at v3.11 24 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/atomic.h> 52#include <linux/sysfs.h> 53#include <linux/perf_regs.h> 54#include <asm/local.h> 55 56struct perf_callchain_entry { 57 __u64 nr; 58 __u64 ip[PERF_MAX_STACK_DEPTH]; 59}; 60 61struct perf_raw_record { 62 u32 size; 63 void *data; 64}; 65 66/* 67 * single taken branch record layout: 68 * 69 * from: source instruction (may not always be a branch insn) 70 * to: branch target 71 * mispred: branch target was mispredicted 72 * predicted: branch target was predicted 73 * 74 * support for mispred, predicted is optional. In case it 75 * is not supported mispred = predicted = 0. 76 * 77 * in_tx: running in a hardware transaction 78 * abort: aborting a hardware transaction 79 */ 80struct perf_branch_entry { 81 __u64 from; 82 __u64 to; 83 __u64 mispred:1, /* target mispredicted */ 84 predicted:1,/* target predicted */ 85 in_tx:1, /* in transaction */ 86 abort:1, /* transaction abort */ 87 reserved:60; 88}; 89 90/* 91 * branch stack layout: 92 * nr: number of taken branches stored in entries[] 93 * 94 * Note that nr can vary from sample to sample 95 * branches (to, from) are stored from most recent 96 * to least recent, i.e., entries[0] contains the most 97 * recent branch. 98 */ 99struct perf_branch_stack { 100 __u64 nr; 101 struct perf_branch_entry entries[0]; 102}; 103 104struct perf_regs_user { 105 __u64 abi; 106 struct pt_regs *regs; 107}; 108 109struct task_struct; 110 111/* 112 * extra PMU register associated with an event 113 */ 114struct hw_perf_event_extra { 115 u64 config; /* register value */ 116 unsigned int reg; /* register address or index */ 117 int alloc; /* extra register already allocated */ 118 int idx; /* index in shared_regs->regs[] */ 119}; 120 121struct event_constraint; 122 123/** 124 * struct hw_perf_event - performance event hardware details: 125 */ 126struct hw_perf_event { 127#ifdef CONFIG_PERF_EVENTS 128 union { 129 struct { /* hardware */ 130 u64 config; 131 u64 last_tag; 132 unsigned long config_base; 133 unsigned long event_base; 134 int event_base_rdpmc; 135 int idx; 136 int last_cpu; 137 int flags; 138 139 struct hw_perf_event_extra extra_reg; 140 struct hw_perf_event_extra branch_reg; 141 142 struct event_constraint *constraint; 143 }; 144 struct { /* software */ 145 struct hrtimer hrtimer; 146 }; 147 struct { /* tracepoint */ 148 struct task_struct *tp_target; 149 /* for tp_event->class */ 150 struct list_head tp_list; 151 }; 152#ifdef CONFIG_HAVE_HW_BREAKPOINT 153 struct { /* breakpoint */ 154 /* 155 * Crufty hack to avoid the chicken and egg 156 * problem hw_breakpoint has with context 157 * creation and event initalization. 158 */ 159 struct task_struct *bp_target; 160 struct arch_hw_breakpoint info; 161 struct list_head bp_list; 162 }; 163#endif 164 }; 165 int state; 166 local64_t prev_count; 167 u64 sample_period; 168 u64 last_period; 169 local64_t period_left; 170 u64 interrupts_seq; 171 u64 interrupts; 172 173 u64 freq_time_stamp; 174 u64 freq_count_stamp; 175#endif 176}; 177 178/* 179 * hw_perf_event::state flags 180 */ 181#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 182#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 183#define PERF_HES_ARCH 0x04 184 185struct perf_event; 186 187/* 188 * Common implementation detail of pmu::{start,commit,cancel}_txn 189 */ 190#define PERF_EVENT_TXN 0x1 191 192/** 193 * struct pmu - generic performance monitoring unit 194 */ 195struct pmu { 196 struct list_head entry; 197 198 struct device *dev; 199 const struct attribute_group **attr_groups; 200 const char *name; 201 int type; 202 203 int * __percpu pmu_disable_count; 204 struct perf_cpu_context * __percpu pmu_cpu_context; 205 int task_ctx_nr; 206 int hrtimer_interval_ms; 207 208 /* 209 * Fully disable/enable this PMU, can be used to protect from the PMI 210 * as well as for lazy/batch writing of the MSRs. 211 */ 212 void (*pmu_enable) (struct pmu *pmu); /* optional */ 213 void (*pmu_disable) (struct pmu *pmu); /* optional */ 214 215 /* 216 * Try and initialize the event for this PMU. 217 * Should return -ENOENT when the @event doesn't match this PMU. 218 */ 219 int (*event_init) (struct perf_event *event); 220 221#define PERF_EF_START 0x01 /* start the counter when adding */ 222#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 223#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 224 225 /* 226 * Adds/Removes a counter to/from the PMU, can be done inside 227 * a transaction, see the ->*_txn() methods. 