at v3.11-rc2 72 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * 61 * USB requests are always queued to a given endpoint, identified by a 62 * descriptor within an active interface in a given USB configuration. 63 */ 64struct usb_host_endpoint { 65 struct usb_endpoint_descriptor desc; 66 struct usb_ss_ep_comp_descriptor ss_ep_comp; 67 struct list_head urb_list; 68 void *hcpriv; 69 struct ep_device *ep_dev; /* For sysfs info */ 70 71 unsigned char *extra; /* Extra descriptors */ 72 int extralen; 73 int enabled; 74}; 75 76/* host-side wrapper for one interface setting's parsed descriptors */ 77struct usb_host_interface { 78 struct usb_interface_descriptor desc; 79 80 int extralen; 81 unsigned char *extra; /* Extra descriptors */ 82 83 /* array of desc.bNumEndpoint endpoints associated with this 84 * interface setting. these will be in no particular order. 85 */ 86 struct usb_host_endpoint *endpoint; 87 88 char *string; /* iInterface string, if present */ 89}; 90 91enum usb_interface_condition { 92 USB_INTERFACE_UNBOUND = 0, 93 USB_INTERFACE_BINDING, 94 USB_INTERFACE_BOUND, 95 USB_INTERFACE_UNBINDING, 96}; 97 98/** 99 * struct usb_interface - what usb device drivers talk to 100 * @altsetting: array of interface structures, one for each alternate 101 * setting that may be selected. Each one includes a set of 102 * endpoint configurations. They will be in no particular order. 103 * @cur_altsetting: the current altsetting. 104 * @num_altsetting: number of altsettings defined. 105 * @intf_assoc: interface association descriptor 106 * @minor: the minor number assigned to this interface, if this 107 * interface is bound to a driver that uses the USB major number. 108 * If this interface does not use the USB major, this field should 109 * be unused. The driver should set this value in the probe() 110 * function of the driver, after it has been assigned a minor 111 * number from the USB core by calling usb_register_dev(). 112 * @condition: binding state of the interface: not bound, binding 113 * (in probe()), bound to a driver, or unbinding (in disconnect()) 114 * @sysfs_files_created: sysfs attributes exist 115 * @ep_devs_created: endpoint child pseudo-devices exist 116 * @unregistering: flag set when the interface is being unregistered 117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 118 * capability during autosuspend. 119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 120 * has been deferred. 121 * @needs_binding: flag set when the driver should be re-probed or unbound 122 * following a reset or suspend operation it doesn't support. 123 * @dev: driver model's view of this device 124 * @usb_dev: if an interface is bound to the USB major, this will point 125 * to the sysfs representation for that device. 126 * @pm_usage_cnt: PM usage counter for this interface 127 * @reset_ws: Used for scheduling resets from atomic context. 128 * @reset_running: set to 1 if the interface is currently running a 129 * queued reset so that usb_cancel_queued_reset() doesn't try to 130 * remove from the workqueue when running inside the worker 131 * thread. See __usb_queue_reset_device(). 132 * @resetting_device: USB core reset the device, so use alt setting 0 as 133 * current; needs bandwidth alloc after reset. 134 * 135 * USB device drivers attach to interfaces on a physical device. Each 136 * interface encapsulates a single high level function, such as feeding 137 * an audio stream to a speaker or reporting a change in a volume control. 138 * Many USB devices only have one interface. The protocol used to talk to 139 * an interface's endpoints can be defined in a usb "class" specification, 140 * or by a product's vendor. The (default) control endpoint is part of 141 * every interface, but is never listed among the interface's descriptors. 142 * 143 * The driver that is bound to the interface can use standard driver model 144 * calls such as dev_get_drvdata() on the dev member of this structure. 145 * 146 * Each interface may have alternate settings. The initial configuration 147 * of a device sets altsetting 0, but the device driver can change 148 * that setting using usb_set_interface(). Alternate settings are often 149 * used to control the use of periodic endpoints, such as by having 150 * different endpoints use different amounts of reserved USB bandwidth. 151 * All standards-conformant USB devices that use isochronous endpoints 152 * will use them in non-default settings. 153 * 154 * The USB specification says that alternate setting numbers must run from 155 * 0 to one less than the total number of alternate settings. But some 156 * devices manage to mess this up, and the structures aren't necessarily 157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 158 * look up an alternate setting in the altsetting array based on its number. 159 */ 160struct usb_interface { 161 /* array of alternate settings for this interface, 162 * stored in no particular order */ 163 struct usb_host_interface *altsetting; 164 165 struct usb_host_interface *cur_altsetting; /* the currently 166 * active alternate setting */ 167 unsigned num_altsetting; /* number of alternate settings */ 168 169 /* If there is an interface association descriptor then it will list 170 * the associated interfaces */ 171 struct usb_interface_assoc_descriptor *intf_assoc; 172 173 int minor; /* minor number this interface is 174 * bound to */ 175 enum usb_interface_condition condition; /* state of binding */ 176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 177 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 178 unsigned unregistering:1; /* unregistration is in progress */ 179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 181 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 182 unsigned reset_running:1; 183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 184 185 struct device dev; /* interface specific device info */ 186 struct device *usb_dev; 187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 188 struct work_struct reset_ws; /* for resets in atomic context */ 189}; 190#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 191 192static inline void *usb_get_intfdata(struct usb_interface *intf) 193{ 194 return dev_get_drvdata(&intf->dev); 195} 196 197static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 198{ 199 dev_set_drvdata(&intf->dev, data); 200} 201 202struct usb_interface *usb_get_intf(struct usb_interface *intf); 203void usb_put_intf(struct usb_interface *intf); 204 205/* this maximum is arbitrary */ 206#define USB_MAXINTERFACES 32 207#define USB_MAXIADS (USB_MAXINTERFACES/2) 208 209/** 210 * struct usb_interface_cache - long-term representation of a device interface 211 * @num_altsetting: number of altsettings defined. 212 * @ref: reference counter. 213 * @altsetting: variable-length array of interface structures, one for 214 * each alternate setting that may be selected. Each one includes a 215 * set of endpoint configurations. They will be in no particular order. 216 * 217 * These structures persist for the lifetime of a usb_device, unlike 218 * struct usb_interface (which persists only as long as its configuration 219 * is installed). The altsetting arrays can be accessed through these 220 * structures at any time, permitting comparison of configurations and 221 * providing support for the /proc/bus/usb/devices pseudo-file. 222 */ 223struct usb_interface_cache { 224 unsigned num_altsetting; /* number of alternate settings */ 225 struct kref ref; /* reference counter */ 226 227 /* variable-length array of alternate settings for this interface, 228 * stored in no particular order */ 229 struct usb_host_interface altsetting[0]; 230}; 231#define ref_to_usb_interface_cache(r) \ 232 container_of(r, struct usb_interface_cache, ref) 233#define altsetting_to_usb_interface_cache(a) \ 234 container_of(a, struct usb_interface_cache, altsetting[0]) 235 236/** 237 * struct usb_host_config - representation of a device's configuration 238 * @desc: the device's configuration descriptor. 239 * @string: pointer to the cached version of the iConfiguration string, if 240 * present for this configuration. 241 * @intf_assoc: list of any interface association descriptors in this config 242 * @interface: array of pointers to usb_interface structures, one for each 243 * interface in the configuration. The number of interfaces is stored 244 * in desc.bNumInterfaces. These pointers are valid only while the 245 * the configuration is active. 246 * @intf_cache: array of pointers to usb_interface_cache structures, one 247 * for each interface in the configuration. These structures exist 248 * for the entire life of the device. 249 * @extra: pointer to buffer containing all extra descriptors associated 250 * with this configuration (those preceding the first interface 251 * descriptor). 252 * @extralen: length of the extra descriptors buffer. 