at v3.11 38 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47 48#ifdef CONFIG_RCU_TORTURE_TEST 49extern int rcutorture_runnable; /* for sysctl */ 50#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 51 52#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 53extern void rcutorture_record_test_transition(void); 54extern void rcutorture_record_progress(unsigned long vernum); 55extern void do_trace_rcu_torture_read(char *rcutorturename, 56 struct rcu_head *rhp, 57 unsigned long secs, 58 unsigned long c_old, 59 unsigned long c); 60#else 61static inline void rcutorture_record_test_transition(void) 62{ 63} 64static inline void rcutorture_record_progress(unsigned long vernum) 65{ 66} 67#ifdef CONFIG_RCU_TRACE 68extern void do_trace_rcu_torture_read(char *rcutorturename, 69 struct rcu_head *rhp, 70 unsigned long secs, 71 unsigned long c_old, 72 unsigned long c); 73#else 74#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 75 do { } while (0) 76#endif 77#endif 78 79#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 80#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 81#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 82#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 83#define ulong2long(a) (*(long *)(&(a))) 84 85/* Exported common interfaces */ 86 87#ifdef CONFIG_PREEMPT_RCU 88 89/** 90 * call_rcu() - Queue an RCU callback for invocation after a grace period. 91 * @head: structure to be used for queueing the RCU updates. 92 * @func: actual callback function to be invoked after the grace period 93 * 94 * The callback function will be invoked some time after a full grace 95 * period elapses, in other words after all pre-existing RCU read-side 96 * critical sections have completed. However, the callback function 97 * might well execute concurrently with RCU read-side critical sections 98 * that started after call_rcu() was invoked. RCU read-side critical 99 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 100 * and may be nested. 101 * 102 * Note that all CPUs must agree that the grace period extended beyond 103 * all pre-existing RCU read-side critical section. On systems with more 104 * than one CPU, this means that when "func()" is invoked, each CPU is 105 * guaranteed to have executed a full memory barrier since the end of its 106 * last RCU read-side critical section whose beginning preceded the call 107 * to call_rcu(). It also means that each CPU executing an RCU read-side 108 * critical section that continues beyond the start of "func()" must have 109 * executed a memory barrier after the call_rcu() but before the beginning 110 * of that RCU read-side critical section. Note that these guarantees 111 * include CPUs that are offline, idle, or executing in user mode, as 112 * well as CPUs that are executing in the kernel. 113 * 114 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 115 * resulting RCU callback function "func()", then both CPU A and CPU B are 116 * guaranteed to execute a full memory barrier during the time interval 117 * between the call to call_rcu() and the invocation of "func()" -- even 118 * if CPU A and CPU B are the same CPU (but again only if the system has 119 * more than one CPU). 120 */ 121extern void call_rcu(struct rcu_head *head, 122 void (*func)(struct rcu_head *head)); 123 124#else /* #ifdef CONFIG_PREEMPT_RCU */ 125 126/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 127#define call_rcu call_rcu_sched 128 129#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 130 131/** 132 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 133 * @head: structure to be used for queueing the RCU updates. 134 * @func: actual callback function to be invoked after the grace period 135 * 136 * The callback function will be invoked some time after a full grace 137 * period elapses, in other words after all currently executing RCU 138 * read-side critical sections have completed. call_rcu_bh() assumes 139 * that the read-side critical sections end on completion of a softirq 140 * handler. This means that read-side critical sections in process 141 * context must not be interrupted by softirqs. This interface is to be 142 * used when most of the read-side critical sections are in softirq context. 143 * RCU read-side critical sections are delimited by : 144 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 145 * OR 146 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 147 * These may be nested. 148 * 149 * See the description of call_rcu() for more detailed information on 150 * memory ordering guarantees. 151 */ 152extern void call_rcu_bh(struct rcu_head *head, 153 void (*func)(struct rcu_head *head)); 154 155/** 156 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 157 * @head: structure to be used for queueing the RCU updates. 