_empty(list)) { 1163 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1164 head->qlen += list->qlen; 1165 } 1166} 1167 1168/** 1169 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1170 * @list: the new list to add 1171 * @head: the place to add it in the first list 1172 * 1173 * Each of the lists is a queue. 1174 * The list at @list is reinitialised 1175 */ 1176static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1177 struct sk_buff_head *head) 1178{ 1179 if (!skb_queue_empty(list)) { 1180 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1181 head->qlen += list->qlen; 1182 __skb_queue_head_init(list); 1183 } 1184} 1185 1186/** 1187 * __skb_queue_after - queue a buffer at the list head 1188 * @list: list to use 1189 * @prev: place after this buffer 1190 * @newsk: buffer to queue 1191 * 1192 * Queue a buffer int the middle of a list. This function takes no locks 1193 * and you must therefore hold required locks before calling it. 1194 * 1195 * A buffer cannot be placed on two lists at the same time. 1196 */ 1197static inline void __skb_queue_after(struct sk_buff_head *list, 1198 struct sk_buff *prev, 1199 struct sk_buff *newsk) 1200{ 1201 __skb_insert(newsk, prev, prev->next, list); 1202} 1203 1204extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1205 struct sk_buff_head *list); 1206 1207static inline void __skb_queue_before(struct sk_buff_head *list, 1208 struct sk_buff *next, 1209 struct sk_buff *newsk) 1210{ 1211 __skb_insert(newsk, next->prev, next, list); 1212} 1213 1214/** 1215 * __skb_queue_head - queue a buffer at the list head 1216 * @list: list to use 1217 * @newsk: buffer to queue 1218 * 1219 * Queue a buffer at the start of a list. This function takes no locks 1220 * and you must therefore hold required locks before calling it. 1221 * 1222 * A buffer cannot be placed on two lists at the same time. 1223 */ 1224extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1225static inline void __skb_queue_head(struct sk_buff_head *list, 1226 struct sk_buff *newsk) 1227{ 1228 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1229} 1230 1231/** 1232 * __skb_queue_tail - queue a buffer at the list tail 1233 * @list: list to use 1234 * @newsk: buffer to queue 1235 * 1236 * Queue a buffer at the end of a list. This function takes no locks 1237 * and you must therefore hold required locks before calling it. 1238 * 1239 * A buffer cannot be placed on two lists at the same time. 1240 */ 1241extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1242static inline void __skb_queue_tail(struct sk_buff_head *list, 1243 struct sk_buff *newsk) 1244{ 1245 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1246} 1247 1248/* 1249 * remove sk_buff from list. _Must_ be called atomically, and with 1250 * the list known.. 1251 */ 1252extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1253static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1254{ 1255 struct sk_buff *next, *prev; 1256 1257 list->qlen--; 1258 next = skb->next; 1259 prev = skb->prev; 1260 skb->next = skb->prev = NULL; 1261 next->prev = prev; 1262 prev->next = next; 1263} 1264 1265/** 1266 * __skb_dequeue - remove from the head of the queue 1267 * @list: list to dequeue from 1268 * 1269 * Remove the head of the list. This function does not take any locks 1270 * so must be used with appropriate locks held only. The head item is 1271 * returned or %NULL if the list is empty. 1272 */ 1273extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1274static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1275{ 1276 struct sk_buff *skb = skb_peek(list); 1277 if (skb) 1278 __skb_unlink(skb, list); 1279 return skb; 1280} 1281 1282/** 1283 * __skb_dequeue_tail - remove from the tail of the queue 1284 * @list: list to dequeue from 1285 * 1286 * Remove the tail of the list. This function does not take any locks 1287 * so must be used with appropriate locks held only. The tail item is 1288 * returned or %NULL if the list is empty. 1289 */ 1290extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1291static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1292{ 1293 struct sk_buff *skb = skb_peek_tail(list); 1294 if (skb) 1295 __skb_unlink(skb, list); 1296 return skb; 1297} 1298 1299 1300static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1301{ 1302 return skb->data_len; 1303} 1304 1305static inline unsigned int skb_headlen(const struct sk_buff *skb) 1306{ 1307 return skb->len - skb->data_len; 1308} 1309 1310static inline int skb_pagelen(const struct sk_buff *skb) 1311{ 1312 int i, len = 0; 1313 1314 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1315 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1316 return len + skb_headlen(skb); 1317} 1318 1319/** 1320 * __skb_fill_page_desc - initialise a paged fragment in an skb 1321 * @skb: buffer containing fragment to be initialised 1322 * @i: paged fragment index to initialise 1323 * @page: the page to use for this fragment 1324 * @off: the offset to the data with @page 1325 * @size: the length of the data 1326 * 1327 * Initialises the @i'th fragment of @skb to point to &size bytes at 1328 * offset @off within @page. 1329 * 1330 * Does not take any additional reference on the fragment. 1331 */ 1332static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1333 struct page *page, int off, int size) 1334{ 1335 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1336 1337 /* 1338 * Propagate page->pfmemalloc to the skb if we can. The problem is 1339 * that not all callers have unique ownership of the page. If 1340 * pfmemalloc is set, we check the mapping as a mapping implies 1341 * page->index is set (index and pfmemalloc share space). 1342 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1343 * do not lose pfmemalloc information as the pages would not be 1344 * allocated using __GFP_MEMALLOC. 1345 */ 1346 frag->page.p = page; 1347 frag->page_offset = off; 1348 skb_frag_size_set(frag, size); 1349 1350 page = compound_head(page); 1351 if (page->pfmemalloc && !page->mapping) 1352 skb->pfmemalloc = true; 1353} 1354 1355/** 1356 * skb_fill_page_desc - initialise a paged fragment in an skb 1357 * @skb: buffer containing fragment to be initialised 1358 * @i: paged fragment index to initialise 1359 * @page: the page to use for this fragment 1360 * @off: the offset to the data with @page 1361 * @size: the length of the data 1362 * 1363 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1364 * @skb to point to &size bytes at offset @off within @page. In 1365 * addition updates @skb such that @i is the last fragment. 