at v3.11 1591 lines 47 kB view raw
1/* 2 * S390 version 3 * Copyright IBM Corp. 1999, 2000 4 * Author(s): Hartmut Penner (hp@de.ibm.com) 5 * Ulrich Weigand (weigand@de.ibm.com) 6 * Martin Schwidefsky (schwidefsky@de.ibm.com) 7 * 8 * Derived from "include/asm-i386/pgtable.h" 9 */ 10 11#ifndef _ASM_S390_PGTABLE_H 12#define _ASM_S390_PGTABLE_H 13 14/* 15 * The Linux memory management assumes a three-level page table setup. For 16 * s390 31 bit we "fold" the mid level into the top-level page table, so 17 * that we physically have the same two-level page table as the s390 mmu 18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 19 * the hardware provides (region first and region second tables are not 20 * used). 21 * 22 * The "pgd_xxx()" functions are trivial for a folded two-level 23 * setup: the pgd is never bad, and a pmd always exists (as it's folded 24 * into the pgd entry) 25 * 26 * This file contains the functions and defines necessary to modify and use 27 * the S390 page table tree. 28 */ 29#ifndef __ASSEMBLY__ 30#include <linux/sched.h> 31#include <linux/mm_types.h> 32#include <linux/page-flags.h> 33#include <asm/bug.h> 34#include <asm/page.h> 35 36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 37extern void paging_init(void); 38extern void vmem_map_init(void); 39 40/* 41 * The S390 doesn't have any external MMU info: the kernel page 42 * tables contain all the necessary information. 43 */ 44#define update_mmu_cache(vma, address, ptep) do { } while (0) 45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 46 47/* 48 * ZERO_PAGE is a global shared page that is always zero; used 49 * for zero-mapped memory areas etc.. 50 */ 51 52extern unsigned long empty_zero_page; 53extern unsigned long zero_page_mask; 54 55#define ZERO_PAGE(vaddr) \ 56 (virt_to_page((void *)(empty_zero_page + \ 57 (((unsigned long)(vaddr)) &zero_page_mask)))) 58#define __HAVE_COLOR_ZERO_PAGE 59 60/* TODO: s390 cannot support io_remap_pfn_range... */ 61#endif /* !__ASSEMBLY__ */ 62 63/* 64 * PMD_SHIFT determines the size of the area a second-level page 65 * table can map 66 * PGDIR_SHIFT determines what a third-level page table entry can map 67 */ 68#ifndef CONFIG_64BIT 69# define PMD_SHIFT 20 70# define PUD_SHIFT 20 71# define PGDIR_SHIFT 20 72#else /* CONFIG_64BIT */ 73# define PMD_SHIFT 20 74# define PUD_SHIFT 31 75# define PGDIR_SHIFT 42 76#endif /* CONFIG_64BIT */ 77 78#define PMD_SIZE (1UL << PMD_SHIFT) 79#define PMD_MASK (~(PMD_SIZE-1)) 80#define PUD_SIZE (1UL << PUD_SHIFT) 81#define PUD_MASK (~(PUD_SIZE-1)) 82#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 83#define PGDIR_MASK (~(PGDIR_SIZE-1)) 84 85/* 86 * entries per page directory level: the S390 is two-level, so 87 * we don't really have any PMD directory physically. 88 * for S390 segment-table entries are combined to one PGD 89 * that leads to 1024 pte per pgd 90 */ 91#define PTRS_PER_PTE 256 92#ifndef CONFIG_64BIT 93#define PTRS_PER_PMD 1 94#define PTRS_PER_PUD 1 95#else /* CONFIG_64BIT */ 96#define PTRS_PER_PMD 2048 97#define PTRS_PER_PUD 2048 98#endif /* CONFIG_64BIT */ 99#define PTRS_PER_PGD 2048 100 101#define FIRST_USER_ADDRESS 0 102 103#define pte_ERROR(e) \ 104 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 105#define pmd_ERROR(e) \ 106 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 107#define pud_ERROR(e) \ 108 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 109#define pgd_ERROR(e) \ 110 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 111 112#ifndef __ASSEMBLY__ 113/* 114 * The vmalloc and module area will always be on the topmost area of the kernel 115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules. 116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 117 * modules will reside. That makes sure that inter module branches always 118 * happen without trampolines and in addition the placement within a 2GB frame 119 * is branch prediction unit friendly. 120 */ 121extern unsigned long VMALLOC_START; 122extern unsigned long VMALLOC_END; 123extern struct page *vmemmap; 124 125#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 126 127#ifdef CONFIG_64BIT 128extern unsigned long MODULES_VADDR; 129extern unsigned long MODULES_END; 130#define MODULES_VADDR MODULES_VADDR 131#define MODULES_END MODULES_END 132#define MODULES_LEN (1UL << 31) 133#endif 134 135/* 136 * A 31 bit pagetable entry of S390 has following format: 137 * | PFRA | | OS | 138 * 0 0IP0 139 * 00000000001111111111222222222233 140 * 01234567890123456789012345678901 141 * 142 * I Page-Invalid Bit: Page is not available for address-translation 143 * P Page-Protection Bit: Store access not possible for page 144 * 145 * A 31 bit segmenttable entry of S390 has following format: 146 * | P-table origin | |PTL 147 * 0 IC 148 * 00000000001111111111222222222233 149 * 01234567890123456789012345678901 150 * 151 * I Segment-Invalid Bit: Segment is not available for address-translation 152 * C Common-Segment Bit: Segment is not private (PoP 3-30) 153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 154 * 155 * The 31 bit segmenttable origin of S390 has following format: 156 * 157 * |S-table origin | | STL | 158 * X **GPS 159 * 00000000001111111111222222222233 160 * 01234567890123456789012345678901 161 * 162 * X Space-Switch event: 163 * G Segment-Invalid Bit: * 164 * P Private-Space Bit: Segment is not private (PoP 3-30) 165 * S Storage-Alteration: 166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 167 * 168 * A 64 bit pagetable entry of S390 has following format: 169 * | PFRA |0IPC| OS | 170 * 0000000000111111111122222222223333333333444444444455555555556666 171 * 0123456789012345678901234567890123456789012345678901234567890123 172 * 173 * I Page-Invalid Bit: Page is not available for address-translation 174 * P Page-Protection Bit: Store access not possible for page 175 * C Change-bit override: HW is not required to set change bit 176 * 177 * A 64 bit segmenttable entry of S390 has following format: 178 * | P-table origin | TT 179 * 0000000000111111111122222222223333333333444444444455555555556666 180 * 0123456789012345678901234567890123456789012345678901234567890123 181 * 182 * I Segment-Invalid Bit: Segment is not available for address-translation 183 * C