158 * @func: actual callback function to be invoked after the grace period 159 * 160 * The callback function will be invoked some time after a full grace 161 * period elapses, in other words after all currently executing RCU 162 * read-side critical sections have completed. call_rcu_sched() assumes 163 * that the read-side critical sections end on enabling of preemption 164 * or on voluntary preemption. 165 * RCU read-side critical sections are delimited by : 166 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 167 * OR 168 * anything that disables preemption. 169 * These may be nested. 170 * 171 * See the description of call_rcu() for more detailed information on 172 * memory ordering guarantees. 173 */ 174extern void call_rcu_sched(struct rcu_head *head, 175 void (*func)(struct rcu_head *rcu)); 176 177extern void synchronize_sched(void); 178 179#ifdef CONFIG_PREEMPT_RCU 180 181extern void __rcu_read_lock(void); 182extern void __rcu_read_unlock(void); 183extern void rcu_read_unlock_special(struct task_struct *t); 184void synchronize_rcu(void); 185 186/* 187 * Defined as a macro as it is a very low level header included from 188 * areas that don't even know about current. This gives the rcu_read_lock() 189 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 190 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 191 */ 192#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 193 194#else /* #ifdef CONFIG_PREEMPT_RCU */ 195 196static inline void __rcu_read_lock(void) 197{ 198 preempt_disable(); 199} 200 201static inline void __rcu_read_unlock(void) 202{ 203 preempt_enable(); 204} 205 206static inline void synchronize_rcu(void) 207{ 208 synchronize_sched(); 209} 210 211static inline int rcu_preempt_depth(void) 212{ 213 return 0; 214} 215 216#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 217 218/* Internal to kernel */ 219extern void rcu_init(void); 220extern void rcu_sched_qs(int cpu); 221extern void rcu_bh_qs(int cpu); 222extern void rcu_check_callbacks(int cpu, int user); 223struct notifier_block; 224extern void rcu_idle_enter(void); 225extern void rcu_idle_exit(void); 226extern void rcu_irq_enter(void); 227extern void rcu_irq_exit(void); 228 229#ifdef CONFIG_RCU_USER_QS 230extern void rcu_user_enter(void); 231extern void rcu_user_exit(void); 232extern void rcu_user_enter_after_irq(void); 233extern void rcu_user_exit_after_irq(void); 234#else 235static inline void rcu_user_enter(void) { } 236static inline void rcu_user_exit(void) { } 237static inline void rcu_user_enter_after_irq(void) { } 238static inline void rcu_user_exit_after_irq(void) { } 239static inline void rcu_user_hooks_switch(struct task_struct *prev, 240 struct task_struct *next) { } 241#endif /* CONFIG_RCU_USER_QS */ 242 243/** 244 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 245 * @a: Code that RCU needs to pay attention to. 246 * 247 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 248 * in the inner idle loop, that is, between the rcu_idle_enter() and 249 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 250 * critical sections. However, things like powertop need tracepoints 251 * in the inner idle loop. 252 * 253 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 254 * will tell RCU that it needs to pay attending, invoke its argument 255 * (in this example, a call to the do_something_with_RCU() function), 256 * and then tell RCU to go back to ignoring this CPU. It is permissible 257 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 258 * quite limited. If deeper nesting is required, it will be necessary 259 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 260 */ 261#define RCU_NONIDLE(a) \ 262 do { \ 263 rcu_irq_enter(); \ 264 do { a; } while (0); \ 265 rcu_irq_exit(); \ 266 } while (0) 267 268/* 269 * Infrastructure to implement the synchronize_() primitives in 270 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 271 */ 272 273typedef void call_rcu_func_t(struct rcu_head *head, 274 void (*func)(struct rcu_head *head)); 275void wait_rcu_gp(call_rcu_func_t crf); 276 277#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 278#include <linux/rcutree.h> 279#elif defined(CONFIG_TINY_RCU) 280#include <linux/rcutiny.h> 281#else 282#error "Unknown RCU implementation specified to kernel configuration" 283#endif 284 285/* 286 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 287 * initialization and destruction of rcu_head on the stack. rcu_head structures 288 * allocated dynamically in the heap or defined statically don't need any 289 * initialization. 