at v3.11 34 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef LINUX_DMAENGINE_H 22#define LINUX_DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/bug.h> 27#include <linux/scatterlist.h> 28#include <linux/bitmap.h> 29#include <linux/types.h> 30#include <asm/page.h> 31 32/** 33 * typedef dma_cookie_t - an opaque DMA cookie 34 * 35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 36 */ 37typedef s32 dma_cookie_t; 38#define DMA_MIN_COOKIE 1 39#define DMA_MAX_COOKIE INT_MAX 40 41#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 42 43/** 44 * enum dma_status - DMA transaction status 45 * @DMA_SUCCESS: transaction completed successfully 46 * @DMA_IN_PROGRESS: transaction not yet processed 47 * @DMA_PAUSED: transaction is paused 48 * @DMA_ERROR: transaction failed 49 */ 50enum dma_status { 51 DMA_SUCCESS, 52 DMA_IN_PROGRESS, 53 DMA_PAUSED, 54 DMA_ERROR, 55}; 56 57/** 58 * enum dma_transaction_type - DMA transaction types/indexes 59 * 60 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 61 * automatically set as dma devices are registered. 62 */ 63enum dma_transaction_type { 64 DMA_MEMCPY, 65 DMA_XOR, 66 DMA_PQ, 67 DMA_XOR_VAL, 68 DMA_PQ_VAL, 69 DMA_INTERRUPT, 70 DMA_SG, 71 DMA_PRIVATE, 72 DMA_ASYNC_TX, 73 DMA_SLAVE, 74 DMA_CYCLIC, 75 DMA_INTERLEAVE, 76/* last transaction type for creation of the capabilities mask */ 77 DMA_TX_TYPE_END, 78}; 79 80/** 81 * enum dma_transfer_direction - dma transfer mode and direction indicator 82 * @DMA_MEM_TO_MEM: Async/Memcpy mode 83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 86 */ 87enum dma_transfer_direction { 88 DMA_MEM_TO_MEM, 89 DMA_MEM_TO_DEV, 90 DMA_DEV_TO_MEM, 91 DMA_DEV_TO_DEV, 92 DMA_TRANS_NONE, 93}; 94 95/** 96 * Interleaved Transfer Request 97 * ---------------------------- 98 * A chunk is collection of contiguous bytes to be transfered. 99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 100 * ICGs may or maynot change between chunks. 101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 102 * that when repeated an integral number of times, specifies the transfer. 103 * A transfer template is specification of a Frame, the number of times 104 * it is to be repeated and other per-transfer attributes. 105 * 106 * Practically, a client driver would have ready a template for each 107 * type of transfer it is going to need during its lifetime and 108 * set only 'src_start' and 'dst_start' before submitting the requests. 109 * 110 * 111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 113 * 114 * == Chunk size 115 * ... ICG 116 */ 117 118/** 119 * struct data_chunk - Element of scatter-gather list that makes a frame. 120 * @size: Number of bytes to read from source. 121 * size_dst := fn(op, size_src), so doesn't mean much for destination. 122 * @icg: Number of bytes to jump after last src/dst address of this 123 * chunk and before first src/dst address for next chunk. 124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 126 */ 127struct data_chunk { 128 size_t size; 129 size_t icg; 130}; 131 132/** 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 134 * and attributes. 135 * @src_start: Bus address of source for the first chunk. 136 * @dst_start: Bus address of destination for the first chunk. 137 * @dir: Specifies the type of Source and Destination. 138 * @src_inc: If the source address increments after reading from it. 139 * @dst_inc: If the destination address increments after writing to it. 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 141 * Otherwise, source is read contiguously (icg ignored). 142 * Ignored if src_inc is false. 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 144 * Otherwise, destination is filled contiguously (icg ignored). 145 * Ignored if dst_inc is false. 146 * @numf: Number of frames in this template. 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 148 * @sgl: Array of {chunk,icg} pairs that make up a frame. 149 */ 150struct dma_interleaved_template { 151 dma_addr_t src_start; 152 dma_addr_t dst_start; 153 enum dma_transfer_direction dir; 154 bool src_inc; 155 bool dst_inc; 156 bool src_sgl; 157 bool dst_sgl; 158 size_t numf; 159 size_t frame_size; 160 struct data_chunk sgl[0]; 161}; 162 163/** 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 165 * control completion, and communicate status. 