at v3.11-rc2 22 kB view raw
1/* 2 * sparse memory mappings. 3 */ 4#include <linux/mm.h> 5#include <linux/slab.h> 6#include <linux/mmzone.h> 7#include <linux/bootmem.h> 8#include <linux/highmem.h> 9#include <linux/export.h> 10#include <linux/spinlock.h> 11#include <linux/vmalloc.h> 12#include "internal.h" 13#include <asm/dma.h> 14#include <asm/pgalloc.h> 15#include <asm/pgtable.h> 16 17/* 18 * Permanent SPARSEMEM data: 19 * 20 * 1) mem_section - memory sections, mem_map's for valid memory 21 */ 22#ifdef CONFIG_SPARSEMEM_EXTREME 23struct mem_section *mem_section[NR_SECTION_ROOTS] 24 ____cacheline_internodealigned_in_smp; 25#else 26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 27 ____cacheline_internodealigned_in_smp; 28#endif 29EXPORT_SYMBOL(mem_section); 30 31#ifdef NODE_NOT_IN_PAGE_FLAGS 32/* 33 * If we did not store the node number in the page then we have to 34 * do a lookup in the section_to_node_table in order to find which 35 * node the page belongs to. 36 */ 37#if MAX_NUMNODES <= 256 38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 39#else 40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41#endif 42 43int page_to_nid(const struct page *page) 44{ 45 return section_to_node_table[page_to_section(page)]; 46} 47EXPORT_SYMBOL(page_to_nid); 48 49static void set_section_nid(unsigned long section_nr, int nid) 50{ 51 section_to_node_table[section_nr] = nid; 52} 53#else /* !NODE_NOT_IN_PAGE_FLAGS */ 54static inline void set_section_nid(unsigned long section_nr, int nid) 55{ 56} 57#endif 58 59#ifdef CONFIG_SPARSEMEM_EXTREME 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 61{ 62 struct mem_section *section = NULL; 63 unsigned long array_size = SECTIONS_PER_ROOT * 64 sizeof(struct mem_section); 65 66 if (slab_is_available()) { 67 if (node_state(nid, N_HIGH_MEMORY)) 68 section = kzalloc_node(array_size, GFP_KERNEL, nid); 69 else 70 section = kzalloc(array_size, GFP_KERNEL); 71 } else { 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 73 } 74 75 return section; 76} 77 78static int __meminit sparse_index_init(unsigned long section_nr, int nid) 79{ 80 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 81 struct mem_section *section; 82 83 if (mem_section[root]) 84 return -EEXIST; 85 86 section = sparse_index_alloc(nid); 87 if (!section) 88 return -ENOMEM; 89 90 mem_section[root] = section; 91 92 return 0; 93} 94#else /* !SPARSEMEM_EXTREME */ 95static inline int sparse_index_init(unsigned long section_nr, int nid) 96{ 97 return 0; 98} 99#endif 100 101/* 102 * Although written for the SPARSEMEM_EXTREME case, this happens 103 * to also work for the flat array case because 104 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 105 */ 106int __section_nr(struct mem_section* ms) 107{ 108 unsigned long root_nr; 109 struct mem_section* root; 110 111 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 112 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 113 if (!root) 114 continue; 115 116 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 117 break; 118 } 119 120 VM_BUG_ON(root_nr == NR_SECTION_ROOTS); 121 122 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 123} 124 125/* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131static inline unsigned long sparse_encode_early_nid(int nid) 132{ 133 return (nid << SECTION_NID_SHIFT); 134} 135 136static inline int sparse_early_nid(struct mem_section *section) 137{ 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139} 140 141/* Validate the physical addressing limitations of the model */ 142void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144{ 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165} 166 167/* Record a memory area against a node. */ 168void __init memory_present(int nid, unsigned long start, unsigned long end) 169{ 170 unsigned long pfn; 171 172 start &= PAGE_SECTION_MASK; 173 mminit_validate_memmodel_limits(&start, &end); 174 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 175 unsigned long section = pfn_to_section_nr(pfn); 176 struct mem_section *ms; 177 178 sparse_index_init(section, nid); 179 set_section_nid(section, nid); 180 181 ms = __nr_to_section(section); 182 if (!ms->section_mem_map) 183 ms->section_mem_map = sparse_encode_early_nid(nid) | 184 SECTION_MARKED_PRESENT; 185 } 186} 187 188/* 189 * Only used by the i386 NUMA architecures, but relatively 190 * generic code. 191 */ 192unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 193 unsigned long end_pfn) 194{ 195 unsigned long pfn; 196 unsigned long nr_pages = 0; 197 198 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 199 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 200 if (nid != early_pfn_to_nid(pfn)) 201 continue; 202 203 if (pfn_present(pfn)) 204 nr_pages += PAGES_PER_SECTION; 205 } 206 207 return nr_pages * sizeof(struct page); 208} 209 210/* 211 * Subtle, we encode the real pfn into the mem_map such that 212 * the identity pfn - section_mem_map will return the actual 213 * physical page frame number. 