290 */ 291#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 292extern void init_rcu_head_on_stack(struct rcu_head *head); 293extern void destroy_rcu_head_on_stack(struct rcu_head *head); 294#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 295static inline void init_rcu_head_on_stack(struct rcu_head *head) 296{ 297} 298 299static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 300{ 301} 302#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 303 304#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) 305extern int rcu_is_cpu_idle(void); 306#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */ 307 308#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 309bool rcu_lockdep_current_cpu_online(void); 310#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 311static inline bool rcu_lockdep_current_cpu_online(void) 312{ 313 return 1; 314} 315#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 316 317#ifdef CONFIG_DEBUG_LOCK_ALLOC 318 319static inline void rcu_lock_acquire(struct lockdep_map *map) 320{ 321 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_); 322} 323 324static inline void rcu_lock_release(struct lockdep_map *map) 325{ 326 lock_release(map, 1, _THIS_IP_); 327} 328 329extern struct lockdep_map rcu_lock_map; 330extern struct lockdep_map rcu_bh_lock_map; 331extern struct lockdep_map rcu_sched_lock_map; 332extern int debug_lockdep_rcu_enabled(void); 333 334/** 335 * rcu_read_lock_held() - might we be in RCU read-side critical section? 336 * 337 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 338 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 339 * this assumes we are in an RCU read-side critical section unless it can 340 * prove otherwise. This is useful for debug checks in functions that 341 * require that they be called within an RCU read-side critical section. 342 * 343 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 344 * and while lockdep is disabled. 345 * 346 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 347 * occur in the same context, for example, it is illegal to invoke 348 * rcu_read_unlock() in process context if the matching rcu_read_lock() 349 * was invoked from within an irq handler. 350 * 351 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 352 * offline from an RCU perspective, so check for those as well. 353 */ 354static inline int rcu_read_lock_held(void) 355{ 356 if (!debug_lockdep_rcu_enabled()) 357 return 1; 358 if (rcu_is_cpu_idle()) 359 return 0; 360 if (!rcu_lockdep_current_cpu_online()) 361 return 0; 362 return lock_is_held(&rcu_lock_map); 363} 364 365/* 366 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 367 * hell. 368 */ 369extern int rcu_read_lock_bh_held(void); 370 371/** 372 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 373 * 374 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 375 * RCU-sched read-side critical section. In absence of 376 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 377 * critical section unless it can prove otherwise. Note that disabling 378 * of preemption (including disabling irqs) counts as an RCU-sched 379 * read-side critical section. This is useful for debug checks in functions 380 * that required that they be called within an RCU-sched read-side 381 * critical section. 382 * 383 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 384 * and while lockdep is disabled. 385 * 386 * Note that if the CPU is in the idle loop from an RCU point of 387 * view (ie: that we are in the section between rcu_idle_enter() and 388 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 389 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 390 * that are in such a section, considering these as in extended quiescent 391 * state, so such a CPU is effectively never in an RCU read-side critical 392 * section regardless of what RCU primitives it invokes. This state of 393 * affairs is required --- we need to keep an RCU-free window in idle 394 * where the CPU may possibly enter into low power mode. This way we can 395 * notice an extended quiescent state to other CPUs that started a grace 396 * period. Otherwise we would delay any grace period as long as we run in 397 * the idle task. 398 * 399 * Similarly, we avoid claiming an SRCU read lock held if the current 400 * CPU is offline. 