at v3.11 20 kB view raw
1#ifndef _ASM_GENERIC_PGTABLE_H 2#define _ASM_GENERIC_PGTABLE_H 3 4#ifndef __ASSEMBLY__ 5#ifdef CONFIG_MMU 6 7#include <linux/mm_types.h> 8#include <linux/bug.h> 9 10/* 11 * On almost all architectures and configurations, 0 can be used as the 12 * upper ceiling to free_pgtables(): on many architectures it has the same 13 * effect as using TASK_SIZE. However, there is one configuration which 14 * must impose a more careful limit, to avoid freeing kernel pgtables. 15 */ 16#ifndef USER_PGTABLES_CEILING 17#define USER_PGTABLES_CEILING 0UL 18#endif 19 20#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 21extern int ptep_set_access_flags(struct vm_area_struct *vma, 22 unsigned long address, pte_t *ptep, 23 pte_t entry, int dirty); 24#endif 25 26#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 27extern int pmdp_set_access_flags(struct vm_area_struct *vma, 28 unsigned long address, pmd_t *pmdp, 29 pmd_t entry, int dirty); 30#endif 31 32#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 33static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 34 unsigned long address, 35 pte_t *ptep) 36{ 37 pte_t pte = *ptep; 38 int r = 1; 39 if (!pte_young(pte)) 40 r = 0; 41 else 42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 43 return r; 44} 45#endif 46 47#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 48#ifdef CONFIG_TRANSPARENT_HUGEPAGE 49static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 50 unsigned long address, 51 pmd_t *pmdp) 52{ 53 pmd_t pmd = *pmdp; 54 int r = 1; 55 if (!pmd_young(pmd)) 56 r = 0; 57 else 58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 59 return r; 60} 61#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 62static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 63 unsigned long address, 64 pmd_t *pmdp) 65{ 66 BUG(); 67 return 0; 68} 69#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 70#endif 71 72#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 73int ptep_clear_flush_young(struct vm_area_struct *vma, 74 unsigned long address, pte_t *ptep); 75#endif 76 77#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 78int pmdp_clear_flush_young(struct vm_area_struct *vma, 79 unsigned long address, pmd_t *pmdp); 80#endif 81 82#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 83static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 84 unsigned long address, 85 pte_t *ptep) 86{ 87 pte_t pte = *ptep; 88 pte_clear(mm, address, ptep); 89 return pte; 90} 91#endif 92 93#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR 94#ifdef CONFIG_TRANSPARENT_HUGEPAGE 95static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 96 unsigned long address, 97 pmd_t *pmdp) 98{ 99 pmd_t pmd = *pmdp; 100 pmd_clear(pmdp); 101 return pmd; 102} 103#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 104#endif 105 106#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 107static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 108 unsigned long address, pte_t *ptep, 109 int full) 110{ 111 pte_t pte; 112 pte = ptep_get_and_clear(mm, address, ptep); 113 return pte; 114} 115#endif 116 117/* 118 * Some architectures may be able to avoid expensive synchronization 119 * primitives when modifications are made to PTE's which are already 120 * not present, or in the process of an address space destruction. 121 */ 122#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 123static inline void pte_clear_not_present_full(struct mm_struct *mm, 124 unsigned long address, 125 pte_t *ptep, 126 int full) 127{ 128 pte_clear(mm, address, ptep); 129} 130#endif 131 132#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 133extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 134 unsigned long address, 135 pte_t *ptep); 136#endif 137 138#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH 139extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, 140 unsigned long address, 141 pmd_t *pmdp); 142#endif 143 144#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 145struct mm_struct; 146static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 147{ 148 pte_t old_pte = *ptep; 149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 150} 151#endif 152 153#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 154#ifdef CONFIG_TRANSPARENT_HUGEPAGE 155static inline void pmdp_set_wrprotect(struct mm_struct *mm, 156 unsigned long address, pmd_t *pmdp) 157{ 158 pmd_t old_pmd = *pmdp; 159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 