at v3.11-rc2 116 kB view raw
1/* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22#ifndef __LINUX_SECURITY_H 23#define __LINUX_SECURITY_H 24 25#include <linux/key.h> 26#include <linux/capability.h> 27#include <linux/slab.h> 28#include <linux/err.h> 29#include <linux/string.h> 30 31struct linux_binprm; 32struct cred; 33struct rlimit; 34struct siginfo; 35struct sem_array; 36struct sembuf; 37struct kern_ipc_perm; 38struct audit_context; 39struct super_block; 40struct inode; 41struct dentry; 42struct file; 43struct vfsmount; 44struct path; 45struct qstr; 46struct nameidata; 47struct iattr; 48struct fown_struct; 49struct file_operations; 50struct shmid_kernel; 51struct msg_msg; 52struct msg_queue; 53struct xattr; 54struct xfrm_sec_ctx; 55struct mm_struct; 56 57/* Maximum number of letters for an LSM name string */ 58#define SECURITY_NAME_MAX 10 59 60/* If capable should audit the security request */ 61#define SECURITY_CAP_NOAUDIT 0 62#define SECURITY_CAP_AUDIT 1 63 64/* LSM Agnostic defines for sb_set_mnt_opts */ 65#define SECURITY_LSM_NATIVE_LABELS 1 66 67struct ctl_table; 68struct audit_krule; 69struct user_namespace; 70struct timezone; 71 72/* 73 * These functions are in security/capability.c and are used 74 * as the default capabilities functions 75 */ 76extern int cap_capable(const struct cred *cred, struct user_namespace *ns, 77 int cap, int audit); 78extern int cap_settime(const struct timespec *ts, const struct timezone *tz); 79extern int cap_ptrace_access_check(struct task_struct *child, unsigned int mode); 80extern int cap_ptrace_traceme(struct task_struct *parent); 81extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 82extern int cap_capset(struct cred *new, const struct cred *old, 83 const kernel_cap_t *effective, 84 const kernel_cap_t *inheritable, 85 const kernel_cap_t *permitted); 86extern int cap_bprm_set_creds(struct linux_binprm *bprm); 87extern int cap_bprm_secureexec(struct linux_binprm *bprm); 88extern int cap_inode_setxattr(struct dentry *dentry, const char *name, 89 const void *value, size_t size, int flags); 90extern int cap_inode_removexattr(struct dentry *dentry, const char *name); 91extern int cap_inode_need_killpriv(struct dentry *dentry); 92extern int cap_inode_killpriv(struct dentry *dentry); 93extern int cap_mmap_addr(unsigned long addr); 94extern int cap_mmap_file(struct file *file, unsigned long reqprot, 95 unsigned long prot, unsigned long flags); 96extern int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags); 97extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, 98 unsigned long arg4, unsigned long arg5); 99extern int cap_task_setscheduler(struct task_struct *p); 100extern int cap_task_setioprio(struct task_struct *p, int ioprio); 101extern int cap_task_setnice(struct task_struct *p, int nice); 102extern int cap_vm_enough_memory(struct mm_struct *mm, long pages); 103 104struct msghdr; 105struct sk_buff; 106struct sock; 107struct sockaddr; 108struct socket; 109struct flowi; 110struct dst_entry; 111struct xfrm_selector; 112struct xfrm_policy; 113struct xfrm_state; 114struct xfrm_user_sec_ctx; 115struct seq_file; 116 117extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 118 119void reset_security_ops(void); 120 121#ifdef CONFIG_MMU 122extern unsigned long mmap_min_addr; 123extern unsigned long dac_mmap_min_addr; 124#else 125#define mmap_min_addr 0UL 126#define dac_mmap_min_addr 0UL 127#endif 128 129/* 130 * Values used in the task_security_ops calls 131 */ 132/* setuid or setgid, id0 == uid or gid */ 133#define LSM_SETID_ID 1 134 135/* setreuid or setregid, id0 == real, id1 == eff */ 136#define LSM_SETID_RE 2 137 138/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 139#define LSM_SETID_RES 4 140 141/* setfsuid or setfsgid, id0 == fsuid or fsgid */ 142#define LSM_SETID_FS 8 143 144/* forward declares to avoid warnings */ 145struct sched_param; 146struct request_sock; 147 148/* bprm->unsafe reasons */ 149#define LSM_UNSAFE_SHARE 1 150#define LSM_UNSAFE_PTRACE 2 151#define LSM_UNSAFE_PTRACE_CAP 4 152#define LSM_UNSAFE_NO_NEW_PRIVS 8 153 154#ifdef CONFIG_MMU 155extern int mmap_min_addr_handler(struct ctl_table *table, int write, 156 void __user *buffer, size_t *lenp, loff_t *ppos); 157#endif 158 159/* security_inode_init_security callback function to write xattrs */ 160typedef int (*initxattrs) (struct inode *inode, 161 const struct xattr *xattr_array, void *fs_data); 162 163#ifdef CONFIG_SECURITY 164 165struct security_mnt_opts { 166 char **mnt_opts; 167 int *mnt_opts_flags; 168 int num_mnt_opts; 169}; 170 171static inline void security_init_mnt_opts(struct security_mnt_opts *opts) 172{ 173 opts->mnt_opts = NULL; 174 opts->mnt_opts_flags = NULL; 175 opts->num_mnt_opts = 0; 176} 177 178static inline void security_free_mnt_opts(struct security_mnt_opts *opts) 179{ 180 int i; 181 if (opts->mnt_opts) 182 for (i = 0; i < opts->num_mnt_opts; i++) 183 kfree(opts->mnt_opts[i]); 184 kfree(opts->mnt_opts); 185 opts->mnt_opts = NULL; 186 kfree(opts->mnt_opts_flags); 187 opts->mnt_opts_flags = NULL; 188 opts->num_mnt_opts = 0; 189} 190 191/** 192 * struct security_operations - main security structure 193 * 194 * Security module identifier. 195 * 196 * @name: 197 * A string that acts as a unique identifier for the LSM with max number 198 * of characters = SECURITY_NAME_MAX. 199 * 200 * Security hooks for program execution operations. 201 * 202 * @bprm_set_creds: 203 * Save security information in the bprm->security field, typically based 204 * on information about the bprm->file, for later use by the apply_creds 205 * hook. This hook may also optionally check permissions (e.g. for 206 * transitions between security domains). 207 * This hook may be called multiple times during a single execve, e.g. for 208 * interpreters. The hook can tell whether it has already been called by 209 * checking to see if @bprm->security is non-NULL. If so, then the hook 210 * may decide either to retain the security information saved earlier or 211 * to replace it. 212 * @bprm contains the linux_binprm structure. 213 * Return 0 if the hook is successful and permission is granted. 214 * @bprm_check_security: 215 * This hook mediates the point when a search for a binary handler will 216 * begin. It allows a check the @bprm->security value which is set in the 217 * preceding set_creds call. The primary difference from set_creds is 218 * that the argv list and envp list are reliably available in @bprm. This 219 * hook may be called multiple times during a single execve; and in each 220 * pass set_creds is called first. 221 * @bprm contains the linux_binprm structure. 222 * Return 0 if the hook is successful and permission is granted. 223 * @bprm_committing_creds: 224 * Prepare to install the new security attributes of a process being 225 * transformed by an execve operation, based on the old credentials 226 * pointed to by @current->cred and the information set in @bprm->cred by 227 * the bprm_set_creds hook. @bprm points to the linux_binprm structure. 228 * This hook is a good place to perform state changes on the process such 229 * as closing open file descriptors to which access will no longer be 230 * granted when the attributes are changed. This is called immediately 231 * before commit_creds(). 232 * @bprm_committed_creds: 233 * Tidy up after the installation of the new security attributes of a 234 * process being transformed by an execve operation. The new credentials 235 * have, by this point, been set to @current->cred. @bprm points to the 236 * linux_binprm structure. This hook is a good place to perform state 237 * changes on the process such as clearing out non-inheritable signal 238 * state. This is called immediately after commit_creds(). 239 * @bprm_secureexec: 240 * Return a boolean value (0 or 1) indicating whether a "secure exec" 241 * is required. The flag is passed in the auxiliary table 242 * on the initial stack to the ELF interpreter to indicate whether libc 243 * should enable secure mode. 244 * @bprm contains the linux_binprm structure. 245 * 246 * Security hooks for filesystem operations. 247 * 248 * @sb_alloc_security: 249 * Allocate and attach a security structure to the sb->s_security field. 250 * The s_security field is initialized to NULL when the structure is 251 * allocated. 252 * @sb contains the super_block structure to be modified. 253 * Return 0 if operation was successful. 254 * @sb_free_security: 255 * Deallocate and clear the sb->s_security field. 256 * @sb contains the super_block structure to be modified. 257 * @sb_statfs: 258 * Check permission before obtaining filesystem statistics for the @mnt 259 * mountpoint. 260 * @dentry is a handle on the superblock for the filesystem. 261 * Return 0 if permission is granted. 262 * @sb_mount: 263 * Check permission before an object specified by @dev_name is mounted on 264 * the mount point named by @nd. For an ordinary mount, @dev_name 265 * identifies a device if the file system type requires a device. For a 266 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 267 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 268 * pathname of the object being mounted. 269 * @dev_name contains the name for object being mounted. 270 * @path contains the path for mount point object. 271 * @type contains the filesystem type. 272 * @flags contains the mount flags. 273 * @data contains the filesystem-specific data. 274 * Return 0 if permission is granted. 275 * @sb_copy_data: 276 * Allow mount option data to be copied prior to parsing by the filesystem, 277 * so that the security module can extract security-specific mount 278 * options cleanly (a filesystem may modify the data e.g. with strsep()). 279 * This also allows the original mount data to be stripped of security- 280 * specific options to avoid having to make filesystems aware of them. 281 * @type the type of filesystem being mounted. 282 * @orig the original mount data copied from userspace. 283 * @copy copied data which will be passed to the security module. 284 * Returns 0 if the copy was successful. 285 * @sb_remount: 286 * Extracts security system specific mount options and verifies no changes 287 * are being made to those options. 288 * @sb superblock being remounted 289 * @data contains the filesystem-specific data. 290 * Return 0 if permission is granted. 291 * @sb_umount: 292 * Check permission before the @mnt file system is unmounted. 293 * @mnt contains the mounted file system. 294 * @flags contains the unmount flags, e.g. MNT_FORCE. 295 * Return 0 if permission is granted. 296 * @sb_pivotroot: 297 * Check permission before pivoting the root filesystem. 298 * @old_path contains the path for the new location of the current root (put_old). 299 * @new_path contains the path for the new root (new_root). 300 * Return 0 if permission is granted. 301 * @sb_set_mnt_opts: 302 * Set the security relevant mount options used for a superblock 303 * @sb the superblock to set security mount options for 304 * @opts binary data structure containing all lsm mount data 305 * @sb_clone_mnt_opts: 306 * Copy all security options from a given superblock to another 307 * @oldsb old superblock which contain information to clone 308 * @newsb new superblock which needs filled in 309 * @sb_parse_opts_str: 310 * Parse a string of security data filling in the opts structure 311 * @options string containing all mount options known by the LSM 312 * @opts binary data structure usable by the LSM 313 * @dentry_init_security: 314 * Compute a context for a dentry as the inode is not yet available 315 * since NFSv4 has no label backed by an EA anyway. 316 * @dentry dentry to use in calculating the context. 317 * @mode mode used to determine resource type. 318 * @name name of the last path component used to create file 319 * @ctx pointer to place the pointer to the resulting context in. 320 * @ctxlen point to place the length of the resulting context. 321 * 322 * 323 * Security hooks for inode operations. 324 * 325 * @inode_alloc_security: 326 * Allocate and attach a security structure to @inode->i_security. The 327 * i_security field is initialized to NULL when the inode structure is 328 * allocated. 329 * @inode contains the inode structure. 330 * Return 0 if operation was successful. 331 * @inode_free_security: 332 * @inode contains the inode structure. 333 * Deallocate the inode security structure and set @inode->i_security to 334 * NULL. 335 * @inode_init_security: 336 * Obtain the security attribute name suffix and value to set on a newly 337 * created inode and set up the incore security field for the new inode. 338 * This hook is called by the fs code as part of the inode creation 339 * transaction and provides for atomic labeling of the inode, unlike 340 * the post_create/mkdir/... hooks called by the VFS. The hook function 341 * is expected to allocate the name and value via kmalloc, with the caller 342 * being responsible for calling kfree after using them. 343 * If the security module does not use security attributes or does 344 * not wish to put a security attribute on this particular inode, 345 * then it should return -EOPNOTSUPP to skip this processing. 346 * @inode contains the inode structure of the newly created inode. 347 * @dir contains the inode structure of the parent directory. 348 * @qstr contains the last path component of the new object 349 * @name will be set to the allocated name suffix (e.g. selinux). 350 * @value will be set to the allocated attribute value. 351 * @len will be set to the length of the value. 352 * Returns 0 if @name and @value have been successfully set, 353 * -EOPNOTSUPP if no security attribute is needed, or 354 * -ENOMEM on memory allocation failure. 355 * @inode_create: 356 * Check permission to create a regular file. 357 * @dir contains inode structure of the parent of the new file. 358 * @dentry contains the dentry structure for the file to be created. 359 * @mode contains the file mode of the file to be created. 360 * Return 0 if permission is granted. 361 * @inode_link: 362 * Check permission before creating a new hard link to a file. 363 * @old_dentry contains the dentry structure for an existing link to the file. 364 * @dir contains the inode structure of the parent directory of the new link. 365 * @new_dentry contains the dentry structure for the new link. 366 * Return 0 if permission is granted. 367 * @path_link: 368 * Check permission before creating a new hard link to a file. 369 * @old_dentry contains the dentry structure for an existing link 370 * to the file. 371 * @new_dir contains the path structure of the parent directory of 372 * the new link. 373 * @new_dentry contains the dentry structure for the new link. 374 * Return 0 if permission is granted. 375 * @inode_unlink: 376 * Check the permission to remove a hard link to a file. 377 * @dir contains the inode structure of parent directory of the file. 378 * @dentry contains the dentry structure for file to be unlinked. 379 * Return 0 if permission is granted. 380 * @path_unlink: 381 * Check the permission to remove a hard link to a file. 382 * @dir contains the path structure of parent directory of the file. 383 * @dentry contains the dentry structure for file to be unlinked. 384 * Return 0 if permission is granted. 