401 */ 402#ifdef CONFIG_PREEMPT_COUNT 403static inline int rcu_read_lock_sched_held(void) 404{ 405 int lockdep_opinion = 0; 406 407 if (!debug_lockdep_rcu_enabled()) 408 return 1; 409 if (rcu_is_cpu_idle()) 410 return 0; 411 if (!rcu_lockdep_current_cpu_online()) 412 return 0; 413 if (debug_locks) 414 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 415 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 416} 417#else /* #ifdef CONFIG_PREEMPT_COUNT */ 418static inline int rcu_read_lock_sched_held(void) 419{ 420 return 1; 421} 422#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 423 424#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 425 426# define rcu_lock_acquire(a) do { } while (0) 427# define rcu_lock_release(a) do { } while (0) 428 429static inline int rcu_read_lock_held(void) 430{ 431 return 1; 432} 433 434static inline int rcu_read_lock_bh_held(void) 435{ 436 return 1; 437} 438 439#ifdef CONFIG_PREEMPT_COUNT 440static inline int rcu_read_lock_sched_held(void) 441{ 442 return preempt_count() != 0 || irqs_disabled(); 443} 444#else /* #ifdef CONFIG_PREEMPT_COUNT */ 445static inline int rcu_read_lock_sched_held(void) 446{ 447 return 1; 448} 449#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 450 451#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 452 453#ifdef CONFIG_PROVE_RCU 454 455extern int rcu_my_thread_group_empty(void); 456 457/** 458 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 459 * @c: condition to check 460 * @s: informative message 461 */ 462#define rcu_lockdep_assert(c, s) \ 463 do { \ 464 static bool __section(.data.unlikely) __warned; \ 465 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 466 __warned = true; \ 467 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 468 } \ 469 } while (0) 470 471#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 472static inline void rcu_preempt_sleep_check(void) 473{ 474 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 475 "Illegal context switch in RCU read-side critical section"); 476} 477#else /* #ifdef CONFIG_PROVE_RCU */ 478static inline void rcu_preempt_sleep_check(void) 479{ 480} 481#endif /* #else #ifdef CONFIG_PROVE_RCU */ 482 483#define rcu_sleep_check() \ 484 do { \ 485 rcu_preempt_sleep_check(); \ 486 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 487 "Illegal context switch in RCU-bh" \ 488 " read-side critical section"); \ 489 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 490 "Illegal context switch in RCU-sched"\ 491 " read-side critical section"); \ 492 } while (0) 493 494#else /* #ifdef CONFIG_PROVE_RCU */ 495 496#define rcu_lockdep_assert(c, s) do { } while (0) 497#define rcu_sleep_check() do { } while (0) 498 499#endif /* #else #ifdef CONFIG_PROVE_RCU */ 500 501/* 502 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 503 * and rcu_assign_pointer(). Some of these could be folded into their 504 * callers, but they are left separate in order to ease introduction of 505 * multiple flavors of pointers to match the multiple flavors of RCU 506 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 507 * the future. 508 */ 509 510#ifdef __CHECKER__ 511#define rcu_dereference_sparse(p, space) \ 512 ((void)(((typeof(*p) space *)p) == p)) 513#else /* #ifdef __CHECKER__ */ 514#define rcu_dereference_sparse(p, space) 515#endif /* #else #ifdef __CHECKER__ */ 516 517#define __rcu_access_pointer(p, space) \ 518 ({ \ 519 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 520 rcu_dereference_sparse(p, space); \ 521 ((typeof(*p) __force __kernel *)(_________p1)); \ 522 }) 523#define __rcu_dereference_check(p, c, space) \ 524 ({ \ 525 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 526 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \ 527 " usage"); \ 528 rcu_dereference_sparse(p, space); \ 529 smp_read_barrier_depends(); \ 530 ((typeof(*p) __force __kernel *)(_________p1)); \ 531 }) 532#define __rcu_dereference_protected(p, c, space) \ 533 ({ \ 534 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \ 535 " usage"); \ 536 rcu_dereference_sparse(p, space); \ 537 ((typeof(*p) __force __kernel *)(p)); \ 538 }) 539 540#define __rcu_access_index(p, space) \ 541 ({ \ 542 typeof(p) _________p1 = ACCESS_ONCE(p); \ 543 rcu_dereference_sparse(p, space); \ 544 (_________p1); \ 545 }) 546#define __rcu_dereference_index_check(p, c) \ 547 ({ \ 548 typeof(p) _________p1 = ACCESS_ONCE(p); \ 549 rcu_lockdep_assert(c, \ 550 "suspicious rcu_dereference_index_check()" \ 551 " usage"); \ 552 smp_read_barrier_depends(); \ 553 (_________p1); \ 554 }) 555#define __rcu_assign_pointer(p, v, space) \ 556 do { \ 557 smp_wmb(); \ 558 (p) = (typeof(*v) __force space *)(v); \ 559 } while (0) 560 561 562/** 563 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 564 * @p: The pointer to read 565 * 566 * Return the value of the specified RCU-protected pointer, but omit the 567 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 568 * when the value of this pointer is accessed, but the pointer is not 569 * dereferenced, for example, when testing an RCU-protected pointer against 570 * NULL. Although rcu_access_pointer() may also be used in cases where 571 * update-side locks prevent the value of the pointer from changing, you 572 * should instead use rcu_dereference_protected() for this use case. 573 * 574 * It is also permissible to use rcu_access_pointer() when read-side 575 * access to the pointer was removed at least one grace period ago, as 576 * is the case in the context of the RCU callback that is freeing up 577 * the data, or after a synchronize_rcu() returns. This can be useful 578 * when tearing down multi-linked structures after a grace period 579 * has elapsed. 