at v3.11 17 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26 27struct mem_cgroup; 28struct page_cgroup; 29struct page; 30struct mm_struct; 31struct kmem_cache; 32 33/* Stats that can be updated by kernel. */ 34enum mem_cgroup_page_stat_item { 35 MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */ 36}; 37 38struct mem_cgroup_reclaim_cookie { 39 struct zone *zone; 40 int priority; 41 unsigned int generation; 42}; 43 44#ifdef CONFIG_MEMCG 45/* 46 * All "charge" functions with gfp_mask should use GFP_KERNEL or 47 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't 48 * alloc memory but reclaims memory from all available zones. So, "where I want 49 * memory from" bits of gfp_mask has no meaning. So any bits of that field is 50 * available but adding a rule is better. charge functions' gfp_mask should 51 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous 52 * codes. 53 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.) 54 */ 55 56extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm, 57 gfp_t gfp_mask); 58/* for swap handling */ 59extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 60 struct page *page, gfp_t mask, struct mem_cgroup **memcgp); 61extern void mem_cgroup_commit_charge_swapin(struct page *page, 62 struct mem_cgroup *memcg); 63extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg); 64 65extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 66 gfp_t gfp_mask); 67 68struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 69struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 70 71/* For coalescing uncharge for reducing memcg' overhead*/ 72extern void mem_cgroup_uncharge_start(void); 73extern void mem_cgroup_uncharge_end(void); 74 75extern void mem_cgroup_uncharge_page(struct page *page); 76extern void mem_cgroup_uncharge_cache_page(struct page *page); 77 78bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 79 struct mem_cgroup *memcg); 80bool task_in_mem_cgroup(struct task_struct *task, 81 const struct mem_cgroup *memcg); 82 83extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); 84extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 85extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm); 86 87extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 88extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont); 89 90static inline 91bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg) 92{ 93 struct mem_cgroup *task_memcg; 94 bool match; 95 96 rcu_read_lock(); 97 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 98 match = __mem_cgroup_same_or_subtree(memcg, task_memcg); 99 rcu_read_unlock(); 100 return match; 101} 102 103extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); 104 105extern void 106mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 107 struct mem_cgroup **memcgp); 108extern void mem_cgroup_end_migration(struct mem_cgroup *memcg, 109 struct page *oldpage, struct page *newpage, bool migration_ok); 110 111struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 112 struct mem_cgroup *, 113 struct mem_cgroup_reclaim_cookie *); 114void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 115 116/* 117 * For memory reclaim. 118 */ 119int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); 120int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 121unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); 122void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); 123extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 124 struct task_struct *p); 125extern void mem_cgroup_replace_page_cache(struct page *oldpage, 126 struct page *newpage); 127 128#ifdef CONFIG_MEMCG_SWAP 129extern int do_swap_account; 130#endif 131 132static inline bool mem_cgroup_disabled(void) 133{ 134 if (mem_cgroup_subsys.disabled) 135 return true; 136 return false; 137} 138 139void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, 140 unsigned long *flags); 141 142extern atomic_t memcg_moving; 143 144static inline void mem_cgroup_begin_update_page_stat(struct page *page, 145 bool *locked, unsigned long *flags) 146{ 147 if (mem_cgroup_disabled()) 148 return; 149 rcu_read_lock(); 150 *locked = false; 151 if (atomic_read(&memcg_moving)) 152 __mem_cgroup_begin_update_page_stat(page, locked, flags); 