385 * @inode_symlink: 386 * Check the permission to create a symbolic link to a file. 387 * @dir contains the inode structure of parent directory of the symbolic link. 388 * @dentry contains the dentry structure of the symbolic link. 389 * @old_name contains the pathname of file. 390 * Return 0 if permission is granted. 391 * @path_symlink: 392 * Check the permission to create a symbolic link to a file. 393 * @dir contains the path structure of parent directory of 394 * the symbolic link. 395 * @dentry contains the dentry structure of the symbolic link. 396 * @old_name contains the pathname of file. 397 * Return 0 if permission is granted. 398 * @inode_mkdir: 399 * Check permissions to create a new directory in the existing directory 400 * associated with inode structure @dir. 401 * @dir contains the inode structure of parent of the directory to be created. 402 * @dentry contains the dentry structure of new directory. 403 * @mode contains the mode of new directory. 404 * Return 0 if permission is granted. 405 * @path_mkdir: 406 * Check permissions to create a new directory in the existing directory 407 * associated with path structure @path. 408 * @dir contains the path structure of parent of the directory 409 * to be created. 410 * @dentry contains the dentry structure of new directory. 411 * @mode contains the mode of new directory. 412 * Return 0 if permission is granted. 413 * @inode_rmdir: 414 * Check the permission to remove a directory. 415 * @dir contains the inode structure of parent of the directory to be removed. 416 * @dentry contains the dentry structure of directory to be removed. 417 * Return 0 if permission is granted. 418 * @path_rmdir: 419 * Check the permission to remove a directory. 420 * @dir contains the path structure of parent of the directory to be 421 * removed. 422 * @dentry contains the dentry structure of directory to be removed. 423 * Return 0 if permission is granted. 424 * @inode_mknod: 425 * Check permissions when creating a special file (or a socket or a fifo 426 * file created via the mknod system call). Note that if mknod operation 427 * is being done for a regular file, then the create hook will be called 428 * and not this hook. 429 * @dir contains the inode structure of parent of the new file. 430 * @dentry contains the dentry structure of the new file. 431 * @mode contains the mode of the new file. 432 * @dev contains the device number. 433 * Return 0 if permission is granted. 434 * @path_mknod: 435 * Check permissions when creating a file. Note that this hook is called 436 * even if mknod operation is being done for a regular file. 437 * @dir contains the path structure of parent of the new file. 438 * @dentry contains the dentry structure of the new file. 439 * @mode contains the mode of the new file. 440 * @dev contains the undecoded device number. Use new_decode_dev() to get 441 * the decoded device number. 442 * Return 0 if permission is granted. 443 * @inode_rename: 444 * Check for permission to rename a file or directory. 445 * @old_dir contains the inode structure for parent of the old link. 446 * @old_dentry contains the dentry structure of the old link. 447 * @new_dir contains the inode structure for parent of the new link. 448 * @new_dentry contains the dentry structure of the new link. 449 * Return 0 if permission is granted. 450 * @path_rename: 451 * Check for permission to rename a file or directory. 452 * @old_dir contains the path structure for parent of the old link. 453 * @old_dentry contains the dentry structure of the old link. 454 * @new_dir contains the path structure for parent of the new link. 455 * @new_dentry contains the dentry structure of the new link. 456 * Return 0 if permission is granted. 457 * @path_chmod: 458 * Check for permission to change DAC's permission of a file or directory. 459 * @dentry contains the dentry structure. 460 * @mnt contains the vfsmnt structure. 461 * @mode contains DAC's mode. 462 * Return 0 if permission is granted. 463 * @path_chown: 464 * Check for permission to change owner/group of a file or directory. 465 * @path contains the path structure. 466 * @uid contains new owner's ID. 467 * @gid contains new group's ID. 468 * Return 0 if permission is granted. 469 * @path_chroot: 470 * Check for permission to change root directory. 471 * @path contains the path structure. 472 * Return 0 if permission is granted. 473 * @inode_readlink: 474 * Check the permission to read the symbolic link. 475 * @dentry contains the dentry structure for the file link. 476 * Return 0 if permission is granted. 477 * @inode_follow_link: 478 * Check permission to follow a symbolic link when looking up a pathname. 479 * @dentry contains the dentry structure for the link. 480 * @nd contains the nameidata structure for the parent directory. 481 * Return 0 if permission is granted. 482 * @inode_permission: 483 * Check permission before accessing an inode. This hook is called by the 484 * existing Linux permission function, so a security module can use it to 485 * provide additional checking for existing Linux permission checks. 486 * Notice that this hook is called when a file is opened (as well as many 487 * other operations), whereas the file_security_ops permission hook is 488 * called when the actual read/write operations are performed. 489 * @inode contains the inode structure to check. 490 * @mask contains the permission mask. 491 * Return 0 if permission is granted. 492 * @inode_setattr: 493 * Check permission before setting file attributes. Note that the kernel 494 * call to notify_change is performed from several locations, whenever 495 * file attributes change (such as when a file is truncated, chown/chmod 496 * operations, transferring disk quotas, etc). 497 * @dentry contains the dentry structure for the file. 498 * @attr is the iattr structure containing the new file attributes. 499 * Return 0 if permission is granted. 500 * @path_truncate: 501 * Check permission before truncating a file. 502 * @path contains the path structure for the file. 503 * Return 0 if permission is granted. 504 * @inode_getattr: 505 * Check permission before obtaining file attributes. 506 * @mnt is the vfsmount where the dentry was looked up 507 * @dentry contains the dentry structure for the file. 508 * Return 0 if permission is granted. 509 * @inode_setxattr: 510 * Check permission before setting the extended attributes 511 * @value identified by @name for @dentry. 512 * Return 0 if permission is granted. 513 * @inode_post_setxattr: 514 * Update inode security field after successful setxattr operation. 515 * @value identified by @name for @dentry. 516 * @inode_getxattr: 517 * Check permission before obtaining the extended attributes 518 * identified by @name for @dentry. 519 * Return 0 if permission is granted. 520 * @inode_listxattr: 521 * Check permission before obtaining the list of extended attribute 522 * names for @dentry. 523 * Return 0 if permission is granted. 524 * @inode_removexattr: 525 * Check permission before removing the extended attribute 526 * identified by @name for @dentry. 527 * Return 0 if permission is granted. 528 * @inode_getsecurity: 529 * Retrieve a copy of the extended attribute representation of the 530 * security label associated with @name for @inode via @buffer. Note that 531 * @name is the remainder of the attribute name after the security prefix 532 * has been removed. @alloc is used to specify of the call should return a 533 * value via the buffer or just the value length Return size of buffer on 534 * success. 535 * @inode_setsecurity: 536 * Set the security label associated with @name for @inode from the 537 * extended attribute value @value. @size indicates the size of the 538 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 539 * Note that @name is the remainder of the attribute name after the 540 * security. prefix has been removed. 541 * Return 0 on success. 542 * @inode_listsecurity: 543 * Copy the extended attribute names for the security labels 544 * associated with @inode into @buffer. The maximum size of @buffer 545 * is specified by @buffer_size. @buffer may be NULL to request 546 * the size of the buffer required. 547 * Returns number of bytes used/required on success. 548 * @inode_need_killpriv: 549 * Called when an inode has been changed. 550 * @dentry is the dentry being changed. 551 * Return <0 on error to abort the inode change operation. 552 * Return 0 if inode_killpriv does not need to be called. 553 * Return >0 if inode_killpriv does need to be called. 554 * @inode_killpriv: 555 * The setuid bit is being removed. Remove similar security labels. 556 * Called with the dentry->d_inode->i_mutex held. 557 * @dentry is the dentry being changed. 558 * Return 0 on success. If error is returned, then the operation 559 * causing setuid bit removal is failed. 560 * @inode_getsecid: 561 * Get the secid associated with the node. 562 * @inode contains a pointer to the inode. 563 * @secid contains a pointer to the location where result will be saved. 564 * In case of failure, @secid will be set to zero. 565 * 566 * Security hooks for file operations 567 * 568 * @file_permission: 569 * Check file permissions before accessing an open file. This hook is 570 * called by various operations that read or write files. A security 571 * module can use this hook to perform additional checking on these 572 * operations, e.g. to revalidate permissions on use to support privilege 573 * bracketing or policy changes. Notice that this hook is used when the 574 * actual read/write operations are performed, whereas the 575 * inode_security_ops hook is called when a file is opened (as well as 576 * many other operations). 577 * Caveat: Although this hook can be used to revalidate permissions for 578 * various system call operations that read or write files, it does not 579 * address the revalidation of permissions for memory-mapped files. 580 * Security modules must handle this separately if they need such 581 * revalidation. 582 * @file contains the file structure being accessed. 583 * @mask contains the requested permissions. 584 * Return 0 if permission is granted. 585 * @file_alloc_security: 586 * Allocate and attach a security structure to the file->f_security field. 587 * The security field is initialized to NULL when the structure is first 588 * created. 589 * @file contains the file structure to secure. 590 * Return 0 if the hook is successful and permission is granted. 591 * @file_free_security: 592 * Deallocate and free any security structures stored in file->f_security. 593 * @file contains the file structure being modified. 594 * @file_ioctl: 595 * @file contains the file structure. 596 * @cmd contains the operation to perform. 597 * @arg contains the operational arguments. 598 * Check permission for an ioctl operation on @file. Note that @arg 599 * sometimes represents a user space pointer; in other cases, it may be a 600 * simple integer value. When @arg represents a user space pointer, it 601 * should never be used by the security module. 602 * Return 0 if permission is granted. 603 * @mmap_addr : 604 * Check permissions for a mmap operation at @addr. 605 * @addr contains virtual address that will be used for the operation. 606 * Return 0 if permission is granted. 607 * @mmap_file : 608 * Check permissions for a mmap operation. The @file may be NULL, e.g. 609 * if mapping anonymous memory. 610 * @file contains the file structure for file to map (may be NULL). 611 * @reqprot contains the protection requested by the application. 612 * @prot contains the protection that will be applied by the kernel. 613 * @flags contains the operational flags. 614 * Return 0 if permission is granted. 615 * @file_mprotect: 616 * Check permissions before changing memory access permissions. 617 * @vma contains the memory region to modify. 618 * @reqprot contains the protection requested by the application. 619 * @prot contains the protection that will be applied by the kernel. 620 * Return 0 if permission is granted. 621 * @file_lock: 622 * Check permission before performing file locking operations. 623 * Note: this hook mediates both flock and fcntl style locks. 624 * @file contains the file structure. 625 * @cmd contains the posix-translated lock operation to perform 626 * (e.g. F_RDLCK, F_WRLCK). 627 * Return 0 if permission is granted. 628 * @file_fcntl: 629 * Check permission before allowing the file operation specified by @cmd 630 * from being performed on the file @file. Note that @arg sometimes 631 * represents a user space pointer; in other cases, it may be a simple 632 * integer value. When @arg represents a user space pointer, it should 633 * never be used by the security module. 634 * @file contains the file structure. 635 * @cmd contains the operation to be performed. 636 * @arg contains the operational arguments. 637 * Return 0 if permission is granted. 638 * @file_set_fowner: 639 * Save owner security information (typically from current->security) in 640 * file->f_security for later use by the send_sigiotask hook. 641 * @file contains the file structure to update. 642 * Return 0 on success. 643 * @file_send_sigiotask: 644 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 645 * process @tsk. Note that this hook is sometimes called from interrupt. 646 * Note that the fown_struct, @fown, is never outside the context of a 647 * struct file, so the file structure (and associated security information) 648 * can always be obtained: 649 * container_of(fown, struct file, f_owner) 650 * @tsk contains the structure of task receiving signal. 651 * @fown contains the file owner information. 652 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 653 * Return 0 if permission is granted. 654 * @file_receive: 655 * This hook allows security modules to control the ability of a process 656 * to receive an open file descriptor via socket IPC. 657 * @file contains the file structure being received. 658 * Return 0 if permission is granted. 659 * @file_open 660 * Save open-time permission checking state for later use upon 661 * file_permission, and recheck access if anything has changed 662 * since inode_permission. 663 * 664 * Security hooks for task operations. 665 * 666 * @task_create: 667 * Check permission before creating a child process. See the clone(2) 668 * manual page for definitions of the @clone_flags. 669 * @clone_flags contains the flags indicating what should be shared. 670 * Return 0 if permission is granted. 671 * @task_free: 672 * @task task being freed 673 * Handle release of task-related resources. (Note that this can be called 674 * from interrupt context.) 675 * @cred_alloc_blank: 676 * @cred points to the credentials. 677 * @gfp indicates the atomicity of any memory allocations. 678 * Only allocate sufficient memory and attach to @cred such that 679 * cred_transfer() will not get ENOMEM. 680 * @cred_free: 681 * @cred points to the credentials. 682 * Deallocate and clear the cred->security field in a set of credentials. 683 * @cred_prepare: 684 * @new points to the new credentials. 685 * @old points to the original credentials. 686 * @gfp indicates the atomicity of any memory allocations. 687 * Prepare a new set of credentials by copying the data from the old set. 688 * @cred_transfer: 689 * @new points to the new credentials. 