at v3.10 83 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/dmaengine.h> 32#include <linux/hrtimer.h> 33#include <linux/dma-mapping.h> 34#include <linux/netdev_features.h> 35#include <net/flow_keys.h> 36 37/* Don't change this without changing skb_csum_unnecessary! */ 38#define CHECKSUM_NONE 0 39#define CHECKSUM_UNNECESSARY 1 40#define CHECKSUM_COMPLETE 2 41#define CHECKSUM_PARTIAL 3 42 43#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 44 ~(SMP_CACHE_BYTES - 1)) 45#define SKB_WITH_OVERHEAD(X) \ 46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 47#define SKB_MAX_ORDER(X, ORDER) \ 48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 49#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 50#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 51 52/* return minimum truesize of one skb containing X bytes of data */ 53#define SKB_TRUESIZE(X) ((X) + \ 54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 56 57/* A. Checksumming of received packets by device. 58 * 59 * NONE: device failed to checksum this packet. 60 * skb->csum is undefined. 61 * 62 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 63 * skb->csum is undefined. 64 * It is bad option, but, unfortunately, many of vendors do this. 65 * Apparently with secret goal to sell you new device, when you 66 * will add new protocol to your host. F.e. IPv6. 8) 67 * 68 * COMPLETE: the most generic way. Device supplied checksum of _all_ 69 * the packet as seen by netif_rx in skb->csum. 70 * NOTE: Even if device supports only some protocols, but 71 * is able to produce some skb->csum, it MUST use COMPLETE, 72 * not UNNECESSARY. 73 * 74 * PARTIAL: identical to the case for output below. This may occur 75 * on a packet received directly from another Linux OS, e.g., 76 * a virtualised Linux kernel on the same host. The packet can 77 * be treated in the same way as UNNECESSARY except that on 78 * output (i.e., forwarding) the checksum must be filled in 79 * by the OS or the hardware. 80 * 81 * B. Checksumming on output. 82 * 83 * NONE: skb is checksummed by protocol or csum is not required. 84 * 85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 86 * from skb->csum_start to the end and to record the checksum 87 * at skb->csum_start + skb->csum_offset. 88 * 89 * Device must show its capabilities in dev->features, set 90 * at device setup time. 91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 92 * everything. 93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 94 * TCP/UDP over IPv4. Sigh. Vendors like this 95 * way by an unknown reason. Though, see comment above 96 * about CHECKSUM_UNNECESSARY. 8) 97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 98 * 99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 100 * that do not want net to perform the checksum calculation should use 101 * this flag in their outgoing skbs. 102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 103 * offload. Correspondingly, the FCoE protocol driver 104 * stack should use CHECKSUM_UNNECESSARY. 105 * 106 * Any questions? No questions, good. --ANK 107 */ 108 109struct net_device; 110struct scatterlist; 111struct pipe_inode_info; 112 113#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 114struct nf_conntrack { 115 atomic_t use; 116}; 117#endif 118 119#ifdef CONFIG_BRIDGE_NETFILTER 120struct nf_bridge_info { 121 atomic_t use; 122 unsigned int mask; 123 struct net_device *physindev; 124 struct net_device *physoutdev; 125 unsigned long data[32 / sizeof(unsigned long)]; 126}; 127#endif 128 129struct sk_buff_head { 130 /* These two members must be first. */ 131 struct sk_buff *next; 132 struct sk_buff *prev; 133 134 __u32 qlen; 135 spinlock_t lock; 136}; 137 138struct sk_buff; 139 140/* To allow 64K frame to be packed as single skb without frag_list we 141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 142 * buffers which do not start on a page boundary. 143 * 144 * Since GRO uses frags we allocate at least 16 regardless of page 145 * size. 146 */ 147#if (65536/PAGE_SIZE + 1) < 16 148#define MAX_SKB_FRAGS 16UL 149#else 150#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 151#endif 152 153typedef struct skb_frag_struct skb_frag_t; 154 155struct skb_frag_struct { 156 struct { 157 struct page *p; 158 } page; 159#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 160 __u32 page_offset; 161 __u32 size; 162#else 163 __u16 page_offset; 164 __u16 size; 165#endif 166}; 167 168static inline unsigned int skb_frag_size(const skb_frag_t *frag) 169{ 170 return frag->size; 171} 172 173static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 174{ 175 frag->size = size; 176} 177 178static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 179{ 180 frag->size += delta; 