at v3.11 521 lines 19 kB view raw
1#ifndef _PARISC_PGTABLE_H 2#define _PARISC_PGTABLE_H 3 4#include <asm-generic/4level-fixup.h> 5 6#include <asm/fixmap.h> 7 8#ifndef __ASSEMBLY__ 9/* 10 * we simulate an x86-style page table for the linux mm code 11 */ 12 13#include <linux/bitops.h> 14#include <linux/spinlock.h> 15#include <linux/mm_types.h> 16#include <asm/processor.h> 17#include <asm/cache.h> 18 19extern spinlock_t pa_dbit_lock; 20 21/* 22 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 23 * memory. For the return value to be meaningful, ADDR must be >= 24 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 25 * require a hash-, or multi-level tree-lookup or something of that 26 * sort) but it guarantees to return TRUE only if accessing the page 27 * at that address does not cause an error. Note that there may be 28 * addresses for which kern_addr_valid() returns FALSE even though an 29 * access would not cause an error (e.g., this is typically true for 30 * memory mapped I/O regions. 31 * 32 * XXX Need to implement this for parisc. 33 */ 34#define kern_addr_valid(addr) (1) 35 36/* Certain architectures need to do special things when PTEs 37 * within a page table are directly modified. Thus, the following 38 * hook is made available. 39 */ 40#define set_pte(pteptr, pteval) \ 41 do{ \ 42 *(pteptr) = (pteval); \ 43 } while(0) 44 45extern void purge_tlb_entries(struct mm_struct *, unsigned long); 46 47#define set_pte_at(mm, addr, ptep, pteval) \ 48 do { \ 49 unsigned long flags; \ 50 spin_lock_irqsave(&pa_dbit_lock, flags); \ 51 set_pte(ptep, pteval); \ 52 purge_tlb_entries(mm, addr); \ 53 spin_unlock_irqrestore(&pa_dbit_lock, flags); \ 54 } while (0) 55 56#endif /* !__ASSEMBLY__ */ 57 58#include <asm/page.h> 59 60#define pte_ERROR(e) \ 61 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 62#define pmd_ERROR(e) \ 63 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) 64#define pgd_ERROR(e) \ 65 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) 66 67/* This is the size of the initially mapped kernel memory */ 68#define KERNEL_INITIAL_ORDER 24 /* 0 to 1<<24 = 16MB */ 69#define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) 70 71#if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB) 72#define PT_NLEVELS 3 73#define PGD_ORDER 1 /* Number of pages per pgd */ 74#define PMD_ORDER 1 /* Number of pages per pmd */ 75#define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */ 76#else 77#define PT_NLEVELS 2 78#define PGD_ORDER 1 /* Number of pages per pgd */ 79#define PGD_ALLOC_ORDER PGD_ORDER 80#endif 81 82/* Definitions for 3rd level (we use PLD here for Page Lower directory 83 * because PTE_SHIFT is used lower down to mean shift that has to be 84 * done to get usable bits out of the PTE) */ 85#define PLD_SHIFT PAGE_SHIFT 86#define PLD_SIZE PAGE_SIZE 87#define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) 88#define PTRS_PER_PTE (1UL << BITS_PER_PTE) 89 90/* Definitions for 2nd level */ 91#define pgtable_cache_init() do { } while (0) 92 93#define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) 94#define PMD_SIZE (1UL << PMD_SHIFT) 95#define PMD_MASK (~(PMD_SIZE-1)) 96#if PT_NLEVELS == 3 97#define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY) 98#else 99#define BITS_PER_PMD 0 100#endif 101#define PTRS_PER_PMD (1UL << BITS_PER_PMD) 102 103/* Definitions for 1st level */ 104#define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD) 105#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG 106#define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT) 107#else 108#define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) 109#endif 110#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 111#define PGDIR_MASK (~(PGDIR_SIZE-1)) 112#define PTRS_PER_PGD (1UL << BITS_PER_PGD) 113#define USER_PTRS_PER_PGD PTRS_PER_PGD 114 115#ifdef CONFIG_64BIT 116#define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) 117#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 118#define SPACEID_SHIFT (MAX_ADDRBITS - 32) 119#else 120#define MAX_ADDRBITS (BITS_PER_LONG) 121#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 122#define SPACEID_SHIFT 0 123#endif 124 125/* This calculates the number of initial pages we need for the initial 126 * page tables */ 127#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT) 128# define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) 129#else 130# define PT_INITIAL (1) /* all initial PTEs fit into one page */ 131#endif 132 133/* 134 * pgd entries used up by user/kernel: 135 */ 136 137#define FIRST_USER_ADDRESS 0 138 139/* NB: The tlb miss handlers make certain assumptions about the order */ 140/* of the following bits, so be careful (One example, bits 25-31 */ 141/* are moved together in one instruction). */ 142 143#define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ 144#define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ 145#define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ 146#define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ 147#define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ 148#define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ 149#define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */ 150#define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ 151#define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ 152#define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ 153#define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ 154/* bit 21 was formerly the FLUSH bit but is now unused */ 155#define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ 156 157/* N.B. The bits are defined in terms of a 32 bit word above, so the */ 158/* following macro is ok for both 32 and 64 bit. */ 159 160#define xlate_pabit(x) (31 - x) 161 162/* this defines the shift to the usable bits in the PTE it is set so 163 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set 164 * to zero */ 165#define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) 166 167/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */ 168#define PFN_PTE_SHIFT 12 169 170 171/* this is how many bits may be used by the file functions */ 172#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT) 173 