Common-Segment Bit: Segment is not private (PoP 3-30) 184 * P Page-Protection Bit: Store access not possible for page 185 * TT Type 00 186 * 187 * A 64 bit region table entry of S390 has following format: 188 * | S-table origin | TF TTTL 189 * 0000000000111111111122222222223333333333444444444455555555556666 190 * 0123456789012345678901234567890123456789012345678901234567890123 191 * 192 * I Segment-Invalid Bit: Segment is not available for address-translation 193 * TT Type 01 194 * TF 195 * TL Table length 196 * 197 * The 64 bit regiontable origin of S390 has following format: 198 * | region table origon | DTTL 199 * 0000000000111111111122222222223333333333444444444455555555556666 200 * 0123456789012345678901234567890123456789012345678901234567890123 201 * 202 * X Space-Switch event: 203 * G Segment-Invalid Bit: 204 * P Private-Space Bit: 205 * S Storage-Alteration: 206 * R Real space 207 * TL Table-Length: 208 * 209 * A storage key has the following format: 210 * | ACC |F|R|C|0| 211 * 0 3 4 5 6 7 212 * ACC: access key 213 * F : fetch protection bit 214 * R : referenced bit 215 * C : changed bit 216 */ 217 218/* Hardware bits in the page table entry */ 219#define _PAGE_CO 0x100 /* HW Change-bit override */ 220#define _PAGE_RO 0x200 /* HW read-only bit */ 221#define _PAGE_INVALID 0x400 /* HW invalid bit */ 222 223/* Software bits in the page table entry */ 224#define _PAGE_SWT 0x001 /* SW pte type bit t */ 225#define _PAGE_SWX 0x002 /* SW pte type bit x */ 226#define _PAGE_SWC 0x004 /* SW pte changed bit */ 227#define _PAGE_SWR 0x008 /* SW pte referenced bit */ 228#define _PAGE_SWW 0x010 /* SW pte write bit */ 229#define _PAGE_SPECIAL 0x020 /* SW associated with special page */ 230#define __HAVE_ARCH_PTE_SPECIAL 231 232/* Set of bits not changed in pte_modify */ 233#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \ 234 _PAGE_SWC | _PAGE_SWR) 235 236/* Six different types of pages. */ 237#define _PAGE_TYPE_EMPTY 0x400 238#define _PAGE_TYPE_NONE 0x401 239#define _PAGE_TYPE_SWAP 0x403 240#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ 241#define _PAGE_TYPE_RO 0x200 242#define _PAGE_TYPE_RW 0x000 243 244/* 245 * Only four types for huge pages, using the invalid bit and protection bit 246 * of a segment table entry. 247 */ 248#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */ 249#define _HPAGE_TYPE_NONE 0x220 250#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */ 251#define _HPAGE_TYPE_RW 0x000 252 253/* 254 * PTE type bits are rather complicated. handle_pte_fault uses pte_present, 255 * pte_none and pte_file to find out the pte type WITHOUT holding the page 256 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to 257 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs 258 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. 259 * This change is done while holding the lock, but the intermediate step 260 * of a previously valid pte with the hw invalid bit set can be observed by 261 * handle_pte_fault. That makes it necessary that all valid pte types with 262 * the hw invalid bit set must be distinguishable from the four pte types 263 * empty, none, swap and file. 264 * 265 * irxt ipte irxt 266 * _PAGE_TYPE_EMPTY 1000 -> 1000 267 * _PAGE_TYPE_NONE 1001 -> 1001 268 * _PAGE_TYPE_SWAP 1011 -> 1011 269 * _PAGE_TYPE_FILE 11?1 -> 11?1 270 * _PAGE_TYPE_RO 0100 -> 1100 271 * _PAGE_TYPE_RW 0000 -> 1000 272 * 273 * pte_none is true for bits combinations 1000, 1010, 1100, 1110 274 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 275 * pte_file is true for bits combinations 1101, 1111 276 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid. 277 */ 278 279#ifndef CONFIG_64BIT 280 281/* Bits in the segment table address-space-control-element */ 282#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */ 283#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */ 284#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 285#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 286#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */ 287 288/* Bits in the segment table entry */ 289#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */ 290#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ 291#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 292#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */ 293#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */ 294 295#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL) 296#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 297 298/* Page status table bits for virtualization */ 299#define PGSTE_ACC_BITS 0xf0000000UL 300#define PGSTE_FP_BIT 0x08000000UL 301#define PGSTE_PCL_BIT 0x00800000UL 302#define PGSTE_HR_BIT 0x00400000UL 303#define PGSTE_HC_BIT 0x00200000UL 304#define PGSTE_GR_BIT 0x00040000UL 305#define PGSTE_GC_BIT 0x00020000UL 306#define PGSTE_UR_BIT 0x00008000UL 307#define PGSTE_UC_BIT 0x00004000UL /* user dirty (migration) */ 308#define PGSTE_IN_BIT 0x00002000UL /* IPTE notify bit */ 309 310#else /* CONFIG_64BIT */ 311 312/* Bits in the segment/region table address-space-control-element */ 313#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ 314#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 315#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 316#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 317#define _ASCE_REAL_SPACE 0x20 /* real space control */ 318#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 319#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 320#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 321#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 322#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 323#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 324 325/* Bits in the region table entry */ 326#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 327#define _REGION_ENTRY_RO 0x200 /* region protection bit */ 328#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */ 329#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 330#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 331#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 332#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 333#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 334 