253 * 254 * USB devices may have multiple configurations, but only one can be active 255 * at any time. Each encapsulates a different operational environment; 256 * for example, a dual-speed device would have separate configurations for 257 * full-speed and high-speed operation. The number of configurations 258 * available is stored in the device descriptor as bNumConfigurations. 259 * 260 * A configuration can contain multiple interfaces. Each corresponds to 261 * a different function of the USB device, and all are available whenever 262 * the configuration is active. The USB standard says that interfaces 263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 264 * of devices get this wrong. In addition, the interface array is not 265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 266 * look up an interface entry based on its number. 267 * 268 * Device drivers should not attempt to activate configurations. The choice 269 * of which configuration to install is a policy decision based on such 270 * considerations as available power, functionality provided, and the user's 271 * desires (expressed through userspace tools). However, drivers can call 272 * usb_reset_configuration() to reinitialize the current configuration and 273 * all its interfaces. 274 */ 275struct usb_host_config { 276 struct usb_config_descriptor desc; 277 278 char *string; /* iConfiguration string, if present */ 279 280 /* List of any Interface Association Descriptors in this 281 * configuration. */ 282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 283 284 /* the interfaces associated with this configuration, 285 * stored in no particular order */ 286 struct usb_interface *interface[USB_MAXINTERFACES]; 287 288 /* Interface information available even when this is not the 289 * active configuration */ 290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 291 292 unsigned char *extra; /* Extra descriptors */ 293 int extralen; 294}; 295 296/* USB2.0 and USB3.0 device BOS descriptor set */ 297struct usb_host_bos { 298 struct usb_bos_descriptor *desc; 299 300 /* wireless cap descriptor is handled by wusb */ 301 struct usb_ext_cap_descriptor *ext_cap; 302 struct usb_ss_cap_descriptor *ss_cap; 303 struct usb_ss_container_id_descriptor *ss_id; 304}; 305 306int __usb_get_extra_descriptor(char *buffer, unsigned size, 307 unsigned char type, void **ptr); 308#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 309 __usb_get_extra_descriptor((ifpoint)->extra, \ 310 (ifpoint)->extralen, \ 311 type, (void **)ptr) 312 313/* ----------------------------------------------------------------------- */ 314 315/* USB device number allocation bitmap */ 316struct usb_devmap { 317 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 318}; 319 320/* 321 * Allocated per bus (tree of devices) we have: 322 */ 323struct usb_bus { 324 struct device *controller; /* host/master side hardware */ 325 int busnum; /* Bus number (in order of reg) */ 326 const char *bus_name; /* stable id (PCI slot_name etc) */ 327 u8 uses_dma; /* Does the host controller use DMA? */ 328 u8 uses_pio_for_control; /* 329 * Does the host controller use PIO 330 * for control transfers? 331 */ 332 u8 otg_port; /* 0, or number of OTG/HNP port */ 333 unsigned is_b_host:1; /* true during some HNP roleswitches */ 334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 335 unsigned no_stop_on_short:1; /* 336 * Quirk: some controllers don't stop 337 * the ep queue on a short transfer 338 * with the URB_SHORT_NOT_OK flag set. 339 */ 340 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 341 342 int devnum_next; /* Next open device number in 343 * round-robin allocation */ 344 345 struct usb_devmap devmap; /* device address allocation map */ 346 struct usb_device *root_hub; /* Root hub */ 347 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 348 struct list_head bus_list; /* list of busses */ 349 350 int bandwidth_allocated; /* on this bus: how much of the time 351 * reserved for periodic (intr/iso) 352 * requests is used, on average? 353 * Units: microseconds/frame. 354 * Limits: Full/low speed reserve 90%, 355 * while high speed reserves 80%. 356 */ 357 int bandwidth_int_reqs; /* number of Interrupt requests */ 358 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 359 360 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 361 362#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 363 struct mon_bus *mon_bus; /* non-null when associated */ 364 int monitored; /* non-zero when monitored */ 365#endif 366}; 367 368/* ----------------------------------------------------------------------- */ 369 370/* This is arbitrary. 371 * From USB 2.0 spec Table 11-13, offset 7, a hub can 372 * have up to 255 ports. The most yet reported is 10. 373 * 374 * Current Wireless USB host hardware (Intel i1480 for example) allows 375 * up to 22 devices to connect. Upcoming hardware might raise that 376 * limit. Because the arrays need to add a bit for hub status data, we 377 * do 31, so plus one evens out to four bytes. 378 */ 379#define USB_MAXCHILDREN (31) 380 381struct usb_tt; 382 383enum usb_device_removable { 384 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 385 USB_DEVICE_REMOVABLE, 386 USB_DEVICE_FIXED, 387}; 388 389enum usb_port_connect_type { 390 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 391 USB_PORT_CONNECT_TYPE_HOT_PLUG, 392 USB_PORT_CONNECT_TYPE_HARD_WIRED, 393 USB_PORT_NOT_USED, 394}; 395 396/* 397 * USB 2.0 Link Power Management (LPM) parameters. 398 */ 399struct usb2_lpm_parameters { 400 /* Best effort service latency indicate how long the host will drive 401 * resume on an exit from L1. 402 */ 403 unsigned int besl; 404 405 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 406 * When the timer counts to zero, the parent hub will initiate a LPM 407 * transition to L1. 408 */ 409 int timeout; 410}; 411 412/* 413 * USB 3.0 Link Power Management (LPM) parameters. 414 * 415 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 416 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 417 * All three are stored in nanoseconds. 418 */ 419struct usb3_lpm_parameters { 420 /* 421 * Maximum exit latency (MEL) for the host to send a packet to the 422 * device (either a Ping for isoc endpoints, or a data packet for 423 * interrupt endpoints), the hubs to decode the packet, and for all hubs 424 * in the path to transition the links to U0. 425 */ 426 unsigned int mel; 427 /* 428 * Maximum exit latency for a device-initiated LPM transition to bring 429 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 430 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 431 */ 432 unsigned int pel; 433 434 /* 435 * The System Exit Latency (SEL) includes PEL, and three other 436 * latencies. After a device initiates a U0 transition, it will take 437 * some time from when the device sends the ERDY to when it will finally 438 * receive the data packet. Basically, SEL should be the worse-case 439 * latency from when a device starts initiating a U0 transition to when 440 * it will get data. 441 */ 442 unsigned int sel; 443 /* 444 * The idle timeout value that is currently programmed into the parent 445 * hub for this device. When the timer counts to zero, the parent hub 446 * will initiate an LPM transition to either U1 or U2. 447 */ 448 int timeout; 449}; 450 451/** 452 * struct usb_device - kernel's representation of a USB device 453 * @devnum: device number; address on a USB bus 454 * @devpath: device ID string for use in messages (e.g., /port/...) 455 * @route: tree topology hex string for use with xHCI 456 * @state: device state: configured, not attached, etc. 457 * @speed: device speed: high/full/low (or error) 458 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 459 * @ttport: device port on that tt hub 460 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 461 * @parent: our hub, unless we're the root 462 * @bus: bus we're part of 463 * @ep0: endpoint 0 data (default control pipe) 464 * @dev: generic device interface 465 * @descriptor: USB device descriptor 466 * @bos: USB device BOS descriptor set 467 * @config: all of the device's configs 468 * @actconfig: the active configuration 469 * @ep_in: array of IN endpoints 470 * @ep_out: array of OUT endpoints 471 * @rawdescriptors: raw descriptors for each config 472 * @bus_mA: Current available from the bus 473 * @portnum: parent port number (origin 1) 474 * @level: number of USB hub ancestors 475 * @can_submit: URBs may be submitted 476 * @persist_enabled: USB_PERSIST enabled for this device 477 * @have_langid: whether string_langid is valid 478 * @authorized: policy has said we can use it; 479 * (user space) policy determines if we authorize this device to be 480 * used or not. By default, wired USB devices are authorized. 481 * WUSB devices are not, until we authorize them from user space. 