160} 161#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 162static inline void pmdp_set_wrprotect(struct mm_struct *mm, 163 unsigned long address, pmd_t *pmdp) 164{ 165 BUG(); 166} 167#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 168#endif 169 170#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH 171extern void pmdp_splitting_flush(struct vm_area_struct *vma, 172 unsigned long address, pmd_t *pmdp); 173#endif 174 175#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 176extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 177 pgtable_t pgtable); 178#endif 179 180#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 181extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 182#endif 183 184#ifndef __HAVE_ARCH_PMDP_INVALIDATE 185extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 186 pmd_t *pmdp); 187#endif 188 189#ifndef __HAVE_ARCH_PTE_SAME 190static inline int pte_same(pte_t pte_a, pte_t pte_b) 191{ 192 return pte_val(pte_a) == pte_val(pte_b); 193} 194#endif 195 196#ifndef __HAVE_ARCH_PMD_SAME 197#ifdef CONFIG_TRANSPARENT_HUGEPAGE 198static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 199{ 200 return pmd_val(pmd_a) == pmd_val(pmd_b); 201} 202#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 203static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 204{ 205 BUG(); 206 return 0; 207} 208#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 209#endif 210 211#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG 212#define page_test_and_clear_young(pfn) (0) 213#endif 214 215#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 216#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 217#endif 218 219#ifndef __HAVE_ARCH_MOVE_PTE 220#define move_pte(pte, prot, old_addr, new_addr) (pte) 221#endif 222 223#ifndef pte_accessible 224# define pte_accessible(pte) ((void)(pte),1) 225#endif 226 227#ifndef flush_tlb_fix_spurious_fault 228#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 229#endif 230 231#ifndef pgprot_noncached 232#define pgprot_noncached(prot) (prot) 233#endif 234 235#ifndef pgprot_writecombine 236#define pgprot_writecombine pgprot_noncached 237#endif 238 239/* 240 * When walking page tables, get the address of the next boundary, 241 * or the end address of the range if that comes earlier. Although no 242 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 243 */ 244 245#define pgd_addr_end(addr, end) \ 246({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 247 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 248}) 249 250#ifndef pud_addr_end 251#define pud_addr_end(addr, end) \ 252({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 253 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 254}) 255#endif 256 257#ifndef pmd_addr_end 258#define pmd_addr_end(addr, end) \ 259({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 260 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 261}) 262#endif 263 264/* 265 * When walking page tables, we usually want to skip any p?d_none entries; 266 * and any p?d_bad entries - reporting the error before resetting to none. 267 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 268 */ 269void pgd_clear_bad(pgd_t *); 270void pud_clear_bad(pud_t *); 271void pmd_clear_bad(pmd_t *); 272 273static inline int pgd_none_or_clear_bad(pgd_t *pgd) 274{ 275 if (pgd_none(*pgd)) 276 return 1; 277 if (unlikely(pgd_bad(*pgd))) { 278 pgd_clear_bad(pgd); 279 return 1; 280 } 281 return 0; 282} 283 284static inline int pud_none_or_clear_bad(pud_t *pud) 285{ 286 if (pud_none(*pud)) 287 return 1; 288 if (unlikely(pud_bad(*pud))) { 289 pud_clear_bad(pud); 290 return 1; 291 } 292 return 0; 293} 294 295static inline int pmd_none_or_clear_bad(pmd_t *pmd) 296{ 297 if (pmd_none(*pmd)) 298 return 1; 299 if (unlikely(pmd_bad(*pmd))) { 300 pmd_clear_bad(pmd); 301 return 1; 302 } 303 return 0; 304} 305 306static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 307 unsigned long addr, 308 pte_t *ptep) 309{ 310 /* 311 * Get the current pte state, but zero it out to make it 312 * non-present, preventing the hardware from asynchronously 313 * updating it. 314 */ 315 return ptep_get_and_clear(mm, addr, ptep); 316} 317 318static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 319 unsigned long addr, 320 pte_t *ptep, pte_t pte) 321{ 322 /* 323 * The pte is non-present, so there's no hardware state to 324 * preserve. 