335#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 336#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV) 337#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 338#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV) 339#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 340#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV) 341 342#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */ 343#define _REGION3_ENTRY_RO 0x200 /* page protection bit */ 344#define _REGION3_ENTRY_CO 0x100 /* change-recording override */ 345 346/* Bits in the segment table entry */ 347#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 348#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ 349#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ 350#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 351 352#define _SEGMENT_ENTRY (0) 353#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 354 355#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */ 356#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */ 357#define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */ 358#define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT) 359 360/* Set of bits not changed in pmd_modify */ 361#define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \ 362 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO) 363 364/* Page status table bits for virtualization */ 365#define PGSTE_ACC_BITS 0xf000000000000000UL 366#define PGSTE_FP_BIT 0x0800000000000000UL 367#define PGSTE_PCL_BIT 0x0080000000000000UL 368#define PGSTE_HR_BIT 0x0040000000000000UL 369#define PGSTE_HC_BIT 0x0020000000000000UL 370#define PGSTE_GR_BIT 0x0004000000000000UL 371#define PGSTE_GC_BIT 0x0002000000000000UL 372#define PGSTE_UR_BIT 0x0000800000000000UL 373#define PGSTE_UC_BIT 0x0000400000000000UL /* user dirty (migration) */ 374#define PGSTE_IN_BIT 0x0000200000000000UL /* IPTE notify bit */ 375 376#endif /* CONFIG_64BIT */ 377 378/* 379 * A user page table pointer has the space-switch-event bit, the 380 * private-space-control bit and the storage-alteration-event-control 381 * bit set. A kernel page table pointer doesn't need them. 382 */ 383#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 384 _ASCE_ALT_EVENT) 385 386/* 387 * Page protection definitions. 388 */ 389#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) 390#define PAGE_RO __pgprot(_PAGE_TYPE_RO) 391#define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW) 392#define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC) 393 394#define PAGE_KERNEL PAGE_RWC 395#define PAGE_SHARED PAGE_KERNEL 396#define PAGE_COPY PAGE_RO 397 398/* 399 * On s390 the page table entry has an invalid bit and a read-only bit. 400 * Read permission implies execute permission and write permission 401 * implies read permission. 402 */ 403 /*xwr*/ 404#define __P000 PAGE_NONE 405#define __P001 PAGE_RO 406#define __P010 PAGE_RO 407#define __P011 PAGE_RO 408#define __P100 PAGE_RO 409#define __P101 PAGE_RO 410#define __P110 PAGE_RO 411#define __P111 PAGE_RO 412 413#define __S000 PAGE_NONE 414#define __S001 PAGE_RO 415#define __S010 PAGE_RW 416#define __S011 PAGE_RW 417#define __S100 PAGE_RO 418#define __S101 PAGE_RO 419#define __S110 PAGE_RW 420#define __S111 PAGE_RW 421 422/* 423 * Segment entry (large page) protection definitions. 424 */ 425#define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE) 426#define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO) 427#define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW) 428 429static inline int mm_exclusive(struct mm_struct *mm) 430{ 431 return likely(mm == current->active_mm && 432 atomic_read(&mm->context.attach_count) <= 1); 433} 434 435static inline int mm_has_pgste(struct mm_struct *mm) 436{ 437#ifdef CONFIG_PGSTE 438 if (unlikely(mm->context.has_pgste)) 439 return 1; 440#endif 441 return 0; 442} 443/* 444 * pgd/pmd/pte query functions 445 */ 446#ifndef CONFIG_64BIT 447 448static inline int pgd_present(pgd_t pgd) { return 1; } 449static inline int pgd_none(pgd_t pgd) { return 0; } 450static inline int pgd_bad(pgd_t pgd) { return 0; } 451 452static inline int pud_present(pud_t pud) { return 1; } 453static inline int pud_none(pud_t pud) { return 0; } 454static inline int pud_large(pud_t pud) { return 0; } 455static inline int pud_bad(pud_t pud) { return 0; } 456 457#else /* CONFIG_64BIT */ 458 459static inline int pgd_present(pgd_t pgd) 460{ 461 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 462 return 1; 463 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 464} 465 466static inline int pgd_none(pgd_t pgd) 467{ 468 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 469 return 0; 470 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL; 471} 472 473static inline int pgd_bad(pgd_t pgd) 474{ 475 /* 476 * With dynamic page table levels the pgd can be a region table 477 * entry or a segment table entry. Check for the bit that are 478 * invalid for either table entry. 479 */ 480 unsigned long mask = 481 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 482 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 483 return (pgd_val(pgd) & mask) != 0; 484} 485 486static inline int pud_present(pud_t pud) 487{ 488 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 489 return 1; 490 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 491} 492 493static inline int pud_none(pud_t pud) 494{ 495 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 496 return 0; 497 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL; 498} 499 500static inline int pud_large(pud_t pud) 501{ 502 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 503 return 0; 504 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 505} 506 507static inline int pud_bad(pud_t pud) 508{ 509 /* 510 * With dynamic page table levels the pud can be a region table 511 * entry or a segment table entry. Check for the bit that are 512 * invalid for either table entry. 513 */ 514 unsigned long mask = 515 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 516 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 517 return (pud_val(pud) & mask) != 0; 518} 519 520#endif /* CONFIG_64BIT */ 521 522static inline int pmd_present(pmd_t pmd) 523{ 524 unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO; 525 return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE || 526 !