Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33#ifndef __LINUX_RCUPDATE_H
34#define __LINUX_RCUPDATE_H
35
36#include <linux/types.h>
37#include <linux/cache.h>
38#include <linux/spinlock.h>
39#include <linux/threads.h>
40#include <linux/cpumask.h>
41#include <linux/seqlock.h>
42#include <linux/lockdep.h>
43#include <linux/completion.h>
44#include <linux/debugobjects.h>
45#include <linux/bug.h>
46#include <linux/compiler.h>
47
48#ifdef CONFIG_RCU_TORTURE_TEST
49extern int rcutorture_runnable; /* for sysctl */
50#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53extern void rcutorture_record_test_transition(void);
54extern void rcutorture_record_progress(unsigned long vernum);
55extern void do_trace_rcu_torture_read(char *rcutorturename,
56 struct rcu_head *rhp,
57 unsigned long secs,
58 unsigned long c_old,
59 unsigned long c);
60#else
61static inline void rcutorture_record_test_transition(void)
62{
63}
64static inline void rcutorture_record_progress(unsigned long vernum)
65{
66}
67#ifdef CONFIG_RCU_TRACE
68extern void do_trace_rcu_torture_read(char *rcutorturename,
69 struct rcu_head *rhp,
70 unsigned long secs,
71 unsigned long c_old,
72 unsigned long c);
73#else
74#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
75 do { } while (0)
76#endif
77#endif
78
79#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
80#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
81#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
82#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
83#define ulong2long(a) (*(long *)(&(a)))
84
85/* Exported common interfaces */
86
87#ifdef CONFIG_PREEMPT_RCU
88
89/**
90 * call_rcu() - Queue an RCU callback for invocation after a grace period.
91 * @head: structure to be used for queueing the RCU updates.
92 * @func: actual callback function to be invoked after the grace period
93 *
94 * The callback function will be invoked some time after a full grace
95 * period elapses, in other words after all pre-existing RCU read-side
96 * critical sections have completed. However, the callback function
97 * might well execute concurrently with RCU read-side critical sections
98 * that started after call_rcu() was invoked. RCU read-side critical
99 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
100 * and may be nested.
101 *
102 * Note that all CPUs must agree that the grace period extended beyond
103 * all pre-existing RCU read-side critical section. On systems with more
104 * than one CPU, this means that when "func()" is invoked, each CPU is
105 * guaranteed to have executed a full memory barrier since the end of its
106 * last RCU read-side critical section whose beginning preceded the call
107 * to call_rcu(). It also means that each CPU executing an RCU read-side
108 * critical section that continues beyond the start of "func()" must have
109 * executed a memory barrier after the call_rcu() but before the beginning
110 * of that RCU read-side critical section. Note that these guarantees
111 * include CPUs that are offline, idle, or executing in user mode, as
112 * well as CPUs that are executing in the kernel.
113 *
114 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
115 * resulting RCU callback function "func()", then both CPU A and CPU B are
116 * guaranteed to execute a full memory barrier during the time interval
117 * between the call to call_rcu() and the invocation of "func()" -- even
118 * if CPU A and CPU B are the same CPU (but again only if the system has
119 * more than one CPU).
120 */
121extern void call_rcu(struct rcu_head *head,
122 void (*func)(struct rcu_head *head));
123
124#else /* #ifdef CONFIG_PREEMPT_RCU */
125
126/* In classic RCU, call_rcu() is just call_rcu_sched(). */
127#define call_rcu call_rcu_sched
128
129#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
130
131/**
132 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
133 * @head: structure to be used for queueing the RCU updates.
134 * @func: actual callback function to be invoked after the grace period
135 *
136 * The callback function will be invoked some time after a full grace
137 * period elapses, in other words after all currently executing RCU
138 * read-side critical sections have completed. call_rcu_bh() assumes
139 * that the read-side critical sections end on completion of a softirq
140 * handler. This means that read-side critical sections in process
141 * context must not be interrupted by softirqs. This interface is to be
142 * used when most of the read-side critical sections are in softirq context.
143 * RCU read-side critical sections are delimited by :
144 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
145 * OR
146 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
147 * These may be nested.