1366 * 1367 * Does not take any additional reference on the fragment. 1368 */ 1369static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1370 struct page *page, int off, int size) 1371{ 1372 __skb_fill_page_desc(skb, i, page, off, size); 1373 skb_shinfo(skb)->nr_frags = i + 1; 1374} 1375 1376extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1377 int off, int size, unsigned int truesize); 1378 1379#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1380#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1381#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1382 1383#ifdef NET_SKBUFF_DATA_USES_OFFSET 1384static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1385{ 1386 return skb->head + skb->tail; 1387} 1388 1389static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1390{ 1391 skb->tail = skb->data - skb->head; 1392} 1393 1394static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1395{ 1396 skb_reset_tail_pointer(skb); 1397 skb->tail += offset; 1398} 1399 1400#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1401static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1402{ 1403 return skb->tail; 1404} 1405 1406static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1407{ 1408 skb->tail = skb->data; 1409} 1410 1411static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1412{ 1413 skb->tail = skb->data + offset; 1414} 1415 1416#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1417 1418/* 1419 * Add data to an sk_buff 1420 */ 1421extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1422static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1423{ 1424 unsigned char *tmp = skb_tail_pointer(skb); 1425 SKB_LINEAR_ASSERT(skb); 1426 skb->tail += len; 1427 skb->len += len; 1428 return tmp; 1429} 1430 1431extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1432static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1433{ 1434 skb->data -= len; 1435 skb->len += len; 1436 return skb->data; 1437} 1438 1439extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1440static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1441{ 1442 skb->len -= len; 1443 BUG_ON(skb->len < skb->data_len); 1444 return skb->data += len; 1445} 1446 1447static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1448{ 1449 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1450} 1451 1452extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1453 1454static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1455{ 1456 if (len > skb_headlen(skb) && 1457 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1458 return NULL; 1459 skb->len -= len; 1460 return skb->data += len; 1461} 1462 1463static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1464{ 1465 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1466} 1467 1468static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1469{ 1470 if (likely(len <= skb_headlen(skb))) 1471 return 1; 1472 if (unlikely(len > skb->len)) 1473 return 0; 1474 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1475} 1476 1477/** 1478 * skb_headroom - bytes at buffer head 1479 * @skb: buffer to check 1480 * 1481 * Return the number of bytes of free space at the head of an &sk_buff. 1482 */ 1483static inline unsigned int skb_headroom(const struct sk_buff *skb) 1484{ 1485 return skb->data - skb->head; 1486} 1487 1488/** 1489 * skb_tailroom - bytes at buffer end 1490 * @skb: buffer to check 1491 * 1492 * Return the number of bytes of free space at the tail of an sk_buff 1493 */ 1494static inline int skb_tailroom(const struct sk_buff *skb) 1495{ 1496 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1497} 1498 1499/** 1500 * skb_availroom - bytes at buffer end 1501 * @skb: buffer to check 1502 * 1503 * Return the number of bytes of free space at the tail of an sk_buff 1504 * allocated by sk_stream_alloc() 1505 */ 1506static inline int skb_availroom(const struct sk_buff *skb) 1507{ 1508 if (skb_is_nonlinear(skb)) 1509 return 0; 1510 1511 return skb->end - skb->tail - skb->reserved_tailroom; 1512} 1513 1514/** 1515 * skb_reserve - adjust headroom 1516 * @skb: buffer to alter 1517 * @len: bytes to move 1518 * 1519 * Increase the headroom of an empty &sk_buff by reducing the tail 1520 * room. This is only allowed for an empty buffer. 1521 */ 1522static inline void skb_reserve(struct sk_buff *skb, int len) 1523{ 1524 skb->data += len; 1525 skb->tail += len; 1526} 1527 1528static inline void skb_reset_inner_headers(struct sk_buff *skb) 1529{ 1530 skb->inner_mac_header = skb->mac_header; 1531 skb->inner_network_header = skb->network_header; 1532 skb->inner_transport_header = skb->transport_header; 1533} 1534 1535static inline void skb_reset_mac_len(struct sk_buff *skb) 1536{ 1537 skb->mac_len = skb->network_header - skb->mac_header; 1538} 1539 1540static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1541 *skb) 1542{ 1543 return skb->head + skb->inner_transport_header; 1544} 1545 1546static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1547{ 1548 skb->inner_transport_header = skb->data - skb->head; 1549} 1550 1551static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1552 const int offset) 1553{ 1554 skb_reset_inner_transport_header(skb); 1555 skb->inner_transport_header += offset; 1556} 1557 1558static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1559{ 1560 return skb->head + skb->inner_network_header; 1561} 1562 1563static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1564{ 1565 skb->inner_network_header = skb->data - skb->head; 1566} 1567 1568static inline void skb_set_inner_network_header(struct sk_buff *skb, 1569 const int offset) 1570{ 1571 skb_reset_inner_network_header(skb); 1572 skb->inner_network_header += offset; 1573} 1574 1575static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1576{ 1577 return skb->head + skb->inner_mac_header; 1578} 1579 1580static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1581{ 1582 skb->inner_mac_header = skb->data - skb->head; 1583} 1584 1585static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1586 const int offset) 1587{ 1588 skb_reset_inner_mac_header(skb); 