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 167 * this transaction 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 169 * acknowledges receipt, i.e. has has a chance to establish any dependency 170 * chains 171 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 172 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 173 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 174 * (if not set, do the source dma-unmapping as page) 175 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 176 * (if not set, do the destination dma-unmapping as page) 177 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 178 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 179 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 180 * sources that were the result of a previous operation, in the case of a PQ 181 * operation it continues the calculation with new sources 182 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 183 * on the result of this operation 184 */ 185enum dma_ctrl_flags { 186 DMA_PREP_INTERRUPT = (1 << 0), 187 DMA_CTRL_ACK = (1 << 1), 188 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 189 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 190 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 191 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 192 DMA_PREP_PQ_DISABLE_P = (1 << 6), 193 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 194 DMA_PREP_CONTINUE = (1 << 8), 195 DMA_PREP_FENCE = (1 << 9), 196}; 197 198/** 199 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 200 * on a running channel. 201 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 202 * @DMA_PAUSE: pause ongoing transfers 203 * @DMA_RESUME: resume paused transfer 204 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 205 * that need to runtime reconfigure the slave channels (as opposed to passing 206 * configuration data in statically from the platform). An additional 207 * argument of struct dma_slave_config must be passed in with this 208 * command. 209 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 210 * into external start mode. 211 */ 212enum dma_ctrl_cmd { 213 DMA_TERMINATE_ALL, 214 DMA_PAUSE, 215 DMA_RESUME, 216 DMA_SLAVE_CONFIG, 217 FSLDMA_EXTERNAL_START, 218}; 219 220/** 221 * enum sum_check_bits - bit position of pq_check_flags 222 */ 223enum sum_check_bits { 224 SUM_CHECK_P = 0, 225 SUM_CHECK_Q = 1, 226}; 227 228/** 229 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 230 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 231 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 232 */ 233enum sum_check_flags { 234 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 235 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 236}; 237 238 239/** 240 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 241 * See linux/cpumask.h 242 */ 243typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 244 245/** 246 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 247 * @memcpy_count: transaction counter 248 * @bytes_transferred: byte counter 249 */ 250 251struct dma_chan_percpu { 252 /* stats */ 253 unsigned long memcpy_count; 254 unsigned long bytes_transferred; 255}; 256 257/** 258 * struct dma_chan - devices supply DMA channels, clients use them 259 * @device: ptr to the dma device who supplies this channel, always !%NULL 260 * @cookie: last cookie value returned to client 261 * @completed_cookie: last completed cookie for this channel 262 * @chan_id: channel ID for sysfs 263 * @dev: class device for sysfs 264 * @device_node: used to add this to the device chan list 265 * @local: per-cpu pointer to a struct dma_chan_percpu 266 * @client-count: how many clients are using this channel 267 * @table_count: number of appearances in the mem-to-mem allocation table 268 * @private: private data for certain client-channel associations 269 */ 270struct dma_chan { 271 struct dma_device *device; 272 dma_cookie_t cookie; 273 dma_cookie_t completed_cookie; 274 275 /* sysfs */ 276 int chan_id; 277 struct dma_chan_dev *dev; 278 279 struct list_head device_node; 280 struct dma_chan_percpu __percpu *local; 281 int client_count; 282 int table_count; 283 void *private; 284}; 285 286/** 287 * struct dma_chan_dev - relate sysfs device node to backing channel device 288 * @chan - driver channel device 289 * @device - sysfs device 290 * @dev_id - parent dma_device dev_id 291 * @idr_ref - reference count to gate release of dma_device dev_id 292 */ 293struct dma_chan_dev { 294 struct dma_chan *chan; 295 struct device device; 296 int dev_id; 297 atomic_t *idr_ref; 298}; 299 300/** 301 * enum dma_slave_buswidth - defines bus with of the DMA slave 302 * device, source or target buses 303 */ 304enum dma_slave_buswidth { 305 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 306 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 307 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 308 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 309 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 310}; 311 312/** 313 * struct dma_slave_config - dma slave channel runtime config 314 * @direction: whether the data shall go in or out on this slave 315 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are 316 * legal values, DMA_BIDIRECTIONAL is not acceptable since we 317 * need to differentiate source and target addresses. 318 * @src_addr: this is the physical address where DMA slave data 319 * should be read (RX), if the source is memory this argument is 320 * ignored. 