148 *
149 * See the description of call_rcu() for more detailed information on
150 * memory ordering guarantees.
151 */
152extern void call_rcu_bh(struct rcu_head *head,
153 void (*func)(struct rcu_head *head));
154
155/**
156 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
157 * @head: structure to be used for queueing the RCU updates.
158 * @func: actual callback function to be invoked after the grace period
159 *
160 * The callback function will be invoked some time after a full grace
161 * period elapses, in other words after all currently executing RCU
162 * read-side critical sections have completed. call_rcu_sched() assumes
163 * that the read-side critical sections end on enabling of preemption
164 * or on voluntary preemption.
165 * RCU read-side critical sections are delimited by :
166 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
167 * OR
168 * anything that disables preemption.
169 * These may be nested.
170 *
171 * See the description of call_rcu() for more detailed information on
172 * memory ordering guarantees.
173 */
174extern void call_rcu_sched(struct rcu_head *head,
175 void (*func)(struct rcu_head *rcu));
176
177extern void synchronize_sched(void);
178
179#ifdef CONFIG_PREEMPT_RCU
180
181extern void __rcu_read_lock(void);
182extern void __rcu_read_unlock(void);
183extern void rcu_read_unlock_special(struct task_struct *t);
184void synchronize_rcu(void);
185
186/*
187 * Defined as a macro as it is a very low level header included from
188 * areas that don't even know about current. This gives the rcu_read_lock()
189 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
190 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
191 */
192#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
193
194#else /* #ifdef CONFIG_PREEMPT_RCU */
195
196static inline void __rcu_read_lock(void)
197{
198 preempt_disable();
199}
200
201static inline void __rcu_read_unlock(void)
202{
203 preempt_enable();
204}
205
206static inline void synchronize_rcu(void)
207{
208 synchronize_sched();
209}
210
211static inline int rcu_preempt_depth(void)
212{
213 return 0;
214}
215
216#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
217
218/* Internal to kernel */
219extern void rcu_init(void);
220extern void rcu_sched_qs(int cpu);
221extern void rcu_bh_qs(int cpu);
222extern void rcu_check_callbacks(int cpu, int user);
223struct notifier_block;
224extern void rcu_idle_enter(void);
225extern void rcu_idle_exit(void);
226extern void rcu_irq_enter(void);
227extern void rcu_irq_exit(void);
228
229#ifdef CONFIG_RCU_USER_QS
230extern void rcu_user_enter(void);
231extern void rcu_user_exit(void);
232extern void rcu_user_enter_after_irq(void);
233extern void rcu_user_exit_after_irq(void);
234#else
235static inline void rcu_user_enter(void) { }
236static inline void rcu_user_exit(void) { }
237static inline void rcu_user_enter_after_irq(void) { }
238static inline void rcu_user_exit_after_irq(void) { }
239static inline void rcu_user_hooks_switch(struct task_struct *prev,
240 struct task_struct *next) { }
241#endif /* CONFIG_RCU_USER_QS */
242
243/**
244 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
245 * @a: Code that RCU needs to pay attention to.
246 *
247 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
248 * in the inner idle loop, that is, between the rcu_idle_enter() and
249 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
250 * critical sections. However, things like powertop need tracepoints
251 * in the inner idle loop.
252 *
253 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
254 * will tell RCU that it needs to pay attending, invoke its argument
255 * (in this example, a call to the do_something_with_RCU() function),
256 * and then tell RCU to go back to ignoring this CPU. It is permissible
257 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
258 * quite limited. If deeper nesting is required, it will be necessary
259 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
260 */
261#define RCU_NONIDLE(a) \
262 do { \
263 rcu_irq_enter(); \
264 do { a; } while (0); \
265 rcu_irq_exit(); \
266 } while (0)
267
268/*
269 * Infrastructure to implement the synchronize_() primitives in
270 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
271 */
272
273typedef void call_rcu_func_t(struct rcu_head *head,
274 void (*func)(struct rcu_head *head));
275void wait_rcu_gp(call_rcu_func_t crf);
276
277#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
278#include <linux/rcutree.h>
279#elif defined(CONFIG_TINY_RCU)
280#include <linux/rcutiny.h>
281#else
282#error "Unknown RCU implementation specified to kernel configuration"
283#endif
284
285/*
286 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
287 * initialization and destruction of rcu_head on the stack. rcu_head structures
288 * allocated dynamically in the heap or defined statically don't need any
289 * initialization.