214 */ 215static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 216{ 217 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 218} 219 220/* 221 * Decode mem_map from the coded memmap 222 */ 223struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 224{ 225 /* mask off the extra low bits of information */ 226 coded_mem_map &= SECTION_MAP_MASK; 227 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 228} 229 230static int __meminit sparse_init_one_section(struct mem_section *ms, 231 unsigned long pnum, struct page *mem_map, 232 unsigned long *pageblock_bitmap) 233{ 234 if (!present_section(ms)) 235 return -EINVAL; 236 237 ms->section_mem_map &= ~SECTION_MAP_MASK; 238 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 239 SECTION_HAS_MEM_MAP; 240 ms->pageblock_flags = pageblock_bitmap; 241 242 return 1; 243} 244 245unsigned long usemap_size(void) 246{ 247 unsigned long size_bytes; 248 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 249 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 250 return size_bytes; 251} 252 253#ifdef CONFIG_MEMORY_HOTPLUG 254static unsigned long *__kmalloc_section_usemap(void) 255{ 256 return kmalloc(usemap_size(), GFP_KERNEL); 257} 258#endif /* CONFIG_MEMORY_HOTPLUG */ 259 260#ifdef CONFIG_MEMORY_HOTREMOVE 261static unsigned long * __init 262sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 263 unsigned long size) 264{ 265 unsigned long goal, limit; 266 unsigned long *p; 267 int nid; 268 /* 269 * A page may contain usemaps for other sections preventing the 270 * page being freed and making a section unremovable while 271 * other sections referencing the usemap retmain active. Similarly, 272 * a pgdat can prevent a section being removed. If section A 273 * contains a pgdat and section B contains the usemap, both 274 * sections become inter-dependent. This allocates usemaps 275 * from the same section as the pgdat where possible to avoid 276 * this problem. 277 */ 278 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 279 limit = goal + (1UL << PA_SECTION_SHIFT); 280 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 281again: 282 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size, 283 SMP_CACHE_BYTES, goal, limit); 284 if (!p && limit) { 285 limit = 0; 286 goto again; 287 } 288 return p; 289} 290 291static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 292{ 293 unsigned long usemap_snr, pgdat_snr; 294 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 295 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 296 struct pglist_data *pgdat = NODE_DATA(nid); 297 int usemap_nid; 298 299 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 300 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 301 if (usemap_snr == pgdat_snr) 302 return; 303 304 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 305 /* skip redundant message */ 306 return; 307 308 old_usemap_snr = usemap_snr; 309 old_pgdat_snr = pgdat_snr; 310 311 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 312 if (usemap_nid != nid) { 313 printk(KERN_INFO 314 "node %d must be removed before remove section %ld\n", 315 nid, usemap_snr); 316 return; 317 } 318 /* 319 * There is a circular dependency. 320 * Some platforms allow un-removable section because they will just 321 * gather other removable sections for dynamic partitioning. 