1589 skb->inner_mac_header += offset; 1590} 1591static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1592{ 1593 return skb->transport_header != (typeof(skb->transport_header))~0U; 1594} 1595 1596static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1597{ 1598 return skb->head + skb->transport_header; 1599} 1600 1601static inline void skb_reset_transport_header(struct sk_buff *skb) 1602{ 1603 skb->transport_header = skb->data - skb->head; 1604} 1605 1606static inline void skb_set_transport_header(struct sk_buff *skb, 1607 const int offset) 1608{ 1609 skb_reset_transport_header(skb); 1610 skb->transport_header += offset; 1611} 1612 1613static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1614{ 1615 return skb->head + skb->network_header; 1616} 1617 1618static inline void skb_reset_network_header(struct sk_buff *skb) 1619{ 1620 skb->network_header = skb->data - skb->head; 1621} 1622 1623static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1624{ 1625 skb_reset_network_header(skb); 1626 skb->network_header += offset; 1627} 1628 1629static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1630{ 1631 return skb->head + skb->mac_header; 1632} 1633 1634static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1635{ 1636 return skb->mac_header != (typeof(skb->mac_header))~0U; 1637} 1638 1639static inline void skb_reset_mac_header(struct sk_buff *skb) 1640{ 1641 skb->mac_header = skb->data - skb->head; 1642} 1643 1644static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1645{ 1646 skb_reset_mac_header(skb); 1647 skb->mac_header += offset; 1648} 1649 1650static inline void skb_probe_transport_header(struct sk_buff *skb, 1651 const int offset_hint) 1652{ 1653 struct flow_keys keys; 1654 1655 if (skb_transport_header_was_set(skb)) 1656 return; 1657 else if (skb_flow_dissect(skb, &keys)) 1658 skb_set_transport_header(skb, keys.thoff); 1659 else 1660 skb_set_transport_header(skb, offset_hint); 1661} 1662 1663static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1664{ 1665 if (skb_mac_header_was_set(skb)) { 1666 const unsigned char *old_mac = skb_mac_header(skb); 1667 1668 skb_set_mac_header(skb, -skb->mac_len); 1669 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1670 } 1671} 1672 1673static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1674{ 1675 return skb->csum_start - skb_headroom(skb); 1676} 1677 1678static inline int skb_transport_offset(const struct sk_buff *skb) 1679{ 1680 return skb_transport_header(skb) - skb->data; 1681} 1682 1683static inline u32 skb_network_header_len(const struct sk_buff *skb) 1684{ 1685 return skb->transport_header - skb->network_header; 1686} 1687 1688static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1689{ 1690 return skb->inner_transport_header - skb->inner_network_header; 1691} 1692 1693static inline int skb_network_offset(const struct sk_buff *skb) 1694{ 1695 return skb_network_header(skb) - skb->data; 1696} 1697 1698static inline int skb_inner_network_offset(const struct sk_buff *skb) 1699{ 1700 return skb_inner_network_header(skb) - skb->data; 1701} 1702 1703static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1704{ 1705 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1706} 1707 1708/* 1709 * CPUs often take a performance hit when accessing unaligned memory 1710 * locations. The actual performance hit varies, it can be small if the 1711 * hardware handles it or large if we have to take an exception and fix it 1712 * in software. 1713 * 1714 * Since an ethernet header is 14 bytes network drivers often end up with 1715 * the IP header at an unaligned offset. The IP header can be aligned by 1716 * shifting the start of the packet by 2 bytes. Drivers should do this 1717 * with: 1718 * 1719 * skb_reserve(skb, NET_IP_ALIGN); 1720 * 1721 * The downside to this alignment of the IP header is that the DMA is now 1722 * unaligned. On some architectures the cost of an unaligned DMA is high 1723 * and this cost outweighs the gains made by aligning the IP header. 1724 * 1725 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1726 * to be overridden. 1727 */ 1728#ifndef NET_IP_ALIGN 1729#define NET_IP_ALIGN 2 1730#endif 1731 1732/* 1733 * The networking layer reserves some headroom in skb data (via 1734 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1735 * the header has to grow. In the default case, if the header has to grow 1736 * 32 bytes or less we avoid the reallocation. 1737 * 1738 * Unfortunately this headroom changes the DMA alignment of the resulting 1739 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1740 * on some architectures. An architecture can override this value, 1741 * perhaps setting it to a cacheline in size (since that will maintain 1742 * cacheline alignment of the DMA). It must be a power of 2. 1743 * 1744 * Various parts of the networking layer expect at least 32 bytes of 1745 * headroom, you should not reduce this. 1746 * 1747 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1748 * to reduce average number of cache lines per packet. 1749 * get_rps_cpus() for example only access one 64 bytes aligned block : 1750 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1751 */ 1752#ifndef NET_SKB_PAD 1753#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1754#endif 1755 1756extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1757 1758static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1759{ 1760 if (unlikely(skb_is_nonlinear(skb))) { 1761 WARN_ON(1); 1762 return; 1763 } 1764 skb->len = len; 1765 skb_set_tail_pointer(skb, len); 1766} 1767 1768extern void skb_trim(struct sk_buff *skb, unsigned int len); 1769 1770static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1771{ 1772 if (skb->data_len) 1773 return ___pskb_trim(skb, len); 1774 __skb_trim(skb, len); 1775 return 0; 1776} 1777 1778static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1779{ 1780 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1781} 1782 1783/** 1784 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1785 * @skb: buffer to alter 1786 * @len: new length 1787 * 1788 * This is identical to pskb_trim except that the caller knows that 1789 * the skb is not cloned so we should never get an error due to out- 1790 * of-memory. 