153} 154 155void __mem_cgroup_end_update_page_stat(struct page *page, 156 unsigned long *flags); 157static inline void mem_cgroup_end_update_page_stat(struct page *page, 158 bool *locked, unsigned long *flags) 159{ 160 if (mem_cgroup_disabled()) 161 return; 162 if (*locked) 163 __mem_cgroup_end_update_page_stat(page, flags); 164 rcu_read_unlock(); 165} 166 167void mem_cgroup_update_page_stat(struct page *page, 168 enum mem_cgroup_page_stat_item idx, 169 int val); 170 171static inline void mem_cgroup_inc_page_stat(struct page *page, 172 enum mem_cgroup_page_stat_item idx) 173{ 174 mem_cgroup_update_page_stat(page, idx, 1); 175} 176 177static inline void mem_cgroup_dec_page_stat(struct page *page, 178 enum mem_cgroup_page_stat_item idx) 179{ 180 mem_cgroup_update_page_stat(page, idx, -1); 181} 182 183unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 184 gfp_t gfp_mask, 185 unsigned long *total_scanned); 186 187void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); 188static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 189 enum vm_event_item idx) 190{ 191 if (mem_cgroup_disabled()) 192 return; 193 __mem_cgroup_count_vm_event(mm, idx); 194} 195#ifdef CONFIG_TRANSPARENT_HUGEPAGE 196void mem_cgroup_split_huge_fixup(struct page *head); 197#endif 198 199#ifdef CONFIG_DEBUG_VM 200bool mem_cgroup_bad_page_check(struct page *page); 201void mem_cgroup_print_bad_page(struct page *page); 202#endif 203#else /* CONFIG_MEMCG */ 204struct mem_cgroup; 205 206static inline int mem_cgroup_newpage_charge(struct page *page, 207 struct mm_struct *mm, gfp_t gfp_mask) 208{ 209 return 0; 210} 211 212static inline int mem_cgroup_cache_charge(struct page *page, 213 struct mm_struct *mm, gfp_t gfp_mask) 214{ 215 return 0; 216} 217 218static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 219 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp) 220{ 221 return 0; 222} 223 224static inline void mem_cgroup_commit_charge_swapin(struct page *page, 225 struct mem_cgroup *memcg) 226{ 227} 228 229static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 230{ 231} 232 233static inline void mem_cgroup_uncharge_start(void) 234{ 235} 236 237static inline void mem_cgroup_uncharge_end(void) 238{ 239} 240 241static inline void mem_cgroup_uncharge_page(struct page *page) 242{ 243} 244 245static inline void mem_cgroup_uncharge_cache_page(struct page *page) 246{ 247} 248 249static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 250 struct mem_cgroup *memcg) 251{ 252 return &zone->lruvec; 253} 254 255static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 256 struct zone *zone) 257{ 258 return &zone->lruvec; 259} 260 261static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 262{ 263 return NULL; 264} 265 266static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 267{ 268 return NULL; 269} 270 271static inline bool mm_match_cgroup(struct mm_struct *mm, 272 struct mem_cgroup *memcg) 273{ 274 return true; 275} 276 277static inline bool task_in_mem_cgroup(struct task_struct *task, 278 const struct mem_cgroup *memcg) 279{ 280 return true; 281} 282 283static inline struct cgroup_subsys_state 284 *mem_cgroup_css(struct mem_cgroup *memcg) 285{ 286 return NULL; 287} 288 289static inline void 290mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 291 struct mem_cgroup **memcgp) 292{ 293} 294 295static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg, 296 struct page *oldpage, struct page *newpage, bool migration_ok) 297{ 298} 299 300static inline struct mem_cgroup * 301mem_cgroup_iter(struct mem_cgroup *root, 302 struct mem_cgroup *prev, 303 struct mem_cgroup_reclaim_cookie *reclaim) 304{ 305 return NULL; 306} 307 308static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 309 struct mem_cgroup *prev) 310{ 311} 312 313static inline bool mem_cgroup_disabled(void) 314{ 315 return true; 316} 317 318static inline int 319mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 320{ 321 return 1; 322} 323 324static inline unsigned long 325mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 326{ 327 return 0; 328} 329 330static inline void 331mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 332 int increment) 333{ 334} 335 