321 * @dst_addr: this is the physical address where DMA slave data 322 * should be written (TX), if the source is memory this argument 323 * is ignored. 324 * @src_addr_width: this is the width in bytes of the source (RX) 325 * register where DMA data shall be read. If the source 326 * is memory this may be ignored depending on architecture. 327 * Legal values: 1, 2, 4, 8. 328 * @dst_addr_width: same as src_addr_width but for destination 329 * target (TX) mutatis mutandis. 330 * @src_maxburst: the maximum number of words (note: words, as in 331 * units of the src_addr_width member, not bytes) that can be sent 332 * in one burst to the device. Typically something like half the 333 * FIFO depth on I/O peripherals so you don't overflow it. This 334 * may or may not be applicable on memory sources. 335 * @dst_maxburst: same as src_maxburst but for destination target 336 * mutatis mutandis. 337 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 338 * with 'true' if peripheral should be flow controller. Direction will be 339 * selected at Runtime. 340 * @slave_id: Slave requester id. Only valid for slave channels. The dma 341 * slave peripheral will have unique id as dma requester which need to be 342 * pass as slave config. 343 * 344 * This struct is passed in as configuration data to a DMA engine 345 * in order to set up a certain channel for DMA transport at runtime. 346 * The DMA device/engine has to provide support for an additional 347 * command in the channel config interface, DMA_SLAVE_CONFIG 348 * and this struct will then be passed in as an argument to the 349 * DMA engine device_control() function. 350 * 351 * The rationale for adding configuration information to this struct 352 * is as follows: if it is likely that most DMA slave controllers in 353 * the world will support the configuration option, then make it 354 * generic. If not: if it is fixed so that it be sent in static from 355 * the platform data, then prefer to do that. Else, if it is neither 356 * fixed at runtime, nor generic enough (such as bus mastership on 357 * some CPU family and whatnot) then create a custom slave config 358 * struct and pass that, then make this config a member of that 359 * struct, if applicable. 360 */ 361struct dma_slave_config { 362 enum dma_transfer_direction direction; 363 dma_addr_t src_addr; 364 dma_addr_t dst_addr; 365 enum dma_slave_buswidth src_addr_width; 366 enum dma_slave_buswidth dst_addr_width; 367 u32 src_maxburst; 368 u32 dst_maxburst; 369 bool device_fc; 370 unsigned int slave_id; 371}; 372 373static inline const char *dma_chan_name(struct dma_chan *chan) 374{ 375 return dev_name(&chan->dev->device); 376} 377 378void dma_chan_cleanup(struct kref *kref); 379 380/** 381 * typedef dma_filter_fn - callback filter for dma_request_channel 382 * @chan: channel to be reviewed 383 * @filter_param: opaque parameter passed through dma_request_channel 384 * 385 * When this optional parameter is specified in a call to dma_request_channel a 386 * suitable channel is passed to this routine for further dispositioning before 387 * being returned. Where 'suitable' indicates a non-busy channel that 388 * satisfies the given capability mask. It returns 'true' to indicate that the 389 * channel is suitable. 390 */ 391typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 392 393typedef void (*dma_async_tx_callback)(void *dma_async_param); 394/** 395 * struct dma_async_tx_descriptor - async transaction descriptor 396 * ---dma generic offload fields--- 397 * @cookie: tracking cookie for this transaction, set to -EBUSY if 398 * this tx is sitting on a dependency list 399 * @flags: flags to augment operation preparation, control completion, and 400 * communicate status 401 * @phys: physical address of the descriptor 402 * @chan: target channel for this operation 403 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 404 * @callback: routine to call after this operation is complete 405 * @callback_param: general parameter to pass to the callback routine 406 * ---async_tx api specific fields--- 407 * @next: at completion submit this descriptor 408 * @parent: pointer to the next level up in the dependency chain 409 * @lock: protect the parent and next pointers 410 */ 411struct dma_async_tx_descriptor { 412 dma_cookie_t cookie; 413 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 414 dma_addr_t phys; 415 struct dma_chan *chan; 416 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 417 dma_async_tx_callback callback; 418 void *callback_param; 419#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 420 struct dma_async_tx_descriptor *next; 421 struct dma_async_tx_descriptor *parent; 422 spinlock_t lock; 423#endif 424}; 425 426#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 427static inline void txd_lock(struct dma_async_tx_descriptor *txd) 