290 */
291#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
292extern void init_rcu_head_on_stack(struct rcu_head *head);
293extern void destroy_rcu_head_on_stack(struct rcu_head *head);
294#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
295static inline void init_rcu_head_on_stack(struct rcu_head *head)
296{
297}
298
299static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
300{
301}
302#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
303
304#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP)
305extern int rcu_is_cpu_idle(void);
306#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */
307
308#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
309bool rcu_lockdep_current_cpu_online(void);
310#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
311static inline bool rcu_lockdep_current_cpu_online(void)
312{
313 return 1;
314}
315#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
316
317#ifdef CONFIG_DEBUG_LOCK_ALLOC
318
319static inline void rcu_lock_acquire(struct lockdep_map *map)
320{
321 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
322}
323
324static inline void rcu_lock_release(struct lockdep_map *map)
325{
326 lock_release(map, 1, _THIS_IP_);
327}
328
329extern struct lockdep_map rcu_lock_map;
330extern struct lockdep_map rcu_bh_lock_map;
331extern struct lockdep_map rcu_sched_lock_map;
332extern int debug_lockdep_rcu_enabled(void);
333
334/**
335 * rcu_read_lock_held() - might we be in RCU read-side critical section?
336 *
337 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
338 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
339 * this assumes we are in an RCU read-side critical section unless it can
340 * prove otherwise. This is useful for debug checks in functions that
341 * require that they be called within an RCU read-side critical section.
342 *
343 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
344 * and while lockdep is disabled.
345 *
346 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
347 * occur in the same context, for example, it is illegal to invoke
348 * rcu_read_unlock() in process context if the matching rcu_read_lock()
349 * was invoked from within an irq handler.
350 *
351 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
352 * offline from an RCU perspective, so check for those as well.
353 */
354static inline int rcu_read_lock_held(void)
355{
356 if (!debug_lockdep_rcu_enabled())
357 return 1;
358 if (rcu_is_cpu_idle())
359 return 0;
360 if (!rcu_lockdep_current_cpu_online())
361 return 0;
362 return lock_is_held(&rcu_lock_map);
363}
364
365/*
366 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
367 * hell.
368 */
369extern int rcu_read_lock_bh_held(void);
370
371/**
372 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
373 *
374 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
375 * RCU-sched read-side critical section. In absence of
376 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
377 * critical section unless it can prove otherwise. Note that disabling
378 * of preemption (including disabling irqs) counts as an RCU-sched
379 * read-side critical section. This is useful for debug checks in functions
380 * that required that they be called within an RCU-sched read-side
381 * critical section.
382 *
383 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
384 * and while lockdep is disabled.
385 *
386 * Note that if the CPU is in the idle loop from an RCU point of
387 * view (ie: that we are in the section between rcu_idle_enter() and
388 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
389 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
390 * that are in such a section, considering these as in extended quiescent
391 * state, so such a CPU is effectively never in an RCU read-side critical
392 * section regardless of what RCU primitives it invokes. This state of
393 * affairs is required --- we need to keep an RCU-free window in idle
394 * where the CPU may possibly enter into low power mode. This way we can
395 * notice an extended quiescent state to other CPUs that started a grace
396 * period. Otherwise we would delay any grace period as long as we run in
397 * the idle task.
398 *
399 * Similarly, we avoid claiming an SRCU read lock held if the current
400 * CPU is offline.