482 * FIXME -- complete doc 483 * @authenticated: Crypto authentication passed 484 * @wusb: device is Wireless USB 485 * @lpm_capable: device supports LPM 486 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 487 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 488 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled 489 * @usb3_lpm_enabled: USB3 hardware LPM enabled 490 * @string_langid: language ID for strings 491 * @product: iProduct string, if present (static) 492 * @manufacturer: iManufacturer string, if present (static) 493 * @serial: iSerialNumber string, if present (static) 494 * @filelist: usbfs files that are open to this device 495 * @maxchild: number of ports if hub 496 * @quirks: quirks of the whole device 497 * @urbnum: number of URBs submitted for the whole device 498 * @active_duration: total time device is not suspended 499 * @connect_time: time device was first connected 500 * @do_remote_wakeup: remote wakeup should be enabled 501 * @reset_resume: needs reset instead of resume 502 * @port_is_suspended: the upstream port is suspended (L2 or U3) 503 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 504 * specific data for the device. 505 * @slot_id: Slot ID assigned by xHCI 506 * @removable: Device can be physically removed from this port 507 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 508 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 509 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 510 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 511 * to keep track of the number of functions that require USB 3.0 Link Power 512 * Management to be disabled for this usb_device. This count should only 513 * be manipulated by those functions, with the bandwidth_mutex is held. 514 * 515 * Notes: 516 * Usbcore drivers should not set usbdev->state directly. Instead use 517 * usb_set_device_state(). 518 */ 519struct usb_device { 520 int devnum; 521 char devpath[16]; 522 u32 route; 523 enum usb_device_state state; 524 enum usb_device_speed speed; 525 526 struct usb_tt *tt; 527 int ttport; 528 529 unsigned int toggle[2]; 530 531 struct usb_device *parent; 532 struct usb_bus *bus; 533 struct usb_host_endpoint ep0; 534 535 struct device dev; 536 537 struct usb_device_descriptor descriptor; 538 struct usb_host_bos *bos; 539 struct usb_host_config *config; 540 541 struct usb_host_config *actconfig; 542 struct usb_host_endpoint *ep_in[16]; 543 struct usb_host_endpoint *ep_out[16]; 544 545 char **rawdescriptors; 546 547 unsigned short bus_mA; 548 u8 portnum; 549 u8 level; 550 551 unsigned can_submit:1; 552 unsigned persist_enabled:1; 553 unsigned have_langid:1; 554 unsigned authorized:1; 555 unsigned authenticated:1; 556 unsigned wusb:1; 557 unsigned lpm_capable:1; 558 unsigned usb2_hw_lpm_capable:1; 559 unsigned usb2_hw_lpm_besl_capable:1; 560 unsigned usb2_hw_lpm_enabled:1; 561 unsigned usb3_lpm_enabled:1; 562 int string_langid; 563 564 /* static strings from the device */ 565 char *product; 566 char *manufacturer; 567 char *serial; 568 569 struct list_head filelist; 570 571 int maxchild; 572 573 u32 quirks; 574 atomic_t urbnum; 575 576 unsigned long active_duration; 577 578#ifdef CONFIG_PM 579 unsigned long connect_time; 580 581 unsigned do_remote_wakeup:1; 582 unsigned reset_resume:1; 583 unsigned port_is_suspended:1; 584#endif 585 struct wusb_dev *wusb_dev; 586 int slot_id; 587 enum usb_device_removable removable; 588 struct usb2_lpm_parameters l1_params; 589 struct usb3_lpm_parameters u1_params; 590 struct usb3_lpm_parameters u2_params; 591 unsigned lpm_disable_count; 592}; 593#define to_usb_device(d) container_of(d, struct usb_device, dev) 594 595static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 596{ 597 return to_usb_device(intf->dev.parent); 598} 599 600extern struct usb_device *usb_get_dev(struct usb_device *dev); 601extern void usb_put_dev(struct usb_device *dev); 602extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 603 int port1); 604 605/** 606 * usb_hub_for_each_child - iterate over all child devices on the hub 607 * @hdev: USB device belonging to the usb hub 608 * @port1: portnum associated with child device 609 * @child: child device pointer 610 */ 611#define usb_hub_for_each_child(hdev, port1, child) \ 612 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 613 port1 <= hdev->maxchild; \ 614 child = usb_hub_find_child(hdev, ++port1)) \ 615 if (!child) continue; else 616 617/* USB device locking */ 618#define usb_lock_device(udev) device_lock(&(udev)->dev) 619#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 620#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 621extern int usb_lock_device_for_reset(struct usb_device *udev, 622 const struct usb_interface *iface); 623 624/* USB port reset for device reinitialization */ 625extern int usb_reset_device(struct usb_device *dev); 626extern void usb_queue_reset_device(struct usb_interface *dev); 627 628#ifdef CONFIG_ACPI 629extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 630 bool enable); 631extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 632#else 633static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 634 bool enable) { return 0; } 635static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 636 { return true; } 637#endif 638 639/* USB autosuspend and autoresume */ 640#ifdef CONFIG_PM_RUNTIME 641extern void usb_enable_autosuspend(struct usb_device *udev); 642extern void usb_disable_autosuspend(struct usb_device *udev); 643 644extern int usb_autopm_get_interface(struct usb_interface *intf); 645extern void usb_autopm_put_interface(struct usb_interface *intf); 646extern int usb_autopm_get_interface_async(struct usb_interface *intf); 647extern void usb_autopm_put_interface_async(struct usb_interface *intf); 648extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 649extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 650 651static inline void usb_mark_last_busy(struct usb_device *udev) 652{ 653 pm_runtime_mark_last_busy(&udev->dev); 654} 655 656#else 657 658static inline int usb_enable_autosuspend(struct usb_device *udev) 659{ return 0; } 660static inline int usb_disable_autosuspend(struct usb_device *udev) 661{ return 0; } 662 663static inline int usb_autopm_get_interface(struct usb_interface *intf) 664{ return 0; } 665static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 666{ return 0; } 667 668static inline void usb_autopm_put_interface(struct usb_interface *intf) 669{ } 670static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 671{ } 672static inline void usb_autopm_get_interface_no_resume( 673 struct usb_interface *intf) 674{ } 675static inline void usb_autopm_put_interface_no_suspend( 676 struct usb_interface *intf) 677{ } 678static inline void usb_mark_last_busy(struct usb_device *udev) 679{ } 680#endif 681 682extern int usb_disable_lpm(struct usb_device *udev); 683extern void usb_enable_lpm(struct usb_device *udev); 684/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 685extern int usb_unlocked_disable_lpm(struct usb_device *udev); 686extern void usb_unlocked_enable_lpm(struct usb_device *udev); 687 688extern int usb_disable_ltm(struct usb_device *udev); 689extern void usb_enable_ltm(struct usb_device *udev); 690 691static inline bool usb_device_supports_ltm(struct usb_device *udev) 692{ 693 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 694 return false; 695 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 696} 697 698 699/*-------------------------------------------------------------------------*/ 700 701/* for drivers using iso endpoints */ 702extern int usb_get_current_frame_number(struct usb_device *usb_dev); 703 704/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 705extern int usb_alloc_streams(struct usb_interface *interface, 706 struct usb_host_endpoint **eps, unsigned int num_eps, 707 unsigned int num_streams, gfp_t mem_flags); 708 709/* Reverts a group of bulk endpoints back to not using stream IDs. */ 710extern void usb_free_streams(struct usb_interface *interface, 711 struct usb_host_endpoint **eps, unsigned int num_eps, 712 gfp_t mem_flags); 713 714/* used these for multi-interface device registration */ 715extern int usb_driver_claim_interface(struct usb_driver *driver, 716 struct usb_interface *iface, void *priv); 717 718/** 719 * usb_interface_claimed - returns true iff an interface is claimed 720 * @iface: the interface being checked 721 * 722 * Returns true (nonzero) iff the interface is claimed, else false (zero). 723 * Callers must own the driver model's usb bus readlock. So driver 724 * probe() entries don't need extra locking, but other call contexts 725 * may need to explicitly claim that lock. 726 * 727 */ 728static inline int usb_interface_claimed(struct usb_interface *iface) 729{ 730 return (iface->dev.driver != NULL); 731} 732 733extern void usb_driver_release_interface(struct usb_driver *driver, 734 struct usb_interface *iface); 735const struct usb_device_id *usb_match_id(struct usb_interface *interface, 736 const struct usb_device_id *id); 737extern int usb_match_one_id(struct usb_interface *interface, 738 const struct usb_device_id *id); 739 740extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 741extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 742 int minor); 743extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 744 unsigned ifnum); 745extern struct usb_host_interface *usb_altnum_to_altsetting( 746 const struct usb_interface *intf, unsigned int altnum); 747extern struct usb_host_interface *usb_find_alt_setting( 748 struct usb_host_config *config, 749 unsigned int iface_num, 750 unsigned int alt_num); 751 752 753/** 754 * usb_make_path - returns stable device path in the usb tree 755 * @dev: the device whose path is being constructed 756 * @buf: where to put the string 757 * @size: how big is "buf"? 