1791 */ 1792static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1793{ 1794 int err = pskb_trim(skb, len); 1795 BUG_ON(err); 1796} 1797 1798/** 1799 * skb_orphan - orphan a buffer 1800 * @skb: buffer to orphan 1801 * 1802 * If a buffer currently has an owner then we call the owner's 1803 * destructor function and make the @skb unowned. The buffer continues 1804 * to exist but is no longer charged to its former owner. 1805 */ 1806static inline void skb_orphan(struct sk_buff *skb) 1807{ 1808 if (skb->destructor) 1809 skb->destructor(skb); 1810 skb->destructor = NULL; 1811 skb->sk = NULL; 1812} 1813 1814/** 1815 * skb_orphan_frags - orphan the frags contained in a buffer 1816 * @skb: buffer to orphan frags from 1817 * @gfp_mask: allocation mask for replacement pages 1818 * 1819 * For each frag in the SKB which needs a destructor (i.e. has an 1820 * owner) create a copy of that frag and release the original 1821 * page by calling the destructor. 1822 */ 1823static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1824{ 1825 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1826 return 0; 1827 return skb_copy_ubufs(skb, gfp_mask); 1828} 1829 1830/** 1831 * __skb_queue_purge - empty a list 1832 * @list: list to empty 1833 * 1834 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1835 * the list and one reference dropped. This function does not take the 1836 * list lock and the caller must hold the relevant locks to use it. 1837 */ 1838extern void skb_queue_purge(struct sk_buff_head *list); 1839static inline void __skb_queue_purge(struct sk_buff_head *list) 1840{ 1841 struct sk_buff *skb; 1842 while ((skb = __skb_dequeue(list)) != NULL) 1843 kfree_skb(skb); 1844} 1845 1846#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 1847#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 1848#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 1849 1850extern void *netdev_alloc_frag(unsigned int fragsz); 1851 1852extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1853 unsigned int length, 1854 gfp_t gfp_mask); 1855 1856/** 1857 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1858 * @dev: network device to receive on 1859 * @length: length to allocate 1860 * 1861 * Allocate a new &sk_buff and assign it a usage count of one. The 1862 * buffer has unspecified headroom built in. Users should allocate 1863 * the headroom they think they need without accounting for the 1864 * built in space. The built in space is used for optimisations. 1865 * 1866 * %NULL is returned if there is no free memory. Although this function 1867 * allocates memory it can be called from an interrupt. 1868 */ 1869static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1870 unsigned int length) 1871{ 1872 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1873} 1874 1875/* legacy helper around __netdev_alloc_skb() */ 1876static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1877 gfp_t gfp_mask) 1878{ 1879 return __netdev_alloc_skb(NULL, length, gfp_mask); 1880} 1881 1882/* legacy helper around netdev_alloc_skb() */ 1883static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1884{ 1885 return netdev_alloc_skb(NULL, length); 1886} 1887 1888 1889static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1890 unsigned int length, gfp_t gfp) 1891{ 1892 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1893 1894 if (NET_IP_ALIGN && skb) 1895 skb_reserve(skb, NET_IP_ALIGN); 1896 return skb; 1897} 1898 1899static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1900 unsigned int length) 1901{ 1902 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1903} 1904 1905/* 1906 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data 1907 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1908 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1909 * @order: size of the allocation 1910 * 1911 * Allocate a new page. 1912 * 1913 * %NULL is returned if there is no free memory. 1914*/ 1915static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 1916 struct sk_buff *skb, 1917 unsigned int order) 1918{ 1919 struct page *page; 1920 1921 gfp_mask |= __GFP_COLD; 1922 1923 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1924 gfp_mask |= __GFP_MEMALLOC; 1925 1926 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 1927 if (skb && page && page->pfmemalloc) 1928 skb->pfmemalloc = true; 1929 1930 return page; 1931} 1932 1933/** 1934 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 1935 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1936 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1937 * 1938 * Allocate a new page. 1939 * 1940 * %NULL is returned if there is no free memory. 1941 */ 1942static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 1943 struct sk_buff *skb) 1944{ 1945 return __skb_alloc_pages(gfp_mask, skb, 0); 1946} 1947 1948/** 1949 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 1950 * @page: The page that was allocated from skb_alloc_page 1951 * @skb: The skb that may need pfmemalloc set 1952 */ 1953static inline void skb_propagate_pfmemalloc(struct page *page, 1954 struct sk_buff *skb) 1955{ 1956 if (page && page->pfmemalloc) 1957 skb->pfmemalloc = true; 1958} 1959 1960/** 1961 * skb_frag_page - retrieve the page refered to by a paged fragment 1962 * @frag: the paged fragment 1963 * 1964 * Returns the &struct page associated with @frag. 1965 */ 1966static inline struct page *skb_frag_page(const skb_frag_t *frag) 1967{ 1968 return frag->page.p; 1969} 1970 1971/** 1972 * __skb_frag_ref - take an addition reference on a paged fragment. 1973 * @frag: the paged fragment 1974 * 1975 * Takes an additional reference on the paged fragment @frag. 1976 */ 1977static inline void __skb_frag_ref(skb_frag_t *frag) 1978{ 1979 get_page(skb_frag_page(frag)); 1980} 1981 1982/** 1983 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1984 * @skb: the buffer 1985 * @f: the fragment offset. 1986 * 1987 * Takes an additional reference on the @f'th paged fragment of @skb. 1988 */ 1989static inline void skb_frag_ref(struct sk_buff *skb, int f) 1990{ 1991 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1992} 1993 1994/** 1995 * __skb_frag_unref - release a reference on a paged fragment. 