325 */ 326 set_pte_at(mm, addr, ptep, pte); 327} 328 329#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 330/* 331 * Start a pte protection read-modify-write transaction, which 332 * protects against asynchronous hardware modifications to the pte. 333 * The intention is not to prevent the hardware from making pte 334 * updates, but to prevent any updates it may make from being lost. 335 * 336 * This does not protect against other software modifications of the 337 * pte; the appropriate pte lock must be held over the transation. 338 * 339 * Note that this interface is intended to be batchable, meaning that 340 * ptep_modify_prot_commit may not actually update the pte, but merely 341 * queue the update to be done at some later time. The update must be 342 * actually committed before the pte lock is released, however. 343 */ 344static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 345 unsigned long addr, 346 pte_t *ptep) 347{ 348 return __ptep_modify_prot_start(mm, addr, ptep); 349} 350 351/* 352 * Commit an update to a pte, leaving any hardware-controlled bits in 353 * the PTE unmodified. 354 */ 355static inline void ptep_modify_prot_commit(struct mm_struct *mm, 356 unsigned long addr, 357 pte_t *ptep, pte_t pte) 358{ 359 __ptep_modify_prot_commit(mm, addr, ptep, pte); 360} 361#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 362#endif /* CONFIG_MMU */ 363 364/* 365 * A facility to provide lazy MMU batching. This allows PTE updates and 366 * page invalidations to be delayed until a call to leave lazy MMU mode 367 * is issued. Some architectures may benefit from doing this, and it is 368 * beneficial for both shadow and direct mode hypervisors, which may batch 369 * the PTE updates which happen during this window. Note that using this 370 * interface requires that read hazards be removed from the code. A read 371 * hazard could result in the direct mode hypervisor case, since the actual 372 * write to the page tables may not yet have taken place, so reads though 373 * a raw PTE pointer after it has been modified are not guaranteed to be 374 * up to date. This mode can only be entered and left under the protection of 375 * the page table locks for all page tables which may be modified. In the UP 376 * case, this is required so that preemption is disabled, and in the SMP case, 377 * it must synchronize the delayed page table writes properly on other CPUs. 378 */ 379#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 380#define arch_enter_lazy_mmu_mode() do {} while (0) 381#define arch_leave_lazy_mmu_mode() do {} while (0) 382#define arch_flush_lazy_mmu_mode() do {} while (0) 383#endif 384 385/* 386 * A facility to provide batching of the reload of page tables and 387 * other process state with the actual context switch code for 388 * paravirtualized guests. By convention, only one of the batched 389 * update (lazy) modes (CPU, MMU) should be active at any given time, 390 * entry should never be nested, and entry and exits should always be 391 * paired. This is for sanity of maintaining and reasoning about the 392 * kernel code. In this case, the exit (end of the context switch) is 393 * in architecture-specific code, and so doesn't need a generic 394 * definition. 395 */ 396#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 397#define arch_start_context_switch(prev) do {} while (0) 398#endif 399 400#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY 401static inline int pte_soft_dirty(pte_t pte) 402{ 403 return 0; 404} 405 406static inline int pmd_soft_dirty(pmd_t pmd) 407{ 408 return 0; 409} 410 411static inline pte_t pte_mksoft_dirty(pte_t pte) 412{ 413 return pte; 414} 415 416static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 417{ 418 return pmd; 419} 420 421static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 422{ 423 return pte; 424} 425 426static inline int pte_swp_soft_dirty(pte_t pte) 427{ 428 return 0; 429} 430 431static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 432{ 433 return pte; 434} 435 436static inline pte_t pte_file_clear_soft_dirty(pte_t pte) 437{ 438 return pte; 439} 440 441static inline pte_t pte_file_mksoft_dirty(pte_t pte) 442{ 443 return pte; 444} 445 446static inline int pte_file_soft_dirty(pte_t pte) 447{ 448 return 0; 449} 450#endif 451 452#ifndef __HAVE_PFNMAP_TRACKING 453/* 454 * Interfaces that can be used by architecture code to keep track of 455 * memory type of pfn mappings specified by the remap_pfn_range, 456 * vm_insert_pfn. 457 */ 458 459/* 460 * track_pfn_remap is called when a _new_ pfn mapping is being established 461 * by remap_pfn_range() for physical range indicated by pfn and size. 462 */ 463static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 464 unsigned long pfn, unsigned long addr, 465 unsigned long size) 466{ 467 return 0; 468} 469 470/* 471 * track_pfn_insert is called when a _new_ single pfn is established 472 * by vm_insert_pfn(). 