758 * 759 * Returns length of the string (> 0) or negative if size was too small. 760 * 761 * This identifier is intended to be "stable", reflecting physical paths in 762 * hardware such as physical bus addresses for host controllers or ports on 763 * USB hubs. That makes it stay the same until systems are physically 764 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 765 * controllers. Adding and removing devices, including virtual root hubs 766 * in host controller driver modules, does not change these path identifiers; 767 * neither does rebooting or re-enumerating. These are more useful identifiers 768 * than changeable ("unstable") ones like bus numbers or device addresses. 769 * 770 * With a partial exception for devices connected to USB 2.0 root hubs, these 771 * identifiers are also predictable. So long as the device tree isn't changed, 772 * plugging any USB device into a given hub port always gives it the same path. 773 * Because of the use of "companion" controllers, devices connected to ports on 774 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 775 * high speed, and a different one if they are full or low speed. 776 */ 777static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 778{ 779 int actual; 780 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 781 dev->devpath); 782 return (actual >= (int)size) ? -1 : actual; 783} 784 785/*-------------------------------------------------------------------------*/ 786 787#define USB_DEVICE_ID_MATCH_DEVICE \ 788 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 789#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 790 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 791#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 792 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 793#define USB_DEVICE_ID_MATCH_DEV_INFO \ 794 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 795 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 796 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 797#define USB_DEVICE_ID_MATCH_INT_INFO \ 798 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 799 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 800 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 801 802/** 803 * USB_DEVICE - macro used to describe a specific usb device 804 * @vend: the 16 bit USB Vendor ID 805 * @prod: the 16 bit USB Product ID 806 * 807 * This macro is used to create a struct usb_device_id that matches a 808 * specific device. 809 */ 810#define USB_DEVICE(vend, prod) \ 811 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 812 .idVendor = (vend), \ 813 .idProduct = (prod) 814/** 815 * USB_DEVICE_VER - describe a specific usb device with a version range 816 * @vend: the 16 bit USB Vendor ID 817 * @prod: the 16 bit USB Product ID 818 * @lo: the bcdDevice_lo value 819 * @hi: the bcdDevice_hi value 820 * 821 * This macro is used to create a struct usb_device_id that matches a 822 * specific device, with a version range. 823 */ 824#define USB_DEVICE_VER(vend, prod, lo, hi) \ 825 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 826 .idVendor = (vend), \ 827 .idProduct = (prod), \ 828 .bcdDevice_lo = (lo), \ 829 .bcdDevice_hi = (hi) 830 831/** 832 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 833 * @vend: the 16 bit USB Vendor ID 834 * @prod: the 16 bit USB Product ID 835 * @cl: bInterfaceClass value 836 * 837 * This macro is used to create a struct usb_device_id that matches a 838 * specific interface class of devices. 839 */ 840#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 841 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 842 USB_DEVICE_ID_MATCH_INT_CLASS, \ 843 .idVendor = (vend), \ 844 .idProduct = (prod), \ 845 .bInterfaceClass = (cl) 846 847/** 848 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 849 * @vend: the 16 bit USB Vendor ID 850 * @prod: the 16 bit USB Product ID 851 * @pr: bInterfaceProtocol value 852 * 853 * This macro is used to create a struct usb_device_id that matches a 854 * specific interface protocol of devices. 855 */ 856#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 857 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 858 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 859 .idVendor = (vend), \ 860 .idProduct = (prod), \ 861 .bInterfaceProtocol = (pr) 862 863/** 864 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 865 * @vend: the 16 bit USB Vendor ID 866 * @prod: the 16 bit USB Product ID 867 * @num: bInterfaceNumber value 868 * 869 * This macro is used to create a struct usb_device_id that matches a 870 * specific interface number of devices. 871 */ 872#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 873 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 874 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 875 .idVendor = (vend), \ 876 .idProduct = (prod), \ 877 .bInterfaceNumber = (num) 878 879/** 880 * USB_DEVICE_INFO - macro used to describe a class of usb devices 881 * @cl: bDeviceClass value 882 * @sc: bDeviceSubClass value 883 * @pr: bDeviceProtocol value 884 * 885 * This macro is used to create a struct usb_device_id that matches a 886 * specific class of devices. 887 */ 888#define USB_DEVICE_INFO(cl, sc, pr) \ 889 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 890 .bDeviceClass = (cl), \ 891 .bDeviceSubClass = (sc), \ 892 .bDeviceProtocol = (pr) 893 894/** 895 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 896 * @cl: bInterfaceClass value 897 * @sc: bInterfaceSubClass value 898 * @pr: bInterfaceProtocol value 899 * 900 * This macro is used to create a struct usb_device_id that matches a 901 * specific class of interfaces. 902 */ 903#define USB_INTERFACE_INFO(cl, sc, pr) \ 904 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 905 .bInterfaceClass = (cl), \ 906 .bInterfaceSubClass = (sc), \ 907 .bInterfaceProtocol = (pr) 908 909/** 910 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 911 * @vend: the 16 bit USB Vendor ID 912 * @prod: the 16 bit USB Product ID 913 * @cl: bInterfaceClass value 914 * @sc: bInterfaceSubClass value 915 * @pr: bInterfaceProtocol value 916 * 917 * This macro is used to create a struct usb_device_id that matches a 918 * specific device with a specific class of interfaces. 919 * 920 * This is especially useful when explicitly matching devices that have 921 * vendor specific bDeviceClass values, but standards-compliant interfaces. 922 */ 923#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 924 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 925 | USB_DEVICE_ID_MATCH_DEVICE, \ 926 .idVendor = (vend), \ 927 .idProduct = (prod), \ 928 .bInterfaceClass = (cl), \ 929 .bInterfaceSubClass = (sc), \ 930 .bInterfaceProtocol = (pr) 931 932/** 933 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 934 * @vend: the 16 bit USB Vendor ID 935 * @cl: bInterfaceClass value 936 * @sc: bInterfaceSubClass value 937 * @pr: bInterfaceProtocol value 938 * 939 * This macro is used to create a struct usb_device_id that matches a 940 * specific vendor with a specific class of interfaces. 941 * 942 * This is especially useful when explicitly matching devices that have 943 * vendor specific bDeviceClass values, but standards-compliant interfaces. 944 */ 945#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 946 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 947 | USB_DEVICE_ID_MATCH_VENDOR, \ 948 .idVendor = (vend), \ 949 .bInterfaceClass = (cl), \ 950 .bInterfaceSubClass = (sc), \ 951 .bInterfaceProtocol = (pr) 952 953/* ----------------------------------------------------------------------- */ 954 955/* Stuff for dynamic usb ids */ 956struct usb_dynids { 957 spinlock_t lock; 958 struct list_head list; 959}; 960 961struct usb_dynid { 962 struct list_head node; 963 struct usb_device_id id; 964}; 965 966extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 967 struct device_driver *driver, 968 const char *buf, size_t count); 969 970extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 971 972/** 973 * struct usbdrv_wrap - wrapper for driver-model structure 974 * @driver: The driver-model core driver structure. 975 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 976 */ 977struct usbdrv_wrap { 978 struct device_driver driver; 979 int for_devices; 980}; 981 982/** 983 * struct usb_driver - identifies USB interface driver to usbcore 984 * @name: The driver name should be unique among USB drivers, 985 * and should normally be the same as the module name. 986 * @probe: Called to see if the driver is willing to manage a particular 987 * interface on a device. If it is, probe returns zero and uses 988 * usb_set_intfdata() to associate driver-specific data with the 989 * interface. It may also use usb_set_interface() to specify the 990 * appropriate altsetting. If unwilling to manage the interface, 991 * return -ENODEV, if genuine IO errors occurred, an appropriate 992 * negative errno value. 