690 * @old points to the original credentials. 691 * Transfer data from original creds to new creds 692 * @kernel_act_as: 693 * Set the credentials for a kernel service to act as (subjective context). 694 * @new points to the credentials to be modified. 695 * @secid specifies the security ID to be set 696 * The current task must be the one that nominated @secid. 697 * Return 0 if successful. 698 * @kernel_create_files_as: 699 * Set the file creation context in a set of credentials to be the same as 700 * the objective context of the specified inode. 701 * @new points to the credentials to be modified. 702 * @inode points to the inode to use as a reference. 703 * The current task must be the one that nominated @inode. 704 * Return 0 if successful. 705 * @kernel_module_request: 706 * Ability to trigger the kernel to automatically upcall to userspace for 707 * userspace to load a kernel module with the given name. 708 * @kmod_name name of the module requested by the kernel 709 * Return 0 if successful. 710 * @kernel_module_from_file: 711 * Load a kernel module from userspace. 712 * @file contains the file structure pointing to the file containing 713 * the kernel module to load. If the module is being loaded from a blob, 714 * this argument will be NULL. 715 * Return 0 if permission is granted. 716 * @task_fix_setuid: 717 * Update the module's state after setting one or more of the user 718 * identity attributes of the current process. The @flags parameter 719 * indicates which of the set*uid system calls invoked this hook. If 720 * @new is the set of credentials that will be installed. Modifications 721 * should be made to this rather than to @current->cred. 722 * @old is the set of credentials that are being replaces 723 * @flags contains one of the LSM_SETID_* values. 724 * Return 0 on success. 725 * @task_setpgid: 726 * Check permission before setting the process group identifier of the 727 * process @p to @pgid. 728 * @p contains the task_struct for process being modified. 729 * @pgid contains the new pgid. 730 * Return 0 if permission is granted. 731 * @task_getpgid: 732 * Check permission before getting the process group identifier of the 733 * process @p. 734 * @p contains the task_struct for the process. 735 * Return 0 if permission is granted. 736 * @task_getsid: 737 * Check permission before getting the session identifier of the process 738 * @p. 739 * @p contains the task_struct for the process. 740 * Return 0 if permission is granted. 741 * @task_getsecid: 742 * Retrieve the security identifier of the process @p. 743 * @p contains the task_struct for the process and place is into @secid. 744 * In case of failure, @secid will be set to zero. 745 * 746 * @task_setnice: 747 * Check permission before setting the nice value of @p to @nice. 748 * @p contains the task_struct of process. 749 * @nice contains the new nice value. 750 * Return 0 if permission is granted. 751 * @task_setioprio 752 * Check permission before setting the ioprio value of @p to @ioprio. 753 * @p contains the task_struct of process. 754 * @ioprio contains the new ioprio value 755 * Return 0 if permission is granted. 756 * @task_getioprio 757 * Check permission before getting the ioprio value of @p. 758 * @p contains the task_struct of process. 759 * Return 0 if permission is granted. 760 * @task_setrlimit: 761 * Check permission before setting the resource limits of the current 762 * process for @resource to @new_rlim. The old resource limit values can 763 * be examined by dereferencing (current->signal->rlim + resource). 764 * @resource contains the resource whose limit is being set. 765 * @new_rlim contains the new limits for @resource. 766 * Return 0 if permission is granted. 767 * @task_setscheduler: 768 * Check permission before setting scheduling policy and/or parameters of 769 * process @p based on @policy and @lp. 770 * @p contains the task_struct for process. 771 * @policy contains the scheduling policy. 772 * @lp contains the scheduling parameters. 773 * Return 0 if permission is granted. 774 * @task_getscheduler: 775 * Check permission before obtaining scheduling information for process 776 * @p. 777 * @p contains the task_struct for process. 778 * Return 0 if permission is granted. 779 * @task_movememory 780 * Check permission before moving memory owned by process @p. 781 * @p contains the task_struct for process. 782 * Return 0 if permission is granted. 783 * @task_kill: 784 * Check permission before sending signal @sig to @p. @info can be NULL, 785 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 786 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 787 * from the kernel and should typically be permitted. 788 * SIGIO signals are handled separately by the send_sigiotask hook in 789 * file_security_ops. 790 * @p contains the task_struct for process. 791 * @info contains the signal information. 792 * @sig contains the signal value. 793 * @secid contains the sid of the process where the signal originated 794 * Return 0 if permission is granted. 795 * @task_wait: 796 * Check permission before allowing a process to reap a child process @p 797 * and collect its status information. 798 * @p contains the task_struct for process. 799 * Return 0 if permission is granted. 800 * @task_prctl: 801 * Check permission before performing a process control operation on the 802 * current process. 803 * @option contains the operation. 804 * @arg2 contains a argument. 805 * @arg3 contains a argument. 806 * @arg4 contains a argument. 807 * @arg5 contains a argument. 808 * Return -ENOSYS if no-one wanted to handle this op, any other value to 809 * cause prctl() to return immediately with that value. 810 * @task_to_inode: 811 * Set the security attributes for an inode based on an associated task's 812 * security attributes, e.g. for /proc/pid inodes. 813 * @p contains the task_struct for the task. 814 * @inode contains the inode structure for the inode. 815 * 816 * Security hooks for Netlink messaging. 817 * 818 * @netlink_send: 819 * Save security information for a netlink message so that permission 820 * checking can be performed when the message is processed. The security 821 * information can be saved using the eff_cap field of the 822 * netlink_skb_parms structure. Also may be used to provide fine 823 * grained control over message transmission. 824 * @sk associated sock of task sending the message. 825 * @skb contains the sk_buff structure for the netlink message. 826 * Return 0 if the information was successfully saved and message 827 * is allowed to be transmitted. 828 * 829 * Security hooks for Unix domain networking. 830 * 831 * @unix_stream_connect: 832 * Check permissions before establishing a Unix domain stream connection 833 * between @sock and @other. 834 * @sock contains the sock structure. 835 * @other contains the peer sock structure. 836 * @newsk contains the new sock structure. 837 * Return 0 if permission is granted. 838 * @unix_may_send: 839 * Check permissions before connecting or sending datagrams from @sock to 840 * @other. 841 * @sock contains the socket structure. 842 * @other contains the peer socket structure. 843 * Return 0 if permission is granted. 844 * 845 * The @unix_stream_connect and @unix_may_send hooks were necessary because 846 * Linux provides an alternative to the conventional file name space for Unix 847 * domain sockets. Whereas binding and connecting to sockets in the file name 848 * space is mediated by the typical file permissions (and caught by the mknod 849 * and permission hooks in inode_security_ops), binding and connecting to 850 * sockets in the abstract name space is completely unmediated. Sufficient 851 * control of Unix domain sockets in the abstract name space isn't possible 852 * using only the socket layer hooks, since we need to know the actual target 853 * socket, which is not looked up until we are inside the af_unix code. 854 * 855 * Security hooks for socket operations. 856 * 857 * @socket_create: 858 * Check permissions prior to creating a new socket. 859 * @family contains the requested protocol family. 860 * @type contains the requested communications type. 861 * @protocol contains the requested protocol. 862 * @kern set to 1 if a kernel socket. 863 * Return 0 if permission is granted. 864 * @socket_post_create: 865 * This hook allows a module to update or allocate a per-socket security 866 * structure. Note that the security field was not added directly to the 867 * socket structure, but rather, the socket security information is stored 868 * in the associated inode. Typically, the inode alloc_security hook will 869 * allocate and and attach security information to 870 * sock->inode->i_security. This hook may be used to update the 871 * sock->inode->i_security field with additional information that wasn't 872 * available when the inode was allocated. 873 * @sock contains the newly created socket structure. 874 * @family contains the requested protocol family. 875 * @type contains the requested communications type. 876 * @protocol contains the requested protocol. 877 * @kern set to 1 if a kernel socket. 878 * @socket_bind: 879 * Check permission before socket protocol layer bind operation is 880 * performed and the socket @sock is bound to the address specified in the 881 * @address parameter. 882 * @sock contains the socket structure. 883 * @address contains the address to bind to. 884 * @addrlen contains the length of address. 885 * Return 0 if permission is granted. 886 * @socket_connect: 887 * Check permission before socket protocol layer connect operation 888 * attempts to connect socket @sock to a remote address, @address. 889 * @sock contains the socket structure. 890 * @address contains the address of remote endpoint. 891 * @addrlen contains the length of address. 892 * Return 0 if permission is granted. 893 * @socket_listen: 894 * Check permission before socket protocol layer listen operation. 895 * @sock contains the socket structure. 896 * @backlog contains the maximum length for the pending connection queue. 897 * Return 0 if permission is granted. 898 * @socket_accept: 899 * Check permission before accepting a new connection. Note that the new 900 * socket, @newsock, has been created and some information copied to it, 901 * but the accept operation has not actually been performed. 902 * @sock contains the listening socket structure. 903 * @newsock contains the newly created server socket for connection. 904 * Return 0 if permission is granted. 905 * @socket_sendmsg: 906 * Check permission before transmitting a message to another socket. 907 * @sock contains the socket structure. 908 * @msg contains the message to be transmitted. 909 * @size contains the size of message. 910 * Return 0 if permission is granted. 911 * @socket_recvmsg: 912 * Check permission before receiving a message from a socket. 913 * @sock contains the socket structure. 914 * @msg contains the message structure. 915 * @size contains the size of message structure. 916 * @flags contains the operational flags. 917 * Return 0 if permission is granted. 918 * @socket_getsockname: 919 * Check permission before the local address (name) of the socket object 920 * @sock is retrieved. 921 * @sock contains the socket structure. 922 * Return 0 if permission is granted. 923 * @socket_getpeername: 924 * Check permission before the remote address (name) of a socket object 925 * @sock is retrieved. 926 * @sock contains the socket structure. 927 * Return 0 if permission is granted. 928 * @socket_getsockopt: 929 * Check permissions before retrieving the options associated with socket 930 * @sock. 931 * @sock contains the socket structure. 932 * @level contains the protocol level to retrieve option from. 933 * @optname contains the name of option to retrieve. 934 * Return 0 if permission is granted. 935 * @socket_setsockopt: 936 * Check permissions before setting the options associated with socket 937 * @sock. 938 * @sock contains the socket structure. 939 * @level contains the protocol level to set options for. 940 * @optname contains the name of the option to set. 941 * Return 0 if permission is granted. 942 * @socket_shutdown: 943 * Checks permission before all or part of a connection on the socket 944 * @sock is shut down. 945 * @sock contains the socket structure. 946 * @how contains the flag indicating how future sends and receives are handled. 947 * Return 0 if permission is granted. 948 * @socket_sock_rcv_skb: 949 * Check permissions on incoming network packets. This hook is distinct 950 * from Netfilter's IP input hooks since it is the first time that the 951 * incoming sk_buff @skb has been associated with a particular socket, @sk. 952 * Must not sleep inside this hook because some callers hold spinlocks. 953 * @sk contains the sock (not socket) associated with the incoming sk_buff. 954 * @skb contains the incoming network data. 955 * @socket_getpeersec_stream: 956 * This hook allows the security module to provide peer socket security 957 * state for unix or connected tcp sockets to userspace via getsockopt 958 * SO_GETPEERSEC. For tcp sockets this can be meaningful if the 959 * socket is associated with an ipsec SA. 960 * @sock is the local socket. 961 * @optval userspace memory where the security state is to be copied. 962 * @optlen userspace int where the module should copy the actual length 963 * of the security state. 964 * @len as input is the maximum length to copy to userspace provided 965 * by the caller. 966 * Return 0 if all is well, otherwise, typical getsockopt return 967 * values. 968 * @socket_getpeersec_dgram: 969 * This hook allows the security module to provide peer socket security 970 * state for udp sockets on a per-packet basis to userspace via 971 * getsockopt SO_GETPEERSEC. The application must first have indicated 972 * the IP_PASSSEC option via getsockopt. It can then retrieve the 973 * security state returned by this hook for a packet via the SCM_SECURITY 974 * ancillary message type. 975 * @skb is the skbuff for the packet being queried 976 * @secdata is a pointer to a buffer in which to copy the security data 977 * @seclen is the maximum length for @secdata 978 * Return 0 on success, error on failure. 979 * @sk_alloc_security: 980 * Allocate and attach a security structure to the sk->sk_security field, 981 * which is used to copy security attributes between local stream sockets. 982 * @sk_free_security: 983 * Deallocate security structure. 984 * @sk_clone_security: 985 * Clone/copy security structure. 986 * @sk_getsecid: 987 * Retrieve the LSM-specific secid for the sock to enable caching of network 988 * authorizations. 989 * @sock_graft: 990 * Sets the socket's isec sid to the sock's sid. 991 * @inet_conn_request: 992 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. 993 * @inet_csk_clone: 994 * Sets the new child socket's sid to the openreq sid. 995 * @inet_conn_established: 996 * Sets the connection's peersid to the secmark on skb. 997 * @secmark_relabel_packet: 998 * check if the process should be allowed to relabel packets to the given secid 999 * @security_secmark_refcount_inc 1000 * tells the LSM to increment the number of secmark labeling rules loaded 1001 * @security_secmark_refcount_dec 1002 * tells the LSM to decrement the number of secmark labeling rules loaded 1003 * @req_classify_flow: 1004 * Sets the flow's sid to the openreq sid. 1005 * @tun_dev_alloc_security: 1006 * This hook allows a module to allocate a security structure for a TUN 1007 * device. 