428{ 429} 430static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 431{ 432} 433static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 434{ 435 BUG(); 436} 437static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 438{ 439} 440static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 441{ 442} 443static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 444{ 445 return NULL; 446} 447static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 448{ 449 return NULL; 450} 451 452#else 453static inline void txd_lock(struct dma_async_tx_descriptor *txd) 454{ 455 spin_lock_bh(&txd->lock); 456} 457static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 458{ 459 spin_unlock_bh(&txd->lock); 460} 461static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 462{ 463 txd->next = next; 464 next->parent = txd; 465} 466static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 467{ 468 txd->parent = NULL; 469} 470static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 471{ 472 txd->next = NULL; 473} 474static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 475{ 476 return txd->parent; 477} 478static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 479{ 480 return txd->next; 481} 482#endif 483 484/** 485 * struct dma_tx_state - filled in to report the status of 486 * a transfer. 487 * @last: last completed DMA cookie 488 * @used: last issued DMA cookie (i.e. the one in progress) 489 * @residue: the remaining number of bytes left to transmit 490 * on the selected transfer for states DMA_IN_PROGRESS and 491 * DMA_PAUSED if this is implemented in the driver, else 0 492 */ 493struct dma_tx_state { 494 dma_cookie_t last; 495 dma_cookie_t used; 496 u32 residue; 497}; 498 499/** 500 * struct dma_device - info on the entity supplying DMA services 501 * @chancnt: how many DMA channels are supported 502 * @privatecnt: how many DMA channels are requested by dma_request_channel 503 * @channels: the list of struct dma_chan 504 * @global_node: list_head for global dma_device_list 505 * @cap_mask: one or more dma_capability flags 506 * @max_xor: maximum number of xor sources, 0 if no capability 507 * @max_pq: maximum number of PQ sources and PQ-continue capability 508 * @copy_align: alignment shift for memcpy operations 509 * @xor_align: alignment shift for xor operations 510 * @pq_align: alignment shift for pq operations 511 * @fill_align: alignment shift for memset operations 512 * @dev_id: unique device ID 513 * @dev: struct device reference for dma mapping api 514 * @device_alloc_chan_resources: allocate resources and return the 515 * number of allocated descriptors 516 * @device_free_chan_resources: release DMA channel's resources 517 * @device_prep_dma_memcpy: prepares a memcpy operation 518 * @device_prep_dma_xor: prepares a xor operation 519 * @device_prep_dma_xor_val: prepares a xor validation operation 520 * @device_prep_dma_pq: prepares a pq operation 521 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 522 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 523 * @device_prep_slave_sg: prepares a slave dma operation 524 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 525 * The function takes a buffer of size buf_len. The callback function will 526 * be called after period_len bytes have been transferred. 527 * @device_prep_interleaved_dma: Transfer expression in a generic way. 528 * @device_control: manipulate all pending operations on a channel, returns 529 * zero or error code 530 * @device_tx_status: poll for transaction completion, the optional 531 * txstate parameter can be supplied with a pointer to get a 532 * struct with auxiliary transfer status information, otherwise the call 533 * will just return a simple status code 534 * @device_issue_pending: push pending transactions to hardware 535 */ 536struct dma_device { 537 538 unsigned int chancnt; 539 unsigned int privatecnt; 540 struct list_head channels; 541 struct list_head global_node; 542 dma_cap_mask_t cap_mask; 543 unsigned short max_xor; 544 unsigned short max_pq; 545 u8 copy_align; 546 u8 xor_align; 547 u8 pq_align; 548 u8 fill_align; 549 #define DMA_HAS_PQ_CONTINUE (1 << 15) 550 551 int dev_id; 552 struct device *dev; 553 554 int (*device_alloc_chan_resources)(struct dma_chan *chan); 555 void (*device_free_chan_resources)(struct dma_chan *chan); 556 557 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 558 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 559 size_t len, unsigned long flags); 560 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 561 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 562 unsigned int src_cnt, size_t len, unsigned long flags); 563 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 564 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 565 size_t len, enum sum_check_flags *result, unsigned long flags); 566 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 