993 * @disconnect: Called when the interface is no longer accessible, usually 994 * because its device has been (or is being) disconnected or the 995 * driver module is being unloaded. 996 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 997 * the "usbfs" filesystem. This lets devices provide ways to 998 * expose information to user space regardless of where they 999 * do (or don't) show up otherwise in the filesystem. 1000 * @suspend: Called when the device is going to be suspended by the 1001 * system either from system sleep or runtime suspend context. The 1002 * return value will be ignored in system sleep context, so do NOT 1003 * try to continue using the device if suspend fails in this case. 1004 * Instead, let the resume or reset-resume routine recover from 1005 * the failure. 1006 * @resume: Called when the device is being resumed by the system. 1007 * @reset_resume: Called when the suspended device has been reset instead 1008 * of being resumed. 1009 * @pre_reset: Called by usb_reset_device() when the device is about to be 1010 * reset. This routine must not return until the driver has no active 1011 * URBs for the device, and no more URBs may be submitted until the 1012 * post_reset method is called. 1013 * @post_reset: Called by usb_reset_device() after the device 1014 * has been reset 1015 * @id_table: USB drivers use ID table to support hotplugging. 1016 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1017 * or your driver's probe function will never get called. 1018 * @dynids: used internally to hold the list of dynamically added device 1019 * ids for this driver. 1020 * @drvwrap: Driver-model core structure wrapper. 1021 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1022 * added to this driver by preventing the sysfs file from being created. 1023 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1024 * for interfaces bound to this driver. 1025 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1026 * endpoints before calling the driver's disconnect method. 1027 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs 1028 * to initiate lower power link state transitions when an idle timeout 1029 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1030 * 1031 * USB interface drivers must provide a name, probe() and disconnect() 1032 * methods, and an id_table. Other driver fields are optional. 1033 * 1034 * The id_table is used in hotplugging. It holds a set of descriptors, 1035 * and specialized data may be associated with each entry. That table 1036 * is used by both user and kernel mode hotplugging support. 1037 * 1038 * The probe() and disconnect() methods are called in a context where 1039 * they can sleep, but they should avoid abusing the privilege. Most 1040 * work to connect to a device should be done when the device is opened, 1041 * and undone at the last close. The disconnect code needs to address 1042 * concurrency issues with respect to open() and close() methods, as 1043 * well as forcing all pending I/O requests to complete (by unlinking 1044 * them as necessary, and blocking until the unlinks complete). 1045 */ 1046struct usb_driver { 1047 const char *name; 1048 1049 int (*probe) (struct usb_interface *intf, 1050 const struct usb_device_id *id); 1051 1052 void (*disconnect) (struct usb_interface *intf); 1053 1054 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1055 void *buf); 1056 1057 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1058 int (*resume) (struct usb_interface *intf); 1059 int (*reset_resume)(struct usb_interface *intf); 1060 1061 int (*pre_reset)(struct usb_interface *intf); 1062 int (*post_reset)(struct usb_interface *intf); 1063 1064 const struct usb_device_id *id_table; 1065 1066 struct usb_dynids dynids; 1067 struct usbdrv_wrap drvwrap; 1068 unsigned int no_dynamic_id:1; 1069 unsigned int supports_autosuspend:1; 1070 unsigned int disable_hub_initiated_lpm:1; 1071 unsigned int soft_unbind:1; 1072}; 1073#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1074 1075/** 1076 * struct usb_device_driver - identifies USB device driver to usbcore 1077 * @name: The driver name should be unique among USB drivers, 1078 * and should normally be the same as the module name. 1079 * @probe: Called to see if the driver is willing to manage a particular 1080 * device. If it is, probe returns zero and uses dev_set_drvdata() 1081 * to associate driver-specific data with the device. If unwilling 1082 * to manage the device, return a negative errno value. 1083 * @disconnect: Called when the device is no longer accessible, usually 1084 * because it has been (or is being) disconnected or the driver's 1085 * module is being unloaded. 1086 * @suspend: Called when the device is going to be suspended by the system. 1087 * @resume: Called when the device is being resumed by the system. 1088 * @drvwrap: Driver-model core structure wrapper. 1089 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1090 * for devices bound to this driver. 1091 * 1092 * USB drivers must provide all the fields listed above except drvwrap. 1093 */ 1094struct usb_device_driver { 1095 const char *name; 1096 1097 int (*probe) (struct usb_device *udev); 1098 void (*disconnect) (struct usb_device *udev); 1099 1100 int (*suspend) (struct usb_device *udev, pm_message_t message); 1101 int (*resume) (struct usb_device *udev, pm_message_t message); 1102 struct usbdrv_wrap drvwrap; 1103 unsigned int supports_autosuspend:1; 1104}; 1105#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1106 drvwrap.driver) 1107 1108extern struct bus_type usb_bus_type; 1109 1110/** 1111 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1112 * @name: the usb class device name for this driver. Will show up in sysfs. 1113 * @devnode: Callback to provide a naming hint for a possible 1114 * device node to create. 1115 * @fops: pointer to the struct file_operations of this driver. 1116 * @minor_base: the start of the minor range for this driver. 1117 * 1118 * This structure is used for the usb_register_dev() and 1119 * usb_unregister_dev() functions, to consolidate a number of the 1120 * parameters used for them. 1121 */ 1122struct usb_class_driver { 1123 char *name; 1124 char *(*devnode)(struct device *dev, umode_t *mode); 1125 const struct file_operations *fops; 1126 int minor_base; 1127}; 1128 1129/* 1130 * use these in module_init()/module_exit() 1131 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1132 */ 1133extern int usb_register_driver(struct usb_driver *, struct module *, 1134 const char *); 1135 1136/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1137#define usb_register(driver) \ 1138 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1139 1140extern void usb_deregister(struct usb_driver *); 1141 1142/** 1143 * module_usb_driver() - Helper macro for registering a USB driver 1144 * @__usb_driver: usb_driver struct 1145 * 1146 * Helper macro for USB drivers which do not do anything special in module 1147 * init/exit. This eliminates a lot of boilerplate. Each module may only 1148 * use this macro once, and calling it replaces module_init() and module_exit() 1149 */ 1150#define module_usb_driver(__usb_driver) \ 1151 module_driver(__usb_driver, usb_register, \ 1152 usb_deregister) 1153 1154extern int usb_register_device_driver(struct usb_device_driver *, 1155 struct module *); 1156extern void usb_deregister_device_driver(struct usb_device_driver *); 1157 1158extern int usb_register_dev(struct usb_interface *intf, 1159 struct usb_class_driver *class_driver); 1160extern void usb_deregister_dev(struct usb_interface *intf, 1161 struct usb_class_driver *class_driver); 1162 1163extern int usb_disabled(void); 1164 1165/* ----------------------------------------------------------------------- */ 1166 1167/* 1168 * URB support, for asynchronous request completions 1169 */ 1170 1171/* 1172 * urb->transfer_flags: 1173 * 1174 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1175 */ 1176#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1177#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1178 * slot in the schedule */ 1179#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1180#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1181#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1182#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1183 * needed */ 1184#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1185 1186/* The following flags are used internally by usbcore and HCDs */ 1187#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1188#define URB_DIR_OUT 0 1189#define URB_DIR_MASK URB_DIR_IN 1190 