1008 * @security pointer to a security structure pointer. 1009 * Returns a zero on success, negative values on failure. 1010 * @tun_dev_free_security: 1011 * This hook allows a module to free the security structure for a TUN 1012 * device. 1013 * @security pointer to the TUN device's security structure 1014 * @tun_dev_create: 1015 * Check permissions prior to creating a new TUN device. 1016 * @tun_dev_attach_queue: 1017 * Check permissions prior to attaching to a TUN device queue. 1018 * @security pointer to the TUN device's security structure. 1019 * @tun_dev_attach: 1020 * This hook can be used by the module to update any security state 1021 * associated with the TUN device's sock structure. 1022 * @sk contains the existing sock structure. 1023 * @security pointer to the TUN device's security structure. 1024 * @tun_dev_open: 1025 * This hook can be used by the module to update any security state 1026 * associated with the TUN device's security structure. 1027 * @security pointer to the TUN devices's security structure. 1028 * @skb_owned_by: 1029 * This hook sets the packet's owning sock. 1030 * @skb is the packet. 1031 * @sk the sock which owns the packet. 1032 * 1033 * Security hooks for XFRM operations. 1034 * 1035 * @xfrm_policy_alloc_security: 1036 * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy 1037 * Database used by the XFRM system. 1038 * @sec_ctx contains the security context information being provided by 1039 * the user-level policy update program (e.g., setkey). 1040 * Allocate a security structure to the xp->security field; the security 1041 * field is initialized to NULL when the xfrm_policy is allocated. 1042 * Return 0 if operation was successful (memory to allocate, legal context) 1043 * @xfrm_policy_clone_security: 1044 * @old_ctx contains an existing xfrm_sec_ctx. 1045 * @new_ctxp contains a new xfrm_sec_ctx being cloned from old. 1046 * Allocate a security structure in new_ctxp that contains the 1047 * information from the old_ctx structure. 1048 * Return 0 if operation was successful (memory to allocate). 1049 * @xfrm_policy_free_security: 1050 * @ctx contains the xfrm_sec_ctx 1051 * Deallocate xp->security. 1052 * @xfrm_policy_delete_security: 1053 * @ctx contains the xfrm_sec_ctx. 1054 * Authorize deletion of xp->security. 1055 * @xfrm_state_alloc_security: 1056 * @x contains the xfrm_state being added to the Security Association 1057 * Database by the XFRM system. 1058 * @sec_ctx contains the security context information being provided by 1059 * the user-level SA generation program (e.g., setkey or racoon). 1060 * @secid contains the secid from which to take the mls portion of the context. 1061 * Allocate a security structure to the x->security field; the security 1062 * field is initialized to NULL when the xfrm_state is allocated. Set the 1063 * context to correspond to either sec_ctx or polsec, with the mls portion 1064 * taken from secid in the latter case. 1065 * Return 0 if operation was successful (memory to allocate, legal context). 1066 * @xfrm_state_free_security: 1067 * @x contains the xfrm_state. 1068 * Deallocate x->security. 1069 * @xfrm_state_delete_security: 1070 * @x contains the xfrm_state. 1071 * Authorize deletion of x->security. 1072 * @xfrm_policy_lookup: 1073 * @ctx contains the xfrm_sec_ctx for which the access control is being 1074 * checked. 1075 * @fl_secid contains the flow security label that is used to authorize 1076 * access to the policy xp. 1077 * @dir contains the direction of the flow (input or output). 1078 * Check permission when a flow selects a xfrm_policy for processing 1079 * XFRMs on a packet. The hook is called when selecting either a 1080 * per-socket policy or a generic xfrm policy. 1081 * Return 0 if permission is granted, -ESRCH otherwise, or -errno 1082 * on other errors. 1083 * @xfrm_state_pol_flow_match: 1084 * @x contains the state to match. 1085 * @xp contains the policy to check for a match. 1086 * @fl contains the flow to check for a match. 1087 * Return 1 if there is a match. 1088 * @xfrm_decode_session: 1089 * @skb points to skb to decode. 1090 * @secid points to the flow key secid to set. 1091 * @ckall says if all xfrms used should be checked for same secid. 1092 * Return 0 if ckall is zero or all xfrms used have the same secid. 1093 * 1094 * Security hooks affecting all Key Management operations 1095 * 1096 * @key_alloc: 1097 * Permit allocation of a key and assign security data. Note that key does 1098 * not have a serial number assigned at this point. 1099 * @key points to the key. 1100 * @flags is the allocation flags 1101 * Return 0 if permission is granted, -ve error otherwise. 1102 * @key_free: 1103 * Notification of destruction; free security data. 1104 * @key points to the key. 1105 * No return value. 1106 * @key_permission: 1107 * See whether a specific operational right is granted to a process on a 1108 * key. 1109 * @key_ref refers to the key (key pointer + possession attribute bit). 1110 * @cred points to the credentials to provide the context against which to 1111 * evaluate the security data on the key. 1112 * @perm describes the combination of permissions required of this key. 1113 * Return 0 if permission is granted, -ve error otherwise. 1114 * @key_getsecurity: 1115 * Get a textual representation of the security context attached to a key 1116 * for the purposes of honouring KEYCTL_GETSECURITY. This function 1117 * allocates the storage for the NUL-terminated string and the caller 1118 * should free it. 1119 * @key points to the key to be queried. 1120 * @_buffer points to a pointer that should be set to point to the 1121 * resulting string (if no label or an error occurs). 1122 * Return the length of the string (including terminating NUL) or -ve if 1123 * an error. 1124 * May also return 0 (and a NULL buffer pointer) if there is no label. 1125 * 1126 * Security hooks affecting all System V IPC operations. 1127 * 1128 * @ipc_permission: 1129 * Check permissions for access to IPC 1130 * @ipcp contains the kernel IPC permission structure 1131 * @flag contains the desired (requested) permission set 1132 * Return 0 if permission is granted. 1133 * @ipc_getsecid: 1134 * Get the secid associated with the ipc object. 1135 * @ipcp contains the kernel IPC permission structure. 1136 * @secid contains a pointer to the location where result will be saved. 1137 * In case of failure, @secid will be set to zero. 1138 * 1139 * Security hooks for individual messages held in System V IPC message queues 1140 * @msg_msg_alloc_security: 1141 * Allocate and attach a security structure to the msg->security field. 1142 * The security field is initialized to NULL when the structure is first 1143 * created. 1144 * @msg contains the message structure to be modified. 1145 * Return 0 if operation was successful and permission is granted. 1146 * @msg_msg_free_security: 1147 * Deallocate the security structure for this message. 1148 * @msg contains the message structure to be modified. 1149 * 1150 * Security hooks for System V IPC Message Queues 1151 * 1152 * @msg_queue_alloc_security: 1153 * Allocate and attach a security structure to the 1154 * msq->q_perm.security field. The security field is initialized to 1155 * NULL when the structure is first created. 1156 * @msq contains the message queue structure to be modified. 1157 * Return 0 if operation was successful and permission is granted. 1158 * @msg_queue_free_security: 1159 * Deallocate security structure for this message queue. 1160 * @msq contains the message queue structure to be modified. 1161 * @msg_queue_associate: 1162 * Check permission when a message queue is requested through the 1163 * msgget system call. This hook is only called when returning the 1164 * message queue identifier for an existing message queue, not when a 1165 * new message queue is created. 1166 * @msq contains the message queue to act upon. 1167 * @msqflg contains the operation control flags. 1168 * Return 0 if permission is granted. 1169 * @msg_queue_msgctl: 1170 * Check permission when a message control operation specified by @cmd 1171 * is to be performed on the message queue @msq. 1172 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 1173 * @msq contains the message queue to act upon. May be NULL. 1174 * @cmd contains the operation to be performed. 1175 * Return 0 if permission is granted. 1176 * @msg_queue_msgsnd: 1177 * Check permission before a message, @msg, is enqueued on the message 1178 * queue, @msq. 1179 * @msq contains the message queue to send message to. 1180 * @msg contains the message to be enqueued. 1181 * @msqflg contains operational flags. 1182 * Return 0 if permission is granted. 1183 * @msg_queue_msgrcv: 1184 * Check permission before a message, @msg, is removed from the message 1185 * queue, @msq. The @target task structure contains a pointer to the 1186 * process that will be receiving the message (not equal to the current 1187 * process when inline receives are being performed). 1188 * @msq contains the message queue to retrieve message from. 1189 * @msg contains the message destination. 1190 * @target contains the task structure for recipient process. 1191 * @type contains the type of message requested. 1192 * @mode contains the operational flags. 1193 * Return 0 if permission is granted. 1194 * 1195 * Security hooks for System V Shared Memory Segments 1196 * 1197 * @shm_alloc_security: 1198 * Allocate and attach a security structure to the shp->shm_perm.security 1199 * field. The security field is initialized to NULL when the structure is 1200 * first created. 1201 * @shp contains the shared memory structure to be modified. 1202 * Return 0 if operation was successful and permission is granted. 1203 * @shm_free_security: 1204 * Deallocate the security struct for this memory segment. 1205 * @shp contains the shared memory structure to be modified. 1206 * @shm_associate: 1207 * Check permission when a shared memory region is requested through the 1208 * shmget system call. This hook is only called when returning the shared 1209 * memory region identifier for an existing region, not when a new shared 1210 * memory region is created. 1211 * @shp contains the shared memory structure to be modified. 1212 * @shmflg contains the operation control flags. 1213 * Return 0 if permission is granted. 1214 * @shm_shmctl: 1215 * Check permission when a shared memory control operation specified by 1216 * @cmd is to be performed on the shared memory region @shp. 1217 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 1218 * @shp contains shared memory structure to be modified. 1219 * @cmd contains the operation to be performed. 1220 * Return 0 if permission is granted. 1221 * @shm_shmat: 1222 * Check permissions prior to allowing the shmat system call to attach the 1223 * shared memory segment @shp to the data segment of the calling process. 1224 * The attaching address is specified by @shmaddr. 1225 * @shp contains the shared memory structure to be modified. 1226 * @shmaddr contains the address to attach memory region to. 1227 * @shmflg contains the operational flags. 1228 * Return 0 if permission is granted. 1229 * 1230 * Security hooks for System V Semaphores 1231 * 1232 * @sem_alloc_security: 1233 * Allocate and attach a security structure to the sma->sem_perm.security 1234 * field. The security field is initialized to NULL when the structure is 1235 * first created. 1236 * @sma contains the semaphore structure 1237 * Return 0 if operation was successful and permission is granted. 1238 * @sem_free_security: 1239 * deallocate security struct for this semaphore 1240 * @sma contains the semaphore structure. 1241 * @sem_associate: 1242 * Check permission when a semaphore is requested through the semget 1243 * system call. This hook is only called when returning the semaphore 1244 * identifier for an existing semaphore, not when a new one must be 1245 * created. 1246 * @sma contains the semaphore structure. 1247 * @semflg contains the operation control flags. 1248 * Return 0 if permission is granted. 1249 * @sem_semctl: 1250 * Check permission when a semaphore operation specified by @cmd is to be 1251 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1252 * IPC_INFO or SEM_INFO. 1253 * @sma contains the semaphore structure. May be NULL. 1254 * @cmd contains the operation to be performed. 1255 * Return 0 if permission is granted. 1256 * @sem_semop 1257 * Check permissions before performing operations on members of the 1258 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1259 * may be modified. 1260 * @sma contains the semaphore structure. 1261 * @sops contains the operations to perform. 1262 * @nsops contains the number of operations to perform. 1263 * @alter contains the flag indicating whether changes are to be made. 1264 * Return 0 if permission is granted. 1265 * 1266 * @ptrace_access_check: 1267 * Check permission before allowing the current process to trace the 1268 * @child process. 1269 * Security modules may also want to perform a process tracing check 1270 * during an execve in the set_security or apply_creds hooks of 1271 * tracing check during an execve in the bprm_set_creds hook of 1272 * binprm_security_ops if the process is being traced and its security 1273 * attributes would be changed by the execve. 1274 * @child contains the task_struct structure for the target process. 1275 * @mode contains the PTRACE_MODE flags indicating the form of access. 1276 * Return 0 if permission is granted. 1277 * @ptrace_traceme: 1278 * Check that the @parent process has sufficient permission to trace the 1279 * current process before allowing the current process to present itself 1280 * to the @parent process for tracing. 1281 * @parent contains the task_struct structure for debugger process. 1282 * Return 0 if permission is granted. 1283 * @capget: 1284 * Get the @effective, @inheritable, and @permitted capability sets for 1285 * the @target process. The hook may also perform permission checking to 1286 * determine if the current process is allowed to see the capability sets 1287 * of the @target process. 1288 * @target contains the task_struct structure for target process. 1289 * @effective contains the effective capability set. 1290 * @inheritable contains the inheritable capability set. 1291 * @permitted contains the permitted capability set. 1292 * Return 0 if the capability sets were successfully obtained. 1293 * @capset: 1294 * Set the @effective, @inheritable, and @permitted capability sets for 1295 * the current process. 1296 * @new contains the new credentials structure for target process. 1297 * @old contains the current credentials structure for target process. 1298 * @effective contains the effective capability set. 1299 * @inheritable contains the inheritable capability set. 1300 * @permitted contains the permitted capability set. 1301 * Return 0 and update @new if permission is granted. 1302 * @capable: 1303 * Check whether the @tsk process has the @cap capability in the indicated 1304 * credentials. 