401 */
402#ifdef CONFIG_PREEMPT_COUNT
403static inline int rcu_read_lock_sched_held(void)
404{
405 int lockdep_opinion = 0;
406
407 if (!debug_lockdep_rcu_enabled())
408 return 1;
409 if (rcu_is_cpu_idle())
410 return 0;
411 if (!rcu_lockdep_current_cpu_online())
412 return 0;
413 if (debug_locks)
414 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
415 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
416}
417#else /* #ifdef CONFIG_PREEMPT_COUNT */
418static inline int rcu_read_lock_sched_held(void)
419{
420 return 1;
421}
422#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
423
424#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
425
426# define rcu_lock_acquire(a) do { } while (0)
427# define rcu_lock_release(a) do { } while (0)
428
429static inline int rcu_read_lock_held(void)
430{
431 return 1;
432}
433
434static inline int rcu_read_lock_bh_held(void)
435{
436 return 1;
437}
438
439#ifdef CONFIG_PREEMPT_COUNT
440static inline int rcu_read_lock_sched_held(void)
441{
442 return preempt_count() != 0 || irqs_disabled();
443}
444#else /* #ifdef CONFIG_PREEMPT_COUNT */
445static inline int rcu_read_lock_sched_held(void)
446{
447 return 1;
448}
449#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
450
451#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
452
453#ifdef CONFIG_PROVE_RCU
454
455extern int rcu_my_thread_group_empty(void);
456
457/**
458 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
459 * @c: condition to check
460 * @s: informative message
461 */
462#define rcu_lockdep_assert(c, s) \
463 do { \
464 static bool __section(.data.unlikely) __warned; \
465 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
466 __warned = true; \
467 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
468 } \
469 } while (0)
470
471#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
472static inline void rcu_preempt_sleep_check(void)
473{
474 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
475 "Illegal context switch in RCU read-side critical section");
476}
477#else /* #ifdef CONFIG_PROVE_RCU */
478static inline void rcu_preempt_sleep_check(void)
479{
480}
481#endif /* #else #ifdef CONFIG_PROVE_RCU */
482
483#define rcu_sleep_check() \
484 do { \
485 rcu_preempt_sleep_check(); \
486 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
487 "Illegal context switch in RCU-bh" \
488 " read-side critical section"); \
489 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
490 "Illegal context switch in RCU-sched"\
491 " read-side critical section"); \
492 } while (0)
493
494#else /* #ifdef CONFIG_PROVE_RCU */
495
496#define rcu_lockdep_assert(c, s) do { } while (0)
497#define rcu_sleep_check() do { } while (0)
498
499#endif /* #else #ifdef CONFIG_PROVE_RCU */
500
501/*
502 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
503 * and rcu_assign_pointer(). Some of these could be folded into their
504 * callers, but they are left separate in order to ease introduction of
505 * multiple flavors of pointers to match the multiple flavors of RCU
506 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
507 * the future.
508 */
509
510#ifdef __CHECKER__
511#define rcu_dereference_sparse(p, space) \
512 ((void)(((typeof(*p) space *)p) == p))
513#else /* #ifdef __CHECKER__ */
514#define rcu_dereference_sparse(p, space)
515#endif /* #else #ifdef __CHECKER__ */
516
517#define __rcu_access_pointer(p, space) \
518 ({ \
519 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
520 rcu_dereference_sparse(p, space); \
521 ((typeof(*p) __force __kernel *)(_________p1)); \
522 })
523#define __rcu_dereference_check(p, c, space) \
524 ({ \
525 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
526 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
527 " usage"); \
528 rcu_dereference_sparse(p, space); \
529 smp_read_barrier_depends(); \
530 ((typeof(*p) __force __kernel *)(_________p1)); \
531 })
532#define __rcu_dereference_protected(p, c, space) \
533 ({ \
534 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
535 " usage"); \
536 rcu_dereference_sparse(p, space); \
537 ((typeof(*p) __force __kernel *)(p)); \
538 })
539
540#define __rcu_access_index(p, space) \
541 ({ \
542 typeof(p) _________p1 = ACCESS_ONCE(p); \
543 rcu_dereference_sparse(p, space); \
544 (_________p1); \
545 })
546#define __rcu_dereference_index_check(p, c) \
547 ({ \
548 typeof(p) _________p1 = ACCESS_ONCE(p); \
549 rcu_lockdep_assert(c, \
550 "suspicious rcu_dereference_index_check()" \
551 " usage"); \
552 smp_read_barrier_depends(); \
553 (_________p1); \
554 })
555#define __rcu_assign_pointer(p, v, space) \
556 do { \
557 smp_wmb(); \
558 (p) = (typeof(*v) __force space *)(v); \
559 } while (0)
560
561
562/**
563 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
564 * @p: The pointer to read
565 *
566 * Return the value of the specified RCU-protected pointer, but omit the
567 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
568 * when the value of this pointer is accessed, but the pointer is not
569 * dereferenced, for example, when testing an RCU-protected pointer against
570 * NULL. Although rcu_access_pointer() may also be used in cases where
571 * update-side locks prevent the value of the pointer from changing, you
572 * should instead use rcu_dereference_protected() for this use case.