473 */ 474static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 475 unsigned long pfn) 476{ 477 return 0; 478} 479 480/* 481 * track_pfn_copy is called when vma that is covering the pfnmap gets 482 * copied through copy_page_range(). 483 */ 484static inline int track_pfn_copy(struct vm_area_struct *vma) 485{ 486 return 0; 487} 488 489/* 490 * untrack_pfn_vma is called while unmapping a pfnmap for a region. 491 * untrack can be called for a specific region indicated by pfn and size or 492 * can be for the entire vma (in which case pfn, size are zero). 493 */ 494static inline void untrack_pfn(struct vm_area_struct *vma, 495 unsigned long pfn, unsigned long size) 496{ 497} 498#else 499extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 500 unsigned long pfn, unsigned long addr, 501 unsigned long size); 502extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 503 unsigned long pfn); 504extern int track_pfn_copy(struct vm_area_struct *vma); 505extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 506 unsigned long size); 507#endif 508 509#ifdef __HAVE_COLOR_ZERO_PAGE 510static inline int is_zero_pfn(unsigned long pfn) 511{ 512 extern unsigned long zero_pfn; 513 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 514 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 515} 516 517#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 518 519#else 520static inline int is_zero_pfn(unsigned long pfn) 521{ 522 extern unsigned long zero_pfn; 523 return pfn == zero_pfn; 524} 525 526static inline unsigned long my_zero_pfn(unsigned long addr) 527{ 528 extern unsigned long zero_pfn; 529 return zero_pfn; 530} 531#endif 532 533#ifdef CONFIG_MMU 534 535#ifndef CONFIG_TRANSPARENT_HUGEPAGE 536static inline int pmd_trans_huge(pmd_t pmd) 537{ 538 return 0; 539} 540static inline int pmd_trans_splitting(pmd_t pmd) 541{ 542 return 0; 543} 544#ifndef __HAVE_ARCH_PMD_WRITE 545static inline int pmd_write(pmd_t pmd) 546{ 547 BUG(); 548 return 0; 549} 550#endif /* __HAVE_ARCH_PMD_WRITE */ 551#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 552 553#ifndef pmd_read_atomic 554static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 555{ 556 /* 557 * Depend on compiler for an atomic pmd read. NOTE: this is 558 * only going to work, if the pmdval_t isn't larger than 559 * an unsigned long. 560 */ 561 return *pmdp; 562} 563#endif 564 565/* 566 * This function is meant to be used by sites walking pagetables with 567 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 568 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 569 * into a null pmd and the transhuge page fault can convert a null pmd 570 * into an hugepmd or into a regular pmd (if the hugepage allocation 571 * fails). While holding the mmap_sem in read mode the pmd becomes 572 * stable and stops changing under us only if it's not null and not a 573 * transhuge pmd. When those races occurs and this function makes a 574 * difference vs the standard pmd_none_or_clear_bad, the result is 575 * undefined so behaving like if the pmd was none is safe (because it 576 * can return none anyway). The compiler level barrier() is critically 577 * important to compute the two checks atomically on the same pmdval. 578 * 579 * For 32bit kernels with a 64bit large pmd_t this automatically takes 580 * care of reading the pmd atomically to avoid SMP race conditions 581 * against pmd_populate() when the mmap_sem is hold for reading by the 582 * caller (a special atomic read not done by "gcc" as in the generic 583 * version above, is also needed when THP is disabled because the page 584 * fault can populate the pmd from under us). 585 */ 586static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 587{ 588 pmd_t pmdval = pmd_read_atomic(pmd); 589 /* 590 * The barrier will stabilize the pmdval in a register or on 591 * the stack so that it will stop changing under the code. 592 * 593 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 594 * pmd_read_atomic is allowed to return a not atomic pmdval 595 * (for example pointing to an hugepage that has never been 596 * mapped in the pmd). The below checks will only care about 597 * the low part of the pmd with 32bit PAE x86 anyway, with the 598 * exception of pmd_none(). So the important thing is that if 599 * the low part of the pmd is found null, the high part will 600 * be also null or the pmd_none() check below would be 601 * confused. 