336static inline void 337mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 338{ 339} 340 341static inline void mem_cgroup_begin_update_page_stat(struct page *page, 342 bool *locked, unsigned long *flags) 343{ 344} 345 346static inline void mem_cgroup_end_update_page_stat(struct page *page, 347 bool *locked, unsigned long *flags) 348{ 349} 350 351static inline void mem_cgroup_inc_page_stat(struct page *page, 352 enum mem_cgroup_page_stat_item idx) 353{ 354} 355 356static inline void mem_cgroup_dec_page_stat(struct page *page, 357 enum mem_cgroup_page_stat_item idx) 358{ 359} 360 361static inline 362unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 363 gfp_t gfp_mask, 364 unsigned long *total_scanned) 365{ 366 return 0; 367} 368 369static inline void mem_cgroup_split_huge_fixup(struct page *head) 370{ 371} 372 373static inline 374void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 375{ 376} 377static inline void mem_cgroup_replace_page_cache(struct page *oldpage, 378 struct page *newpage) 379{ 380} 381#endif /* CONFIG_MEMCG */ 382 383#if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM) 384static inline bool 385mem_cgroup_bad_page_check(struct page *page) 386{ 387 return false; 388} 389 390static inline void 391mem_cgroup_print_bad_page(struct page *page) 392{ 393} 394#endif 395 396enum { 397 UNDER_LIMIT, 398 SOFT_LIMIT, 399 OVER_LIMIT, 400}; 401 402struct sock; 403#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 404void sock_update_memcg(struct sock *sk); 405void sock_release_memcg(struct sock *sk); 406#else 407static inline void sock_update_memcg(struct sock *sk) 408{ 409} 410static inline void sock_release_memcg(struct sock *sk) 411{ 412} 413#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 414 415#ifdef CONFIG_MEMCG_KMEM 416extern struct static_key memcg_kmem_enabled_key; 417 418extern int memcg_limited_groups_array_size; 419 420/* 421 * Helper macro to loop through all memcg-specific caches. Callers must still 422 * check if the cache is valid (it is either valid or NULL). 423 * the slab_mutex must be held when looping through those caches 424 */ 425#define for_each_memcg_cache_index(_idx) \ 426 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++) 427 428static inline bool memcg_kmem_enabled(void) 429{ 430 return static_key_false(&memcg_kmem_enabled_key); 431} 432 433/* 434 * In general, we'll do everything in our power to not incur in any overhead 435 * for non-memcg users for the kmem functions. Not even a function call, if we 436 * can avoid it. 437 * 438 * Therefore, we'll inline all those functions so that in the best case, we'll 439 * see that kmemcg is off for everybody and proceed quickly. If it is on, 440 * we'll still do most of the flag checking inline. We check a lot of 441 * conditions, but because they are pretty simple, they are expected to be 442 * fast. 443 */ 444bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 445 int order); 446void __memcg_kmem_commit_charge(struct page *page, 447 struct mem_cgroup *memcg, int order); 448void __memcg_kmem_uncharge_pages(struct page *page, int order); 449 450int memcg_cache_id(struct mem_cgroup *memcg); 451int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 452 struct kmem_cache *root_cache); 453void memcg_release_cache(struct kmem_cache *cachep); 454void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep); 455 456int memcg_update_cache_size(struct kmem_cache *s, int num_groups); 457void memcg_update_array_size(int num_groups); 458 459struct kmem_cache * 460__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 461 462void mem_cgroup_destroy_cache(struct kmem_cache *cachep); 463void kmem_cache_destroy_memcg_children(struct kmem_cache *s); 464 465/** 466 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 467 * @gfp: the gfp allocation flags. 468 * @memcg: a pointer to the memcg this was charged against. 469 * @order: allocation order. 470 * 471 * returns true if the memcg where the current task belongs can hold this 472 * allocation. 473 * 474 * We return true automatically if this allocation is not to be accounted to 475 * any memcg. 