228 */ 229 int (*add) (struct perf_event *event, int flags); 230 void (*del) (struct perf_event *event, int flags); 231 232 /* 233 * Starts/Stops a counter present on the PMU. The PMI handler 234 * should stop the counter when perf_event_overflow() returns 235 * !0. ->start() will be used to continue. 236 */ 237 void (*start) (struct perf_event *event, int flags); 238 void (*stop) (struct perf_event *event, int flags); 239 240 /* 241 * Updates the counter value of the event. 242 */ 243 void (*read) (struct perf_event *event); 244 245 /* 246 * Group events scheduling is treated as a transaction, add 247 * group events as a whole and perform one schedulability test. 248 * If the test fails, roll back the whole group 249 * 250 * Start the transaction, after this ->add() doesn't need to 251 * do schedulability tests. 252 */ 253 void (*start_txn) (struct pmu *pmu); /* optional */ 254 /* 255 * If ->start_txn() disabled the ->add() schedulability test 256 * then ->commit_txn() is required to perform one. On success 257 * the transaction is closed. On error the transaction is kept 258 * open until ->cancel_txn() is called. 259 */ 260 int (*commit_txn) (struct pmu *pmu); /* optional */ 261 /* 262 * Will cancel the transaction, assumes ->del() is called 263 * for each successful ->add() during the transaction. 264 */ 265 void (*cancel_txn) (struct pmu *pmu); /* optional */ 266 267 /* 268 * Will return the value for perf_event_mmap_page::index for this event, 269 * if no implementation is provided it will default to: event->hw.idx + 1. 270 */ 271 int (*event_idx) (struct perf_event *event); /*optional */ 272 273 /* 274 * flush branch stack on context-switches (needed in cpu-wide mode) 275 */ 276 void (*flush_branch_stack) (void); 277}; 278 279/** 280 * enum perf_event_active_state - the states of a event 281 */ 282enum perf_event_active_state { 283 PERF_EVENT_STATE_ERROR = -2, 284 PERF_EVENT_STATE_OFF = -1, 285 PERF_EVENT_STATE_INACTIVE = 0, 286 PERF_EVENT_STATE_ACTIVE = 1, 287}; 288 289struct file; 290struct perf_sample_data; 291 292typedef void (*perf_overflow_handler_t)(struct perf_event *, 293 struct perf_sample_data *, 294 struct pt_regs *regs); 295 296enum perf_group_flag { 297 PERF_GROUP_SOFTWARE = 0x1, 298}; 299 300#define SWEVENT_HLIST_BITS 8 301#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 302 303struct swevent_hlist { 304 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 305 struct rcu_head rcu_head; 306}; 307 308#define PERF_ATTACH_CONTEXT 0x01 309#define PERF_ATTACH_GROUP 0x02 310#define PERF_ATTACH_TASK 0x04 311 312struct perf_cgroup; 313struct ring_buffer; 314 315/** 316 * struct perf_event - performance event kernel representation: 317 */ 318struct perf_event { 319#ifdef CONFIG_PERF_EVENTS 320 struct list_head group_entry; 321 struct list_head event_entry; 322 struct list_head sibling_list; 323 struct hlist_node hlist_entry; 324 int nr_siblings; 325 int group_flags; 326 struct perf_event *group_leader; 327 struct pmu *pmu; 328 329 enum perf_event_active_state state; 330 unsigned int attach_state; 331 local64_t count; 332 atomic64_t child_count; 333 334 /* 335 * These are the total time in nanoseconds that the event 336 * has been enabled (i.e. eligible to run, and the task has 337 * been scheduled in, if this is a per-task event) 338 * and running (scheduled onto the CPU), respectively. 