602 */ 603#ifdef CONFIG_TRANSPARENT_HUGEPAGE 604 barrier(); 605#endif 606 if (pmd_none(pmdval)) 607 return 1; 608 if (unlikely(pmd_bad(pmdval))) { 609 if (!pmd_trans_huge(pmdval)) 610 pmd_clear_bad(pmd); 611 return 1; 612 } 613 return 0; 614} 615 616/* 617 * This is a noop if Transparent Hugepage Support is not built into 618 * the kernel. Otherwise it is equivalent to 619 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 620 * places that already verified the pmd is not none and they want to 621 * walk ptes while holding the mmap sem in read mode (write mode don't 622 * need this). If THP is not enabled, the pmd can't go away under the 623 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 624 * run a pmd_trans_unstable before walking the ptes after 625 * split_huge_page_pmd returns (because it may have run when the pmd 626 * become null, but then a page fault can map in a THP and not a 627 * regular page). 628 */ 629static inline int pmd_trans_unstable(pmd_t *pmd) 630{ 631#ifdef CONFIG_TRANSPARENT_HUGEPAGE 632 return pmd_none_or_trans_huge_or_clear_bad(pmd); 633#else 634 return 0; 635#endif 636} 637 638#ifdef CONFIG_NUMA_BALANCING 639#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 640/* 641 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the 642 * same bit too). It's set only when _PAGE_PRESET is not set and it's 643 * never set if _PAGE_PRESENT is set. 644 * 645 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page 646 * fault triggers on those regions if pte/pmd_numa returns true 647 * (because _PAGE_PRESENT is not set). 648 */ 649#ifndef pte_numa 650static inline int pte_numa(pte_t pte) 651{ 652 return (pte_flags(pte) & 653 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; 654} 655#endif 656 657#ifndef pmd_numa 658static inline int pmd_numa(pmd_t pmd) 659{ 660 return (pmd_flags(pmd) & 661 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; 662} 663#endif 664 665/* 666 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically 667 * because they're called by the NUMA hinting minor page fault. If we 668 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler 669 * would be forced to set it later while filling the TLB after we 670 * return to userland. That would trigger a second write to memory 671 * that we optimize away by setting _PAGE_ACCESSED here. 672 */ 673#ifndef pte_mknonnuma 674static inline pte_t pte_mknonnuma(pte_t pte) 675{ 676 pte = pte_clear_flags(pte, _PAGE_NUMA); 677 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED); 678} 679#endif 680 681#ifndef pmd_mknonnuma 682static inline pmd_t pmd_mknonnuma(pmd_t pmd) 683{ 684 pmd = pmd_clear_flags(pmd, _PAGE_NUMA); 685 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED); 686} 687#endif 688 689#ifndef pte_mknuma 690static inline pte_t pte_mknuma(pte_t pte) 691{ 692 pte = pte_set_flags(pte, _PAGE_NUMA); 693 return pte_clear_flags(pte, _PAGE_PRESENT); 694} 695#endif 696 697#ifndef pmd_mknuma 698static inline pmd_t pmd_mknuma(pmd_t pmd) 699{ 700 pmd = pmd_set_flags(pmd, _PAGE_NUMA); 701 return pmd_clear_flags(pmd, _PAGE_PRESENT); 702} 703#endif 704#else 705extern int pte_numa(pte_t pte); 706extern int pmd_numa(pmd_t pmd); 707extern pte_t pte_mknonnuma(pte_t pte); 708extern pmd_t pmd_mknonnuma(pmd_t pmd); 709extern pte_t pte_mknuma(pte_t pte); 710extern pmd_t pmd_mknuma(pmd_t pmd); 711#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ 712#else 713static inline int pmd_numa(pmd_t pmd) 714{ 715 return 0; 716} 717 718static inline int pte_numa(pte_t pte) 719{ 720 return 0; 721} 722 723static inline pte_t pte_mknonnuma(pte_t pte) 724{ 725 return pte; 726} 727 728static inline pmd_t pmd_mknonnuma(pmd_t pmd) 729{ 730 return pmd; 731} 732 733static inline pte_t pte_mknuma(pte_t pte) 734{ 735 return pte; 736} 737 738static inline pmd_t pmd_mknuma(pmd_t pmd) 739{ 740 return pmd; 741} 742#endif /* CONFIG_NUMA_BALANCING */ 743 744#endif /* CONFIG_MMU */ 745 746#endif /* !__ASSEMBLY__ */ 747 748#ifndef io_remap_pfn_range 749#define io_remap_pfn_range remap_pfn_range 750#endif 751 752#endif /* _ASM_GENERIC_PGTABLE_H */