567 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 568 unsigned int src_cnt, const unsigned char *scf, 569 size_t len, unsigned long flags); 570 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 571 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 572 unsigned int src_cnt, const unsigned char *scf, size_t len, 573 enum sum_check_flags *pqres, unsigned long flags); 574 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 575 struct dma_chan *chan, unsigned long flags); 576 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 577 struct dma_chan *chan, 578 struct scatterlist *dst_sg, unsigned int dst_nents, 579 struct scatterlist *src_sg, unsigned int src_nents, 580 unsigned long flags); 581 582 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 583 struct dma_chan *chan, struct scatterlist *sgl, 584 unsigned int sg_len, enum dma_transfer_direction direction, 585 unsigned long flags, void *context); 586 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 587 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 588 size_t period_len, enum dma_transfer_direction direction, 589 unsigned long flags, void *context); 590 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 591 struct dma_chan *chan, struct dma_interleaved_template *xt, 592 unsigned long flags); 593 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 594 unsigned long arg); 595 596 enum dma_status (*device_tx_status)(struct dma_chan *chan, 597 dma_cookie_t cookie, 598 struct dma_tx_state *txstate); 599 void (*device_issue_pending)(struct dma_chan *chan); 600}; 601 602static inline int dmaengine_device_control(struct dma_chan *chan, 603 enum dma_ctrl_cmd cmd, 604 unsigned long arg) 605{ 606 if (chan->device->device_control) 607 return chan->device->device_control(chan, cmd, arg); 608 609 return -ENOSYS; 610} 611 612static inline int dmaengine_slave_config(struct dma_chan *chan, 613 struct dma_slave_config *config) 614{ 615 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 616 (unsigned long)config); 617} 618 619static inline bool is_slave_direction(enum dma_transfer_direction direction) 620{ 621 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 622} 623 624static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 625 struct dma_chan *chan, dma_addr_t buf, size_t len, 626 enum dma_transfer_direction dir, unsigned long flags) 627{ 628 struct scatterlist sg; 629 sg_init_table(&sg, 1); 630 sg_dma_address(&sg) = buf; 631 sg_dma_len(&sg) = len; 632 633 return chan->device->device_prep_slave_sg(chan, &sg, 1, 634 dir, flags, NULL); 635} 636 637static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 638 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 639 enum dma_transfer_direction dir, unsigned long flags) 640{ 641 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 642 dir, flags, NULL); 643} 644 645#ifdef CONFIG_RAPIDIO_DMA_ENGINE 646struct rio_dma_ext; 647static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 648 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 649 enum dma_transfer_direction dir, unsigned long flags, 650 struct rio_dma_ext *rio_ext) 651{ 652 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 653 dir, flags, rio_ext); 654} 655#endif 656 657static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 658 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 659 size_t period_len, enum dma_transfer_direction dir, 660 unsigned long flags) 661{ 662 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 663 period_len, dir, flags, NULL); 664} 665 666static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 667 struct dma_chan *chan, struct dma_interleaved_template *xt, 668 unsigned long flags) 669{ 670 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 671} 672 673static inline int dmaengine_terminate_all(struct dma_chan *chan) 674{ 675 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 676} 677 678static inline int dmaengine_pause(struct dma_chan *chan) 679{ 680 return dmaengine_device_control(chan, DMA_PAUSE, 0); 681} 682 683static inline int dmaengine_resume(struct dma_chan *chan) 684{ 685 return dmaengine_device_control(chan, DMA_RESUME, 0); 686} 687 688static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 689 dma_cookie_t cookie, struct dma_tx_state *state) 690{ 691 return chan->device->device_tx_status(chan, cookie, state); 692} 693 694static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 695{ 696 return desc->tx_submit(desc); 697} 698 699static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 700{ 701 size_t mask; 702 703 if (!align) 704 return true; 705 mask = (1 << align) - 1; 706 if (mask & (off1 | off2 | len)) 707 return false; 708 return true; 709} 710 711static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 712 size_t off2, size_t len) 713{ 714 return dmaengine_check_align(dev->copy_align, off1, off2, len); 715} 