580 */ 581#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 582 583/** 584 * rcu_dereference_check() - rcu_dereference with debug checking 585 * @p: The pointer to read, prior to dereferencing 586 * @c: The conditions under which the dereference will take place 587 * 588 * Do an rcu_dereference(), but check that the conditions under which the 589 * dereference will take place are correct. Typically the conditions 590 * indicate the various locking conditions that should be held at that 591 * point. The check should return true if the conditions are satisfied. 592 * An implicit check for being in an RCU read-side critical section 593 * (rcu_read_lock()) is included. 594 * 595 * For example: 596 * 597 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 598 * 599 * could be used to indicate to lockdep that foo->bar may only be dereferenced 600 * if either rcu_read_lock() is held, or that the lock required to replace 601 * the bar struct at foo->bar is held. 602 * 603 * Note that the list of conditions may also include indications of when a lock 604 * need not be held, for example during initialisation or destruction of the 605 * target struct: 606 * 607 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 608 * atomic_read(&foo->usage) == 0); 609 * 610 * Inserts memory barriers on architectures that require them 611 * (currently only the Alpha), prevents the compiler from refetching 612 * (and from merging fetches), and, more importantly, documents exactly 613 * which pointers are protected by RCU and checks that the pointer is 614 * annotated as __rcu. 615 */ 616#define rcu_dereference_check(p, c) \ 617 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 618 619/** 620 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 621 * @p: The pointer to read, prior to dereferencing 622 * @c: The conditions under which the dereference will take place 623 * 624 * This is the RCU-bh counterpart to rcu_dereference_check(). 625 */ 626#define rcu_dereference_bh_check(p, c) \ 627 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 628 629/** 630 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 631 * @p: The pointer to read, prior to dereferencing 632 * @c: The conditions under which the dereference will take place 633 * 634 * This is the RCU-sched counterpart to rcu_dereference_check(). 635 */ 636#define rcu_dereference_sched_check(p, c) \ 637 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 638 __rcu) 639 640#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 641 642/* 643 * The tracing infrastructure traces RCU (we want that), but unfortunately 644 * some of the RCU checks causes tracing to lock up the system. 645 * 646 * The tracing version of rcu_dereference_raw() must not call 647 * rcu_read_lock_held(). 648 */ 649#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 650 651/** 652 * rcu_access_index() - fetch RCU index with no dereferencing 653 * @p: The index to read 654 * 655 * Return the value of the specified RCU-protected index, but omit the 656 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 657 * when the value of this index is accessed, but the index is not 658 * dereferenced, for example, when testing an RCU-protected index against 659 * -1. Although rcu_access_index() may also be used in cases where 660 * update-side locks prevent the value of the index from changing, you 661 * should instead use rcu_dereference_index_protected() for this use case. 662 */ 663#define rcu_access_index(p) __rcu_access_index((p), __rcu) 664 665/** 666 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 667 * @p: The pointer to read, prior to dereferencing 668 * @c: The conditions under which the dereference will take place 669 * 670 * Similar to rcu_dereference_check(), but omits the sparse checking. 