573 *
574 * It is also permissible to use rcu_access_pointer() when read-side
575 * access to the pointer was removed at least one grace period ago, as
576 * is the case in the context of the RCU callback that is freeing up
577 * the data, or after a synchronize_rcu() returns. This can be useful
578 * when tearing down multi-linked structures after a grace period
579 * has elapsed.
580 */
581#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
582
583/**
584 * rcu_dereference_check() - rcu_dereference with debug checking
585 * @p: The pointer to read, prior to dereferencing
586 * @c: The conditions under which the dereference will take place
587 *
588 * Do an rcu_dereference(), but check that the conditions under which the
589 * dereference will take place are correct. Typically the conditions
590 * indicate the various locking conditions that should be held at that
591 * point. The check should return true if the conditions are satisfied.
592 * An implicit check for being in an RCU read-side critical section
593 * (rcu_read_lock()) is included.
594 *
595 * For example:
596 *
597 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
598 *
599 * could be used to indicate to lockdep that foo->bar may only be dereferenced
600 * if either rcu_read_lock() is held, or that the lock required to replace
601 * the bar struct at foo->bar is held.
602 *
603 * Note that the list of conditions may also include indications of when a lock
604 * need not be held, for example during initialisation or destruction of the
605 * target struct:
606 *
607 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
608 * atomic_read(&foo->usage) == 0);
609 *
610 * Inserts memory barriers on architectures that require them
611 * (currently only the Alpha), prevents the compiler from refetching
612 * (and from merging fetches), and, more importantly, documents exactly
613 * which pointers are protected by RCU and checks that the pointer is
614 * annotated as __rcu.
615 */
616#define rcu_dereference_check(p, c) \
617 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
618
619/**
620 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
621 * @p: The pointer to read, prior to dereferencing
622 * @c: The conditions under which the dereference will take place
623 *
624 * This is the RCU-bh counterpart to rcu_dereference_check().
625 */
626#define rcu_dereference_bh_check(p, c) \
627 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
628
629/**
630 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
631 * @p: The pointer to read, prior to dereferencing
632 * @c: The conditions under which the dereference will take place
633 *
634 * This is the RCU-sched counterpart to rcu_dereference_check().
635 */
636#define rcu_dereference_sched_check(p, c) \
637 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
638 __rcu)
639
640#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
641
642/*
643 * The tracing infrastructure traces RCU (we want that), but unfortunately
644 * some of the RCU checks causes tracing to lock up the system.
645 *
646 * The tracing version of rcu_dereference_raw() must not call
647 * rcu_read_lock_held().
648 */
649#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
650
651/**
652 * rcu_access_index() - fetch RCU index with no dereferencing
653 * @p: The index to read
654 *
655 * Return the value of the specified RCU-protected index, but omit the
656 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
657 * when the value of this index is accessed, but the index is not
658 * dereferenced, for example, when testing an RCU-protected index against
659 * -1. Although rcu_access_index() may also be used in cases where
660 * update-side locks prevent the value of the index from changing, you
661 * should instead use rcu_dereference_index_protected() for this use case.
662 */
663#define rcu_access_index(p) __rcu_access_index((p), __rcu)
664
665/**
666 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
667 * @p: The pointer to read, prior to dereferencing
668 * @c: The conditions under which the dereference will take place
669 *
670 * Similar to rcu_dereference_check(), but omits the sparse checking.