322 * Just notify un-removable section's number here. 323 */ 324 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, 325 pgdat_snr, nid); 326 printk(KERN_CONT 327 " have a circular dependency on usemap and pgdat allocations\n"); 328} 329#else 330static unsigned long * __init 331sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 332 unsigned long size) 333{ 334 return alloc_bootmem_node_nopanic(pgdat, size); 335} 336 337static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 338{ 339} 340#endif /* CONFIG_MEMORY_HOTREMOVE */ 341 342static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, 343 unsigned long pnum_begin, 344 unsigned long pnum_end, 345 unsigned long usemap_count, int nodeid) 346{ 347 void *usemap; 348 unsigned long pnum; 349 int size = usemap_size(); 350 351 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 352 size * usemap_count); 353 if (!usemap) { 354 printk(KERN_WARNING "%s: allocation failed\n", __func__); 355 return; 356 } 357 358 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 359 if (!present_section_nr(pnum)) 360 continue; 361 usemap_map[pnum] = usemap; 362 usemap += size; 363 check_usemap_section_nr(nodeid, usemap_map[pnum]); 364 } 365} 366 367#ifndef CONFIG_SPARSEMEM_VMEMMAP 368struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 369{ 370 struct page *map; 371 unsigned long size; 372 373 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 374 if (map) 375 return map; 376 377 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 378 map = __alloc_bootmem_node_high(NODE_DATA(nid), size, 379 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 380 return map; 381} 382void __init sparse_mem_maps_populate_node(struct page **map_map, 383 unsigned long pnum_begin, 384 unsigned long pnum_end, 385 unsigned long map_count, int nodeid) 386{ 387 void *map; 388 unsigned long pnum; 389 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 390 391 map = alloc_remap(nodeid, size * map_count); 392 if (map) { 393 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 394 if (!present_section_nr(pnum)) 395 continue; 396 map_map[pnum] = map; 397 map += size; 398 } 399 return; 400 } 401 402 size = PAGE_ALIGN(size); 403 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, 404 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 405 if (map) { 406 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 407 if (!present_section_nr(pnum)) 408 continue; 409 map_map[pnum] = map; 410 map += size; 411 } 412 return; 413 } 414 415 /* fallback */ 416 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 417 struct mem_section *ms; 418 419 if (!present_section_nr(pnum)) 420 continue; 421 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 422 if (map_map[pnum]) 423 continue; 424 ms = __nr_to_section(pnum); 425 printk(KERN_ERR "%s: sparsemem memory map backing failed " 426 "some memory will not be available.\n", __func__); 427 ms->section_mem_map = 0; 428 } 429} 430#endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 431 432#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 433static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, 434 unsigned long pnum_begin, 435 unsigned long pnum_end, 436 unsigned long map_count, int nodeid) 437{ 438 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 439 map_count, nodeid); 440} 441#else 442static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 443{ 444 struct page *map; 445 struct mem_section *ms = __nr_to_section(pnum); 446 int nid = sparse_early_nid(ms); 447 448 map = sparse_mem_map_populate(pnum, nid); 449 if (map) 450 return map; 451 452 printk(KERN_ERR "%s: sparsemem memory map backing failed " 453 "some memory will not be available.\n", __func__); 454 ms->section_mem_map = 0; 455 return NULL; 456} 457#endif 458 459void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) 460{ 461} 462 463/* 464 * Allocate the accumulated non-linear sections, allocate a mem_map 465 * for each and record the physical to section mapping. 466 */ 467void __init sparse_init(void) 468{ 469 unsigned long pnum; 470 struct page *map; 471 unsigned long *usemap; 472 unsigned long **usemap_map; 473 int size; 474 int nodeid_begin = 0; 475 unsigned long pnum_begin = 0; 476 unsigned long usemap_count; 477#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 478 unsigned long map_count; 479 int size2; 480 struct page **map_map; 481#endif 482 483 /* see include/linux/mmzone.h 'struct mem_section' definition */ 484 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 485 486 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 487 set_pageblock_order(); 488 489 /* 490 * map is using big page (aka 2M in x86 64 bit) 491 * usemap is less one page (aka 24 bytes) 492 * so alloc 2M (with 2M align) and 24 bytes in turn will 493 * make next 2M slip to one more 2M later. 494 * then in big system, the memory will have a lot of holes... 495 * here try to allocate 2M pages continuously. 