181} 182 183static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 184{ 185 frag->size -= delta; 186} 187 188#define HAVE_HW_TIME_STAMP 189 190/** 191 * struct skb_shared_hwtstamps - hardware time stamps 192 * @hwtstamp: hardware time stamp transformed into duration 193 * since arbitrary point in time 194 * @syststamp: hwtstamp transformed to system time base 195 * 196 * Software time stamps generated by ktime_get_real() are stored in 197 * skb->tstamp. The relation between the different kinds of time 198 * stamps is as follows: 199 * 200 * syststamp and tstamp can be compared against each other in 201 * arbitrary combinations. The accuracy of a 202 * syststamp/tstamp/"syststamp from other device" comparison is 203 * limited by the accuracy of the transformation into system time 204 * base. This depends on the device driver and its underlying 205 * hardware. 206 * 207 * hwtstamps can only be compared against other hwtstamps from 208 * the same device. 209 * 210 * This structure is attached to packets as part of the 211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 212 */ 213struct skb_shared_hwtstamps { 214 ktime_t hwtstamp; 215 ktime_t syststamp; 216}; 217 218/* Definitions for tx_flags in struct skb_shared_info */ 219enum { 220 /* generate hardware time stamp */ 221 SKBTX_HW_TSTAMP = 1 << 0, 222 223 /* generate software time stamp */ 224 SKBTX_SW_TSTAMP = 1 << 1, 225 226 /* device driver is going to provide hardware time stamp */ 227 SKBTX_IN_PROGRESS = 1 << 2, 228 229 /* device driver supports TX zero-copy buffers */ 230 SKBTX_DEV_ZEROCOPY = 1 << 3, 231 232 /* generate wifi status information (where possible) */ 233 SKBTX_WIFI_STATUS = 1 << 4, 234 235 /* This indicates at least one fragment might be overwritten 236 * (as in vmsplice(), sendfile() ...) 237 * If we need to compute a TX checksum, we'll need to copy 238 * all frags to avoid possible bad checksum 239 */ 240 SKBTX_SHARED_FRAG = 1 << 5, 241}; 242 243/* 244 * The callback notifies userspace to release buffers when skb DMA is done in 245 * lower device, the skb last reference should be 0 when calling this. 246 * The zerocopy_success argument is true if zero copy transmit occurred, 247 * false on data copy or out of memory error caused by data copy attempt. 248 * The ctx field is used to track device context. 249 * The desc field is used to track userspace buffer index. 250 */ 251struct ubuf_info { 252 void (*callback)(struct ubuf_info *, bool zerocopy_success); 253 void *ctx; 254 unsigned long desc; 255}; 256 257/* This data is invariant across clones and lives at 258 * the end of the header data, ie. at skb->end. 259 */ 260struct skb_shared_info { 261 unsigned char nr_frags; 262 __u8 tx_flags; 263 unsigned short gso_size; 264 /* Warning: this field is not always filled in (UFO)! */ 265 unsigned short gso_segs; 266 unsigned short gso_type; 267 struct sk_buff *frag_list; 268 struct skb_shared_hwtstamps hwtstamps; 269 __be32 ip6_frag_id; 270 271 /* 272 * Warning : all fields before dataref are cleared in __alloc_skb() 273 */ 274 atomic_t dataref; 275 276 /* Intermediate layers must ensure that destructor_arg 277 * remains valid until skb destructor */ 278 void * destructor_arg; 279 280 /* must be last field, see pskb_expand_head() */ 281 skb_frag_t frags[MAX_SKB_FRAGS]; 282}; 283 284/* We divide dataref into two halves. The higher 16 bits hold references 285 * to the payload part of skb->data. The lower 16 bits hold references to 286 * the entire skb->data. A clone of a headerless skb holds the length of 287 * the header in skb->hdr_len. 288 * 289 * All users must obey the rule that the skb->data reference count must be 290 * greater than or equal to the payload reference count. 291 * 292 * Holding a reference to the payload part means that the user does not 293 * care about modifications to the header part of skb->data. 294 */ 295#define SKB_DATAREF_SHIFT 16 296#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 297 298 299enum { 300 SKB_FCLONE_UNAVAILABLE, 301 SKB_FCLONE_ORIG, 302 SKB_FCLONE_CLONE, 303}; 304 305enum { 306 SKB_GSO_TCPV4 = 1 << 0, 307 SKB_GSO_UDP = 1 << 1, 308 309 /* This indicates the skb is from an untrusted source. */ 310 SKB_GSO_DODGY = 1 << 2, 311 312 /* This indicates the tcp segment has CWR set. */ 313 SKB_GSO_TCP_ECN = 1 << 3, 314 315 SKB_GSO_TCPV6 = 1 << 4, 316 317 SKB_GSO_FCOE = 1 << 5, 318 319 SKB_GSO_GRE = 1 << 6, 320 321 SKB_GSO_UDP_TUNNEL = 1 << 7, 322}; 323 324#if BITS_PER_LONG > 32 325#define NET_SKBUFF_DATA_USES_OFFSET 1 326#endif 327 328#ifdef NET_SKBUFF_DATA_USES_OFFSET 329typedef unsigned int sk_buff_data_t; 330#else 331typedef unsigned char *sk_buff_data_t; 332#endif 333 334#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 