716 717static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 718 size_t off2, size_t len) 719{ 720 return dmaengine_check_align(dev->xor_align, off1, off2, len); 721} 722 723static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 724 size_t off2, size_t len) 725{ 726 return dmaengine_check_align(dev->pq_align, off1, off2, len); 727} 728 729static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 730 size_t off2, size_t len) 731{ 732 return dmaengine_check_align(dev->fill_align, off1, off2, len); 733} 734 735static inline void 736dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 737{ 738 dma->max_pq = maxpq; 739 if (has_pq_continue) 740 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 741} 742 743static inline bool dmaf_continue(enum dma_ctrl_flags flags) 744{ 745 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 746} 747 748static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 749{ 750 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 751 752 return (flags & mask) == mask; 753} 754 755static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 756{ 757 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 758} 759 760static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 761{ 762 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 763} 764 765/* dma_maxpq - reduce maxpq in the face of continued operations 766 * @dma - dma device with PQ capability 767 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 768 * 769 * When an engine does not support native continuation we need 3 extra 770 * source slots to reuse P and Q with the following coefficients: 771 * 1/ {00} * P : remove P from Q', but use it as a source for P' 772 * 2/ {01} * Q : use Q to continue Q' calculation 773 * 3/ {00} * Q : subtract Q from P' to cancel (2) 774 * 775 * In the case where P is disabled we only need 1 extra source: 776 * 1/ {01} * Q : use Q to continue Q' calculation 777 */ 778static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 779{ 780 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 781 return dma_dev_to_maxpq(dma); 782 else if (dmaf_p_disabled_continue(flags)) 783 return dma_dev_to_maxpq(dma) - 1; 784 else if (dmaf_continue(flags)) 785 return dma_dev_to_maxpq(dma) - 3; 786 BUG(); 787} 788 789/* --- public DMA engine API --- */ 790 791#ifdef CONFIG_DMA_ENGINE 792void dmaengine_get(void); 793void dmaengine_put(void); 794#else 795static inline void dmaengine_get(void) 796{ 797} 798static inline void dmaengine_put(void) 799{ 800} 801#endif 802 803#ifdef CONFIG_NET_DMA 804#define net_dmaengine_get() dmaengine_get() 805#define net_dmaengine_put() dmaengine_put() 806#else 807static inline void net_dmaengine_get(void) 808{ 809} 810static inline void net_dmaengine_put(void) 811{ 812} 813#endif 814 815#ifdef CONFIG_ASYNC_TX_DMA 816#define async_dmaengine_get() dmaengine_get() 817#define async_dmaengine_put() dmaengine_put() 818#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 819#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 820#else 821#define async_dma_find_channel(type) dma_find_channel(type) 822#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 823#else 824static inline void async_dmaengine_get(void) 825{ 826} 827static inline void async_dmaengine_put(void) 828{ 829} 830static inline struct dma_chan * 831async_dma_find_channel(enum dma_transaction_type type) 832{ 833 return NULL; 834} 835#endif /* CONFIG_ASYNC_TX_DMA */ 836 837dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 838 void *dest, void *src, size_t len); 839dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 840 struct page *page, unsigned int offset, void *kdata, size_t len); 841dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 842 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 843 unsigned int src_off, size_t len); 844void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 845 struct dma_chan *chan); 846 847static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 848{ 849 tx->flags |= DMA_CTRL_ACK; 850} 851 852static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 853{ 854 tx->flags &= ~DMA_CTRL_ACK; 855} 856 857static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 858{ 859 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 860} 861 862#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 863static inline void 864__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 865{ 866 set_bit(tx_type, dstp->bits); 867} 868 869#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 870static inline void 871__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 872{ 873 clear_bit(tx_type, dstp->bits); 874} 875 876#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 877static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 878{ 879 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 880} 881 882#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 883static inline int 884__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 885{ 886 return test_bit(tx_type, srcp->bits); 887} 888 889#define for_each_dma_cap_mask(cap, mask) \ 890 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 891 892/** 893 * dma_async_issue_pending - flush pending transactions to HW 894 * @chan: target DMA channel 895 * 896 * This allows drivers to push copies to HW in batches, 897 * reducing MMIO writes where possible. 