(pmd_val(pmd) & _SEGMENT_ENTRY_INV); 527} 528 529static inline int pmd_none(pmd_t pmd) 530{ 531 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) && 532 !(pmd_val(pmd) & _SEGMENT_ENTRY_RO); 533} 534 535static inline int pmd_large(pmd_t pmd) 536{ 537#ifdef CONFIG_64BIT 538 return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE); 539#else 540 return 0; 541#endif 542} 543 544static inline int pmd_bad(pmd_t pmd) 545{ 546 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV; 547 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY; 548} 549 550#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH 551extern void pmdp_splitting_flush(struct vm_area_struct *vma, 552 unsigned long addr, pmd_t *pmdp); 553 554#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 555extern int pmdp_set_access_flags(struct vm_area_struct *vma, 556 unsigned long address, pmd_t *pmdp, 557 pmd_t entry, int dirty); 558 559#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 560extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 561 unsigned long address, pmd_t *pmdp); 562 563#define __HAVE_ARCH_PMD_WRITE 564static inline int pmd_write(pmd_t pmd) 565{ 566 return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0; 567} 568 569static inline int pmd_young(pmd_t pmd) 570{ 571 return 0; 572} 573 574static inline int pte_none(pte_t pte) 575{ 576 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); 577} 578 579static inline int pte_present(pte_t pte) 580{ 581 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; 582 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || 583 (!(pte_val(pte) & _PAGE_INVALID) && 584 !(pte_val(pte) & _PAGE_SWT)); 585} 586 587static inline int pte_file(pte_t pte) 588{ 589 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; 590 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; 591} 592 593static inline int pte_special(pte_t pte) 594{ 595 return (pte_val(pte) & _PAGE_SPECIAL); 596} 597 598#define __HAVE_ARCH_PTE_SAME 599static inline int pte_same(pte_t a, pte_t b) 600{ 601 return pte_val(a) == pte_val(b); 602} 603 604static inline pgste_t pgste_get_lock(pte_t *ptep) 605{ 606 unsigned long new = 0; 607#ifdef CONFIG_PGSTE 608 unsigned long old; 609 610 preempt_disable(); 611 asm( 612 " lg %0,%2\n" 613 "0: lgr %1,%0\n" 614 " nihh %0,0xff7f\n" /* clear PCL bit in old */ 615 " oihh %1,0x0080\n" /* set PCL bit in new */ 616 " csg %0,%1,%2\n" 617 " jl 0b\n" 618 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE]) 619 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory"); 620#endif 621 return __pgste(new); 622} 623 624static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste) 625{ 626#ifdef CONFIG_PGSTE 627 asm( 628 " nihh %1,0xff7f\n" /* clear PCL bit */ 629 " stg %1,%0\n" 630 : "=Q" (ptep[PTRS_PER_PTE]) 631 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) 632 : "cc", "memory"); 633 preempt_enable(); 634#endif 635} 636 637static inline void pgste_set(pte_t *ptep, pgste_t pgste) 638{ 639#ifdef CONFIG_PGSTE 640 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste; 641#endif 642} 643 644static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste) 645{ 646#ifdef CONFIG_PGSTE 647 unsigned long address, bits; 648 unsigned char skey; 649 650 if (pte_val(*ptep) & _PAGE_INVALID) 651 return pgste; 652 address = pte_val(*ptep) & PAGE_MASK; 653 skey = page_get_storage_key(address); 654 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED); 655 /* Clear page changed & referenced bit in the storage key */ 656 if (bits & _PAGE_CHANGED) 657 page_set_storage_key(address, skey ^ bits, 0); 658 else if (bits) 659 page_reset_referenced(address); 660 /* Transfer page changed & referenced bit to guest bits in pgste */ 661 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */ 662 /* Get host changed & referenced bits from pgste */ 663 bits |= (pgste_val(pgste) & (PGSTE_HR_BIT | PGSTE_HC_BIT)) >> 52; 664 /* Transfer page changed & referenced bit to kvm user bits */ 665 pgste_val(pgste) |= bits << 45; /* PGSTE_UR_BIT & PGSTE_UC_BIT */ 666 /* Clear relevant host bits in pgste. */ 667 pgste_val(pgste) &= ~(PGSTE_HR_BIT | PGSTE_HC_BIT); 668 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT); 669 /* Copy page access key and fetch protection bit to pgste */ 670 pgste_val(pgste) |= 671 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56; 672 /* Transfer referenced bit to pte */ 673 pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1; 674#endif 675 return pgste; 676 677} 678 679static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste) 680{ 681#ifdef CONFIG_PGSTE 682 int young; 683 684 if (pte_val(*ptep) & _PAGE_INVALID) 685 return pgste; 686 /* Get referenced bit from storage key */ 687 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK); 688 if (young) 689 pgste_val(pgste) |= PGSTE_GR_BIT; 690 /* Get host referenced bit from pgste */ 691 if (pgste_val(pgste) & PGSTE_HR_BIT) { 692 pgste_val(pgste) &= ~PGSTE_HR_BIT; 693 young = 1; 694 } 695 /* Transfer referenced bit to kvm user bits and pte */ 696 if (young) { 697 pgste_val(pgste) |= PGSTE_UR_BIT; 698 pte_val(*ptep) |= _PAGE_SWR; 699 } 700#endif 701 return pgste; 702} 703 704static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry) 705{ 706#ifdef CONFIG_PGSTE 707 unsigned long address; 708 unsigned long nkey; 709 710 if (pte_val(entry) & _PAGE_INVALID) 711 return; 712 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID)); 713 address = pte_val(entry) & PAGE_MASK; 714 /* 715 * Set page access key and fetch protection bit from pgste. 716 * The guest C/R information is still in the PGSTE, set real 717 * key C/R to 0. 