496 * 497 * powerpc need to call sparse_init_one_section right after each 498 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 499 */ 500 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 501 usemap_map = alloc_bootmem(size); 502 if (!usemap_map) 503 panic("can not allocate usemap_map\n"); 504 505 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 506 struct mem_section *ms; 507 508 if (!present_section_nr(pnum)) 509 continue; 510 ms = __nr_to_section(pnum); 511 nodeid_begin = sparse_early_nid(ms); 512 pnum_begin = pnum; 513 break; 514 } 515 usemap_count = 1; 516 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 517 struct mem_section *ms; 518 int nodeid; 519 520 if (!present_section_nr(pnum)) 521 continue; 522 ms = __nr_to_section(pnum); 523 nodeid = sparse_early_nid(ms); 524 if (nodeid == nodeid_begin) { 525 usemap_count++; 526 continue; 527 } 528 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 529 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, 530 usemap_count, nodeid_begin); 531 /* new start, update count etc*/ 532 nodeid_begin = nodeid; 533 pnum_begin = pnum; 534 usemap_count = 1; 535 } 536 /* ok, last chunk */ 537 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, 538 usemap_count, nodeid_begin); 539 540#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 541 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 542 map_map = alloc_bootmem(size2); 543 if (!map_map) 544 panic("can not allocate map_map\n"); 545 546 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 547 struct mem_section *ms; 548 549 if (!present_section_nr(pnum)) 550 continue; 551 ms = __nr_to_section(pnum); 552 nodeid_begin = sparse_early_nid(ms); 553 pnum_begin = pnum; 554 break; 555 } 556 map_count = 1; 557 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 558 struct mem_section *ms; 559 int nodeid; 560 561 if (!present_section_nr(pnum)) 562 continue; 563 ms = __nr_to_section(pnum); 564 nodeid = sparse_early_nid(ms); 565 if (nodeid == nodeid_begin) { 566 map_count++; 567 continue; 568 } 569 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 570 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, 571 map_count, nodeid_begin); 572 /* new start, update count etc*/ 573 nodeid_begin = nodeid; 574 pnum_begin = pnum; 575 map_count = 1; 576 } 577 /* ok, last chunk */ 578 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, 579 map_count, nodeid_begin); 580#endif 581 582 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 583 if (!present_section_nr(pnum)) 584 continue; 585 586 usemap = usemap_map[pnum]; 587 if (!usemap) 588 continue; 589 590#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 591 map = map_map[pnum]; 592#else 593 map = sparse_early_mem_map_alloc(pnum); 594#endif 595 if (!map) 596 continue; 597 598 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 599 usemap); 600 } 601 602 vmemmap_populate_print_last(); 603 604#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 605 free_bootmem(__pa(map_map), size2); 606#endif 607 free_bootmem(__pa(usemap_map), size); 608} 609 610#ifdef CONFIG_MEMORY_HOTPLUG 611#ifdef CONFIG_SPARSEMEM_VMEMMAP 612static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 613 unsigned long nr_pages) 614{ 615 /* This will make the necessary allocations eventually. */ 616 return sparse_mem_map_populate(pnum, nid); 617} 618static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 619{ 620 unsigned long start = (unsigned long)memmap; 621 unsigned long end = (unsigned long)(memmap + nr_pages); 622 623 vmemmap_free(start, end); 624} 625#ifdef CONFIG_MEMORY_HOTREMOVE 626static void free_map_bootmem(struct page *memmap, unsigned long nr_pages) 627{ 628 unsigned long start = (unsigned long)memmap; 629 unsigned long end = (unsigned long)(memmap + nr_pages); 630 631 vmemmap_free(start, end); 632} 633#endif /* CONFIG_MEMORY_HOTREMOVE */ 634#else 635static struct page *__kmalloc_section_memmap(unsigned long nr_pages) 636{ 637 struct page *page, *ret; 638 unsigned long memmap_size = sizeof(struct page) * nr_pages; 639 640 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 641 if (page) 642 goto got_map_page; 643 644 ret = vmalloc(memmap_size); 645 if (ret) 646 goto got_map_ptr; 647 648 return NULL; 649got_map_page: 650 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 651got_map_ptr: 652 653 return ret; 654} 655 656static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 657 unsigned long nr_pages) 658{ 659 return __kmalloc_section_memmap(nr_pages); 660} 661 662static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 663{ 664 if (is_vmalloc_addr(memmap)) 665 vfree(memmap); 666 else 