1191#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1192#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1193#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1194#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1195#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1196#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1197#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1198#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1199 1200struct usb_iso_packet_descriptor { 1201 unsigned int offset; 1202 unsigned int length; /* expected length */ 1203 unsigned int actual_length; 1204 int status; 1205}; 1206 1207struct urb; 1208 1209struct usb_anchor { 1210 struct list_head urb_list; 1211 wait_queue_head_t wait; 1212 spinlock_t lock; 1213 unsigned int poisoned:1; 1214}; 1215 1216static inline void init_usb_anchor(struct usb_anchor *anchor) 1217{ 1218 INIT_LIST_HEAD(&anchor->urb_list); 1219 init_waitqueue_head(&anchor->wait); 1220 spin_lock_init(&anchor->lock); 1221} 1222 1223typedef void (*usb_complete_t)(struct urb *); 1224 1225/** 1226 * struct urb - USB Request Block 1227 * @urb_list: For use by current owner of the URB. 1228 * @anchor_list: membership in the list of an anchor 1229 * @anchor: to anchor URBs to a common mooring 1230 * @ep: Points to the endpoint's data structure. Will eventually 1231 * replace @pipe. 1232 * @pipe: Holds endpoint number, direction, type, and more. 1233 * Create these values with the eight macros available; 1234 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1235 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1236 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1237 * numbers range from zero to fifteen. Note that "in" endpoint two 1238 * is a different endpoint (and pipe) from "out" endpoint two. 1239 * The current configuration controls the existence, type, and 1240 * maximum packet size of any given endpoint. 1241 * @stream_id: the endpoint's stream ID for bulk streams 1242 * @dev: Identifies the USB device to perform the request. 1243 * @status: This is read in non-iso completion functions to get the 1244 * status of the particular request. ISO requests only use it 1245 * to tell whether the URB was unlinked; detailed status for 1246 * each frame is in the fields of the iso_frame-desc. 1247 * @transfer_flags: A variety of flags may be used to affect how URB 1248 * submission, unlinking, or operation are handled. Different 1249 * kinds of URB can use different flags. 1250 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1251 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1252 * (however, do not leave garbage in transfer_buffer even then). 1253 * This buffer must be suitable for DMA; allocate it with 1254 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1255 * of this buffer will be modified. This buffer is used for the data 1256 * stage of control transfers. 1257 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1258 * the device driver is saying that it provided this DMA address, 1259 * which the host controller driver should use in preference to the 1260 * transfer_buffer. 1261 * @sg: scatter gather buffer list 1262 * @num_mapped_sgs: (internal) number of mapped sg entries 1263 * @num_sgs: number of entries in the sg list 1264 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1265 * be broken up into chunks according to the current maximum packet 1266 * size for the endpoint, which is a function of the configuration 1267 * and is encoded in the pipe. When the length is zero, neither 1268 * transfer_buffer nor transfer_dma is used. 1269 * @actual_length: This is read in non-iso completion functions, and 1270 * it tells how many bytes (out of transfer_buffer_length) were 1271 * transferred. It will normally be the same as requested, unless 1272 * either an error was reported or a short read was performed. 1273 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1274 * short reads be reported as errors. 1275 * @setup_packet: Only used for control transfers, this points to eight bytes 1276 * of setup data. Control transfers always start by sending this data 1277 * to the device. Then transfer_buffer is read or written, if needed. 1278 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1279 * this field; setup_packet must point to a valid buffer. 1280 * @start_frame: Returns the initial frame for isochronous transfers. 1281 * @number_of_packets: Lists the number of ISO transfer buffers. 1282 * @interval: Specifies the polling interval for interrupt or isochronous 1283 * transfers. The units are frames (milliseconds) for full and low 1284 * speed devices, and microframes (1/8 millisecond) for highspeed 1285 * and SuperSpeed devices. 1286 * @error_count: Returns the number of ISO transfers that reported errors. 1287 * @context: For use in completion functions. This normally points to 1288 * request-specific driver context. 1289 * @complete: Completion handler. This URB is passed as the parameter to the 1290 * completion function. The completion function may then do what 1291 * it likes with the URB, including resubmitting or freeing it. 1292 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1293 * collect the transfer status for each buffer. 1294 * 1295 * This structure identifies USB transfer requests. URBs must be allocated by 1296 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1297 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1298 * are submitted using usb_submit_urb(), and pending requests may be canceled 1299 * using usb_unlink_urb() or usb_kill_urb(). 1300 * 1301 * Data Transfer Buffers: 1302 * 1303 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1304 * taken from the general page pool. That is provided by transfer_buffer 1305 * (control requests also use setup_packet), and host controller drivers 1306 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1307 * mapping operations can be expensive on some platforms (perhaps using a dma 1308 * bounce buffer or talking to an IOMMU), 1309 * although they're cheap on commodity x86 and ppc hardware. 1310 * 1311 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1312 * which tells the host controller driver that no such mapping is needed for 1313 * the transfer_buffer since 1314 * the device driver is DMA-aware. For example, a device driver might 1315 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1316 * When this transfer flag is provided, host controller drivers will 1317 * attempt to use the dma address found in the transfer_dma 1318 * field rather than determining a dma address themselves. 1319 * 1320 * Note that transfer_buffer must still be set if the controller 1321 * does not support DMA (as indicated by bus.uses_dma) and when talking 1322 * to root hub. If you have to trasfer between highmem zone and the device 1323 * on such controller, create a bounce buffer or bail out with an error. 1324 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1325 * capable, assign NULL to it, so that usbmon knows not to use the value. 1326 * The setup_packet must always be set, so it cannot be located in highmem. 1327 * 1328 * Initialization: 1329 * 1330 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1331 * zero), and complete fields. All URBs must also initialize 1332 * transfer_buffer and transfer_buffer_length. They may provide the 1333 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1334 * to be treated as errors; that flag is invalid for write requests. 1335 * 1336 * Bulk URBs may 1337 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1338 * should always terminate with a short packet, even if it means adding an 1339 * extra zero length packet. 1340 * 1341 * Control URBs must provide a valid pointer in the setup_packet field. 1342 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1343 * beforehand. 1344 * 1345 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1346 * or, for highspeed devices, 125 microsecond units) 1347 * to poll for transfers. After the URB has been submitted, the interval 1348 * field reflects how the transfer was actually scheduled. 1349 * The polling interval may be more frequent than requested. 1350 * For example, some controllers have a maximum interval of 32 milliseconds, 1351 * while others support intervals of up to 1024 milliseconds. 1352 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1353 * endpoints, as well as high speed interrupt endpoints, the encoding of 1354 * the transfer interval in the endpoint descriptor is logarithmic. 1355 * Device drivers must convert that value to linear units themselves.) 1356 * 1357 * If an isochronous endpoint queue isn't already running, the host 1358 * controller will schedule a new URB to start as soon as bandwidth 1359 * utilization allows. If the queue is running then a new URB will be 1360 * scheduled to start in the first transfer slot following the end of the 1361 * preceding URB, if that slot has not already expired. If the slot has 1362 * expired (which can happen when IRQ delivery is delayed for a long time), 1363 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1364 * is clear then the URB will be scheduled to start in the expired slot, 1365 * implying that some of its packets will not be transferred; if the flag 1366 * is set then the URB will be scheduled in the first unexpired slot, 1367 * breaking the queue's synchronization. Upon URB completion, the 1368 * start_frame field will be set to the (micro)frame number in which the 1369 * transfer was scheduled. Ranges for frame counter values are HC-specific 1370 * and can go from as low as 256 to as high as 65536 frames. 