718 */ 719 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56; 720 page_set_storage_key(address, nkey, 0); 721#endif 722} 723 724static inline void pgste_set_pte(pte_t *ptep, pte_t entry) 725{ 726 if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) { 727 /* 728 * Without enhanced suppression-on-protection force 729 * the dirty bit on for all writable ptes. 730 */ 731 pte_val(entry) |= _PAGE_SWC; 732 pte_val(entry) &= ~_PAGE_RO; 733 } 734 *ptep = entry; 735} 736 737/** 738 * struct gmap_struct - guest address space 739 * @mm: pointer to the parent mm_struct 740 * @table: pointer to the page directory 741 * @asce: address space control element for gmap page table 742 * @crst_list: list of all crst tables used in the guest address space 743 */ 744struct gmap { 745 struct list_head list; 746 struct mm_struct *mm; 747 unsigned long *table; 748 unsigned long asce; 749 void *private; 750 struct list_head crst_list; 751}; 752 753/** 754 * struct gmap_rmap - reverse mapping for segment table entries 755 * @gmap: pointer to the gmap_struct 756 * @entry: pointer to a segment table entry 757 * @vmaddr: virtual address in the guest address space 758 */ 759struct gmap_rmap { 760 struct list_head list; 761 struct gmap *gmap; 762 unsigned long *entry; 763 unsigned long vmaddr; 764}; 765 766/** 767 * struct gmap_pgtable - gmap information attached to a page table 768 * @vmaddr: address of the 1MB segment in the process virtual memory 769 * @mapper: list of segment table entries mapping a page table 770 */ 771struct gmap_pgtable { 772 unsigned long vmaddr; 773 struct list_head mapper; 774}; 775 776/** 777 * struct gmap_notifier - notify function block for page invalidation 778 * @notifier_call: address of callback function 779 */ 780struct gmap_notifier { 781 struct list_head list; 782 void (*notifier_call)(struct gmap *gmap, unsigned long address); 783}; 784 785struct gmap *gmap_alloc(struct mm_struct *mm); 786void gmap_free(struct gmap *gmap); 787void gmap_enable(struct gmap *gmap); 788void gmap_disable(struct gmap *gmap); 789int gmap_map_segment(struct gmap *gmap, unsigned long from, 790 unsigned long to, unsigned long len); 791int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len); 792unsigned long __gmap_translate(unsigned long address, struct gmap *); 793unsigned long gmap_translate(unsigned long address, struct gmap *); 794unsigned long __gmap_fault(unsigned long address, struct gmap *); 795unsigned long gmap_fault(unsigned long address, struct gmap *); 796void gmap_discard(unsigned long from, unsigned long to, struct gmap *); 797 798void gmap_register_ipte_notifier(struct gmap_notifier *); 799void gmap_unregister_ipte_notifier(struct gmap_notifier *); 800int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len); 801void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *); 802 803static inline pgste_t pgste_ipte_notify(struct mm_struct *mm, 804 unsigned long addr, 805 pte_t *ptep, pgste_t pgste) 806{ 807#ifdef CONFIG_PGSTE 808 if (pgste_val(pgste) & PGSTE_IN_BIT) { 809 pgste_val(pgste) &= ~PGSTE_IN_BIT; 810 gmap_do_ipte_notify(mm, addr, ptep); 811 } 812#endif 813 return pgste; 814} 815 816/* 817 * Certain architectures need to do special things when PTEs 818 * within a page table are directly modified. Thus, the following 819 * hook is made available. 820 */ 821static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 822 pte_t *ptep, pte_t entry) 823{ 824 pgste_t pgste; 825 826 if (mm_has_pgste(mm)) { 827 pgste = pgste_get_lock(ptep); 828 pgste_set_key(ptep, pgste, entry); 829 pgste_set_pte(ptep, entry); 830 pgste_set_unlock(ptep, pgste); 831 } else { 832 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1) 833 pte_val(entry) |= _PAGE_CO; 834 *ptep = entry; 835 } 836} 837 838/* 839 * query functions pte_write/pte_dirty/pte_young only work if 840 * pte_present() is true. Undefined behaviour if not.. 841 */ 842static inline int pte_write(pte_t pte) 843{ 844 return (pte_val(pte) & _PAGE_SWW) != 0; 845} 846 847static inline int pte_dirty(pte_t pte) 848{ 849 return (pte_val(pte) & _PAGE_SWC) != 0; 850} 851 852static inline int pte_young(pte_t pte) 853{ 854#ifdef CONFIG_PGSTE 855 if (pte_val(pte) & _PAGE_SWR) 856 return 1; 857#endif 858 return 0; 859} 860 861/* 862 * pgd/pmd/pte modification functions 863 */ 864 865static inline void pgd_clear(pgd_t *pgd) 866{ 867#ifdef CONFIG_64BIT 868 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 869 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; 870#endif 871} 872 873static inline void pud_clear(pud_t *pud) 874{ 875#ifdef CONFIG_64BIT 876 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 877 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 878#endif 879} 880 881static inline void pmd_clear(pmd_t *pmdp) 882{ 883 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 884} 885 886static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 887{ 888 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 889} 890 891/* 892 * The following pte modification functions only work if 893 * pte_present() is true. Undefined behaviour if not.. 894 */ 895static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 896{ 897 pte_val(pte) &= _PAGE_CHG_MASK; 898 pte_val(pte) |= pgprot_val(newprot); 899 if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW)) 900 pte_val(pte) &= ~_PAGE_RO; 901 return pte; 902} 903 904static inline pte_t pte_wrprotect(pte_t pte) 905{ 906 pte_val(pte) &= ~_PAGE_SWW; 907 /* Do not clobber _PAGE_TYPE_NONE pages! */ 908 if (!(pte_val(pte) & _PAGE_INVALID)) 909 pte_val(pte) |= _PAGE_RO; 910 return pte; 911} 912 913static inline pte_t pte_mkwrite(pte_t pte) 914{ 915 pte_val(pte) |= _PAGE_SWW; 916 if (pte_val(pte) & _PAGE_SWC) 917 pte_val(pte) &= ~_PAGE_RO; 918 return pte; 919} 920 921static inline pte_t pte_mkclean(pte_t pte) 922{ 923 pte_val(pte) &= ~_PAGE_SWC; 924 /* Do not clobber _PAGE_TYPE_NONE pages! */ 925 if (!(pte_val(pte) & _PAGE_INVALID)) 926 pte_val(pte) |= _PAGE_RO; 927 return pte; 928} 929 930static inline pte_t pte_mkdirty(pte_t pte) 931{ 932 pte_val(pte) |= _PAGE_SWC; 933 if (pte_val(pte) & _PAGE_SWW) 934 pte_val(pte) &= ~_PAGE_RO; 935 return pte; 936} 937 938static inline pte_t pte_mkold(pte_t pte) 939{ 940#ifdef CONFIG_PGSTE 941 pte_val(pte) &= ~_PAGE_SWR; 942#endif 943 return pte; 944} 945 946static inline pte_t pte_mkyoung(pte_t pte) 947{ 948 return pte; 949} 950 951static inline pte_t pte_mkspecial(pte_t pte) 952{ 953 pte_val(pte) |= _PAGE_SPECIAL; 954 return pte; 955} 956 957#ifdef CONFIG_HUGETLB_PAGE 958static inline pte_t pte_mkhuge(pte_t pte) 959{ 960 pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO); 961 return pte; 962} 963#endif 964 965/* 966 * Get (and clear) the user dirty bit for a pte. 967 */ 968static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm, 969 pte_t *ptep) 970{ 971 pgste_t pgste; 972 int dirty = 0; 973 974 if (mm_has_pgste(mm)) { 975 pgste = pgste_get_lock(ptep); 976 pgste = pgste_update_all(ptep, pgste); 977 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT); 978 pgste_val(pgste) &= ~PGSTE_UC_BIT; 979 pgste_set_unlock(ptep, pgste); 980 return dirty; 981 } 982 return dirty; 983} 984 985/* 986 * Get (and clear) the user referenced bit for a pte. 987 */ 988static inline int ptep_test_and_clear_user_young(struct mm_struct *mm, 989 pte_t *ptep) 990{ 991 pgste_t pgste; 992 int young = 0; 993 994 if (mm_has_pgste(mm)) { 995 pgste = pgste_get_lock(ptep); 996 pgste = pgste_update_young(ptep, pgste); 997 young = !!