671 * This allows rcu_dereference_index_check() to be used on integers, 672 * which can then be used as array indices. Attempting to use 673 * rcu_dereference_check() on an integer will give compiler warnings 674 * because the sparse address-space mechanism relies on dereferencing 675 * the RCU-protected pointer. Dereferencing integers is not something 676 * that even gcc will put up with. 677 * 678 * Note that this function does not implicitly check for RCU read-side 679 * critical sections. If this function gains lots of uses, it might 680 * make sense to provide versions for each flavor of RCU, but it does 681 * not make sense as of early 2010. 682 */ 683#define rcu_dereference_index_check(p, c) \ 684 __rcu_dereference_index_check((p), (c)) 685 686/** 687 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 688 * @p: The pointer to read, prior to dereferencing 689 * @c: The conditions under which the dereference will take place 690 * 691 * Return the value of the specified RCU-protected pointer, but omit 692 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 693 * is useful in cases where update-side locks prevent the value of the 694 * pointer from changing. Please note that this primitive does -not- 695 * prevent the compiler from repeating this reference or combining it 696 * with other references, so it should not be used without protection 697 * of appropriate locks. 698 * 699 * This function is only for update-side use. Using this function 700 * when protected only by rcu_read_lock() will result in infrequent 701 * but very ugly failures. 702 */ 703#define rcu_dereference_protected(p, c) \ 704 __rcu_dereference_protected((p), (c), __rcu) 705 706 707/** 708 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 709 * @p: The pointer to read, prior to dereferencing 710 * 711 * This is a simple wrapper around rcu_dereference_check(). 712 */ 713#define rcu_dereference(p) rcu_dereference_check(p, 0) 714 715/** 716 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 717 * @p: The pointer to read, prior to dereferencing 718 * 719 * Makes rcu_dereference_check() do the dirty work. 720 */ 721#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 722 723/** 724 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 725 * @p: The pointer to read, prior to dereferencing 726 * 727 * Makes rcu_dereference_check() do the dirty work. 728 */ 729#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 730 731/** 732 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 733 * 734 * When synchronize_rcu() is invoked on one CPU while other CPUs 735 * are within RCU read-side critical sections, then the 736 * synchronize_rcu() is guaranteed to block until after all the other 737 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 738 * on one CPU while other CPUs are within RCU read-side critical 739 * sections, invocation of the corresponding RCU callback is deferred 740 * until after the all the other CPUs exit their critical sections. 741 * 742 * Note, however, that RCU callbacks are permitted to run concurrently 743 * with new RCU read-side critical sections. One way that this can happen 744 * is via the following sequence of events: (1) CPU 0 enters an RCU 745 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 746 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 747 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 748 * callback is invoked. This is legal, because the RCU read-side critical 749 * section that was running concurrently with the call_rcu() (and which 750 * therefore might be referencing something that the corresponding RCU 751 * callback would free up) has completed before the corresponding 752 * RCU callback is invoked. 753 * 754 * RCU read-side critical sections may be nested. Any deferred actions 755 * will be deferred until the outermost RCU read-side critical section 756 * completes. 757 * 758 * You can avoid reading and understanding the next paragraph by 759 * following this rule: don't put anything in an rcu_read_lock() RCU 760 * read-side critical section that would block in a !PREEMPT kernel. 761 * But if you want the full story, read on! 762 * 763 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 764 * is illegal to block while in an RCU read-side critical section. In 765 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 766 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 767 * be preempted, but explicit blocking is illegal. Finally, in preemptible 768 * RCU implementations in real-time (with -rt patchset) kernel builds, 769 * RCU read-side critical sections may be preempted and they may also 770 * block, but only when acquiring spinlocks that are subject to priority 771 * inheritance. 772 */ 773static inline void rcu_read_lock(void) 774{ 775 __rcu_read_lock(); 776 __acquire(RCU); 777 rcu_lock_acquire(&rcu_lock_map); 778 rcu_lockdep_assert(!rcu_is_cpu_idle(), 779 "rcu_read_lock() used illegally while idle"); 780} 781 782/* 783 * So where is rcu_write_lock()? It does not exist, as there is no 784 * way for writers to lock out RCU readers. This is a feature, not 785 * a bug -- this property is what provides RCU's performance benefits. 