671 * This allows rcu_dereference_index_check() to be used on integers,
672 * which can then be used as array indices. Attempting to use
673 * rcu_dereference_check() on an integer will give compiler warnings
674 * because the sparse address-space mechanism relies on dereferencing
675 * the RCU-protected pointer. Dereferencing integers is not something
676 * that even gcc will put up with.
677 *
678 * Note that this function does not implicitly check for RCU read-side
679 * critical sections. If this function gains lots of uses, it might
680 * make sense to provide versions for each flavor of RCU, but it does
681 * not make sense as of early 2010.
682 */
683#define rcu_dereference_index_check(p, c) \
684 __rcu_dereference_index_check((p), (c))
685
686/**
687 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
688 * @p: The pointer to read, prior to dereferencing
689 * @c: The conditions under which the dereference will take place
690 *
691 * Return the value of the specified RCU-protected pointer, but omit
692 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
693 * is useful in cases where update-side locks prevent the value of the
694 * pointer from changing. Please note that this primitive does -not-
695 * prevent the compiler from repeating this reference or combining it
696 * with other references, so it should not be used without protection
697 * of appropriate locks.
698 *
699 * This function is only for update-side use. Using this function
700 * when protected only by rcu_read_lock() will result in infrequent
701 * but very ugly failures.
702 */
703#define rcu_dereference_protected(p, c) \
704 __rcu_dereference_protected((p), (c), __rcu)
705
706
707/**
708 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
709 * @p: The pointer to read, prior to dereferencing
710 *
711 * This is a simple wrapper around rcu_dereference_check().
712 */
713#define rcu_dereference(p) rcu_dereference_check(p, 0)
714
715/**
716 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
717 * @p: The pointer to read, prior to dereferencing
718 *
719 * Makes rcu_dereference_check() do the dirty work.
720 */
721#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
722
723/**
724 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
725 * @p: The pointer to read, prior to dereferencing
726 *
727 * Makes rcu_dereference_check() do the dirty work.
728 */
729#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
730
731/**
732 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
733 *
734 * When synchronize_rcu() is invoked on one CPU while other CPUs
735 * are within RCU read-side critical sections, then the
736 * synchronize_rcu() is guaranteed to block until after all the other
737 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
738 * on one CPU while other CPUs are within RCU read-side critical
739 * sections, invocation of the corresponding RCU callback is deferred
740 * until after the all the other CPUs exit their critical sections.
741 *
742 * Note, however, that RCU callbacks are permitted to run concurrently
743 * with new RCU read-side critical sections. One way that this can happen
744 * is via the following sequence of events: (1) CPU 0 enters an RCU
745 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
746 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
747 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
748 * callback is invoked. This is legal, because the RCU read-side critical
749 * section that was running concurrently with the call_rcu() (and which
750 * therefore might be referencing something that the corresponding RCU
751 * callback would free up) has completed before the corresponding
752 * RCU callback is invoked.
753 *
754 * RCU read-side critical sections may be nested. Any deferred actions
755 * will be deferred until the outermost RCU read-side critical section
756 * completes.
757 *
758 * You can avoid reading and understanding the next paragraph by
759 * following this rule: don't put anything in an rcu_read_lock() RCU
760 * read-side critical section that would block in a !PREEMPT kernel.
761 * But if you want the full story, read on!
762 *
763 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
764 * is illegal to block while in an RCU read-side critical section. In
765 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
766 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
767 * be preempted, but explicit blocking is illegal. Finally, in preemptible
768 * RCU implementations in real-time (with -rt patchset) kernel builds,
769 * RCU read-side critical sections may be preempted and they may also
770 * block, but only when acquiring spinlocks that are subject to priority
771 * inheritance.
772 */
773static inline void rcu_read_lock(void)
774{
775 __rcu_read_lock();
776 __acquire(RCU);
777 rcu_lock_acquire(&rcu_lock_map);
778 rcu_lockdep_assert(!rcu_is_cpu_idle(),
779 "rcu_read_lock() used illegally while idle");
780}
781
782/*
783 * So where is rcu_write_lock()? It does not exist, as there is no
784 * way for writers to lock out RCU readers. This is a feature, not
785 * a bug -- this property is what provides RCU's performance benefits.