1371 * 1372 * Isochronous URBs have a different data transfer model, in part because 1373 * the quality of service is only "best effort". Callers provide specially 1374 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1375 * at the end. Each such packet is an individual ISO transfer. Isochronous 1376 * URBs are normally queued, submitted by drivers to arrange that 1377 * transfers are at least double buffered, and then explicitly resubmitted 1378 * in completion handlers, so 1379 * that data (such as audio or video) streams at as constant a rate as the 1380 * host controller scheduler can support. 1381 * 1382 * Completion Callbacks: 1383 * 1384 * The completion callback is made in_interrupt(), and one of the first 1385 * things that a completion handler should do is check the status field. 1386 * The status field is provided for all URBs. It is used to report 1387 * unlinked URBs, and status for all non-ISO transfers. It should not 1388 * be examined before the URB is returned to the completion handler. 1389 * 1390 * The context field is normally used to link URBs back to the relevant 1391 * driver or request state. 1392 * 1393 * When the completion callback is invoked for non-isochronous URBs, the 1394 * actual_length field tells how many bytes were transferred. This field 1395 * is updated even when the URB terminated with an error or was unlinked. 1396 * 1397 * ISO transfer status is reported in the status and actual_length fields 1398 * of the iso_frame_desc array, and the number of errors is reported in 1399 * error_count. Completion callbacks for ISO transfers will normally 1400 * (re)submit URBs to ensure a constant transfer rate. 1401 * 1402 * Note that even fields marked "public" should not be touched by the driver 1403 * when the urb is owned by the hcd, that is, since the call to 1404 * usb_submit_urb() till the entry into the completion routine. 1405 */ 1406struct urb { 1407 /* private: usb core and host controller only fields in the urb */ 1408 struct kref kref; /* reference count of the URB */ 1409 void *hcpriv; /* private data for host controller */ 1410 atomic_t use_count; /* concurrent submissions counter */ 1411 atomic_t reject; /* submissions will fail */ 1412 int unlinked; /* unlink error code */ 1413 1414 /* public: documented fields in the urb that can be used by drivers */ 1415 struct list_head urb_list; /* list head for use by the urb's 1416 * current owner */ 1417 struct list_head anchor_list; /* the URB may be anchored */ 1418 struct usb_anchor *anchor; 1419 struct usb_device *dev; /* (in) pointer to associated device */ 1420 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1421 unsigned int pipe; /* (in) pipe information */ 1422 unsigned int stream_id; /* (in) stream ID */ 1423 int status; /* (return) non-ISO status */ 1424 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1425 void *transfer_buffer; /* (in) associated data buffer */ 1426 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1427 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1428 int num_mapped_sgs; /* (internal) mapped sg entries */ 1429 int num_sgs; /* (in) number of entries in the sg list */ 1430 u32 transfer_buffer_length; /* (in) data buffer length */ 1431 u32 actual_length; /* (return) actual transfer length */ 1432 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1433 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1434 int start_frame; /* (modify) start frame (ISO) */ 1435 int number_of_packets; /* (in) number of ISO packets */ 1436 int interval; /* (modify) transfer interval 1437 * (INT/ISO) */ 1438 int error_count; /* (return) number of ISO errors */ 1439 void *context; /* (in) context for completion */ 1440 usb_complete_t complete; /* (in) completion routine */ 1441 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1442 /* (in) ISO ONLY */ 1443}; 1444 1445/* ----------------------------------------------------------------------- */ 1446 1447/** 1448 * usb_fill_control_urb - initializes a control urb 1449 * @urb: pointer to the urb to initialize. 1450 * @dev: pointer to the struct usb_device for this urb. 1451 * @pipe: the endpoint pipe 1452 * @setup_packet: pointer to the setup_packet buffer 1453 * @transfer_buffer: pointer to the transfer buffer 1454 * @buffer_length: length of the transfer buffer 1455 * @complete_fn: pointer to the usb_complete_t function 1456 * @context: what to set the urb context to. 1457 * 1458 * Initializes a control urb with the proper information needed to submit 1459 * it to a device. 1460 */ 1461static inline void usb_fill_control_urb(struct urb *urb, 1462 struct usb_device *dev, 1463 unsigned int pipe, 1464 unsigned char *setup_packet, 1465 void *transfer_buffer, 1466 int buffer_length, 1467 usb_complete_t complete_fn, 1468 void *context) 1469{ 1470 urb->dev = dev; 1471 urb->pipe = pipe; 1472 urb->setup_packet = setup_packet; 1473 urb->transfer_buffer = transfer_buffer; 1474 urb->transfer_buffer_length = buffer_length; 1475 urb->complete = complete_fn; 1476 urb->context = context; 1477} 1478 1479/** 1480 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1481 * @urb: pointer to the urb to initialize. 1482 * @dev: pointer to the struct usb_device for this urb. 1483 * @pipe: the endpoint pipe 1484 * @transfer_buffer: pointer to the transfer buffer 1485 * @buffer_length: length of the transfer buffer 1486 * @complete_fn: pointer to the usb_complete_t function 1487 * @context: what to set the urb context to. 1488 * 1489 * Initializes a bulk urb with the proper information needed to submit it 1490 * to a device. 1491 */ 1492static inline void usb_fill_bulk_urb(struct urb *urb, 1493 struct usb_device *dev, 1494 unsigned int pipe, 1495 void *transfer_buffer, 1496 int buffer_length, 1497 usb_complete_t complete_fn, 1498 void *context) 1499{ 1500 urb->dev = dev; 1501 urb->pipe = pipe; 1502 urb->transfer_buffer = transfer_buffer; 1503 urb->transfer_buffer_length = buffer_length; 1504 urb->complete = complete_fn; 1505 urb->context = context; 1506} 1507 1508/** 1509 * usb_fill_int_urb - macro to help initialize a interrupt urb 1510 * @urb: pointer to the urb to initialize. 1511 * @dev: pointer to the struct usb_device for this urb. 1512 * @pipe: the endpoint pipe 1513 * @transfer_buffer: pointer to the transfer buffer 1514 * @buffer_length: length of the transfer buffer 1515 * @complete_fn: pointer to the usb_complete_t function 1516 * @context: what to set the urb context to. 1517 * @interval: what to set the urb interval to, encoded like 1518 * the endpoint descriptor's bInterval value. 1519 * 1520 * Initializes a interrupt urb with the proper information needed to submit 1521 * it to a device. 1522 * 1523 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1524 * encoding of the endpoint interval, and express polling intervals in 1525 * microframes (eight per millisecond) rather than in frames (one per 1526 * millisecond). 1527 * 1528 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1529 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1530 * through to the host controller, rather than being translated into microframe 1531 * units. 1532 */ 1533static inline void usb_fill_int_urb(struct urb *urb, 1534 struct usb_device *dev, 1535 unsigned int pipe, 1536 void *transfer_buffer, 1537 int buffer_length, 1538 usb_complete_t complete_fn, 1539 void *context, 1540 int interval) 1541{ 1542 urb->dev = dev; 1543 urb->pipe = pipe; 1544 urb->transfer_buffer = transfer_buffer; 1545 urb->transfer_buffer_length = buffer_length; 1546 urb->complete = complete_fn; 1547 urb->context = context; 1548 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) 1549 urb->interval = 1 << (interval - 1); 1550 else 1551 urb->interval = interval; 1552 urb->start_frame = -1; 1553} 1554 1555extern void usb_init_urb(struct urb *urb); 1556extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1557extern void usb_free_urb(struct urb *urb); 1558#define usb_put_urb usb_free_urb 1559extern struct urb *usb_get_urb(struct urb *urb); 1560extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1561extern int usb_unlink_urb(struct urb *urb); 1562extern void usb_kill_urb(struct urb *urb); 1563extern void usb_poison_urb(struct urb *urb); 1564extern void usb_unpoison_urb(struct urb *urb); 1565extern void usb_block_urb(struct urb *urb); 1566extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1567extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1568extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1569extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1570extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1571extern void usb_unanchor_urb(struct urb *urb); 1572extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1573 unsigned int timeout); 1574extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1575extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1576extern int usb_anchor_empty(struct usb_anchor *anchor); 1577 1578#define usb_unblock_urb usb_unpoison_urb 1579 1580/** 1581 * usb_urb_dir_in - check if an URB describes an IN transfer 1582 * @urb: URB to be checked 1583 * 1584 * Returns 1 if @urb describes an IN transfer (device-to-host), 1585 * otherwise 0. 