339 * 340 * They are computed from tstamp_enabled, tstamp_running and 341 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 342 */ 343 u64 total_time_enabled; 344 u64 total_time_running; 345 346 /* 347 * These are timestamps used for computing total_time_enabled 348 * and total_time_running when the event is in INACTIVE or 349 * ACTIVE state, measured in nanoseconds from an arbitrary point 350 * in time. 351 * tstamp_enabled: the notional time when the event was enabled 352 * tstamp_running: the notional time when the event was scheduled on 353 * tstamp_stopped: in INACTIVE state, the notional time when the 354 * event was scheduled off. 355 */ 356 u64 tstamp_enabled; 357 u64 tstamp_running; 358 u64 tstamp_stopped; 359 360 /* 361 * timestamp shadows the actual context timing but it can 362 * be safely used in NMI interrupt context. It reflects the 363 * context time as it was when the event was last scheduled in. 364 * 365 * ctx_time already accounts for ctx->timestamp. Therefore to 366 * compute ctx_time for a sample, simply add perf_clock(). 367 */ 368 u64 shadow_ctx_time; 369 370 struct perf_event_attr attr; 371 u16 header_size; 372 u16 id_header_size; 373 u16 read_size; 374 struct hw_perf_event hw; 375 376 struct perf_event_context *ctx; 377 atomic_long_t refcount; 378 379 /* 380 * These accumulate total time (in nanoseconds) that children 381 * events have been enabled and running, respectively. 382 */ 383 atomic64_t child_total_time_enabled; 384 atomic64_t child_total_time_running; 385 386 /* 387 * Protect attach/detach and child_list: 388 */ 389 struct mutex child_mutex; 390 struct list_head child_list; 391 struct perf_event *parent; 392 393 int oncpu; 394 int cpu; 395 396 struct list_head owner_entry; 397 struct task_struct *owner; 398 399 /* mmap bits */ 400 struct mutex mmap_mutex; 401 atomic_t mmap_count; 402 403 struct ring_buffer *rb; 404 struct list_head rb_entry; 405 406 /* poll related */ 407 wait_queue_head_t waitq; 408 struct fasync_struct *fasync; 409 410 /* delayed work for NMIs and such */ 411 int pending_wakeup; 412 int pending_kill; 413 int pending_disable; 414 struct irq_work pending; 415 416 atomic_t event_limit; 417 418 void (*destroy)(struct perf_event *); 419 struct rcu_head rcu_head; 420 421 struct pid_namespace *ns; 422 u64 id; 423 424 perf_overflow_handler_t overflow_handler; 425 void *overflow_handler_context; 426 427#ifdef CONFIG_EVENT_TRACING 428 struct ftrace_event_call *tp_event; 429 struct event_filter *filter; 430#ifdef CONFIG_FUNCTION_TRACER 431 struct ftrace_ops ftrace_ops; 432#endif 433#endif 434 435#ifdef CONFIG_CGROUP_PERF 436 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 437 int cgrp_defer_enabled; 438#endif 439 440#endif /* CONFIG_PERF_EVENTS */ 441}; 442 443enum perf_event_context_type { 444 task_context, 445 cpu_context, 446}; 447 448/** 449 * struct perf_event_context - event context structure 450 * 451 * Used as a container for task events and CPU events as well: 452 */ 453struct perf_event_context { 454 struct pmu *pmu; 455 enum perf_event_context_type type; 456 /* 457 * Protect the states of the events in the list, 458 * nr_active, and the list: 459 */ 460 raw_spinlock_t lock; 461 /* 462 * Protect the list of events. Locking either mutex or lock 463 * is sufficient to ensure the list doesn't change; to change 464 * the list you need to lock both the mutex and the spinlock. 465 */ 466 struct mutex mutex; 467 468 struct list_head pinned_groups; 469 struct list_head flexible_groups; 470 struct list_head event_list; 471 int nr_events; 472 int nr_active; 473 int is_active; 474 int nr_stat; 475 int nr_freq; 476 int rotate_disable; 477 atomic_t refcount; 478 struct task_struct *task; 479 480 /* 481 * Context clock, runs when context enabled. 482 */ 483 u64 time; 484 u64 timestamp; 485 486 /* 487 * These fields let us detect when two contexts have both 488 * been cloned (inherited) from a common ancestor. 