(pgste_val(pgste) & PGSTE_UR_BIT); 998 pgste_val(pgste) &= ~PGSTE_UR_BIT; 999 pgste_set_unlock(ptep, pgste); 1000 } 1001 return young; 1002} 1003 1004#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1005static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1006 unsigned long addr, pte_t *ptep) 1007{ 1008 pgste_t pgste; 1009 pte_t pte; 1010 1011 if (mm_has_pgste(vma->vm_mm)) { 1012 pgste = pgste_get_lock(ptep); 1013 pgste = pgste_update_young(ptep, pgste); 1014 pte = *ptep; 1015 *ptep = pte_mkold(pte); 1016 pgste_set_unlock(ptep, pgste); 1017 return pte_young(pte); 1018 } 1019 return 0; 1020} 1021 1022#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1023static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1024 unsigned long address, pte_t *ptep) 1025{ 1026 /* No need to flush TLB 1027 * On s390 reference bits are in storage key and never in TLB 1028 * With virtualization we handle the reference bit, without we 1029 * we can simply return */ 1030 return ptep_test_and_clear_young(vma, address, ptep); 1031} 1032 1033static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 1034{ 1035 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 1036#ifndef CONFIG_64BIT 1037 /* pto must point to the start of the segment table */ 1038 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 1039#else 1040 /* ipte in zarch mode can do the math */ 1041 pte_t *pto = ptep; 1042#endif 1043 asm volatile( 1044 " ipte %2,%3" 1045 : "=m" (*ptep) : "m" (*ptep), 1046 "a" (pto), "a" (address)); 1047 } 1048} 1049 1050/* 1051 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1052 * both clear the TLB for the unmapped pte. The reason is that 1053 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1054 * to modify an active pte. The sequence is 1055 * 1) ptep_get_and_clear 1056 * 2) set_pte_at 1057 * 3) flush_tlb_range 1058 * On s390 the tlb needs to get flushed with the modification of the pte 1059 * if the pte is active. The only way how this can be implemented is to 1060 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1061 * is a nop. 1062 */ 1063#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1064static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1065 unsigned long address, pte_t *ptep) 1066{ 1067 pgste_t pgste; 1068 pte_t pte; 1069 1070 mm->context.flush_mm = 1; 1071 if (mm_has_pgste(mm)) { 1072 pgste = pgste_get_lock(ptep); 1073 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1074 } 1075 1076 pte = *ptep; 1077 if (!mm_exclusive(mm)) 1078 __ptep_ipte(address, ptep); 1079 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 1080 1081 if (mm_has_pgste(mm)) { 1082 pgste = pgste_update_all(&pte, pgste); 1083 pgste_set_unlock(ptep, pgste); 1084 } 1085 return pte; 1086} 1087 1088#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1089static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 1090 unsigned long address, 1091 pte_t *ptep) 1092{ 1093 pgste_t pgste; 1094 pte_t pte; 1095 1096 mm->context.flush_mm = 1; 1097 if (mm_has_pgste(mm)) { 1098 pgste = pgste_get_lock(ptep); 1099 pgste_ipte_notify(mm, address, ptep, pgste); 1100 } 1101 1102 pte = *ptep; 1103 if (!mm_exclusive(mm)) 1104 __ptep_ipte(address, ptep); 1105 1106 if (mm_has_pgste(mm)) { 1107 pgste = pgste_update_all(&pte, pgste); 1108 pgste_set(ptep, pgste); 1109 } 1110 return pte; 1111} 1112 1113static inline void ptep_modify_prot_commit(struct mm_struct *mm, 1114 unsigned long address, 1115 pte_t *ptep, pte_t pte) 1116{ 1117 pgste_t pgste; 1118 1119 if (mm_has_pgste(mm)) { 1120 pgste = *(pgste_t *)(ptep + PTRS_PER_PTE); 1121 pgste_set_key(ptep, pgste, pte); 1122 pgste_set_pte(ptep, pte); 1123 pgste_set_unlock(ptep, pgste); 1124 } else 1125 *ptep = pte; 1126} 1127 1128#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1129static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1130 unsigned long address, pte_t *ptep) 1131{ 1132 pgste_t pgste; 1133 pte_t pte; 1134 1135 if (mm_has_pgste(vma->vm_mm)) { 1136 pgste = pgste_get_lock(ptep); 1137 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); 1138 } 1139 1140 pte = *ptep; 1141 __ptep_ipte(address, ptep); 1142 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 1143 1144 if (mm_has_pgste(vma->vm_mm)) { 1145 pgste = pgste_update_all(&pte, pgste); 1146 pgste_set_unlock(ptep, pgste); 1147 } 1148 return pte; 1149} 1150 1151/* 1152 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1153 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1154 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1155 * cannot be accessed while the batched unmap is running. In this case 1156 * full==1 and a simple pte_clear is enough. See tlb.h. 1157 */ 1158#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1159static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1160 unsigned long address, 1161 pte_t *ptep, int full) 1162{ 1163 pgste_t pgste; 1164 pte_t pte; 1165 1166 if (mm_has_pgste(mm)) { 1167 pgste = pgste_get_lock(ptep); 1168 if (!full) 1169 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1170 } 1171 1172 pte = *ptep; 1173 if (!full) 1174 __ptep_ipte(address, ptep); 1175 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 1176 1177 if (mm_has_pgste(mm)) { 1178 pgste = pgste_update_all(&pte, pgste); 1179 pgste_set_unlock(ptep, pgste); 1180 } 1181 return pte; 1182} 1183 1184#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1185static inline pte_t ptep_set_wrprotect(struct mm_struct *mm, 1186 unsigned long address, pte_t *ptep) 1187{ 1188 pgste_t pgste; 1189 pte_t pte = *ptep; 1190 1191 if (pte_write(pte)) { 1192 mm->context.flush_mm = 1; 1193 if (mm_has_pgste(mm)) { 1194 pgste = pgste_get_lock(ptep); 1195 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1196 } 1197 1198 if (!mm_exclusive(mm)) 1199 __ptep_ipte(address, ptep); 1200 pte = pte_wrprotect(pte); 1201 1202 if (mm_has_pgste(mm)) { 1203 pgste_set_pte(ptep, pte); 1204 pgste_set_unlock(ptep, pgste); 1205 } else 1206 *ptep = pte; 1207 } 1208 return pte; 1209} 1210 1211#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1212static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1213 unsigned long address, pte_t *ptep, 1214 pte_t entry, int dirty) 1215{ 1216 pgste_t pgste; 1217 1218 if (pte_same(*ptep, entry)) 1219 return 0; 1220 if (mm_has_pgste(vma->vm_mm)) { 1221 pgste = pgste_get_lock(ptep); 1222 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); 1223 } 1224 1225 __ptep_ipte(address, ptep); 1226 1227 if (mm_has_pgste(vma->vm_mm)) { 1228 pgste_set_pte(ptep, entry); 1229 pgste_set_unlock(ptep, pgste); 1230 } else 1231 *ptep = entry; 1232 return 1; 1233} 1234 1235/* 1236 * Conversion functions: convert a page and protection to a page entry, 1237 * and a page entry and page directory to the page they refer to. 1238 */ 1239static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1240{ 1241 pte_t __pte; 1242 pte_val(__pte) = physpage + pgprot_val(pgprot); 1243 return __pte; 1244} 1245 1246static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1247{ 1248 unsigned long physpage = page_to_phys(page); 1249 pte_t __pte = mk_pte_phys(physpage, pgprot); 1250 1251 if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) { 1252 pte_val(__pte) |= _PAGE_SWC; 1253 pte_val(__pte) &= ~_PAGE_RO; 1254 } 1255 return __pte; 1256} 1257 1258#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1259#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1260#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1261#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1262 1263#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 1264#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1265 1266#ifndef CONFIG_64BIT 1267 1268#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1269#define pud_deref(pmd) ({ BUG(); 0UL; }) 1270#define pgd_deref(pmd) ({ BUG(); 0UL; }) 1271 1272#define pud_offset(pgd, address) ((pud_t *) pgd) 1273#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address)) 1274 1275#else /* CONFIG_64BIT */ 1276 1277#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1278#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1279#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1280 1281static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 1282{ 1283 pud_t *pud = (pud_t *) pgd; 1284 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 1285 pud = (pud_t *) pgd_deref(*pgd); 1286 return pud + pud_index(address); 1287} 1288 1289static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1290{ 1291 pmd_t *pmd = (pmd_t *) pud; 1292 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 1293 pmd = (pmd_t *) pud_deref(*pud); 1294 return pmd + pmd_index(address); 1295} 1296 1297#endif /* CONFIG_64BIT */ 1298 1299#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1300#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1301#define pte_page(x) pfn_to_page(pte_pfn(x)) 1302 1303#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 1304 1305/* Find an entry in the lowest level page table.. */ 1306#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 1307#define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 1308#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1309#define pte_unmap(pte) do { } while (0) 1310 1311static inline void __pmd_idte(unsigned long address, pmd_t *pmdp) 1312{ 1313 unsigned long sto = (unsigned long) pmdp - 1314 pmd_index(address) * sizeof(pmd_t); 1315 1316 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) { 1317 asm volatile( 1318 " .insn rrf,0xb98e0000,%2,%3,0,0" 1319 : "=m" (*pmdp) 1320 : "m" (*pmdp), "a" (sto), 1321 "a" ((address & HPAGE_MASK)) 1322 : "cc" 1323 ); 1324 } 1325} 1326 1327#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1328static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1329{ 1330 /* 1331 * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx) 1332 * Convert to segment table entry format. 1333 */ 1334 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1335 return pgprot_val(SEGMENT_NONE); 1336 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1337 return pgprot_val(SEGMENT_RO); 1338 return pgprot_val(SEGMENT_RW); 1339} 1340 1341static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1342{ 1343 pmd_val(pmd) &= _SEGMENT_CHG_MASK; 1344 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1345 return pmd; 1346} 1347 1348static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1349{ 1350 pmd_t __pmd; 1351 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1352 return __pmd; 1353} 1354 1355static inline pmd_t pmd_mkwrite(pmd_t pmd) 1356{ 1357 /* Do not clobber _HPAGE_TYPE_NONE pages! */ 1358 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV)) 1359 pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO; 1360 return pmd; 1361} 1362#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1363 1364#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1365 1366#define __HAVE_ARCH_PGTABLE_DEPOSIT 1367extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1368 pgtable_t pgtable); 1369 1370#define __HAVE_ARCH_PGTABLE_WITHDRAW 1371extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1372 1373static inline int pmd_trans_splitting(pmd_t pmd) 1374{ 1375 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT; 1376} 1377 1378static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1379 pmd_t *pmdp, pmd_t entry) 1380{ 1381 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1) 1382 pmd_val(entry) |= _SEGMENT_ENTRY_CO; 1383 *pmdp = entry; 1384} 1385 1386static inline pmd_t pmd_mkhuge(pmd_t pmd) 1387{ 1388 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1389 return pmd; 1390} 1391 1392static inline pmd_t pmd_wrprotect(pmd_t pmd) 1393{ 1394 pmd_val(pmd) |= _SEGMENT_ENTRY_RO; 1395 return pmd; 