1305 * @cred contains the credentials to use. 1306 * @ns contains the user namespace we want the capability in 1307 * @cap contains the capability <include/linux/capability.h>. 1308 * @audit: Whether to write an audit message or not 1309 * Return 0 if the capability is granted for @tsk. 1310 * @syslog: 1311 * Check permission before accessing the kernel message ring or changing 1312 * logging to the console. 1313 * See the syslog(2) manual page for an explanation of the @type values. 1314 * @type contains the type of action. 1315 * @from_file indicates the context of action (if it came from /proc). 1316 * Return 0 if permission is granted. 1317 * @settime: 1318 * Check permission to change the system time. 1319 * struct timespec and timezone are defined in include/linux/time.h 1320 * @ts contains new time 1321 * @tz contains new timezone 1322 * Return 0 if permission is granted. 1323 * @vm_enough_memory: 1324 * Check permissions for allocating a new virtual mapping. 1325 * @mm contains the mm struct it is being added to. 1326 * @pages contains the number of pages. 1327 * Return 0 if permission is granted. 1328 * 1329 * @ismaclabel: 1330 * Check if the extended attribute specified by @name 1331 * represents a MAC label. Returns 1 if name is a MAC 1332 * attribute otherwise returns 0. 1333 * @name full extended attribute name to check against 1334 * LSM as a MAC label. 1335 * 1336 * @secid_to_secctx: 1337 * Convert secid to security context. If secdata is NULL the length of 1338 * the result will be returned in seclen, but no secdata will be returned. 1339 * This does mean that the length could change between calls to check the 1340 * length and the next call which actually allocates and returns the secdata. 1341 * @secid contains the security ID. 1342 * @secdata contains the pointer that stores the converted security context. 1343 * @seclen pointer which contains the length of the data 1344 * @secctx_to_secid: 1345 * Convert security context to secid. 1346 * @secid contains the pointer to the generated security ID. 1347 * @secdata contains the security context. 1348 * 1349 * @release_secctx: 1350 * Release the security context. 1351 * @secdata contains the security context. 1352 * @seclen contains the length of the security context. 1353 * 1354 * Security hooks for Audit 1355 * 1356 * @audit_rule_init: 1357 * Allocate and initialize an LSM audit rule structure. 1358 * @field contains the required Audit action. Fields flags are defined in include/linux/audit.h 1359 * @op contains the operator the rule uses. 1360 * @rulestr contains the context where the rule will be applied to. 1361 * @lsmrule contains a pointer to receive the result. 1362 * Return 0 if @lsmrule has been successfully set, 1363 * -EINVAL in case of an invalid rule. 1364 * 1365 * @audit_rule_known: 1366 * Specifies whether given @rule contains any fields related to current LSM. 1367 * @rule contains the audit rule of interest. 1368 * Return 1 in case of relation found, 0 otherwise. 1369 * 1370 * @audit_rule_match: 1371 * Determine if given @secid matches a rule previously approved 1372 * by @audit_rule_known. 1373 * @secid contains the security id in question. 1374 * @field contains the field which relates to current LSM. 1375 * @op contains the operator that will be used for matching. 1376 * @rule points to the audit rule that will be checked against. 1377 * @actx points to the audit context associated with the check. 1378 * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure. 1379 * 1380 * @audit_rule_free: 1381 * Deallocate the LSM audit rule structure previously allocated by 1382 * audit_rule_init. 1383 * @rule contains the allocated rule 1384 * 1385 * @inode_notifysecctx: 1386 * Notify the security module of what the security context of an inode 1387 * should be. Initializes the incore security context managed by the 1388 * security module for this inode. Example usage: NFS client invokes 1389 * this hook to initialize the security context in its incore inode to the 1390 * value provided by the server for the file when the server returned the 1391 * file's attributes to the client. 1392 * 1393 * Must be called with inode->i_mutex locked. 1394 * 1395 * @inode we wish to set the security context of. 1396 * @ctx contains the string which we wish to set in the inode. 1397 * @ctxlen contains the length of @ctx. 1398 * 1399 * @inode_setsecctx: 1400 * Change the security context of an inode. Updates the 1401 * incore security context managed by the security module and invokes the 1402 * fs code as needed (via __vfs_setxattr_noperm) to update any backing 1403 * xattrs that represent the context. Example usage: NFS server invokes 1404 * this hook to change the security context in its incore inode and on the 1405 * backing filesystem to a value provided by the client on a SETATTR 1406 * operation. 1407 * 1408 * Must be called with inode->i_mutex locked. 1409 * 1410 * @dentry contains the inode we wish to set the security context of. 1411 * @ctx contains the string which we wish to set in the inode. 1412 * @ctxlen contains the length of @ctx. 1413 * 1414 * @inode_getsecctx: 1415 * On success, returns 0 and fills out @ctx and @ctxlen with the security 1416 * context for the given @inode. 1417 * 1418 * @inode we wish to get the security context of. 1419 * @ctx is a pointer in which to place the allocated security context. 1420 * @ctxlen points to the place to put the length of @ctx. 1421 * This is the main security structure. 1422 */ 1423struct security_operations { 1424 char name[SECURITY_NAME_MAX + 1]; 1425 1426 int (*ptrace_access_check) (struct task_struct *child, unsigned int mode); 1427 int (*ptrace_traceme) (struct task_struct *parent); 1428 int (*capget) (struct task_struct *target, 1429 kernel_cap_t *effective, 1430 kernel_cap_t *inheritable, kernel_cap_t *permitted); 1431 int (*capset) (struct cred *new, 1432 const struct cred *old, 1433 const kernel_cap_t *effective, 1434 const kernel_cap_t *inheritable, 1435 const kernel_cap_t *permitted); 1436 int (*capable) (const struct cred *cred, struct user_namespace *ns, 1437 int cap, int audit); 1438 int (*quotactl) (int cmds, int type, int id, struct super_block *sb); 1439 int (*quota_on) (struct dentry *dentry); 1440 int (*syslog) (int type); 1441 int (*settime) (const struct timespec *ts, const struct timezone *tz); 1442 int (*vm_enough_memory) (struct mm_struct *mm, long pages); 1443 1444 int (*bprm_set_creds) (struct linux_binprm *bprm); 1445 int (*bprm_check_security) (struct linux_binprm *bprm); 1446 int (*bprm_secureexec) (struct linux_binprm *bprm); 1447 void (*bprm_committing_creds) (struct linux_binprm *bprm); 1448 void (*bprm_committed_creds) (struct linux_binprm *bprm); 1449 1450 int (*sb_alloc_security) (struct super_block *sb); 1451 void (*sb_free_security) (struct super_block *sb); 1452 int (*sb_copy_data) (char *orig, char *copy); 1453 int (*sb_remount) (struct super_block *sb, void *data); 1454 int (*sb_kern_mount) (struct super_block *sb, int flags, void *data); 1455 int (*sb_show_options) (struct seq_file *m, struct super_block *sb); 1456 int (*sb_statfs) (struct dentry *dentry); 1457 int (*sb_mount) (const char *dev_name, struct path *path, 1458 const char *type, unsigned long flags, void *data); 1459 int (*sb_umount) (struct vfsmount *mnt, int flags); 1460 int (*sb_pivotroot) (struct path *old_path, 1461 struct path *new_path); 1462 int (*sb_set_mnt_opts) (struct super_block *sb, 1463 struct security_mnt_opts *opts, 1464 unsigned long kern_flags, 1465 unsigned long *set_kern_flags); 1466 int (*sb_clone_mnt_opts) (const struct super_block *oldsb, 1467 struct super_block *newsb); 1468 int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts); 1469 int (*dentry_init_security) (struct dentry *dentry, int mode, 1470 struct qstr *name, void **ctx, 1471 u32 *ctxlen); 1472 1473 1474#ifdef CONFIG_SECURITY_PATH 1475 int (*path_unlink) (struct path *dir, struct dentry *dentry); 1476 int (*path_mkdir) (struct path *dir, struct dentry *dentry, umode_t mode); 1477 int (*path_rmdir) (struct path *dir, struct dentry *dentry); 1478 int (*path_mknod) (struct path *dir, struct dentry *dentry, umode_t mode, 1479 unsigned int dev); 1480 int (*path_truncate) (struct path *path); 1481 int (*path_symlink) (struct path *dir, struct dentry *dentry, 1482 const char *old_name); 1483 int (*path_link) (struct dentry *old_dentry, struct path *new_dir, 1484 struct dentry *new_dentry); 1485 int (*path_rename) (struct path *old_dir, struct dentry *old_dentry, 1486 struct path *new_dir, struct dentry *new_dentry); 1487 int (*path_chmod) (struct path *path, umode_t mode); 1488 int (*path_chown) (struct path *path, kuid_t uid, kgid_t gid); 1489 int (*path_chroot) (struct path *path); 1490#endif 1491 1492 int (*inode_alloc_security) (struct inode *inode); 1493 void (*inode_free_security) (struct inode *inode); 1494 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1495 const struct qstr *qstr, char **name, 1496 void **value, size_t *len); 1497 int (*inode_create) (struct inode *dir, 1498 struct dentry *dentry, umode_t mode); 1499 int (*inode_link) (struct dentry *old_dentry, 1500 struct inode *dir, struct dentry *new_dentry); 1501 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1502 int (*inode_symlink) (struct inode *dir, 1503 struct dentry *dentry, const char *old_name); 1504 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, umode_t mode); 1505 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1506 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1507 umode_t mode, dev_t dev); 1508 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1509 struct inode *new_dir, struct dentry *new_dentry); 1510 int (*inode_readlink) (struct dentry *dentry); 1511 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1512 int (*inode_permission) (struct inode *inode, int mask); 1513 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1514 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1515 int (*inode_setxattr) (struct dentry *dentry, const char *name, 1516 const void *value, size_t size, int flags); 1517 void (*inode_post_setxattr) (struct dentry *dentry, const char *name, 1518 const void *value, size_t size, int flags); 1519 int (*inode_getxattr) (struct dentry *dentry, const char *name); 1520 int (*inode_listxattr) (struct dentry *dentry); 1521 int (*inode_removexattr) (struct dentry *dentry, const char *name); 1522 int (*inode_need_killpriv) (struct dentry *dentry); 1523 int (*inode_killpriv) (struct dentry *dentry); 1524 int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc); 1525 int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags); 1526 int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size); 1527 void (*inode_getsecid) (const struct inode *inode, u32 *secid); 1528 1529 int (*file_permission) (struct file *file, int mask); 1530 int (*file_alloc_security) (struct file *file); 1531 void (*file_free_security) (struct file *file); 1532 int (*file_ioctl) (struct file *file, unsigned int cmd, 1533 unsigned long arg); 1534 int (*mmap_addr) (unsigned long addr); 1535 int (*mmap_file) (struct file *file, 1536 unsigned long reqprot, unsigned long prot, 1537 unsigned long flags); 1538 int (*file_mprotect) (struct vm_area_struct *vma, 1539 unsigned long reqprot, 1540 unsigned long prot); 1541 int (*file_lock) (struct file *file, unsigned int cmd); 1542 int (*file_fcntl) (struct file *file, unsigned int cmd, 1543 unsigned long arg); 1544 int (*file_set_fowner) (struct file *file); 1545 int (*file_send_sigiotask) (struct task_struct *tsk, 1546 struct fown_struct *fown, int sig); 1547 int (*file_receive) (struct file *file); 1548 int (*file_open) (struct file *file, const struct cred *cred); 1549 1550 int (*task_create) (unsigned long clone_flags); 1551 void (*task_free) (struct task_struct *task); 1552 int (*cred_alloc_blank) (struct cred *cred, gfp_t gfp); 1553 void (*cred_free) (struct cred *cred); 1554 int (*cred_prepare)(struct cred *new, const struct cred *old, 1555 gfp_t gfp); 1556 void (*cred_transfer)(struct cred *new, const struct cred *old); 1557 int (*kernel_act_as)(struct cred *new, u32 secid); 1558 int (*kernel_create_files_as)(struct cred *new, struct inode *inode); 1559 int (*kernel_module_request)(char *kmod_name); 1560 int (*kernel_module_from_file)(struct file *file); 1561 int (*task_fix_setuid) (struct cred *new, const struct cred *old, 1562 int flags); 1563 int (*task_setpgid) (struct task_struct *p, pid_t pgid); 1564 int (*task_getpgid) (struct task_struct *p); 1565 int (*task_getsid) (struct task_struct *p); 1566 void (*task_getsecid) (struct task_struct *p, u32 *secid); 1567 int (*task_setnice) (struct task_struct *p, int nice); 1568 int (*task_setioprio) (struct task_struct *p, int ioprio); 1569 int (*task_getioprio) (struct task_struct *p); 1570 int (*task_setrlimit) (struct task_struct *p, unsigned int resource, 1571 struct rlimit *new_rlim); 1572 int (*task_setscheduler) (struct task_struct *p); 1573 int (*task_getscheduler) (struct task_struct *p); 1574 int (*task_movememory) (struct task_struct *p); 1575 int (*task_kill) (struct task_struct *p, 1576 struct siginfo *info, int sig, u32 secid); 1577 int (*task_wait) (struct task_struct *p); 1578 int (*task_prctl) (int option, unsigned long arg2, 1579 unsigned long arg3, unsigned long arg4, 1580 unsigned long arg5); 1581 void (*task_to_inode) (struct task_struct *p, struct inode *inode); 1582 1583 int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag); 1584 void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid); 1585 1586 int (*msg_msg_alloc_security) (struct msg_msg *msg); 1587 void (*msg_msg_free_security) (struct msg_msg *msg); 1588 1589 int (*msg_queue_alloc_security) (struct msg_queue *msq); 1590 void (*msg_queue_free_security) (struct msg_queue *msq); 1591 int (*msg_queue_associate) (struct msg_queue *msq, int msqflg); 1592 int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd); 1593 int (*msg_queue_msgsnd) (struct msg_queue *msq, 1594 struct msg_msg *msg, int msqflg); 1595 int (*msg_queue_msgrcv) (struct msg_queue *msq, 1596 struct msg_msg *msg, 1597 struct task_struct *target, 1598 long type, int mode); 1599 1600 int (*shm_alloc_security) (struct shmid_kernel *shp); 1601 void (*shm_free_security) (struct shmid_kernel *shp); 1602 int (*shm_associate) (struct shmid_kernel *shp, int shmflg); 1603 int (*shm_shmctl) (struct shmid_kernel *shp, int cmd); 1604 int (*shm_shmat) (struct shmid_kernel *shp, 1605 char __user *shmaddr, int shmflg); 1606 1607 int (*sem_alloc_security) (struct sem_array *sma); 1608 void (*sem_free_security) (struct sem_array *sma); 1609 int (*sem_associate) (struct sem_array *sma, int semflg); 1610 int (*sem_semctl) (struct sem_array *sma, int cmd); 1611 int (*sem_semop) (struct sem_array *sma, 1612 struct sembuf *sops, unsigned nsops, int alter); 1613 1614 int (*netlink_send) (struct sock *sk, struct sk_buff *skb); 1615 1616 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1617 1618 int (*getprocattr) (struct task_struct *p, char *name, char **value); 1619 int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size); 1620 int (*ismaclabel) (const char *name); 1621 int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen); 1622 int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid); 1623 void (*release_secctx) (char *secdata, u32 