786 * Of course, writers must coordinate with each other. The normal
787 * spinlock primitives work well for this, but any other technique may be
788 * used as well. RCU does not care how the writers keep out of each
789 * others' way, as long as they do so.
790 */
791
792/**
793 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
794 *
795 * See rcu_read_lock() for more information.
796 */
797static inline void rcu_read_unlock(void)
798{
799 rcu_lockdep_assert(!rcu_is_cpu_idle(),
800 "rcu_read_unlock() used illegally while idle");
801 rcu_lock_release(&rcu_lock_map);
802 __release(RCU);
803 __rcu_read_unlock();
804}
805
806/**
807 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
808 *
809 * This is equivalent of rcu_read_lock(), but to be used when updates
810 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
811 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
812 * softirq handler to be a quiescent state, a process in RCU read-side
813 * critical section must be protected by disabling softirqs. Read-side
814 * critical sections in interrupt context can use just rcu_read_lock(),
815 * though this should at least be commented to avoid confusing people
816 * reading the code.
817 *
818 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
819 * must occur in the same context, for example, it is illegal to invoke
820 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
821 * was invoked from some other task.
822 */
823static inline void rcu_read_lock_bh(void)
824{
825 local_bh_disable();
826 __acquire(RCU_BH);
827 rcu_lock_acquire(&rcu_bh_lock_map);
828 rcu_lockdep_assert(!rcu_is_cpu_idle(),
829 "rcu_read_lock_bh() used illegally while idle");
830}
831
832/*
833 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
834 *
835 * See rcu_read_lock_bh() for more information.
836 */
837static inline void rcu_read_unlock_bh(void)
838{
839 rcu_lockdep_assert(!rcu_is_cpu_idle(),
840 "rcu_read_unlock_bh() used illegally while idle");
841 rcu_lock_release(&rcu_bh_lock_map);
842 __release(RCU_BH);
843 local_bh_enable();
844}
845
846/**
847 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
848 *
849 * This is equivalent of rcu_read_lock(), but to be used when updates
850 * are being done using call_rcu_sched() or synchronize_rcu_sched().
851 * Read-side critical sections can also be introduced by anything that
852 * disables preemption, including local_irq_disable() and friends.
853 *
854 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
855 * must occur in the same context, for example, it is illegal to invoke
856 * rcu_read_unlock_sched() from process context if the matching
857 * rcu_read_lock_sched() was invoked from an NMI handler.
858 */
859static inline void rcu_read_lock_sched(void)
860{
861 preempt_disable();
862 __acquire(RCU_SCHED);
863 rcu_lock_acquire(&rcu_sched_lock_map);
864 rcu_lockdep_assert(!rcu_is_cpu_idle(),
865 "rcu_read_lock_sched() used illegally while idle");
866}
867
868/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
869static inline notrace void rcu_read_lock_sched_notrace(void)
870{
871 preempt_disable_notrace();
872 __acquire(RCU_SCHED);
873}
874
875/*
876 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
877 *
878 * See rcu_read_lock_sched for more information.
879 */
880static inline void rcu_read_unlock_sched(void)
881{
882 rcu_lockdep_assert(!rcu_is_cpu_idle(),
883 "rcu_read_unlock_sched() used illegally while idle");
884 rcu_lock_release(&rcu_sched_lock_map);
885 __release(RCU_SCHED);
886 preempt_enable();
887}
888
889/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
890static inline notrace void rcu_read_unlock_sched_notrace(void)
891{
892 __release(RCU_SCHED);
893 preempt_enable_notrace();
894}
895
896/**
897 * rcu_assign_pointer() - assign to RCU-protected pointer
898 * @p: pointer to assign to
899 * @v: value to assign (publish)
900 *
901 * Assigns the specified value to the specified RCU-protected
902 * pointer, ensuring that any concurrent RCU readers will see
903 * any prior initialization.
904 *
905 * Inserts memory barriers on architectures that require them
906 * (which is most of them), and also prevents the compiler from
907 * reordering the code that initializes the structure after the pointer
908 * assignment. More importantly, this call documents which pointers
909 * will be dereferenced by RCU read-side code.