898 */ 899static inline void dma_async_issue_pending(struct dma_chan *chan) 900{ 901 chan->device->device_issue_pending(chan); 902} 903 904/** 905 * dma_async_is_tx_complete - poll for transaction completion 906 * @chan: DMA channel 907 * @cookie: transaction identifier to check status of 908 * @last: returns last completed cookie, can be NULL 909 * @used: returns last issued cookie, can be NULL 910 * 911 * If @last and @used are passed in, upon return they reflect the driver 912 * internal state and can be used with dma_async_is_complete() to check 913 * the status of multiple cookies without re-checking hardware state. 914 */ 915static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 916 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 917{ 918 struct dma_tx_state state; 919 enum dma_status status; 920 921 status = chan->device->device_tx_status(chan, cookie, &state); 922 if (last) 923 *last = state.last; 924 if (used) 925 *used = state.used; 926 return status; 927} 928 929/** 930 * dma_async_is_complete - test a cookie against chan state 931 * @cookie: transaction identifier to test status of 932 * @last_complete: last know completed transaction 933 * @last_used: last cookie value handed out 934 * 935 * dma_async_is_complete() is used in dma_async_is_tx_complete() 936 * the test logic is separated for lightweight testing of multiple cookies 937 */ 938static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 939 dma_cookie_t last_complete, dma_cookie_t last_used) 940{ 941 if (last_complete <= last_used) { 942 if ((cookie <= last_complete) || (cookie > last_used)) 943 return DMA_SUCCESS; 944 } else { 945 if ((cookie <= last_complete) && (cookie > last_used)) 946 return DMA_SUCCESS; 947 } 948 return DMA_IN_PROGRESS; 949} 950 951static inline void 952dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 953{ 954 if (st) { 955 st->last = last; 956 st->used = used; 957 st->residue = residue; 958 } 959} 960 961enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 962#ifdef CONFIG_DMA_ENGINE 963enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 964void dma_issue_pending_all(void); 965struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 966 dma_filter_fn fn, void *fn_param); 967struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 968void dma_release_channel(struct dma_chan *chan); 969#else 970static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 971{ 972 return DMA_SUCCESS; 973} 974static inline void dma_issue_pending_all(void) 975{ 976} 977static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 978 dma_filter_fn fn, void *fn_param) 979{ 980 return NULL; 981} 982static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 983 const char *name) 984{ 985 return NULL; 986} 987static inline void dma_release_channel(struct dma_chan *chan) 988{ 989} 990#endif 991 992/* --- DMA device --- */ 993 994int dma_async_device_register(struct dma_device *device); 995void dma_async_device_unregister(struct dma_device *device); 996void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 997struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 998struct dma_chan *net_dma_find_channel(void); 999#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1000#define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1001 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1002 1003static inline struct dma_chan 1004*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1005 dma_filter_fn fn, void *fn_param, 1006 struct device *dev, char *name) 1007{ 1008 struct dma_chan *chan; 1009 1010 chan = dma_request_slave_channel(dev, name); 1011 if (chan) 1012 return chan; 1013 1014 return __dma_request_channel(mask, fn, fn_param); 1015} 1016 1017/* --- Helper iov-locking functions --- */ 1018 1019struct dma_page_list { 1020 char __user *base_address; 1021 int nr_pages; 1022 struct page **pages; 1023}; 1024 1025struct dma_pinned_list { 1026 int nr_iovecs; 1027 struct dma_page_list page_list[0]; 1028}; 1029 1030struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 1031void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 1032 1033dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 1034 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 1035dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 1036 struct dma_pinned_list *pinned_list, struct page *page, 1037 unsigned int offset, size_t len); 1038 1039#endif /* DMAENGINE_H */