seclen); 1624 1625 int (*inode_notifysecctx)(struct inode *inode, void *ctx, u32 ctxlen); 1626 int (*inode_setsecctx)(struct dentry *dentry, void *ctx, u32 ctxlen); 1627 int (*inode_getsecctx)(struct inode *inode, void **ctx, u32 *ctxlen); 1628 1629#ifdef CONFIG_SECURITY_NETWORK 1630 int (*unix_stream_connect) (struct sock *sock, struct sock *other, struct sock *newsk); 1631 int (*unix_may_send) (struct socket *sock, struct socket *other); 1632 1633 int (*socket_create) (int family, int type, int protocol, int kern); 1634 int (*socket_post_create) (struct socket *sock, int family, 1635 int type, int protocol, int kern); 1636 int (*socket_bind) (struct socket *sock, 1637 struct sockaddr *address, int addrlen); 1638 int (*socket_connect) (struct socket *sock, 1639 struct sockaddr *address, int addrlen); 1640 int (*socket_listen) (struct socket *sock, int backlog); 1641 int (*socket_accept) (struct socket *sock, struct socket *newsock); 1642 int (*socket_sendmsg) (struct socket *sock, 1643 struct msghdr *msg, int size); 1644 int (*socket_recvmsg) (struct socket *sock, 1645 struct msghdr *msg, int size, int flags); 1646 int (*socket_getsockname) (struct socket *sock); 1647 int (*socket_getpeername) (struct socket *sock); 1648 int (*socket_getsockopt) (struct socket *sock, int level, int optname); 1649 int (*socket_setsockopt) (struct socket *sock, int level, int optname); 1650 int (*socket_shutdown) (struct socket *sock, int how); 1651 int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb); 1652 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1653 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); 1654 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1655 void (*sk_free_security) (struct sock *sk); 1656 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); 1657 void (*sk_getsecid) (struct sock *sk, u32 *secid); 1658 void (*sock_graft) (struct sock *sk, struct socket *parent); 1659 int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb, 1660 struct request_sock *req); 1661 void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req); 1662 void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb); 1663 int (*secmark_relabel_packet) (u32 secid); 1664 void (*secmark_refcount_inc) (void); 1665 void (*secmark_refcount_dec) (void); 1666 void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl); 1667 int (*tun_dev_alloc_security) (void **security); 1668 void (*tun_dev_free_security) (void *security); 1669 int (*tun_dev_create) (void); 1670 int (*tun_dev_attach_queue) (void *security); 1671 int (*tun_dev_attach) (struct sock *sk, void *security); 1672 int (*tun_dev_open) (void *security); 1673 void (*skb_owned_by) (struct sk_buff *skb, struct sock *sk); 1674#endif /* CONFIG_SECURITY_NETWORK */ 1675 1676#ifdef CONFIG_SECURITY_NETWORK_XFRM 1677 int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp, 1678 struct xfrm_user_sec_ctx *sec_ctx); 1679 int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx); 1680 void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx); 1681 int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx); 1682 int (*xfrm_state_alloc_security) (struct xfrm_state *x, 1683 struct xfrm_user_sec_ctx *sec_ctx, 1684 u32 secid); 1685 void (*xfrm_state_free_security) (struct xfrm_state *x); 1686 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1687 int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); 1688 int (*xfrm_state_pol_flow_match) (struct xfrm_state *x, 1689 struct xfrm_policy *xp, 1690 const struct flowi *fl); 1691 int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall); 1692#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1693 1694 /* key management security hooks */ 1695#ifdef CONFIG_KEYS 1696 int (*key_alloc) (struct key *key, const struct cred *cred, unsigned long flags); 1697 void (*key_free) (struct key *key); 1698 int (*key_permission) (key_ref_t key_ref, 1699 const struct cred *cred, 1700 key_perm_t perm); 1701 int (*key_getsecurity)(struct key *key, char **_buffer); 1702#endif /* CONFIG_KEYS */ 1703 1704#ifdef CONFIG_AUDIT 1705 int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule); 1706 int (*audit_rule_known) (struct audit_krule *krule); 1707 int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule, 1708 struct audit_context *actx); 1709 void (*audit_rule_free) (void *lsmrule); 1710#endif /* CONFIG_AUDIT */ 1711}; 1712 1713/* prototypes */ 1714extern int security_init(void); 1715extern int security_module_enable(struct security_operations *ops); 1716extern int register_security(struct security_operations *ops); 1717extern void __init security_fixup_ops(struct security_operations *ops); 1718 1719 1720/* Security operations */ 1721int security_ptrace_access_check(struct task_struct *child, unsigned int mode); 1722int security_ptrace_traceme(struct task_struct *parent); 1723int security_capget(struct task_struct *target, 1724 kernel_cap_t *effective, 1725 kernel_cap_t *inheritable, 1726 kernel_cap_t *permitted); 1727int security_capset(struct cred *new, const struct cred *old, 1728 const kernel_cap_t *effective, 1729 const kernel_cap_t *inheritable, 1730 const kernel_cap_t *permitted); 1731int security_capable(const struct cred *cred, struct user_namespace *ns, 1732 int cap); 1733int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 1734 int cap); 1735int security_quotactl(int cmds, int type, int id, struct super_block *sb); 1736int security_quota_on(struct dentry *dentry); 1737int security_syslog(int type); 1738int security_settime(const struct timespec *ts, const struct timezone *tz); 1739int security_vm_enough_memory_mm(struct mm_struct *mm, long pages); 1740int security_bprm_set_creds(struct linux_binprm *bprm); 1741int security_bprm_check(struct linux_binprm *bprm); 1742void security_bprm_committing_creds(struct linux_binprm *bprm); 1743void security_bprm_committed_creds(struct linux_binprm *bprm); 1744int security_bprm_secureexec(struct linux_binprm *bprm); 1745int security_sb_alloc(struct super_block *sb); 1746void security_sb_free(struct super_block *sb); 1747int security_sb_copy_data(char *orig, char *copy); 1748int security_sb_remount(struct super_block *sb, void *data); 1749int security_sb_kern_mount(struct super_block *sb, int flags, void *data); 1750int security_sb_show_options(struct seq_file *m, struct super_block *sb); 1751int security_sb_statfs(struct dentry *dentry); 1752int security_sb_mount(const char *dev_name, struct path *path, 1753 const char *type, unsigned long flags, void *data); 1754int security_sb_umount(struct vfsmount *mnt, int flags); 1755int security_sb_pivotroot(struct path *old_path, struct path *new_path); 1756int security_sb_set_mnt_opts(struct super_block *sb, 1757 struct security_mnt_opts *opts, 1758 unsigned long kern_flags, 1759 unsigned long *set_kern_flags); 1760int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1761 struct super_block *newsb); 1762int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts); 1763int security_dentry_init_security(struct dentry *dentry, int mode, 1764 struct qstr *name, void **ctx, 1765 u32 *ctxlen); 1766 1767int security_inode_alloc(struct inode *inode); 1768void security_inode_free(struct inode *inode); 1769int security_inode_init_security(struct inode *inode, struct inode *dir, 1770 const struct qstr *qstr, 1771 initxattrs initxattrs, void *fs_data); 1772int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1773 const struct qstr *qstr, char **name, 1774 void **value, size_t *len); 1775int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode); 1776int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1777 struct dentry *new_dentry); 1778int security_inode_unlink(struct inode *dir, struct dentry *dentry); 1779int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1780 const char *old_name); 1781int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode); 1782int security_inode_rmdir(struct inode *dir, struct dentry *dentry); 1783int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev); 1784int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1785 struct inode *new_dir, struct dentry *new_dentry); 1786int security_inode_readlink(struct dentry *dentry); 1787int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd); 1788int security_inode_permission(struct inode *inode, int mask); 1789int security_inode_setattr(struct dentry *dentry, struct iattr *attr); 1790int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry); 1791int security_inode_setxattr(struct dentry *dentry, const char *name, 1792 const void *value, size_t size, int flags); 1793void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1794 const void *value, size_t size, int flags); 1795int security_inode_getxattr(struct dentry *dentry, const char *name); 1796int security_inode_listxattr(struct dentry *dentry); 1797int security_inode_removexattr(struct dentry *dentry, const char *name); 1798int security_inode_need_killpriv(struct dentry *dentry); 1799int security_inode_killpriv(struct dentry *dentry); 1800int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc); 1801int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1802int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size); 1803void security_inode_getsecid(const struct inode *inode, u32 *secid); 1804int security_file_permission(struct file *file, int mask); 1805int security_file_alloc(struct file *file); 1806void security_file_free(struct file *file); 1807int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1808int security_mmap_file(struct file *file, unsigned long prot, 1809 unsigned long flags); 1810int security_mmap_addr(unsigned long addr); 1811int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1812 unsigned long prot); 1813int security_file_lock(struct file *file, unsigned int cmd); 1814int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg); 1815int security_file_set_fowner(struct file *file); 1816int security_file_send_sigiotask(struct task_struct *tsk, 1817 struct fown_struct *fown, int sig); 1818int security_file_receive(struct file *file); 1819int security_file_open(struct file *file, const struct cred *cred); 1820int security_task_create(unsigned long clone_flags); 1821void security_task_free(struct task_struct *task); 1822int security_cred_alloc_blank(struct cred *cred, gfp_t gfp); 1823void security_cred_free(struct cred *cred); 1824int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp); 1825void security_transfer_creds(struct cred *new, const struct cred *old); 1826int security_kernel_act_as(struct cred *new, u32 secid); 1827int security_kernel_create_files_as(struct cred *new, struct inode *inode); 1828int security_kernel_module_request(char *kmod_name); 1829int security_kernel_module_from_file(struct file *file); 1830int security_task_fix_setuid(struct cred *new, const struct cred *old, 1831 int flags); 1832int security_task_setpgid(struct task_struct *p, pid_t pgid); 1833int security_task_getpgid(struct task_struct *p); 1834int security_task_getsid(struct task_struct *p); 1835void security_task_getsecid(struct task_struct *p, u32 *secid); 1836int security_task_setnice(struct task_struct *p, int nice); 1837int security_task_setioprio(struct task_struct *p, int ioprio); 1838int security_task_getioprio(struct task_struct *p); 1839int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1840 struct rlimit *new_rlim); 1841int security_task_setscheduler(struct task_struct *p); 1842int security_task_getscheduler(struct task_struct *p); 1843int security_task_movememory(struct task_struct *p); 1844int security_task_kill(struct task_struct *p, struct siginfo *info, 1845 int sig, u32 secid); 1846int security_task_wait(struct task_struct *p); 1847int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1848 unsigned long arg4, unsigned long arg5); 1849void security_task_to_inode(struct task_struct *p, struct inode *inode); 1850int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag); 1851void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid); 1852int security_msg_msg_alloc(struct msg_msg *msg); 1853void security_msg_msg_free(struct msg_msg *msg); 1854int security_msg_queue_alloc(struct msg_queue *msq); 1855void security_msg_queue_free(struct msg_queue *msq); 1856int security_msg_queue_associate(struct msg_queue *msq, int msqflg); 1857int security_msg_queue_msgctl(struct msg_queue *msq, int cmd); 1858int security_msg_queue_msgsnd(struct msg_queue *msq, 1859 struct msg_msg *msg, int msqflg); 1860int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 1861 struct task_struct *target, long type, int mode); 1862int security_shm_alloc(struct shmid_kernel *shp); 1863void security_shm_free(struct shmid_kernel *shp); 1864int security_shm_associate(struct shmid_kernel *shp, int shmflg); 1865int security_shm_shmctl(struct shmid_kernel *shp, int cmd); 1866int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg); 1867int security_sem_alloc(struct sem_array *sma); 1868void security_sem_free(struct sem_array *sma); 1869int security_sem_associate(struct sem_array *sma, int semflg); 1870int security_sem_semctl(struct sem_array *sma, int cmd); 1871int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1872 unsigned nsops, int alter); 1873void security_d_instantiate(struct dentry *dentry, struct inode *inode); 1874int security_getprocattr(struct task_struct *p, char *name, char **value); 1875int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size); 1876int security_netlink_send(struct sock *sk, struct sk_buff *skb); 1877int security_ismaclabel(const char *name); 1878int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen); 1879int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid); 1880void security_release_secctx(char *secdata, u32 seclen); 1881 1882int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen); 1883int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen); 1884int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen); 1885#else /* CONFIG_SECURITY */ 1886struct security_mnt_opts { 1887}; 1888 1889static inline void security_init_mnt_opts(struct security_mnt_opts *opts) 1890{ 1891} 1892 1893static inline void security_free_mnt_opts(struct security_mnt_opts *opts) 1894{ 1895} 1896 1897/* 1898 * This is the default capabilities functionality. Most of these functions 1899 * are just stubbed out, but a few must call the proper capable code. 1900 */ 1901 1902static inline int security_init(void) 1903{ 1904 return 0; 1905} 1906 1907static inline int security_ptrace_access_check(struct task_struct *child, 1908 unsigned int mode) 1909{ 1910 return cap_ptrace_access_check(child, mode); 1911} 1912 1913static inline int security_ptrace_traceme(struct task_struct *parent) 1914{ 1915 return cap_ptrace_traceme(parent); 1916} 1917 1918static inline int security_capget(struct task_struct *target, 1919 kernel_cap_t *effective, 1920 kernel_cap_t *inheritable, 1921 kernel_cap_t *permitted) 1922{ 1923 return cap_capget(target, effective, inheritable, permitted); 1924} 1925 1926static inline int security_capset(struct cred *new, 1927 const struct cred *old, 1928 const kernel_cap_t *effective, 1929 const kernel_cap_t *inheritable, 1930 const kernel_cap_t *permitted) 1931{ 1932 return cap_capset(new, old, effective, inheritable, permitted); 1933} 1934 1935static inline int