1396} 1397 1398static inline pmd_t pmd_mkdirty(pmd_t pmd) 1399{ 1400 /* No dirty bit in the segment table entry. */ 1401 return pmd; 1402} 1403 1404static inline pmd_t pmd_mkold(pmd_t pmd) 1405{ 1406 /* No referenced bit in the segment table entry. */ 1407 return pmd; 1408} 1409 1410static inline pmd_t pmd_mkyoung(pmd_t pmd) 1411{ 1412 /* No referenced bit in the segment table entry. */ 1413 return pmd; 1414} 1415 1416#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1417static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1418 unsigned long address, pmd_t *pmdp) 1419{ 1420 unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK; 1421 long tmp, rc; 1422 int counter; 1423 1424 rc = 0; 1425 if (MACHINE_HAS_RRBM) { 1426 counter = PTRS_PER_PTE >> 6; 1427 asm volatile( 1428 "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */ 1429 " ogr %1,%0\n" 1430 " la %3,0(%4,%3)\n" 1431 " brct %2,0b\n" 1432 : "=&d" (tmp), "+&d" (rc), "+d" (counter), 1433 "+a" (pmd_addr) 1434 : "a" (64 * 4096UL) : "cc"); 1435 rc = !!rc; 1436 } else { 1437 counter = PTRS_PER_PTE; 1438 asm volatile( 1439 "0: rrbe 0,%2\n" 1440 " la %2,0(%3,%2)\n" 1441 " brc 12,1f\n" 1442 " lhi %0,1\n" 1443 "1: brct %1,0b\n" 1444 : "+d" (rc), "+d" (counter), "+a" (pmd_addr) 1445 : "a" (4096UL) : "cc"); 1446 } 1447 return rc; 1448} 1449 1450#define __HAVE_ARCH_PMDP_GET_AND_CLEAR 1451static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 1452 unsigned long address, pmd_t *pmdp) 1453{ 1454 pmd_t pmd = *pmdp; 1455 1456 __pmd_idte(address, pmdp); 1457 pmd_clear(pmdp); 1458 return pmd; 1459} 1460 1461#define __HAVE_ARCH_PMDP_CLEAR_FLUSH 1462static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma, 1463 unsigned long address, pmd_t *pmdp) 1464{ 1465 return pmdp_get_and_clear(vma->vm_mm, address, pmdp); 1466} 1467 1468#define __HAVE_ARCH_PMDP_INVALIDATE 1469static inline void pmdp_invalidate(struct vm_area_struct *vma, 1470 unsigned long address, pmd_t *pmdp) 1471{ 1472 __pmd_idte(address, pmdp); 1473} 1474 1475#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1476static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1477 unsigned long address, pmd_t *pmdp) 1478{ 1479 pmd_t pmd = *pmdp; 1480 1481 if (pmd_write(pmd)) { 1482 __pmd_idte(address, pmdp); 1483 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd)); 1484 } 1485} 1486 1487#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1488#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1489 1490static inline int pmd_trans_huge(pmd_t pmd) 1491{ 1492 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1493} 1494 1495static inline int has_transparent_hugepage(void) 1496{ 1497 return MACHINE_HAS_HPAGE ? 1 : 0; 1498} 1499 1500static inline unsigned long pmd_pfn(pmd_t pmd) 1501{ 1502 return pmd_val(pmd) >> PAGE_SHIFT; 1503} 1504#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1505 1506/* 1507 * 31 bit swap entry format: 1508 * A page-table entry has some bits we have to treat in a special way. 1509 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 1510 * exception will occur instead of a page translation exception. The 1511 * specifiation exception has the bad habit not to store necessary 1512 * information in the lowcore. 1513 * Bit 21 and bit 22 are the page invalid bit and the page protection 1514 * bit. We set both to indicate a swapped page. 1515 * Bit 30 and 31 are used to distinguish the different page types. For 1516 * a swapped page these bits need to be zero. 1517 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 1518 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 1519 * plus 24 for the offset. 1520 * 0| offset |0110|o|type |00| 1521 * 0 0000000001111111111 2222 2 22222 33 1522 * 0 1234567890123456789 0123 4 56789 01 1523 * 1524 * 64 bit swap entry format: 1525 * A page-table entry has some bits we have to treat in a special way. 1526 * Bits 52 and bit 55 have to be zero, otherwise an specification 1527 * exception will occur instead of a page translation exception. The 1528 * specifiation exception has the bad habit not to store necessary 1529 * information in the lowcore. 1530 * Bit 53 and bit 54 are the page invalid bit and the page protection 1531 * bit. We set both to indicate a swapped page. 1532 * Bit 62 and 63 are used to distinguish the different page types. For 1533 * a swapped page these bits need to be zero. 1534 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 1535 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 1536 * plus 56 for the offset. 1537 * | offset |0110|o|type |00| 1538 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 1539 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 1540 */ 1541#ifndef CONFIG_64BIT 1542#define __SWP_OFFSET_MASK (~0UL >> 12) 1543#else 1544#define __SWP_OFFSET_MASK (~0UL >> 11) 1545#endif 1546static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1547{ 1548 pte_t pte; 1549 offset &= __SWP_OFFSET_MASK; 1550 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | 1551 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 1552 return pte; 1553} 1554 1555#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 1556#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 1557#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 1558 1559#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1560#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1561 1562#ifndef CONFIG_64BIT 1563# define PTE_FILE_MAX_BITS 26 1564#else /* CONFIG_64BIT */ 1565# define PTE_FILE_MAX_BITS 59 1566#endif /* CONFIG_64BIT */ 1567 1568#define pte_to_pgoff(__pte) \ 1569 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 1570 1571#define pgoff_to_pte(__off) \ 1572 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 1573 | _PAGE_TYPE_FILE }) 1574 1575#endif /* !__ASSEMBLY__ */ 1576 1577#define kern_addr_valid(addr) (1) 1578 1579extern int vmem_add_mapping(unsigned long start, unsigned long size); 1580extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1581extern int s390_enable_sie(void); 1582 1583/* 1584 * No page table caches to initialise 1585 */ 1586static inline void pgtable_cache_init(void) { } 1587static inline void check_pgt_cache(void) { } 1588 1589#include <asm-generic/pgtable.h> 1590 1591#endif /* _S390_PAGE_H */