489 */ 490 struct perf_event_context *parent_ctx; 491 u64 parent_gen; 492 u64 generation; 493 int pin_count; 494 int nr_cgroups; /* cgroup evts */ 495 int nr_branch_stack; /* branch_stack evt */ 496 struct rcu_head rcu_head; 497}; 498 499/* 500 * Number of contexts where an event can trigger: 501 * task, softirq, hardirq, nmi. 502 */ 503#define PERF_NR_CONTEXTS 4 504 505/** 506 * struct perf_event_cpu_context - per cpu event context structure 507 */ 508struct perf_cpu_context { 509 struct perf_event_context ctx; 510 struct perf_event_context *task_ctx; 511 int active_oncpu; 512 int exclusive; 513 struct hrtimer hrtimer; 514 ktime_t hrtimer_interval; 515 struct list_head rotation_list; 516 struct pmu *unique_pmu; 517 struct perf_cgroup *cgrp; 518}; 519 520struct perf_output_handle { 521 struct perf_event *event; 522 struct ring_buffer *rb; 523 unsigned long wakeup; 524 unsigned long size; 525 void *addr; 526 int page; 527}; 528 529#ifdef CONFIG_PERF_EVENTS 530 531extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 532extern void perf_pmu_unregister(struct pmu *pmu); 533 534extern int perf_num_counters(void); 535extern const char *perf_pmu_name(void); 536extern void __perf_event_task_sched_in(struct task_struct *prev, 537 struct task_struct *task); 538extern void __perf_event_task_sched_out(struct task_struct *prev, 539 struct task_struct *next); 540extern int perf_event_init_task(struct task_struct *child); 541extern void perf_event_exit_task(struct task_struct *child); 542extern void perf_event_free_task(struct task_struct *task); 543extern void perf_event_delayed_put(struct task_struct *task); 544extern void perf_event_print_debug(void); 545extern void perf_pmu_disable(struct pmu *pmu); 546extern void perf_pmu_enable(struct pmu *pmu); 547extern int perf_event_task_disable(void); 548extern int perf_event_task_enable(void); 549extern int perf_event_refresh(struct perf_event *event, int refresh); 550extern void perf_event_update_userpage(struct perf_event *event); 551extern int perf_event_release_kernel(struct perf_event *event); 552extern struct perf_event * 553perf_event_create_kernel_counter(struct perf_event_attr *attr, 554 int cpu, 555 struct task_struct *task, 556 perf_overflow_handler_t callback, 557 void *context); 558extern void perf_pmu_migrate_context(struct pmu *pmu, 559 int src_cpu, int dst_cpu); 560extern u64 perf_event_read_value(struct perf_event *event, 561 u64 *enabled, u64 *running); 562 563 564struct perf_sample_data { 565 u64 type; 566 567 u64 ip; 568 struct { 569 u32 pid; 570 u32 tid; 571 } tid_entry; 572 u64 time; 573 u64 addr; 574 u64 id; 575 u64 stream_id; 576 struct { 577 u32 cpu; 578 u32 reserved; 579 } cpu_entry; 580 u64 period; 581 union perf_mem_data_src data_src; 582 struct perf_callchain_entry *callchain; 583 struct perf_raw_record *raw; 584 struct perf_branch_stack *br_stack; 585 struct perf_regs_user regs_user; 586 u64 stack_user_size; 587 u64 weight; 588}; 589 590static inline void perf_sample_data_init(struct perf_sample_data *data, 591 u64 addr, u64 period) 592{ 593 /* remaining struct members initialized in perf_prepare_sample() */ 594 data->addr = addr; 595 data->raw = NULL; 596 data->br_stack = NULL; 597 data->period = period; 598 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE; 599 data->regs_user.regs = NULL; 600 data->stack_user_size = 0; 601 data->weight = 0; 602 data->data_src.val = 0; 603} 604 605extern void perf_output_sample(struct perf_output_handle *handle, 606 struct perf_event_header *header, 607 struct perf_sample_data *data, 608 struct perf_event *event); 609extern void perf_prepare_sample(struct perf_event_header *header, 610 struct perf_sample_data *data, 611 struct perf_event *event, 612 struct pt_regs *regs); 613 614extern int perf_event_overflow(struct perf_event *event, 615 struct perf_sample_data *data, 616 struct pt_regs *regs); 617 618static inline bool is_sampling_event(struct perf_event *event) 619{ 620 return event->attr.sample_period != 0; 621} 622 623/* 624 * Return 1 for a software event, 0 for a hardware event 625 */ 626static inline int is_software_event(struct perf_event *event) 627{ 628 return event->pmu->task_ctx_nr == perf_sw_context; 629} 630 631extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 632 633extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 634 635#ifndef perf_arch_fetch_caller_regs 636static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 637#endif 638 