security_capable(const struct cred *cred, 1936 struct user_namespace *ns, int cap) 1937{ 1938 return cap_capable(cred, ns, cap, SECURITY_CAP_AUDIT); 1939} 1940 1941static inline int security_capable_noaudit(const struct cred *cred, 1942 struct user_namespace *ns, int cap) { 1943 return cap_capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 1944} 1945 1946static inline int security_quotactl(int cmds, int type, int id, 1947 struct super_block *sb) 1948{ 1949 return 0; 1950} 1951 1952static inline int security_quota_on(struct dentry *dentry) 1953{ 1954 return 0; 1955} 1956 1957static inline int security_syslog(int type) 1958{ 1959 return 0; 1960} 1961 1962static inline int security_settime(const struct timespec *ts, 1963 const struct timezone *tz) 1964{ 1965 return cap_settime(ts, tz); 1966} 1967 1968static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1969{ 1970 return cap_vm_enough_memory(mm, pages); 1971} 1972 1973static inline int security_bprm_set_creds(struct linux_binprm *bprm) 1974{ 1975 return cap_bprm_set_creds(bprm); 1976} 1977 1978static inline int security_bprm_check(struct linux_binprm *bprm) 1979{ 1980 return 0; 1981} 1982 1983static inline void security_bprm_committing_creds(struct linux_binprm *bprm) 1984{ 1985} 1986 1987static inline void security_bprm_committed_creds(struct linux_binprm *bprm) 1988{ 1989} 1990 1991static inline int security_bprm_secureexec(struct linux_binprm *bprm) 1992{ 1993 return cap_bprm_secureexec(bprm); 1994} 1995 1996static inline int security_sb_alloc(struct super_block *sb) 1997{ 1998 return 0; 1999} 2000 2001static inline void security_sb_free(struct super_block *sb) 2002{ } 2003 2004static inline int security_sb_copy_data(char *orig, char *copy) 2005{ 2006 return 0; 2007} 2008 2009static inline int security_sb_remount(struct super_block *sb, void *data) 2010{ 2011 return 0; 2012} 2013 2014static inline int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 2015{ 2016 return 0; 2017} 2018 2019static inline int security_sb_show_options(struct seq_file *m, 2020 struct super_block *sb) 2021{ 2022 return 0; 2023} 2024 2025static inline int security_sb_statfs(struct dentry *dentry) 2026{ 2027 return 0; 2028} 2029 2030static inline int security_sb_mount(const char *dev_name, struct path *path, 2031 const char *type, unsigned long flags, 2032 void *data) 2033{ 2034 return 0; 2035} 2036 2037static inline int security_sb_umount(struct vfsmount *mnt, int flags) 2038{ 2039 return 0; 2040} 2041 2042static inline int security_sb_pivotroot(struct path *old_path, 2043 struct path *new_path) 2044{ 2045 return 0; 2046} 2047 2048static inline int security_sb_set_mnt_opts(struct super_block *sb, 2049 struct security_mnt_opts *opts, 2050 unsigned long kern_flags, 2051 unsigned long *set_kern_flags) 2052{ 2053 return 0; 2054} 2055 2056static inline int security_sb_clone_mnt_opts(const struct super_block *oldsb, 2057 struct super_block *newsb) 2058{ 2059 return 0; 2060} 2061 2062static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 2063{ 2064 return 0; 2065} 2066 2067static inline int security_inode_alloc(struct inode *inode) 2068{ 2069 return 0; 2070} 2071 2072static inline void security_inode_free(struct inode *inode) 2073{ } 2074 2075static inline int security_dentry_init_security(struct dentry *dentry, 2076 int mode, 2077 struct qstr *name, 2078 void **ctx, 2079 u32 *ctxlen) 2080{ 2081 return -EOPNOTSUPP; 2082} 2083 2084 2085static inline int security_inode_init_security(struct inode *inode, 2086 struct inode *dir, 2087 const struct qstr *qstr, 2088 const initxattrs initxattrs, 2089 void *fs_data) 2090{ 2091 return 0; 2092} 2093 2094static inline int security_old_inode_init_security(struct inode *inode, 2095 struct inode *dir, 2096 const struct qstr *qstr, 2097 char **name, void **value, 2098 size_t *len) 2099{ 2100 return -EOPNOTSUPP; 2101} 2102 2103static inline int security_inode_create(struct inode *dir, 2104 struct dentry *dentry, 2105 umode_t mode) 2106{ 2107 return 0; 2108} 2109 2110static inline int security_inode_link(struct dentry *old_dentry, 2111 struct inode *dir, 2112 struct dentry *new_dentry) 2113{ 2114 return 0; 2115} 2116 2117static inline int security_inode_unlink(struct inode *dir, 2118 struct dentry *dentry) 2119{ 2120 return 0; 2121} 2122 2123static inline int security_inode_symlink(struct inode *dir, 2124 struct dentry *dentry, 2125 const char *old_name) 2126{ 2127 return 0; 2128} 2129 2130static inline int security_inode_mkdir(struct inode *dir, 2131 struct dentry *dentry, 2132 int mode) 2133{ 2134 return 0; 2135} 2136 2137static inline int security_inode_rmdir(struct inode *dir, 2138 struct dentry *dentry) 2139{ 2140 return 0; 2141} 2142 2143static inline int security_inode_mknod(struct inode *dir, 2144 struct dentry *dentry, 2145 int mode, dev_t dev) 2146{ 2147 return 0; 2148} 2149 2150static inline int security_inode_rename(struct inode *old_dir, 2151 struct dentry *old_dentry, 2152 struct inode *new_dir, 2153 struct dentry *new_dentry) 2154{ 2155 return 0; 2156} 2157 2158static inline int security_inode_readlink(struct dentry *dentry) 2159{ 2160 return 0; 2161} 2162 2163static inline int security_inode_follow_link(struct dentry *dentry, 2164 struct nameidata *nd) 2165{ 2166 return 0; 2167} 2168 2169static inline int security_inode_permission(struct inode *inode, int mask) 2170{ 2171 return 0; 2172} 2173 2174static inline int security_inode_setattr(struct dentry *dentry, 2175 struct iattr *attr) 2176{ 2177 return 0; 2178} 2179 2180static inline int security_inode_getattr(struct vfsmount *mnt, 2181 struct dentry *dentry) 2182{ 2183 return 0; 2184} 2185 2186static inline int security_inode_setxattr(struct dentry *dentry, 2187 const char *name, const void *value, size_t size, int flags) 2188{ 2189 return cap_inode_setxattr(dentry, name, value, size, flags); 2190} 2191 2192static inline void security_inode_post_setxattr(struct dentry *dentry, 2193 const char *name, const void *value, size_t size, int flags) 2194{ } 2195 2196static inline int security_inode_getxattr(struct dentry *dentry, 2197 const char *name) 2198{ 2199 return 0; 2200} 2201 2202static inline int security_inode_listxattr(struct dentry *dentry) 2203{ 2204 return 0; 2205} 2206 2207static inline int security_inode_removexattr(struct dentry *dentry, 2208 const char *name) 2209{ 2210 return cap_inode_removexattr(dentry, name); 2211} 2212 2213static inline int security_inode_need_killpriv(struct dentry *dentry) 2214{ 2215 return cap_inode_need_killpriv(dentry); 2216} 2217 2218static inline int security_inode_killpriv(struct dentry *dentry) 2219{ 2220 return cap_inode_killpriv(dentry); 2221} 2222 2223static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2224{ 2225 return -EOPNOTSUPP; 2226} 2227 2228static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2229{ 2230 return -EOPNOTSUPP; 2231} 2232 2233static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2234{ 2235 return 0; 2236} 2237 2238static inline void security_inode_getsecid(const struct inode *inode, u32 *secid) 2239{ 2240 *secid = 0; 2241} 2242 2243static inline int security_file_permission(struct file *file, int mask) 2244{ 2245 return 0; 2246} 2247 2248static inline int security_file_alloc(struct file *file) 2249{ 2250 return 0; 2251} 2252 2253static inline void security_file_free(struct file *file) 2254{ } 2255 2256static inline int security_file_ioctl(struct file *file, unsigned int cmd, 2257 unsigned long arg) 2258{ 2259 return 0; 2260} 2261 2262static inline int security_mmap_file(struct file *file, unsigned long prot, 2263 unsigned long flags) 2264{ 2265 return 0; 2266} 2267 2268static inline int security_mmap_addr(unsigned long addr) 2269{ 2270 return cap_mmap_addr(addr); 2271} 2272 2273static inline int security_file_mprotect(struct vm_area_struct *vma, 2274 unsigned long reqprot, 2275 unsigned long prot) 2276{ 2277 return 0; 2278} 2279 2280static inline int security_file_lock(struct file *file, unsigned int cmd) 2281{ 2282 return 0; 2283} 2284 2285static inline int security_file_fcntl(struct file *file, unsigned int cmd, 2286 unsigned long arg) 2287{ 2288 return 0; 2289} 2290 2291static inline int security_file_set_fowner(struct file *file) 2292{ 2293 return 0; 2294} 2295 2296static inline int security_file_send_sigiotask(struct task_struct *tsk, 2297 struct fown_struct *fown, 2298 int sig) 2299{ 2300 return 0; 2301} 2302 2303static inline int security_file_receive(struct file *file) 2304{ 2305 return 0; 2306} 2307 2308static inline int security_file_open(struct file *file, 2309 const struct cred *cred) 2310{ 2311 return 0; 2312} 2313 2314static inline int security_task_create(unsigned long clone_flags) 2315{ 2316 return 0; 2317} 2318 2319static inline void security_task_free(struct task_struct *task) 2320{ } 2321 2322static inline int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 2323{ 2324 return 0; 2325} 2326 2327static inline void security_cred_free(struct cred *cred) 2328{ } 2329 2330static inline int security_prepare_creds(struct cred *new, 2331 const struct cred *old, 2332 gfp_t gfp) 2333{ 2334 return 0; 2335} 2336 2337static inline void security_transfer_creds(struct cred *new, 2338 const struct cred *old) 2339{ 2340} 2341 2342static inline int security_kernel_act_as(struct cred *cred, u32 secid) 2343{ 2344 return 0; 2345} 2346 2347static inline int security_kernel_create_files_as(struct cred *cred, 2348 struct inode *inode) 2349{ 2350 return 0; 2351} 2352 2353static inline int security_kernel_module_request(char *kmod_name) 2354{ 2355 return 0; 2356} 2357 2358static inline int security_kernel_module_from_file(struct file *file) 2359{ 2360 return 0; 2361} 2362 2363static inline int security_task_fix_setuid(struct cred *new, 2364 const struct cred *old, 2365 int flags) 2366{ 2367 return cap_task_fix_setuid(new, old, flags); 2368} 2369 2370static inline int security_task_setpgid(struct task_struct *p, pid_t pgid) 2371{ 2372 return 0; 2373} 2374 2375static inline int security_task_getpgid(struct task_struct *p) 2376{ 2377 return 0; 2378} 2379 2380static inline int security_task_getsid(struct task_struct *p) 2381{ 2382 return 0; 2383} 2384 2385static inline void security_task_getsecid(struct task_struct *p, u32 *secid) 2386{ 2387 *secid = 0; 2388} 2389 2390static inline int security_task_setnice(struct task_struct *p, int nice) 2391{ 2392 return cap_task_setnice(p, nice); 2393} 2394 2395static inline int security_task_setioprio(struct task_struct *p, int ioprio) 2396{ 2397 return cap_task_setioprio(p, ioprio); 2398} 2399 2400static inline int security_task_getioprio(struct task_struct *p) 2401{ 2402 return 0; 2403} 2404 2405static inline int security_task_setrlimit(struct task_struct *p, 2406 unsigned int resource, 2407 struct rlimit *new_rlim) 2408{ 2409 return 0; 2410} 2411 2412static inline int security_task_setscheduler(struct task_struct *p) 2413{ 2414 return cap_task_setscheduler(p); 2415} 2416 2417static inline int security_task_getscheduler(struct task_struct *p) 2418{ 2419 return 0; 2420} 2421 2422static inline int security_task_movememory(struct task_struct *p) 2423{ 2424 return 0; 2425} 2426 2427static inline int security_task_kill(struct task_struct *p, 2428 struct siginfo *info, int sig, 2429 u32 secid) 2430{ 2431 return 0; 2432} 2433 2434static inline int security_task_wait(struct task_struct *p) 2435{ 2436 return 0; 2437} 2438 2439static inline int security_task_prctl(int option, unsigned long arg2, 2440 unsigned long arg3, 2441 unsigned long arg4, 2442 unsigned long arg5) 2443{ 2444 return cap_task_prctl(option, arg2, arg3, arg3, arg5); 2445} 2446 2447static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2448{ } 2449 2450static inline int security_ipc_permission(struct kern_ipc_perm *ipcp, 2451 short flag) 2452{ 2453 return 0; 2454} 2455 2456static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 2457{ 2458 *secid = 0; 2459} 2460 2461static inline int security_msg_msg_alloc(struct msg_msg *msg) 2462{ 2463 return 0; 2464} 2465 2466static inline void security_msg_msg_free(struct msg_msg *msg) 2467{ } 2468 2469static inline int security_msg_queue_alloc(struct msg_queue *msq) 2470{ 2471 return 0; 2472} 2473 2474static inline void security_msg_queue_free(struct msg_queue *msq) 2475{ } 2476 2477static inline int security_msg_queue_associate(struct msg_queue *msq, 2478 int msqflg) 2479{ 2480 return 0; 2481} 2482 2483static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 2484{ 2485 return 0; 2486} 2487 2488static inline int security_msg_queue_msgsnd(struct msg_queue *msq, 2489 struct msg_msg *msg, int msqflg) 2490{ 2491 return 0; 2492} 2493 2494static inline int security_msg_queue_msgrcv(struct msg_queue *msq, 2495 struct msg_msg *msg, 2496 struct task_struct *target, 2497 long type, int mode) 2498{ 2499 return 0; 2500} 2501 2502static inline int security_shm_alloc(struct shmid_kernel *shp) 2503{ 2504 return 0; 2505} 2506 2507static inline void security_shm_free(struct shmid_kernel *shp) 2508{ } 2509 2510static inline int security_shm_associate(struct shmid_kernel *shp, 2511 int shmflg) 2512{ 2513 return 0; 2514} 2515 2516static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 2517{ 2518 return 0; 2519} 2520 2521static inline int security_shm_shmat(struct shmid_kernel *shp, 2522 char __user *shmaddr, int shmflg) 2523{ 2524 return 0; 2525} 2526 2527static inline int security_sem_alloc(struct sem_array *sma) 2528{ 2529 return 0; 2530} 2531 2532static inline void security_sem_free(struct sem_array *sma) 2533{ } 2534 2535static inline int security_sem_associate(struct sem_array *sma, int semflg) 2536{ 2537 return 0; 2538} 2539 2540static inline int security_sem_semctl(struct sem_array *sma, int cmd) 2541{ 2542 return 0; 2543} 2544 2545static inline int security_sem_semop(struct sem_array *sma, 2546 struct sembuf *sops, unsigned nsops, 2547 int alter) 2548{ 2549 return 0; 2550} 2551 2552static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2553{ } 2554 2555static inline int security_getprocattr(struct task_struct *p, char *name, char **value) 2556{ 2557 return -EINVAL; 2558} 2559 2560static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2561{ 2562 return -EINVAL; 2563} 2564 2565static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2566{ 2567 return cap_netlink_send(sk, skb); 2568} 2569 2570static inline int security_ismaclabel(const char *name) 2571{ 2572 return 0; 2573} 2574 2575static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2576{ 2577 return -EOPNOTSUPP; 2578} 2579 2580static inline int security_secctx_to_secid(const char *secdata, 2581 u32 seclen, 2582 u32 *secid) 2583{ 2584 return -EOPNOTSUPP; 2585} 2586 2587static inline void security_release_secctx(char *secdata, u32 seclen) 2588{ 2589} 2590 2591static inline int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2592{ 2593 return -EOPNOTSUPP; 2594} 2595static inline int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2596{ 2597 return -EOPNOTSUPP; 2598} 2599static inline int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2600{ 2601 return -EOPNOTSUPP; 2602} 2603#endif /* CONFIG_SECURITY */ 2604 2605#ifdef CONFIG_SECURITY_NETWORK 2606 2607int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk); 2608int security_unix_may_send(struct socket *sock, struct socket *other); 2609int