1996 * @frag: the paged fragment 1997 * 1998 * Releases a reference on the paged fragment @frag. 1999 */ 2000static inline void __skb_frag_unref(skb_frag_t *frag) 2001{ 2002 put_page(skb_frag_page(frag)); 2003} 2004 2005/** 2006 * skb_frag_unref - release a reference on a paged fragment of an skb. 2007 * @skb: the buffer 2008 * @f: the fragment offset 2009 * 2010 * Releases a reference on the @f'th paged fragment of @skb. 2011 */ 2012static inline void skb_frag_unref(struct sk_buff *skb, int f) 2013{ 2014 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2015} 2016 2017/** 2018 * skb_frag_address - gets the address of the data contained in a paged fragment 2019 * @frag: the paged fragment buffer 2020 * 2021 * Returns the address of the data within @frag. The page must already 2022 * be mapped. 2023 */ 2024static inline void *skb_frag_address(const skb_frag_t *frag) 2025{ 2026 return page_address(skb_frag_page(frag)) + frag->page_offset; 2027} 2028 2029/** 2030 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2031 * @frag: the paged fragment buffer 2032 * 2033 * Returns the address of the data within @frag. Checks that the page 2034 * is mapped and returns %NULL otherwise. 2035 */ 2036static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2037{ 2038 void *ptr = page_address(skb_frag_page(frag)); 2039 if (unlikely(!ptr)) 2040 return NULL; 2041 2042 return ptr + frag->page_offset; 2043} 2044 2045/** 2046 * __skb_frag_set_page - sets the page contained in a paged fragment 2047 * @frag: the paged fragment 2048 * @page: the page to set 2049 * 2050 * Sets the fragment @frag to contain @page. 2051 */ 2052static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2053{ 2054 frag->page.p = page; 2055} 2056 2057/** 2058 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2059 * @skb: the buffer 2060 * @f: the fragment offset 2061 * @page: the page to set 2062 * 2063 * Sets the @f'th fragment of @skb to contain @page. 2064 */ 2065static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2066 struct page *page) 2067{ 2068 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2069} 2070 2071/** 2072 * skb_frag_dma_map - maps a paged fragment via the DMA API 2073 * @dev: the device to map the fragment to 2074 * @frag: the paged fragment to map 2075 * @offset: the offset within the fragment (starting at the 2076 * fragment's own offset) 2077 * @size: the number of bytes to map 2078 * @dir: the direction of the mapping (%PCI_DMA_*) 2079 * 2080 * Maps the page associated with @frag to @device. 2081 */ 2082static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2083 const skb_frag_t *frag, 2084 size_t offset, size_t size, 2085 enum dma_data_direction dir) 2086{ 2087 return dma_map_page(dev, skb_frag_page(frag), 2088 frag->page_offset + offset, size, dir); 2089} 2090 2091static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2092 gfp_t gfp_mask) 2093{ 2094 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2095} 2096 2097/** 2098 * skb_clone_writable - is the header of a clone writable 2099 * @skb: buffer to check 2100 * @len: length up to which to write 2101 * 2102 * Returns true if modifying the header part of the cloned buffer 2103 * does not requires the data to be copied. 2104 */ 2105static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2106{ 2107 return !skb_header_cloned(skb) && 2108 skb_headroom(skb) + len <= skb->hdr_len; 2109} 2110 2111static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2112 int cloned) 2113{ 2114 int delta = 0; 2115 2116 if (headroom > skb_headroom(skb)) 2117 delta = headroom - skb_headroom(skb); 2118 2119 if (delta || cloned) 2120 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2121 GFP_ATOMIC); 2122 return 0; 2123} 2124 2125/** 2126 * skb_cow - copy header of skb when it is required 2127 * @skb: buffer to cow 2128 * @headroom: needed headroom 2129 * 2130 * If the skb passed lacks sufficient headroom or its data part 2131 * is shared, data is reallocated. If reallocation fails, an error 2132 * is returned and original skb is not changed. 2133 * 2134 * The result is skb with writable area skb->head...skb->tail 2135 * and at least @headroom of space at head. 2136 */ 2137static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2138{ 2139 return __skb_cow(skb, headroom, skb_cloned(skb)); 2140} 2141 2142/** 2143 * skb_cow_head - skb_cow but only making the head writable 2144 * @skb: buffer to cow 2145 * @headroom: needed headroom 2146 * 2147 * This function is identical to skb_cow except that we replace the 2148 * skb_cloned check by skb_header_cloned. It should be used when 2149 * you only need to push on some header and do not need to modify 2150 * the data. 2151 */ 2152static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2153{ 2154 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2155} 2156 2157/** 2158 * skb_padto - pad an skbuff up to a minimal size 2159 * @skb: buffer to pad 2160 * @len: minimal length 2161 * 2162 * Pads up a buffer to ensure the trailing bytes exist and are 2163 * blanked. If the buffer already contains sufficient data it 2164 * is untouched. Otherwise it is extended. Returns zero on 2165 * success. The skb is freed on error. 2166 */ 2167 2168static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2169{ 2170 unsigned int size = skb->len; 2171 if (likely(size >= len)) 2172 return 0; 2173 return skb_pad(skb, len - size); 2174} 2175 2176static inline int skb_add_data(struct sk_buff *skb, 2177 char __user *from, int copy) 2178{ 2179 const int off = skb->len; 2180 2181 if (skb->ip_summed == CHECKSUM_NONE) { 2182 int err = 0; 2183 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2184 copy, 0, &err); 2185 if (!err) { 2186 skb->csum = csum_block_add(skb->csum, csum, off); 2187 return 0; 2188 } 2189 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2190 return 0; 2191 2192 __skb_trim(skb, off); 2193 return -EFAULT; 2194} 2195 2196static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2197 const struct page *page, int off) 2198{ 2199 if (i) { 2200 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2201 2202 return page == skb_frag_page(frag) && 2203 off == frag->page_offset + skb_frag_size(frag); 2204 } 2205 return false; 2206} 2207 2208static inline int __skb_linearize(struct sk_buff *skb) 2209{ 2210 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2211} 2212 2213/** 2214 * skb_linearize - convert paged skb to linear one 2215 * @skb: buffer to linarize 2216 * 2217 * If there is no free memory -ENOMEM is returned, otherwise zero 2218 * is returned and the old skb data released. 