174#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT) 175#define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE }) 176 177#define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) 178#define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) 179#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 180#define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) 181#define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) 182#define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) 183#define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) 184#define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) 185#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) 186#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) 187#define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) 188#define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) 189#define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT)) 190 191#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) 192#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 193#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) 194#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC) 195#define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE) 196#define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE) 197 198/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds 199 * are page-aligned, we don't care about the PAGE_OFFSET bits, except 200 * for a few meta-information bits, so we shift the address to be 201 * able to effectively address 40/42/44-bits of physical address space 202 * depending on 4k/16k/64k PAGE_SIZE */ 203#define _PxD_PRESENT_BIT 31 204#define _PxD_ATTACHED_BIT 30 205#define _PxD_VALID_BIT 29 206 207#define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) 208#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT)) 209#define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) 210#define PxD_FLAG_MASK (0xf) 211#define PxD_FLAG_SHIFT (4) 212#define PxD_VALUE_SHIFT (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */ 213 214#ifndef __ASSEMBLY__ 215 216#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 217#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED) 218/* Others seem to make this executable, I don't know if that's correct 219 or not. The stack is mapped this way though so this is necessary 220 in the short term - dhd@linuxcare.com, 2000-08-08 */ 221#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED) 222#define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED) 223#define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED) 224#define PAGE_COPY PAGE_EXECREAD 225#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED) 226#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 227#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) 228#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX) 229#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) 230#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) 231#define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ) 232 233 234/* 235 * We could have an execute only page using "gateway - promote to priv 236 * level 3", but that is kind of silly. So, the way things are defined 237 * now, we must always have read permission for pages with execute 238 * permission. For the fun of it we'll go ahead and support write only 239 * pages. 240 */ 241 242 /*xwr*/ 243#define __P000 PAGE_NONE 244#define __P001 PAGE_READONLY 245#define __P010 __P000 /* copy on write */ 246#define __P011 __P001 /* copy on write */ 247#define __P100 PAGE_EXECREAD 248#define __P101 PAGE_EXECREAD 249#define __P110 __P100 /* copy on write */ 250#define __P111 __P101 /* copy on write */ 251 252#define __S000 PAGE_NONE 253#define __S001 PAGE_READONLY 254#define __S010 PAGE_WRITEONLY 255#define __S011 PAGE_SHARED 256#define __S100 PAGE_EXECREAD 257#define __S101 PAGE_EXECREAD 258#define __S110 PAGE_RWX 259#define __S111 PAGE_RWX 260 261 262extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ 263 264/* initial page tables for 0-8MB for kernel */ 265 266extern pte_t pg0[]; 267 268/* zero page used for uninitialized stuff */ 269 270extern unsigned long *empty_zero_page; 271 272/* 273 * ZERO_PAGE is a global shared page that is always zero: used 274 * for zero-mapped memory areas etc.. 275 */ 276 277#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 278 279#define pte_none(x) (pte_val(x) == 0) 280#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 281#define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0) 282 283#define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) 284#define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 285#define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) 286#define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 287 288#if PT_NLEVELS == 3 289/* The first entry of the permanent pmd is not there if it contains 290 * the gateway marker */ 291#define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED) 292#else 293#define pmd_none(x) (!pmd_val(x)) 294#endif 295#define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) 296#define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) 297static inline void pmd_clear(pmd_t *pmd) { 298#if PT_NLEVELS == 3 299 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) 300 /* This is the entry pointing to the permanent pmd 301 * attached to the pgd; cannot clear it */ 302 __pmd_val_set(*pmd, PxD_FLAG_ATTACHED); 303 else 304#endif 305 __pmd_val_set(*pmd, 0); 306} 307 308 309 310#if PT_NLEVELS == 3 311#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd))) 312#define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd)) 313 314/* For 64 bit we have three level tables */ 315 316#define pgd_none(x) (!pgd_val(x)) 317#define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID)) 318#define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT) 319static inline void pgd_clear(pgd_t *pgd) { 320#if PT_NLEVELS == 3 321 if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED) 322 /* This is the permanent pmd attached to the pgd; cannot 323 * free it */ 324 return; 325#endif 326 __pgd_val_set(*pgd, 0); 327} 328#else 329/* 330 * The "pgd_xxx()" functions here are trivial for a folded two-level 