1586 */ 1587static inline int usb_urb_dir_in(struct urb *urb) 1588{ 1589 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1590} 1591 1592/** 1593 * usb_urb_dir_out - check if an URB describes an OUT transfer 1594 * @urb: URB to be checked 1595 * 1596 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1597 * otherwise 0. 1598 */ 1599static inline int usb_urb_dir_out(struct urb *urb) 1600{ 1601 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1602} 1603 1604void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1605 gfp_t mem_flags, dma_addr_t *dma); 1606void usb_free_coherent(struct usb_device *dev, size_t size, 1607 void *addr, dma_addr_t dma); 1608 1609#if 0 1610struct urb *usb_buffer_map(struct urb *urb); 1611void usb_buffer_dmasync(struct urb *urb); 1612void usb_buffer_unmap(struct urb *urb); 1613#endif 1614 1615struct scatterlist; 1616int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1617 struct scatterlist *sg, int nents); 1618#if 0 1619void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1620 struct scatterlist *sg, int n_hw_ents); 1621#endif 1622void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1623 struct scatterlist *sg, int n_hw_ents); 1624 1625/*-------------------------------------------------------------------* 1626 * SYNCHRONOUS CALL SUPPORT * 1627 *-------------------------------------------------------------------*/ 1628 1629extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1630 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1631 void *data, __u16 size, int timeout); 1632extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1633 void *data, int len, int *actual_length, int timeout); 1634extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1635 void *data, int len, int *actual_length, 1636 int timeout); 1637 1638/* wrappers around usb_control_msg() for the most common standard requests */ 1639extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1640 unsigned char descindex, void *buf, int size); 1641extern int usb_get_status(struct usb_device *dev, 1642 int type, int target, void *data); 1643extern int usb_string(struct usb_device *dev, int index, 1644 char *buf, size_t size); 1645 1646/* wrappers that also update important state inside usbcore */ 1647extern int usb_clear_halt(struct usb_device *dev, int pipe); 1648extern int usb_reset_configuration(struct usb_device *dev); 1649extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1650extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1651 1652/* this request isn't really synchronous, but it belongs with the others */ 1653extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1654 1655/* 1656 * timeouts, in milliseconds, used for sending/receiving control messages 1657 * they typically complete within a few frames (msec) after they're issued 1658 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1659 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1660 */ 1661#define USB_CTRL_GET_TIMEOUT 5000 1662#define USB_CTRL_SET_TIMEOUT 5000 1663 1664 1665/** 1666 * struct usb_sg_request - support for scatter/gather I/O 1667 * @status: zero indicates success, else negative errno 1668 * @bytes: counts bytes transferred. 1669 * 1670 * These requests are initialized using usb_sg_init(), and then are used 1671 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1672 * members of the request object aren't for driver access. 1673 * 1674 * The status and bytecount values are valid only after usb_sg_wait() 1675 * returns. If the status is zero, then the bytecount matches the total 1676 * from the request. 1677 * 1678 * After an error completion, drivers may need to clear a halt condition 1679 * on the endpoint. 1680 */ 1681struct usb_sg_request { 1682 int status; 1683 size_t bytes; 1684 1685 /* private: 1686 * members below are private to usbcore, 1687 * and are not provided for driver access! 1688 */ 1689 spinlock_t lock; 1690 1691 struct usb_device *dev; 1692 int pipe; 1693 1694 int entries; 1695 struct urb **urbs; 1696 1697 int count; 1698 struct completion complete; 1699}; 1700 1701int usb_sg_init( 1702 struct usb_sg_request *io, 1703 struct usb_device *dev, 1704 unsigned pipe, 1705 unsigned period, 1706 struct scatterlist *sg, 1707 int nents, 1708 size_t length, 1709 gfp_t mem_flags 1710); 1711void usb_sg_cancel(struct usb_sg_request *io); 1712void usb_sg_wait(struct usb_sg_request *io); 1713 1714 1715/* ----------------------------------------------------------------------- */ 1716 1717/* 1718 * For various legacy reasons, Linux has a small cookie that's paired with 1719 * a struct usb_device to identify an endpoint queue. Queue characteristics 1720 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1721 * an unsigned int encoded as: 1722 * 1723 * - direction: bit 7 (0 = Host-to-Device [Out], 1724 * 1 = Device-to-Host [In] ... 1725 * like endpoint bEndpointAddress) 1726 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1727 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1728 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1729 * 10 = control, 11 = bulk) 1730 * 1731 * Given the device address and endpoint descriptor, pipes are redundant. 1732 */ 1733 1734/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1735/* (yet ... they're the values used by usbfs) */ 1736#define PIPE_ISOCHRONOUS 0 1737#define PIPE_INTERRUPT 1 1738#define PIPE_CONTROL 2 1739#define PIPE_BULK 3 1740 1741#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1742#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1743 1744#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1745#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1746 1747#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1748#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1749#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1750#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1751#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1752 1753static inline unsigned int __create_pipe(struct usb_device *dev, 1754 unsigned int endpoint) 1755{ 1756 return (dev->devnum << 8) | (endpoint << 15); 1757} 1758 1759/* Create various pipes... */ 1760#define usb_sndctrlpipe(dev, endpoint) \ 1761 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1762#define usb_rcvctrlpipe(dev, endpoint) \ 1763 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1764#define usb_sndisocpipe(dev, endpoint) \ 1765 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1766#define usb_rcvisocpipe(dev, endpoint) \ 1767 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1768#define usb_sndbulkpipe(dev, endpoint) \ 1769 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1770#define usb_rcvbulkpipe(dev, endpoint) \ 1771 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1772#define usb_sndintpipe(dev, endpoint) \ 1773 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1774#define usb_rcvintpipe(dev, endpoint) \ 1775 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1776 1777static inline struct usb_host_endpoint * 1778usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1779{ 1780 struct usb_host_endpoint **eps; 1781 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1782 return eps[usb_pipeendpoint(pipe)]; 1783} 1784 1785/*-------------------------------------------------------------------------*/ 1786 1787static inline __u16 1788usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1789{ 1790 struct usb_host_endpoint *ep; 1791 unsigned epnum = usb_pipeendpoint(pipe); 1792 1793 if (is_out) { 1794 WARN_ON(usb_pipein(pipe)); 1795 ep = udev->ep_out[epnum]; 1796 } else { 1797 WARN_ON(usb_pipeout(pipe)); 1798 ep = udev->ep_in[epnum]; 1799 } 1800 if (!ep) 1801 return 0; 1802 1803 /* NOTE: only 0x07ff bits are for packet size... */ 1804 return usb_endpoint_maxp(&ep->desc); 1805} 1806 1807/* ----------------------------------------------------------------------- */ 1808 1809/* translate USB error codes to codes user space understands */ 1810static inline int usb_translate_errors(int error_code) 1811{ 1812 switch (error_code) { 1813 case 0: 1814 case -ENOMEM: 1815 case -ENODEV: 1816 case -EOPNOTSUPP: 1817 return error_code; 1818 default: 1819 return -EIO; 1820 } 1821} 1822 1823/* Events from the usb core */ 1824#define USB_DEVICE_ADD 0x0001 1825#define USB_DEVICE_REMOVE 0x0002 1826#define USB_BUS_ADD 0x0003 1827#define USB_BUS_REMOVE 0x0004 1828extern void usb_register_notify(struct notifier_block *nb); 1829extern void usb_unregister_notify(struct notifier_block *nb); 1830 1831/* debugfs stuff */ 1832extern struct dentry *usb_debug_root; 1833 1834#endif /* __KERNEL__ */ 1835 1836#endif