2219 */ 2220static inline int skb_linearize(struct sk_buff *skb) 2221{ 2222 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2223} 2224 2225/** 2226 * skb_has_shared_frag - can any frag be overwritten 2227 * @skb: buffer to test 2228 * 2229 * Return true if the skb has at least one frag that might be modified 2230 * by an external entity (as in vmsplice()/sendfile()) 2231 */ 2232static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2233{ 2234 return skb_is_nonlinear(skb) && 2235 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2236} 2237 2238/** 2239 * skb_linearize_cow - make sure skb is linear and writable 2240 * @skb: buffer to process 2241 * 2242 * If there is no free memory -ENOMEM is returned, otherwise zero 2243 * is returned and the old skb data released. 2244 */ 2245static inline int skb_linearize_cow(struct sk_buff *skb) 2246{ 2247 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2248 __skb_linearize(skb) : 0; 2249} 2250 2251/** 2252 * skb_postpull_rcsum - update checksum for received skb after pull 2253 * @skb: buffer to update 2254 * @start: start of data before pull 2255 * @len: length of data pulled 2256 * 2257 * After doing a pull on a received packet, you need to call this to 2258 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2259 * CHECKSUM_NONE so that it can be recomputed from scratch. 2260 */ 2261 2262static inline void skb_postpull_rcsum(struct sk_buff *skb, 2263 const void *start, unsigned int len) 2264{ 2265 if (skb->ip_summed == CHECKSUM_COMPLETE) 2266 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2267} 2268 2269unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2270 2271/** 2272 * pskb_trim_rcsum - trim received skb and update checksum 2273 * @skb: buffer to trim 2274 * @len: new length 2275 * 2276 * This is exactly the same as pskb_trim except that it ensures the 2277 * checksum of received packets are still valid after the operation. 2278 */ 2279 2280static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2281{ 2282 if (likely(len >= skb->len)) 2283 return 0; 2284 if (skb->ip_summed == CHECKSUM_COMPLETE) 2285 skb->ip_summed = CHECKSUM_NONE; 2286 return __pskb_trim(skb, len); 2287} 2288 2289#define skb_queue_walk(queue, skb) \ 2290 for (skb = (queue)->next; \ 2291 skb != (struct sk_buff *)(queue); \ 2292 skb = skb->next) 2293 2294#define skb_queue_walk_safe(queue, skb, tmp) \ 2295 for (skb = (queue)->next, tmp = skb->next; \ 2296 skb != (struct sk_buff *)(queue); \ 2297 skb = tmp, tmp = skb->next) 2298 2299#define skb_queue_walk_from(queue, skb) \ 2300 for (; skb != (struct sk_buff *)(queue); \ 2301 skb = skb->next) 2302 2303#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2304 for (tmp = skb->next; \ 2305 skb != (struct sk_buff *)(queue); \ 2306 skb = tmp, tmp = skb->next) 2307 2308#define skb_queue_reverse_walk(queue, skb) \ 2309 for (skb = (queue)->prev; \ 2310 skb != (struct sk_buff *)(queue); \ 2311 skb = skb->prev) 2312 2313#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2314 for (skb = (queue)->prev, tmp = skb->prev; \ 2315 skb != (struct sk_buff *)(queue); \ 2316 skb = tmp, tmp = skb->prev) 2317 2318#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2319 for (tmp = skb->prev; \ 2320 skb != (struct sk_buff *)(queue); \ 2321 skb = tmp, tmp = skb->prev) 2322 2323static inline bool skb_has_frag_list(const struct sk_buff *skb) 2324{ 2325 return skb_shinfo(skb)->frag_list != NULL; 2326} 2327 2328static inline void skb_frag_list_init(struct sk_buff *skb) 2329{ 2330 skb_shinfo(skb)->frag_list = NULL; 2331} 2332 2333static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2334{ 2335 frag->next = skb_shinfo(skb)->frag_list; 2336 skb_shinfo(skb)->frag_list = frag; 2337} 2338 2339#define skb_walk_frags(skb, iter) \ 2340 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2341 2342extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2343 int *peeked, int *off, int *err); 2344extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2345 int noblock, int *err); 2346extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2347 struct poll_table_struct *wait); 2348extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2349 int offset, struct iovec *to, 2350 int size); 2351extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2352 int hlen, 2353 struct iovec *iov); 2354extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2355 int offset, 2356 const struct iovec *from, 2357 int from_offset, 2358 int len); 2359extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2360 int offset, 2361 const struct iovec *to, 2362 int to_offset, 2363 int size); 2364extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2365extern void skb_free_datagram_locked(struct sock *sk, 2366 struct sk_buff *skb); 2367extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2368 unsigned int flags); 2369extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2370 int len, __wsum csum); 2371extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2372 void *to, int len); 2373extern int skb_store_bits(struct sk_buff *skb, int offset, 2374 const void *from, int len); 2375extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2376 int offset, u8 *to, int len, 2377 __wsum csum); 2378extern int skb_splice_bits(struct sk_buff *skb, 2379 unsigned int offset, 2380 struct pipe_inode_info *pipe, 2381 unsigned int len, 2382 unsigned int flags); 2383extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2384extern void skb_split(struct sk_buff *skb, 2385 struct sk_buff *skb1, const u32 len); 2386extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2387 int shiftlen); 2388extern void skb_scrub_packet(struct sk_buff *skb); 2389 2390extern struct sk_buff *skb_segment(struct sk_buff *skb, 2391 netdev_features_t features); 2392 2393static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2394 int len, void *buffer) 2395{ 2396 int hlen = skb_headlen(skb); 2397 2398 if (hlen - offset >= len) 2399 return skb->data + offset; 2400 2401 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2402 return NULL; 2403 2404 return buffer; 2405} 2406 2407static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2408 void *to, 2409 const unsigned int len) 2410{ 2411 memcpy(to, skb->data, len); 2412} 2413 2414static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2415 const int offset, void *to, 2416 const unsigned int len) 2417{ 2418 memcpy(to, skb->data + offset, len); 2419} 2420 2421static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2422 const void *from, 2423 const unsigned int len) 2424{ 2425 memcpy(skb->data, from, len); 2426} 2427 2428static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2429 const int offset, 2430 const void *from, 2431 const unsigned int len) 2432{ 2433 memcpy(skb->data + offset, from, len); 2434} 2435 2436extern void skb_init(void); 2437 2438static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2439{ 2440 return skb->tstamp; 2441} 2442 2443/** 2444 * skb_get_timestamp - get timestamp from a skb 2445 * @skb: skb to get stamp from 2446 * @stamp: pointer to struct timeval to store stamp in 2447 * 2448 * Timestamps are stored in the skb as offsets to a base timestamp. 