667 free_pages((unsigned long)memmap, 668 get_order(sizeof(struct page) * nr_pages)); 669} 670 671#ifdef CONFIG_MEMORY_HOTREMOVE 672static void free_map_bootmem(struct page *memmap, unsigned long nr_pages) 673{ 674 unsigned long maps_section_nr, removing_section_nr, i; 675 unsigned long magic; 676 struct page *page = virt_to_page(memmap); 677 678 for (i = 0; i < nr_pages; i++, page++) { 679 magic = (unsigned long) page->lru.next; 680 681 BUG_ON(magic == NODE_INFO); 682 683 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 684 removing_section_nr = page->private; 685 686 /* 687 * When this function is called, the removing section is 688 * logical offlined state. This means all pages are isolated 689 * from page allocator. If removing section's memmap is placed 690 * on the same section, it must not be freed. 691 * If it is freed, page allocator may allocate it which will 692 * be removed physically soon. 693 */ 694 if (maps_section_nr != removing_section_nr) 695 put_page_bootmem(page); 696 } 697} 698#endif /* CONFIG_MEMORY_HOTREMOVE */ 699#endif /* CONFIG_SPARSEMEM_VMEMMAP */ 700 701/* 702 * returns the number of sections whose mem_maps were properly 703 * set. If this is <=0, then that means that the passed-in 704 * map was not consumed and must be freed. 705 */ 706int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, 707 int nr_pages) 708{ 709 unsigned long section_nr = pfn_to_section_nr(start_pfn); 710 struct pglist_data *pgdat = zone->zone_pgdat; 711 struct mem_section *ms; 712 struct page *memmap; 713 unsigned long *usemap; 714 unsigned long flags; 715 int ret; 716 717 /* 718 * no locking for this, because it does its own 719 * plus, it does a kmalloc 720 */ 721 ret = sparse_index_init(section_nr, pgdat->node_id); 722 if (ret < 0 && ret != -EEXIST) 723 return ret; 724 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); 725 if (!memmap) 726 return -ENOMEM; 727 usemap = __kmalloc_section_usemap(); 728 if (!usemap) { 729 __kfree_section_memmap(memmap, nr_pages); 730 return -ENOMEM; 731 } 732 733 pgdat_resize_lock(pgdat, &flags); 734 735 ms = __pfn_to_section(start_pfn); 736 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 737 ret = -EEXIST; 738 goto out; 739 } 740 741 memset(memmap, 0, sizeof(struct page) * nr_pages); 742 743 ms->section_mem_map |= SECTION_MARKED_PRESENT; 744 745 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 746 747out: 748 pgdat_resize_unlock(pgdat, &flags); 749 if (ret <= 0) { 750 kfree(usemap); 751 __kfree_section_memmap(memmap, nr_pages); 752 } 753 return ret; 754} 755 756#ifdef CONFIG_MEMORY_HOTREMOVE 757#ifdef CONFIG_MEMORY_FAILURE 758static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 759{ 760 int i; 761 762 if (!memmap) 763 return; 764 765 for (i = 0; i < PAGES_PER_SECTION; i++) { 766 if (PageHWPoison(&memmap[i])) { 767 atomic_long_sub(1, &num_poisoned_pages); 768 ClearPageHWPoison(&memmap[i]); 769 } 770 } 771} 772#else 773static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 774{ 775} 776#endif 777 778static void free_section_usemap(struct page *memmap, unsigned long *usemap) 779{ 780 struct page *usemap_page; 781 unsigned long nr_pages; 782 783 if (!usemap) 784 return; 785 786 usemap_page = virt_to_page(usemap); 787 /* 788 * Check to see if allocation came from hot-plug-add 789 */ 790 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 791 kfree(usemap); 792 if (memmap) 793 __kfree_section_memmap(memmap, PAGES_PER_SECTION); 794 return; 795 } 796 797 /* 798 * The usemap came from bootmem. This is packed with other usemaps 799 * on the section which has pgdat at boot time. Just keep it as is now. 800 */ 801 802 if (memmap) { 803 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 804 >> PAGE_SHIFT; 805 806 free_map_bootmem(memmap, nr_pages); 807 } 808} 809 810void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) 811{ 812 struct page *memmap = NULL; 813 unsigned long *usemap = NULL, flags; 814 struct pglist_data *pgdat = zone->zone_pgdat; 815 816 pgdat_resize_lock(pgdat, &flags); 817 if (ms->section_mem_map) { 818 usemap = ms->pageblock_flags; 819 memmap = sparse_decode_mem_map(ms->section_mem_map, 820 __section_nr(ms)); 821 ms->section_mem_map = 0; 822 ms->pageblock_flags = NULL; 823 } 824 pgdat_resize_unlock(pgdat, &flags); 825 826 clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION); 827 free_section_usemap(memmap, usemap); 828} 829#endif /* CONFIG_MEMORY_HOTREMOVE */ 830#endif /* CONFIG_MEMORY_HOTPLUG */