639/* 640 * Take a snapshot of the regs. Skip ip and frame pointer to 641 * the nth caller. We only need a few of the regs: 642 * - ip for PERF_SAMPLE_IP 643 * - cs for user_mode() tests 644 * - bp for callchains 645 * - eflags, for future purposes, just in case 646 */ 647static inline void perf_fetch_caller_regs(struct pt_regs *regs) 648{ 649 memset(regs, 0, sizeof(*regs)); 650 651 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 652} 653 654static __always_inline void 655perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 656{ 657 struct pt_regs hot_regs; 658 659 if (static_key_false(&perf_swevent_enabled[event_id])) { 660 if (!regs) { 661 perf_fetch_caller_regs(&hot_regs); 662 regs = &hot_regs; 663 } 664 __perf_sw_event(event_id, nr, regs, addr); 665 } 666} 667 668extern struct static_key_deferred perf_sched_events; 669 670static inline void perf_event_task_sched_in(struct task_struct *prev, 671 struct task_struct *task) 672{ 673 if (static_key_false(&perf_sched_events.key)) 674 __perf_event_task_sched_in(prev, task); 675} 676 677static inline void perf_event_task_sched_out(struct task_struct *prev, 678 struct task_struct *next) 679{ 680 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 681 682 if (static_key_false(&perf_sched_events.key)) 683 __perf_event_task_sched_out(prev, next); 684} 685 686extern void perf_event_mmap(struct vm_area_struct *vma); 687extern struct perf_guest_info_callbacks *perf_guest_cbs; 688extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 689extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 690 691extern void perf_event_comm(struct task_struct *tsk); 692extern void perf_event_fork(struct task_struct *tsk); 693 694/* Callchains */ 695DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 696 697extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 698extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 699 700static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 701{ 702 if (entry->nr < PERF_MAX_STACK_DEPTH) 703 entry->ip[entry->nr++] = ip; 704} 705 706extern int sysctl_perf_event_paranoid; 707extern int sysctl_perf_event_mlock; 708extern int sysctl_perf_event_sample_rate; 709extern int sysctl_perf_cpu_time_max_percent; 710 711extern void perf_sample_event_took(u64 sample_len_ns); 712 713extern int perf_proc_update_handler(struct ctl_table *table, int write, 714 void __user *buffer, size_t *lenp, 715 loff_t *ppos); 716extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 717 void __user *buffer, size_t *lenp, 718 loff_t *ppos); 719 720 721static inline bool perf_paranoid_tracepoint_raw(void) 722{ 723 return sysctl_perf_event_paranoid > -1; 724} 725 726static inline bool perf_paranoid_cpu(void) 727{ 728 return sysctl_perf_event_paranoid > 0; 729} 730 731static inline bool perf_paranoid_kernel(void) 732{ 733 return sysctl_perf_event_paranoid > 1; 734} 735 736extern void perf_event_init(void); 737extern void perf_tp_event(u64 addr, u64 count, void *record, 738 int entry_size, struct pt_regs *regs, 739 struct hlist_head *head, int rctx, 740 struct task_struct *task); 741extern void perf_bp_event(struct perf_event *event, void *data); 742 743#ifndef perf_misc_flags 744# define perf_misc_flags(regs) \ 745 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 746# define perf_instruction_pointer(regs) instruction_pointer(regs) 747#endif 748 749static inline bool has_branch_stack(struct perf_event *event) 750{ 751 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 752} 753 754extern int perf_output_begin(struct perf_output_handle *handle, 755 struct perf_event *event, unsigned int size); 756extern void perf_output_end(struct perf_output_handle *handle); 757extern unsigned int perf_output_copy(struct perf_output_handle *handle, 758 const void *buf, unsigned int len); 759extern unsigned int perf_output_skip(struct perf_output_handle *handle, 760 unsigned int len); 761extern int perf_swevent_get_recursion_context(void); 762extern void perf_swevent_put_recursion_context(int rctx); 763extern u64 perf_swevent_set_period(struct