2449 * This function converts the offset back to a struct timeval and stores 2450 * it in stamp. 2451 */ 2452static inline void skb_get_timestamp(const struct sk_buff *skb, 2453 struct timeval *stamp) 2454{ 2455 *stamp = ktime_to_timeval(skb->tstamp); 2456} 2457 2458static inline void skb_get_timestampns(const struct sk_buff *skb, 2459 struct timespec *stamp) 2460{ 2461 *stamp = ktime_to_timespec(skb->tstamp); 2462} 2463 2464static inline void __net_timestamp(struct sk_buff *skb) 2465{ 2466 skb->tstamp = ktime_get_real(); 2467} 2468 2469static inline ktime_t net_timedelta(ktime_t t) 2470{ 2471 return ktime_sub(ktime_get_real(), t); 2472} 2473 2474static inline ktime_t net_invalid_timestamp(void) 2475{ 2476 return ktime_set(0, 0); 2477} 2478 2479extern void skb_timestamping_init(void); 2480 2481#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2482 2483extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2484extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2485 2486#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2487 2488static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2489{ 2490} 2491 2492static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2493{ 2494 return false; 2495} 2496 2497#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2498 2499/** 2500 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2501 * 2502 * PHY drivers may accept clones of transmitted packets for 2503 * timestamping via their phy_driver.txtstamp method. These drivers 2504 * must call this function to return the skb back to the stack, with 2505 * or without a timestamp. 2506 * 2507 * @skb: clone of the the original outgoing packet 2508 * @hwtstamps: hardware time stamps, may be NULL if not available 2509 * 2510 */ 2511void skb_complete_tx_timestamp(struct sk_buff *skb, 2512 struct skb_shared_hwtstamps *hwtstamps); 2513 2514/** 2515 * skb_tstamp_tx - queue clone of skb with send time stamps 2516 * @orig_skb: the original outgoing packet 2517 * @hwtstamps: hardware time stamps, may be NULL if not available 2518 * 2519 * If the skb has a socket associated, then this function clones the 2520 * skb (thus sharing the actual data and optional structures), stores 2521 * the optional hardware time stamping information (if non NULL) or 2522 * generates a software time stamp (otherwise), then queues the clone 2523 * to the error queue of the socket. Errors are silently ignored. 2524 */ 2525extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2526 struct skb_shared_hwtstamps *hwtstamps); 2527 2528static inline void sw_tx_timestamp(struct sk_buff *skb) 2529{ 2530 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2531 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2532 skb_tstamp_tx(skb, NULL); 2533} 2534 2535/** 2536 * skb_tx_timestamp() - Driver hook for transmit timestamping 2537 * 2538 * Ethernet MAC Drivers should call this function in their hard_xmit() 2539 * function immediately before giving the sk_buff to the MAC hardware. 2540 * 2541 * @skb: A socket buffer. 2542 */ 2543static inline void skb_tx_timestamp(struct sk_buff *skb) 2544{ 2545 skb_clone_tx_timestamp(skb); 2546 sw_tx_timestamp(skb); 2547} 2548 2549/** 2550 * skb_complete_wifi_ack - deliver skb with wifi status 2551 * 2552 * @skb: the original outgoing packet 2553 * @acked: ack status 2554 * 2555 */ 2556void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2557 2558extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2559extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2560 2561static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2562{ 2563 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2564} 2565 2566/** 2567 * skb_checksum_complete - Calculate checksum of an entire packet 2568 * @skb: packet to process 2569 * 2570 * This function calculates the checksum over the entire packet plus 2571 * the value of skb->csum. The latter can be used to supply the 2572 * checksum of a pseudo header as used by TCP/UDP. It returns the 2573 * checksum. 2574 * 2575 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2576 * this function can be used to verify that checksum on received 2577 * packets. In that case the function should return zero if the 2578 * checksum is correct. In particular, this function will return zero 2579 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2580 * hardware has already verified the correctness of the checksum. 2581 */ 2582static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2583{ 2584 return skb_csum_unnecessary(skb) ? 