476 */ 477static inline bool 478memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 479{ 480 if (!memcg_kmem_enabled()) 481 return true; 482 483 /* 484 * __GFP_NOFAIL allocations will move on even if charging is not 485 * possible. Therefore we don't even try, and have this allocation 486 * unaccounted. We could in theory charge it with 487 * res_counter_charge_nofail, but we hope those allocations are rare, 488 * and won't be worth the trouble. 489 */ 490 if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL)) 491 return true; 492 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 493 return true; 494 495 /* If the test is dying, just let it go. */ 496 if (unlikely(fatal_signal_pending(current))) 497 return true; 498 499 return __memcg_kmem_newpage_charge(gfp, memcg, order); 500} 501 502/** 503 * memcg_kmem_uncharge_pages: uncharge pages from memcg 504 * @page: pointer to struct page being freed 505 * @order: allocation order. 506 * 507 * there is no need to specify memcg here, since it is embedded in page_cgroup 508 */ 509static inline void 510memcg_kmem_uncharge_pages(struct page *page, int order) 511{ 512 if (memcg_kmem_enabled()) 513 __memcg_kmem_uncharge_pages(page, order); 514} 515 516/** 517 * memcg_kmem_commit_charge: embeds correct memcg in a page 518 * @page: pointer to struct page recently allocated 519 * @memcg: the memcg structure we charged against 520 * @order: allocation order. 521 * 522 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 523 * failure of the allocation. if @page is NULL, this function will revert the 524 * charges. Otherwise, it will commit the memcg given by @memcg to the 525 * corresponding page_cgroup. 526 */ 527static inline void 528memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 529{ 530 if (memcg_kmem_enabled() && memcg) 531 __memcg_kmem_commit_charge(page, memcg, order); 532} 533 534/** 535 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 536 * @cachep: the original global kmem cache 537 * @gfp: allocation flags. 538 * 539 * This function assumes that the task allocating, which determines the memcg 540 * in the page allocator, belongs to the same cgroup throughout the whole 541 * process. Misacounting can happen if the task calls memcg_kmem_get_cache() 542 * while belonging to a cgroup, and later on changes. This is considered 543 * acceptable, and should only happen upon task migration. 544 * 545 * Before the cache is created by the memcg core, there is also a possible 546 * imbalance: the task belongs to a memcg, but the cache being allocated from 547 * is the global cache, since the child cache is not yet guaranteed to be 548 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be 549 * passed and the page allocator will not attempt any cgroup accounting. 550 */ 551static __always_inline struct kmem_cache * 552memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 553{ 554 if (!memcg_kmem_enabled()) 555 return cachep; 556 if (gfp & __GFP_NOFAIL) 557 return cachep; 558 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 559 return cachep; 560 if (unlikely(fatal_signal_pending(current))) 561 return cachep; 562 563 return __memcg_kmem_get_cache(cachep, gfp); 564} 565#else 566#define for_each_memcg_cache_index(_idx) \ 567 for (; NULL; ) 568 569static inline bool memcg_kmem_enabled(void) 570{ 571 return false; 572} 573 574static inline bool 575memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 576{ 577 return true; 578} 579 580static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 581{ 582} 583 584static inline void 585memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 586{ 587} 588 589static inline int memcg_cache_id(struct mem_cgroup *memcg) 590{ 591 return -1; 592} 593 594static inline int 595memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 596 struct kmem_cache *root_cache) 597{ 598 return 0; 599} 600 601static inline void memcg_release_cache(struct kmem_cache *cachep) 602{ 603} 604 605static inline void memcg_cache_list_add(struct mem_cgroup *memcg, 606 struct kmem_cache *s) 607{ 608} 609 610static inline struct kmem_cache * 611memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 612{ 613 return cachep; 614} 615 616static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 617{ 618} 619#endif /* CONFIG_MEMCG_KMEM */ 620#endif /* _LINUX_MEMCONTROL_H */ 621