perf_event *event); 764extern void perf_event_enable(struct perf_event *event); 765extern void perf_event_disable(struct perf_event *event); 766extern int __perf_event_disable(void *info); 767extern void perf_event_task_tick(void); 768#else 769static inline void 770perf_event_task_sched_in(struct task_struct *prev, 771 struct task_struct *task) { } 772static inline void 773perf_event_task_sched_out(struct task_struct *prev, 774 struct task_struct *next) { } 775static inline int perf_event_init_task(struct task_struct *child) { return 0; } 776static inline void perf_event_exit_task(struct task_struct *child) { } 777static inline void perf_event_free_task(struct task_struct *task) { } 778static inline void perf_event_delayed_put(struct task_struct *task) { } 779static inline void perf_event_print_debug(void) { } 780static inline int perf_event_task_disable(void) { return -EINVAL; } 781static inline int perf_event_task_enable(void) { return -EINVAL; } 782static inline int perf_event_refresh(struct perf_event *event, int refresh) 783{ 784 return -EINVAL; 785} 786 787static inline void 788perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 789static inline void 790perf_bp_event(struct perf_event *event, void *data) { } 791 792static inline int perf_register_guest_info_callbacks 793(struct perf_guest_info_callbacks *callbacks) { return 0; } 794static inline int perf_unregister_guest_info_callbacks 795(struct perf_guest_info_callbacks *callbacks) { return 0; } 796 797static inline void perf_event_mmap(struct vm_area_struct *vma) { } 798static inline void perf_event_comm(struct task_struct *tsk) { } 799static inline void perf_event_fork(struct task_struct *tsk) { } 800static inline void perf_event_init(void) { } 801static inline int perf_swevent_get_recursion_context(void) { return -1; } 802static inline void perf_swevent_put_recursion_context(int rctx) { } 803static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 804static inline void perf_event_enable(struct perf_event *event) { } 805static inline void perf_event_disable(struct perf_event *event) { } 806static inline int __perf_event_disable(void *info) { return -1; } 807static inline void perf_event_task_tick(void) { } 808#endif 809 810#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 811extern bool perf_event_can_stop_tick(void); 812#else 813static inline bool perf_event_can_stop_tick(void) { return true; } 814#endif 815 816#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 817extern void perf_restore_debug_store(void); 818#else 819static inline void perf_restore_debug_store(void) { } 820#endif 821 822#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 823 824/* 825 * This has to have a higher priority than migration_notifier in sched/core.c. 826 */ 827#define perf_cpu_notifier(fn) \ 828do { \ 829 static struct notifier_block fn##_nb = \ 830 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 831 unsigned long cpu = smp_processor_id(); \ 832 unsigned long flags; \ 833 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 834 (void *)(unsigned long)cpu); \ 835 local_irq_save(flags); \ 836 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 837 (void *)(unsigned long)cpu); \ 838 local_irq_restore(flags); \ 839 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 840 (void *)(unsigned long)cpu); \ 841 register_cpu_notifier(&fn##_nb); \ 842} while (0) 843 844 845struct perf_pmu_events_attr { 846 struct device_attribute attr; 847 u64 id; 848 const char *event_str; 849}; 850 851#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 852static struct perf_pmu_events_attr _var = { \ 853 .attr = __ATTR(_name, 0444, _show, NULL), \ 854 .id = _id, \ 855}; 856 857#define PMU_FORMAT_ATTR(_name, _format) \ 858static ssize_t \ 859_name##_show(struct device *dev, \ 860 struct device_attribute *attr, \ 861 char *page) \ 862{ \ 863 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 864 return sprintf(page, _format "\n"); \ 865} \ 866 \ 867static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 868 869#endif /* _LINUX_PERF_EVENT_H */