2585 0 : __skb_checksum_complete(skb); 2586} 2587 2588#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2589extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2590static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2591{ 2592 if (nfct && atomic_dec_and_test(&nfct->use)) 2593 nf_conntrack_destroy(nfct); 2594} 2595static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2596{ 2597 if (nfct) 2598 atomic_inc(&nfct->use); 2599} 2600#endif 2601#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2602static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2603{ 2604 if (skb) 2605 atomic_inc(&skb->users); 2606} 2607static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2608{ 2609 if (skb) 2610 kfree_skb(skb); 2611} 2612#endif 2613#ifdef CONFIG_BRIDGE_NETFILTER 2614static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2615{ 2616 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2617 kfree(nf_bridge); 2618} 2619static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2620{ 2621 if (nf_bridge) 2622 atomic_inc(&nf_bridge->use); 2623} 2624#endif /* CONFIG_BRIDGE_NETFILTER */ 2625static inline void nf_reset(struct sk_buff *skb) 2626{ 2627#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2628 nf_conntrack_put(skb->nfct); 2629 skb->nfct = NULL; 2630#endif 2631#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2632 nf_conntrack_put_reasm(skb->nfct_reasm); 2633 skb->nfct_reasm = NULL; 2634#endif 2635#ifdef CONFIG_BRIDGE_NETFILTER 2636 nf_bridge_put(skb->nf_bridge); 2637 skb->nf_bridge = NULL; 2638#endif 2639} 2640 2641static inline void nf_reset_trace(struct sk_buff *skb) 2642{ 2643#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 2644 skb->nf_trace = 0; 2645#endif 2646} 2647 2648/* Note: This doesn't put any conntrack and bridge info in dst. */ 2649static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2650{ 2651#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2652 dst->nfct = src->nfct; 2653 nf_conntrack_get(src->nfct); 2654 dst->nfctinfo = src->nfctinfo; 2655#endif 2656#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2657 dst->nfct_reasm = src->nfct_reasm; 2658 nf_conntrack_get_reasm(src->nfct_reasm); 2659#endif 2660#ifdef CONFIG_BRIDGE_NETFILTER 2661 dst->nf_bridge = src->nf_bridge; 2662 nf_bridge_get(src->nf_bridge); 2663#endif 2664} 2665 2666static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2667{ 2668#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2669 nf_conntrack_put(dst->nfct); 2670#endif 2671#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2672 nf_conntrack_put_reasm(dst->nfct_reasm); 2673#endif 2674#ifdef CONFIG_BRIDGE_NETFILTER 2675 nf_bridge_put(dst->nf_bridge); 2676#endif 2677 __nf_copy(dst, src); 2678} 2679 2680#ifdef CONFIG_NETWORK_SECMARK 2681static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2682{ 2683 to->secmark = from->secmark; 2684} 2685 2686static inline void skb_init_secmark(struct sk_buff *skb) 2687{ 2688 skb->secmark = 0; 2689} 2690#else 2691static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2692{ } 2693 2694static inline void skb_init_secmark(struct sk_buff *skb) 2695{ } 2696#endif 2697 2698static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2699{ 2700 skb->queue_mapping = queue_mapping; 2701} 2702 2703static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2704{ 2705 return skb->queue_mapping; 2706} 2707 2708static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2709{ 2710 to->queue_mapping = from->queue_mapping; 2711} 2712 2713static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2714{ 2715 skb->queue_mapping = rx_queue + 1; 2716} 2717 2718static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2719{ 2720 return skb->queue_mapping - 1; 2721} 2722 2723static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2724{ 2725 return skb->queue_mapping != 0; 2726} 2727 2728extern u16 __skb_tx_hash(const struct net_device *dev, 2729 const struct sk_buff *skb, 2730 unsigned int num_tx_queues); 2731 2732#ifdef CONFIG_XFRM 2733static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2734{ 2735 return skb->sp; 2736} 2737#else 2738static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2739{ 2740 return NULL; 2741} 2742#endif 2743 2744/* Keeps track of mac header offset relative to skb->head. 2745 * It is useful for TSO of Tunneling protocol. e.g. GRE. 2746 * For non-tunnel skb it points to skb_mac_header() and for 2747 * tunnel skb it points to outer mac header. */ 2748struct skb_gso_cb { 2749 int mac_offset; 2750}; 2751#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 2752 2753static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 2754{ 2755 return (skb_mac_header(inner_skb) - inner_skb->head) - 2756 SKB_GSO_CB(inner_skb)->mac_offset; 2757} 2758 2759static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 2760{ 2761 int new_headroom, headroom; 2762 int ret; 2763 2764 headroom = skb_headroom(skb); 2765 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 2766 if (ret) 2767 return ret; 2768 2769 new_headroom = skb_headroom(skb); 2770 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 2771 return 0; 2772} 2773 2774static inline bool skb_is_gso(const struct sk_buff *skb) 2775{ 2776 return skb_shinfo(skb)->gso_size; 2777} 2778 2779static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2780{ 2781 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2782} 2783 2784extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2785 2786static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2787{ 2788 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2789 * wanted then gso_type will be set. */ 2790 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2791 2792 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2793 unlikely(shinfo->gso_type == 0)) { 2794 __skb_warn_lro_forwarding(skb); 2795 return true; 2796 } 2797 return false; 2798} 2799 2800static inline void skb_forward_csum(struct sk_buff *skb) 2801{ 2802 /* Unfortunately we don't support this one. Any brave souls? */ 2803 if (skb->ip_summed == CHECKSUM_COMPLETE) 2804 skb->ip_summed = CHECKSUM_NONE; 2805} 2806 2807/** 2808 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2809 * @skb: skb to check 2810 * 2811 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2812 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2813 * use this helper, to document places where we make this assertion. 2814 */ 2815static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2816{ 2817#ifdef DEBUG 2818 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2819#endif 2820} 2821 2822bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2823 2824u32 __skb_get_poff(const struct sk_buff *skb); 2825 2826/** 2827 * skb_head_is_locked - Determine if the skb->head is locked down 2828 * @skb: skb to check 2829 * 2830 * The head on skbs build around a head frag can be removed if they are 2831 * not cloned. This function returns true if the skb head is locked down 2832 * due to either being allocated via kmalloc, or by being a clone with 2833 * multiple references to the head. 2834 */ 2835static inline bool skb_head_is_locked(const struct sk_buff *skb) 2836{ 2837 return !skb->head_frag || skb_cloned(skb); 2838} 2839#endif /* __KERNEL__ */ 2840#endif /* _LINUX_SKBUFF_H */