910 *
911 * In some special cases, you may use RCU_INIT_POINTER() instead
912 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
913 * to the fact that it does not constrain either the CPU or the compiler.
914 * That said, using RCU_INIT_POINTER() when you should have used
915 * rcu_assign_pointer() is a very bad thing that results in
916 * impossible-to-diagnose memory corruption. So please be careful.
917 * See the RCU_INIT_POINTER() comment header for details.
918 */
919#define rcu_assign_pointer(p, v) \
920 __rcu_assign_pointer((p), (v), __rcu)
921
922/**
923 * RCU_INIT_POINTER() - initialize an RCU protected pointer
924 *
925 * Initialize an RCU-protected pointer in special cases where readers
926 * do not need ordering constraints on the CPU or the compiler. These
927 * special cases are:
928 *
929 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
930 * 2. The caller has taken whatever steps are required to prevent
931 * RCU readers from concurrently accessing this pointer -or-
932 * 3. The referenced data structure has already been exposed to
933 * readers either at compile time or via rcu_assign_pointer() -and-
934 * a. You have not made -any- reader-visible changes to
935 * this structure since then -or-
936 * b. It is OK for readers accessing this structure from its
937 * new location to see the old state of the structure. (For
938 * example, the changes were to statistical counters or to
939 * other state where exact synchronization is not required.)
940 *
941 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
942 * result in impossible-to-diagnose memory corruption. As in the structures
943 * will look OK in crash dumps, but any concurrent RCU readers might
944 * see pre-initialized values of the referenced data structure. So
945 * please be very careful how you use RCU_INIT_POINTER()!!!
946 *
947 * If you are creating an RCU-protected linked structure that is accessed
948 * by a single external-to-structure RCU-protected pointer, then you may
949 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
950 * pointers, but you must use rcu_assign_pointer() to initialize the
951 * external-to-structure pointer -after- you have completely initialized
952 * the reader-accessible portions of the linked structure.
953 */
954#define RCU_INIT_POINTER(p, v) \
955 do { \
956 p = (typeof(*v) __force __rcu *)(v); \
957 } while (0)
958
959/**
960 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
961 *
962 * GCC-style initialization for an RCU-protected pointer in a structure field.
963 */
964#define RCU_POINTER_INITIALIZER(p, v) \
965 .p = (typeof(*v) __force __rcu *)(v)
966
967/*
968 * Does the specified offset indicate that the corresponding rcu_head
969 * structure can be handled by kfree_rcu()?
970 */
971#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
972
973/*
974 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
975 */
976#define __kfree_rcu(head, offset) \
977 do { \
978 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
979 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
980 } while (0)
981
982/**
983 * kfree_rcu() - kfree an object after a grace period.
984 * @ptr: pointer to kfree
985 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
986 *
987 * Many rcu callbacks functions just call kfree() on the base structure.
988 * These functions are trivial, but their size adds up, and furthermore
989 * when they are used in a kernel module, that module must invoke the
990 * high-latency rcu_barrier() function at module-unload time.
991 *
992 * The kfree_rcu() function handles this issue. Rather than encoding a
993 * function address in the embedded rcu_head structure, kfree_rcu() instead
994 * encodes the offset of the rcu_head structure within the base structure.
995 * Because the functions are not allowed in the low-order 4096 bytes of
996 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
997 * If the offset is larger than 4095 bytes, a compile-time error will
998 * be generated in __kfree_rcu(). If this error is triggered, you can
999 * either fall back to use of call_rcu() or rearrange the structure to
1000 * position the rcu_head structure into the first 4096 bytes.
1001 *
1002 * Note that the allowable offset might decrease in the future, for example,
1003 * to allow something like kmem_cache_free_rcu().
1004 *
1005 * The BUILD_BUG_ON check must not involve any function calls, hence the
1006 * checks are done in macros here.
1007 */
1008#define kfree_rcu(ptr, rcu_head) \
1009 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1010
1011#ifdef CONFIG_RCU_NOCB_CPU
1012extern bool rcu_is_nocb_cpu(int cpu);
1013#else
1014static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1015#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1016
1017
1018#endif /* __LINUX_RCUPDATE_H */