786 * Of course, writers must coordinate with each other. The normal 787 * spinlock primitives work well for this, but any other technique may be 788 * used as well. RCU does not care how the writers keep out of each 789 * others' way, as long as they do so. 790 */ 791 792/** 793 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 794 * 795 * See rcu_read_lock() for more information. 796 */ 797static inline void rcu_read_unlock(void) 798{ 799 rcu_lockdep_assert(!rcu_is_cpu_idle(), 800 "rcu_read_unlock() used illegally while idle"); 801 rcu_lock_release(&rcu_lock_map); 802 __release(RCU); 803 __rcu_read_unlock(); 804} 805 806/** 807 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 808 * 809 * This is equivalent of rcu_read_lock(), but to be used when updates 810 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 811 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 812 * softirq handler to be a quiescent state, a process in RCU read-side 813 * critical section must be protected by disabling softirqs. Read-side 814 * critical sections in interrupt context can use just rcu_read_lock(), 815 * though this should at least be commented to avoid confusing people 816 * reading the code. 817 * 818 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 819 * must occur in the same context, for example, it is illegal to invoke 820 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 821 * was invoked from some other task. 822 */ 823static inline void rcu_read_lock_bh(void) 824{ 825 local_bh_disable(); 826 __acquire(RCU_BH); 827 rcu_lock_acquire(&rcu_bh_lock_map); 828 rcu_lockdep_assert(!rcu_is_cpu_idle(), 829 "rcu_read_lock_bh() used illegally while idle"); 830} 831 832/* 833 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 834 * 835 * See rcu_read_lock_bh() for more information. 836 */ 837static inline void rcu_read_unlock_bh(void) 838{ 839 rcu_lockdep_assert(!rcu_is_cpu_idle(), 840 "rcu_read_unlock_bh() used illegally while idle"); 841 rcu_lock_release(&rcu_bh_lock_map); 842 __release(RCU_BH); 843 local_bh_enable(); 844} 845 846/** 847 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 848 * 849 * This is equivalent of rcu_read_lock(), but to be used when updates 850 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 851 * Read-side critical sections can also be introduced by anything that 852 * disables preemption, including local_irq_disable() and friends. 853 * 854 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 855 * must occur in the same context, for example, it is illegal to invoke 856 * rcu_read_unlock_sched() from process context if the matching 857 * rcu_read_lock_sched() was invoked from an NMI handler. 858 */ 859static inline void rcu_read_lock_sched(void) 860{ 861 preempt_disable(); 862 __acquire(RCU_SCHED); 863 rcu_lock_acquire(&rcu_sched_lock_map); 864 rcu_lockdep_assert(!rcu_is_cpu_idle(), 865 "rcu_read_lock_sched() used illegally while idle"); 866} 867 868/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 869static inline notrace void rcu_read_lock_sched_notrace(void) 870{ 871 preempt_disable_notrace(); 872 __acquire(RCU_SCHED); 873} 874 875/* 876 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 877 * 878 * See rcu_read_lock_sched for more information. 879 */ 880static inline void rcu_read_unlock_sched(void) 881{ 882 rcu_lockdep_assert(!rcu_is_cpu_idle(), 883 "rcu_read_unlock_sched() used illegally while idle"); 884 rcu_lock_release(&rcu_sched_lock_map); 885 __release(RCU_SCHED); 886 preempt_enable(); 887} 888 889/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 890static inline notrace void rcu_read_unlock_sched_notrace(void) 891{ 892 __release(RCU_SCHED); 893 preempt_enable_notrace(); 894} 895 896/** 897 * rcu_assign_pointer() - assign to RCU-protected pointer 898 * @p: pointer to assign to 899 * @v: value to assign (publish) 900 * 901 * Assigns the specified value to the specified RCU-protected 902 * pointer, ensuring that any concurrent RCU readers will see 903 * any prior initialization. 904 * 905 * Inserts memory barriers on architectures that require them 906 * (which is most of them), and also prevents the compiler from 907 * reordering the code that initializes the structure after the pointer 908 * assignment. More importantly, this call documents which pointers 909 * will be dereferenced by RCU read-side code. 910 * 911 * In some special cases, you may use RCU_INIT_POINTER() instead 912 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 913 * to the fact that it does not constrain either the CPU or the compiler. 