security_socket_create(int family, int type, int protocol, int kern); 2610int security_socket_post_create(struct socket *sock, int family, 2611 int type, int protocol, int kern); 2612int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen); 2613int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen); 2614int security_socket_listen(struct socket *sock, int backlog); 2615int security_socket_accept(struct socket *sock, struct socket *newsock); 2616int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size); 2617int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2618 int size, int flags); 2619int security_socket_getsockname(struct socket *sock); 2620int security_socket_getpeername(struct socket *sock); 2621int security_socket_getsockopt(struct socket *sock, int level, int optname); 2622int security_socket_setsockopt(struct socket *sock, int level, int optname); 2623int security_socket_shutdown(struct socket *sock, int how); 2624int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb); 2625int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2626 int __user *optlen, unsigned len); 2627int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid); 2628int security_sk_alloc(struct sock *sk, int family, gfp_t priority); 2629void security_sk_free(struct sock *sk); 2630void security_sk_clone(const struct sock *sk, struct sock *newsk); 2631void security_sk_classify_flow(struct sock *sk, struct flowi *fl); 2632void security_req_classify_flow(const struct request_sock *req, struct flowi *fl); 2633void security_sock_graft(struct sock*sk, struct socket *parent); 2634int security_inet_conn_request(struct sock *sk, 2635 struct sk_buff *skb, struct request_sock *req); 2636void security_inet_csk_clone(struct sock *newsk, 2637 const struct request_sock *req); 2638void security_inet_conn_established(struct sock *sk, 2639 struct sk_buff *skb); 2640int security_secmark_relabel_packet(u32 secid); 2641void security_secmark_refcount_inc(void); 2642void security_secmark_refcount_dec(void); 2643int security_tun_dev_alloc_security(void **security); 2644void security_tun_dev_free_security(void *security); 2645int security_tun_dev_create(void); 2646int security_tun_dev_attach_queue(void *security); 2647int security_tun_dev_attach(struct sock *sk, void *security); 2648int security_tun_dev_open(void *security); 2649 2650void security_skb_owned_by(struct sk_buff *skb, struct sock *sk); 2651 2652#else /* CONFIG_SECURITY_NETWORK */ 2653static inline int security_unix_stream_connect(struct sock *sock, 2654 struct sock *other, 2655 struct sock *newsk) 2656{ 2657 return 0; 2658} 2659 2660static inline int security_unix_may_send(struct socket *sock, 2661 struct socket *other) 2662{ 2663 return 0; 2664} 2665 2666static inline int security_socket_create(int family, int type, 2667 int protocol, int kern) 2668{ 2669 return 0; 2670} 2671 2672static inline int security_socket_post_create(struct socket *sock, 2673 int family, 2674 int type, 2675 int protocol, int kern) 2676{ 2677 return 0; 2678} 2679 2680static inline int security_socket_bind(struct socket *sock, 2681 struct sockaddr *address, 2682 int addrlen) 2683{ 2684 return 0; 2685} 2686 2687static inline int security_socket_connect(struct socket *sock, 2688 struct sockaddr *address, 2689 int addrlen) 2690{ 2691 return 0; 2692} 2693 2694static inline int security_socket_listen(struct socket *sock, int backlog) 2695{ 2696 return 0; 2697} 2698 2699static inline int security_socket_accept(struct socket *sock, 2700 struct socket *newsock) 2701{ 2702 return 0; 2703} 2704 2705static inline int security_socket_sendmsg(struct socket *sock, 2706 struct msghdr *msg, int size) 2707{ 2708 return 0; 2709} 2710 2711static inline int security_socket_recvmsg(struct socket *sock, 2712 struct msghdr *msg, int size, 2713 int flags) 2714{ 2715 return 0; 2716} 2717 2718static inline int security_socket_getsockname(struct socket *sock) 2719{ 2720 return 0; 2721} 2722 2723static inline int security_socket_getpeername(struct socket *sock) 2724{ 2725 return 0; 2726} 2727 2728static inline int security_socket_getsockopt(struct socket *sock, 2729 int level, int optname) 2730{ 2731 return 0; 2732} 2733 2734static inline int security_socket_setsockopt(struct socket *sock, 2735 int level, int optname) 2736{ 2737 return 0; 2738} 2739 2740static inline int security_socket_shutdown(struct socket *sock, int how) 2741{ 2742 return 0; 2743} 2744static inline int security_sock_rcv_skb(struct sock *sk, 2745 struct sk_buff *skb) 2746{ 2747 return 0; 2748} 2749 2750static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2751 int __user *optlen, unsigned len) 2752{ 2753 return -ENOPROTOOPT; 2754} 2755 2756static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2757{ 2758 return -ENOPROTOOPT; 2759} 2760 2761static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2762{ 2763 return 0; 2764} 2765 2766static inline void security_sk_free(struct sock *sk) 2767{ 2768} 2769 2770static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 2771{ 2772} 2773 2774static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2775{ 2776} 2777 2778static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2779{ 2780} 2781 2782static inline void security_sock_graft(struct sock *sk, struct socket *parent) 2783{ 2784} 2785 2786static inline int security_inet_conn_request(struct sock *sk, 2787 struct sk_buff *skb, struct request_sock *req) 2788{ 2789 return 0; 2790} 2791 2792static inline void security_inet_csk_clone(struct sock *newsk, 2793 const struct request_sock *req) 2794{ 2795} 2796 2797static inline void security_inet_conn_established(struct sock *sk, 2798 struct sk_buff *skb) 2799{ 2800} 2801 2802static inline int security_secmark_relabel_packet(u32 secid) 2803{ 2804 return 0; 2805} 2806 2807static inline void security_secmark_refcount_inc(void) 2808{ 2809} 2810 2811static inline void security_secmark_refcount_dec(void) 2812{ 2813} 2814 2815static inline int security_tun_dev_alloc_security(void **security) 2816{ 2817 return 0; 2818} 2819 2820static inline void security_tun_dev_free_security(void *security) 2821{ 2822} 2823 2824static inline int security_tun_dev_create(void) 2825{ 2826 return 0; 2827} 2828 2829static inline int security_tun_dev_attach_queue(void *security) 2830{ 2831 return 0; 2832} 2833 2834static inline int security_tun_dev_attach(struct sock *sk, void *security) 2835{ 2836 return 0; 2837} 2838 2839static inline int security_tun_dev_open(void *security) 2840{ 2841 return 0; 2842} 2843 2844static inline void security_skb_owned_by(struct sk_buff *skb, struct sock *sk) 2845{ 2846} 2847 2848#endif /* CONFIG_SECURITY_NETWORK */ 2849 2850#ifdef CONFIG_SECURITY_NETWORK_XFRM 2851 2852int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx); 2853int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp); 2854void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx); 2855int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx); 2856int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); 2857int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2858 struct xfrm_sec_ctx *polsec, u32 secid); 2859int security_xfrm_state_delete(struct xfrm_state *x); 2860void security_xfrm_state_free(struct xfrm_state *x); 2861int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); 2862int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2863 struct xfrm_policy *xp, 2864 const struct flowi *fl); 2865int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid); 2866void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl); 2867 2868#else /* CONFIG_SECURITY_NETWORK_XFRM */ 2869 2870static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 2871{ 2872 return 0; 2873} 2874 2875static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp) 2876{ 2877 return 0; 2878} 2879 2880static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2881{ 2882} 2883 2884static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2885{ 2886 return 0; 2887} 2888 2889static inline int security_xfrm_state_alloc(struct xfrm_state *x, 2890 struct xfrm_user_sec_ctx *sec_ctx) 2891{ 2892 return 0; 2893} 2894 2895static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2896 struct xfrm_sec_ctx *polsec, u32 secid) 2897{ 2898 return 0; 2899} 2900 2901static inline void security_xfrm_state_free(struct xfrm_state *x) 2902{ 2903} 2904 2905static inline int security_xfrm_state_delete(struct xfrm_state *x) 2906{ 2907 return 0; 2908} 2909 2910static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2911{ 2912 return 0; 2913} 2914 2915static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2916 struct xfrm_policy *xp, const struct flowi *fl) 2917{ 2918 return 1; 2919} 2920 2921static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2922{ 2923 return 0; 2924} 2925 2926static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2927{ 2928} 2929 2930#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2931 2932#ifdef CONFIG_SECURITY_PATH 2933int security_path_unlink(struct path *dir, struct dentry *dentry); 2934int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode); 2935int security_path_rmdir(struct path *dir, struct dentry *dentry); 2936int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 2937 unsigned int dev); 2938int security_path_truncate(struct path *path); 2939int security_path_symlink(struct path *dir, struct dentry *dentry, 2940 const char *old_name); 2941int security_path_link(struct dentry *old_dentry, struct path *new_dir, 2942 struct dentry *new_dentry); 2943int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 2944 struct path *new_dir, struct dentry *new_dentry); 2945int security_path_chmod(struct path *path, umode_t mode); 2946int security_path_chown(struct path *path, kuid_t uid, kgid_t gid); 2947int security_path_chroot(struct path *path); 2948#else /* CONFIG_SECURITY_PATH */ 2949static inline int security_path_unlink(struct path *dir, struct dentry *dentry) 2950{ 2951 return 0; 2952} 2953 2954static inline int security_path_mkdir(struct path *dir, struct dentry *dentry, 2955 umode_t mode) 2956{ 2957 return 0; 2958} 2959 2960static inline int security_path_rmdir(struct path *dir, struct dentry *dentry) 2961{ 2962 return 0; 2963} 2964 2965static inline int security_path_mknod(struct path *dir, struct dentry *dentry, 2966 umode_t mode, unsigned int dev) 2967{ 2968 return 0; 2969} 2970 2971static inline int security_path_truncate(struct path *path) 2972{ 2973 return 0; 2974} 2975 2976static inline int security_path_symlink(struct path *dir, struct dentry *dentry, 2977 const char *old_name) 2978{ 2979 return 0; 2980} 2981 2982static inline int security_path_link(struct dentry *old_dentry, 2983 struct path *new_dir, 2984 struct dentry *new_dentry) 2985{ 2986 return 0; 2987} 2988 2989static inline int security_path_rename(struct path *old_dir, 2990 struct dentry *old_dentry, 2991 struct path *new_dir, 2992 struct dentry *new_dentry) 2993{ 2994 return 0; 2995} 2996 2997static inline int security_path_chmod(struct path *path, umode_t mode) 2998{ 2999 return 0; 3000} 3001 3002static inline int security_path_chown(struct path *path, kuid_t uid, kgid_t gid) 3003{ 3004 return 0; 3005} 3006 3007static inline int security_path_chroot(struct path *path) 3008{ 3009 return 0; 3010} 3011#endif /* CONFIG_SECURITY_PATH */ 3012 3013#ifdef CONFIG_KEYS 3014#ifdef CONFIG_SECURITY 3015 3016int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags); 3017void security_key_free(struct key *key); 3018int security_key_permission(key_ref_t key_ref, 3019 const struct cred *cred, key_perm_t perm); 3020int security_key_getsecurity(struct key *key, char **_buffer); 3021 3022#else 3023 3024static inline int security_key_alloc(struct key *key, 3025 const struct cred *cred, 3026 unsigned long flags) 3027{ 3028 return 0; 3029} 3030 3031static inline void security_key_free(struct key *key) 3032{ 3033} 3034 3035static inline int security_key_permission(key_ref_t key_ref, 3036 const struct cred *cred, 3037 key_perm_t perm) 3038{ 3039 return 0; 3040} 3041 3042static inline int security_key_getsecurity(struct key *key, char **_buffer) 3043{ 3044 *_buffer = NULL; 3045 return 0; 3046} 3047 3048#endif 3049#endif /* CONFIG_KEYS */ 3050 3051#ifdef CONFIG_AUDIT 3052#ifdef CONFIG_SECURITY 3053int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule); 3054int security_audit_rule_known(struct audit_krule *krule); 3055int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 3056 struct audit_context *actx); 3057void security_audit_rule_free(void *lsmrule); 3058 3059#else 3060 3061static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr, 3062 void **lsmrule) 3063{ 3064 return 0; 3065} 3066 3067static inline int security_audit_rule_known(struct audit_krule *krule) 3068{ 3069 return 0; 3070} 3071 3072static inline int security_audit_rule_match(u32 secid, u32 field, u32 op, 3073 void *lsmrule, struct audit_context *actx) 3074{ 3075 return 0; 3076} 3077 3078static inline void security_audit_rule_free(void *lsmrule) 3079{ } 3080 3081#endif /* CONFIG_SECURITY */ 3082#endif /* CONFIG_AUDIT */ 3083 3084#ifdef CONFIG_SECURITYFS 3085 3086extern struct dentry *securityfs_create_file(const char *name, umode_t mode, 3087 struct dentry *parent, void *data, 3088 const struct file_operations *fops); 3089extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 3090extern void securityfs_remove(struct dentry *dentry); 3091 3092#else /* CONFIG_SECURITYFS */ 3093 3094static inline struct dentry *securityfs_create_dir(const char *name, 3095 struct dentry *parent) 3096{ 3097 return ERR_PTR(-ENODEV); 3098} 3099 3100static inline struct dentry *securityfs_create_file(const char *name, 3101 umode_t mode, 3102 struct dentry *parent, 3103 void *data, 3104 const struct file_operations *fops) 3105{ 3106 return ERR_PTR(-ENODEV); 3107} 3108 3109static inline void securityfs_remove(struct dentry *dentry) 3110{} 3111 3112#endif 3113 3114#ifdef CONFIG_SECURITY 3115 3116static inline char *alloc_secdata(void) 3117{ 3118 return (char *)get_zeroed_page(GFP_KERNEL); 3119} 3120 3121static inline void free_secdata(void *secdata) 3122{ 3123 free_page((unsigned long)secdata); 3124} 3125 3126#else 3127 3128static inline char *alloc_secdata(void) 3129{ 3130 return (char *)1; 3131} 3132 3133static inline void free_secdata(void *secdata) 3134{ } 3135#endif /* CONFIG_SECURITY */ 3136 3137#ifdef CONFIG_SECURITY_YAMA 3138extern int yama_ptrace_access_check(struct task_struct *child, 3139 unsigned int mode); 3140extern int yama_ptrace_traceme(struct task_struct *parent); 3141extern void yama_task_free(struct task_struct *task); 3142extern int yama_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3143 unsigned long arg4, unsigned long arg5); 3144#else 3145static inline int yama_ptrace_access_check(struct task_struct *child, 3146 unsigned int mode) 3147{ 3148 return 0; 3149} 3150 3151static inline int yama_ptrace_traceme(struct task_struct *parent) 3152{ 3153 return 0; 3154} 3155 3156static inline void yama_task_free(struct task_struct *task) 3157{ 3158} 3159 3160static inline int yama_task_prctl(int option, unsigned long arg2, 3161 unsigned long arg3, unsigned long arg4, 3162 unsigned long arg5) 3163{ 3164 return -ENOSYS; 3165} 3166#endif /* CONFIG_SECURITY_YAMA */ 3167 3168#endif /* ! __LINUX_SECURITY_H */ 3169