331 * setup: the pgd is never bad, and a pmd always exists (as it's folded 332 * into the pgd entry) 333 */ 334static inline int pgd_none(pgd_t pgd) { return 0; } 335static inline int pgd_bad(pgd_t pgd) { return 0; } 336static inline int pgd_present(pgd_t pgd) { return 1; } 337static inline void pgd_clear(pgd_t * pgdp) { } 338#endif 339 340/* 341 * The following only work if pte_present() is true. 342 * Undefined behaviour if not.. 343 */ 344static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 345static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 346static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 347static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 348static inline int pte_special(pte_t pte) { return 0; } 349 350static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } 351static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 352static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } 353static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } 354static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 355static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } 356static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 357 358/* 359 * Conversion functions: convert a page and protection to a page entry, 360 * and a page entry and page directory to the page they refer to. 361 */ 362#define __mk_pte(addr,pgprot) \ 363({ \ 364 pte_t __pte; \ 365 \ 366 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \ 367 \ 368 __pte; \ 369}) 370 371#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 372 373static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 374{ 375 pte_t pte; 376 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot); 377 return pte; 378} 379 380static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 381{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 382 383/* Permanent address of a page. On parisc we don't have highmem. */ 384 385#define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT) 386 387#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 388 389#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd))) 390 391#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) 392#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) 393 394#define pgd_index(address) ((address) >> PGDIR_SHIFT) 395 396/* to find an entry in a page-table-directory */ 397#define pgd_offset(mm, address) \ 398((mm)->pgd + ((address) >> PGDIR_SHIFT)) 399 400/* to find an entry in a kernel page-table-directory */ 401#define pgd_offset_k(address) pgd_offset(&init_mm, address) 402 403/* Find an entry in the second-level page table.. */ 404 405#if PT_NLEVELS == 3 406#define pmd_offset(dir,address) \ 407((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1))) 408#else 409#define pmd_offset(dir,addr) ((pmd_t *) dir) 410#endif 411 412/* Find an entry in the third-level page table.. */ 413#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 414#define pte_offset_kernel(pmd, address) \ 415 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) 416#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 417#define pte_unmap(pte) do { } while (0) 418 419#define pte_unmap(pte) do { } while (0) 420#define pte_unmap_nested(pte) do { } while (0) 421 422extern void paging_init (void); 423 424/* Used for deferring calls to flush_dcache_page() */ 425 426#define PG_dcache_dirty PG_arch_1 427 428extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); 429 430/* Encode and de-code a swap entry */ 431 432#define __swp_type(x) ((x).val & 0x1f) 433#define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \ 434 (((x).val >> 8) & ~0x7) ) 435#define __swp_entry(type, offset) ((swp_entry_t) { (type) | \ 436 ((offset & 0x7) << 6) | \ 437 ((offset & ~0x7) << 8) }) 438#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 439#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 440 441static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 442{ 443 pte_t pte; 444 unsigned long flags; 445 446 if (!pte_young(*ptep)) 447 return 0; 448 449 spin_lock_irqsave(&pa_dbit_lock, flags); 450 pte = *ptep; 451 if (!pte_young(pte)) { 452 spin_unlock_irqrestore(&pa_dbit_lock, flags); 453 return 0; 454 } 455 set_pte(ptep, pte_mkold(pte)); 456 purge_tlb_entries(vma->vm_mm, addr); 457 spin_unlock_irqrestore(&pa_dbit_lock, flags); 458 return 1; 459} 460 461struct mm_struct; 462static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 463{ 464 pte_t old_pte; 465 unsigned long flags; 466 467 spin_lock_irqsave(&pa_dbit_lock, flags); 468 old_pte = *ptep; 469 pte_clear(mm,addr,ptep); 470 purge_tlb_entries(mm, addr); 471 spin_unlock_irqrestore(&pa_dbit_lock, flags); 472 473 return old_pte; 474} 475 476static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 477{ 478 unsigned long flags; 479 spin_lock_irqsave(&pa_dbit_lock, flags); 480 set_pte(ptep, pte_wrprotect(*ptep)); 481 purge_tlb_entries(mm, addr); 482 spin_unlock_irqrestore(&pa_dbit_lock, flags); 483} 484 485#define pte_same(A,B) (pte_val(A) == pte_val(B)) 486 487#endif /* !__ASSEMBLY__ */ 488 489 490/* TLB page size encoding - see table 3-1 in parisc20.pdf */ 491#define _PAGE_SIZE_ENCODING_4K 0 492#define _PAGE_SIZE_ENCODING_16K 1 493#define _PAGE_SIZE_ENCODING_64K 2 494#define _PAGE_SIZE_ENCODING_256K 3 495#define _PAGE_SIZE_ENCODING_1M 4 496#define _PAGE_SIZE_ENCODING_4M 5 497#define _PAGE_SIZE_ENCODING_16M 6 498#define _PAGE_SIZE_ENCODING_64M 7 499 500#if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 501# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K 502#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB) 503# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K 504#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB) 505# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K 506#endif 507 508 509#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE) 510 511/* We provide our own get_unmapped_area to provide cache coherency */ 512 513#define HAVE_ARCH_UNMAPPED_AREA 514 515#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 516#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 517#define __HAVE_ARCH_PTEP_SET_WRPROTECT 518#define __HAVE_ARCH_PTE_SAME 519#include <asm-generic/pgtable.h> 520 521#endif /* _PARISC_PGTABLE_H */