914 * That said, using RCU_INIT_POINTER() when you should have used 915 * rcu_assign_pointer() is a very bad thing that results in 916 * impossible-to-diagnose memory corruption. So please be careful. 917 * See the RCU_INIT_POINTER() comment header for details. 918 */ 919#define rcu_assign_pointer(p, v) \ 920 __rcu_assign_pointer((p), (v), __rcu) 921 922/** 923 * RCU_INIT_POINTER() - initialize an RCU protected pointer 924 * 925 * Initialize an RCU-protected pointer in special cases where readers 926 * do not need ordering constraints on the CPU or the compiler. These 927 * special cases are: 928 * 929 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 930 * 2. The caller has taken whatever steps are required to prevent 931 * RCU readers from concurrently accessing this pointer -or- 932 * 3. The referenced data structure has already been exposed to 933 * readers either at compile time or via rcu_assign_pointer() -and- 934 * a. You have not made -any- reader-visible changes to 935 * this structure since then -or- 936 * b. It is OK for readers accessing this structure from its 937 * new location to see the old state of the structure. (For 938 * example, the changes were to statistical counters or to 939 * other state where exact synchronization is not required.) 940 * 941 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 942 * result in impossible-to-diagnose memory corruption. As in the structures 943 * will look OK in crash dumps, but any concurrent RCU readers might 944 * see pre-initialized values of the referenced data structure. So 945 * please be very careful how you use RCU_INIT_POINTER()!!! 946 * 947 * If you are creating an RCU-protected linked structure that is accessed 948 * by a single external-to-structure RCU-protected pointer, then you may 949 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 950 * pointers, but you must use rcu_assign_pointer() to initialize the 951 * external-to-structure pointer -after- you have completely initialized 952 * the reader-accessible portions of the linked structure. 953 */ 954#define RCU_INIT_POINTER(p, v) \ 955 do { \ 956 p = (typeof(*v) __force __rcu *)(v); \ 957 } while (0) 958 959/** 960 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 961 * 962 * GCC-style initialization for an RCU-protected pointer in a structure field. 963 */ 964#define RCU_POINTER_INITIALIZER(p, v) \ 965 .p = (typeof(*v) __force __rcu *)(v) 966 967/* 968 * Does the specified offset indicate that the corresponding rcu_head 969 * structure can be handled by kfree_rcu()? 970 */ 971#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 972 973/* 974 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 975 */ 976#define __kfree_rcu(head, offset) \ 977 do { \ 978 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 979 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 980 } while (0) 981 982/** 983 * kfree_rcu() - kfree an object after a grace period. 984 * @ptr: pointer to kfree 985 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 986 * 987 * Many rcu callbacks functions just call kfree() on the base structure. 988 * These functions are trivial, but their size adds up, and furthermore 989 * when they are used in a kernel module, that module must invoke the 990 * high-latency rcu_barrier() function at module-unload time. 991 * 992 * The kfree_rcu() function handles this issue. Rather than encoding a 993 * function address in the embedded rcu_head structure, kfree_rcu() instead 994 * encodes the offset of the rcu_head structure within the base structure. 995 * Because the functions are not allowed in the low-order 4096 bytes of 996 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 997 * If the offset is larger than 4095 bytes, a compile-time error will 998 * be generated in __kfree_rcu(). If this error is triggered, you can 999 * either fall back to use of call_rcu() or rearrange the structure to 1000 * position the rcu_head structure into the first 4096 bytes. 1001 * 1002 * Note that the allowable offset might decrease in the future, for example, 1003 * to allow something like kmem_cache_free_rcu(). 1004 * 1005 * The BUILD_BUG_ON check must not involve any function calls, hence the 1006 * checks are done in macros here. 1007 */ 1008#define kfree_rcu(ptr, rcu_head) \ 1009 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1010 1011#ifdef CONFIG_RCU_NOCB_CPU 1012extern bool rcu_is_nocb_cpu(int cpu); 1013#else 1014static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1015#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1016 1017 1018#endif /* __LINUX_RCUPDATE_H */