335 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 336#define NET_SKBUFF_NF_DEFRAG_NEEDED 1 337#endif 338 339/** 340 * struct sk_buff - socket buffer 341 * @next: Next buffer in list 342 * @prev: Previous buffer in list 343 * @tstamp: Time we arrived 344 * @sk: Socket we are owned by 345 * @dev: Device we arrived on/are leaving by 346 * @cb: Control buffer. Free for use by every layer. Put private vars here 347 * @_skb_refdst: destination entry (with norefcount bit) 348 * @sp: the security path, used for xfrm 349 * @len: Length of actual data 350 * @data_len: Data length 351 * @mac_len: Length of link layer header 352 * @hdr_len: writable header length of cloned skb 353 * @csum: Checksum (must include start/offset pair) 354 * @csum_start: Offset from skb->head where checksumming should start 355 * @csum_offset: Offset from csum_start where checksum should be stored 356 * @priority: Packet queueing priority 357 * @local_df: allow local fragmentation 358 * @cloned: Head may be cloned (check refcnt to be sure) 359 * @ip_summed: Driver fed us an IP checksum 360 * @nohdr: Payload reference only, must not modify header 361 * @nfctinfo: Relationship of this skb to the connection 362 * @pkt_type: Packet class 363 * @fclone: skbuff clone status 364 * @ipvs_property: skbuff is owned by ipvs 365 * @peeked: this packet has been seen already, so stats have been 366 * done for it, don't do them again 367 * @nf_trace: netfilter packet trace flag 368 * @protocol: Packet protocol from driver 369 * @destructor: Destruct function 370 * @nfct: Associated connection, if any 371 * @nfct_reasm: netfilter conntrack re-assembly pointer 372 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 373 * @skb_iif: ifindex of device we arrived on 374 * @tc_index: Traffic control index 375 * @tc_verd: traffic control verdict 376 * @rxhash: the packet hash computed on receive 377 * @queue_mapping: Queue mapping for multiqueue devices 378 * @ndisc_nodetype: router type (from link layer) 379 * @ooo_okay: allow the mapping of a socket to a queue to be changed 380 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 381 * ports. 382 * @wifi_acked_valid: wifi_acked was set 383 * @wifi_acked: whether frame was acked on wifi or not 384 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 385 * @dma_cookie: a cookie to one of several possible DMA operations 386 * done by skb DMA functions 387 * @secmark: security marking 388 * @mark: Generic packet mark 389 * @dropcount: total number of sk_receive_queue overflows 390 * @vlan_proto: vlan encapsulation protocol 391 * @vlan_tci: vlan tag control information 392 * @inner_transport_header: Inner transport layer header (encapsulation) 393 * @inner_network_header: Network layer header (encapsulation) 394 * @inner_mac_header: Link layer header (encapsulation) 395 * @transport_header: Transport layer header 396 * @network_header: Network layer header 397 * @mac_header: Link layer header 398 * @tail: Tail pointer 399 * @end: End pointer 400 * @head: Head of buffer 401 * @data: Data head pointer 402 * @truesize: Buffer size 403 * @users: User count - see {datagram,tcp}.c 404 */ 405 406struct sk_buff { 407 /* These two members must be first. */ 408 struct sk_buff *next; 409 struct sk_buff *prev; 410 411 ktime_t tstamp; 412 413 struct sock *sk; 414 struct net_device *dev; 415 416 /* 417 * This is the control buffer. It is free to use for every 418 * layer. Please put your private variables there. If you 419 * want to keep them across layers you have to do a skb_clone() 420 * first. This is owned by whoever has the skb queued ATM. 421 */ 422 char cb[48] __aligned(8); 423 424 unsigned long _skb_refdst; 425#ifdef CONFIG_XFRM 426 struct sec_path *sp; 427#endif 428 unsigned int len, 429 data_len; 430 __u16 mac_len, 431 hdr_len; 432 union { 433 __wsum csum; 434 struct { 435 __u16 csum_start; 436 __u16 csum_offset; 437 }; 438 }; 439 __u32 priority; 440 kmemcheck_bitfield_begin(flags1); 441 __u8 local_df:1, 442 cloned:1, 443 ip_summed:2, 444 nohdr:1, 445 nfctinfo:3; 446 __u8 pkt_type:3, 447 fclone:2, 448 ipvs_property:1, 449 peeked:1, 450 nf_trace:1; 451 kmemcheck_bitfield_end(flags1); 452 __be16 protocol; 453 454 void (*destructor)(struct sk_buff *skb); 455#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 456 struct nf_conntrack *nfct; 457#endif 458#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 459 struct sk_buff *nfct_reasm; 460#endif 461#ifdef CONFIG_BRIDGE_NETFILTER 462 struct nf_bridge_info *nf_bridge; 463#endif 464 465 int skb_iif; 466 467 __u32 rxhash; 468 469 __be16 vlan_proto; 470 __u16 vlan_tci; 471 472#ifdef CONFIG_NET_SCHED 473 __u16 tc_index; /* traffic control index */ 474#ifdef CONFIG_NET_CLS_ACT 475 __u16 tc_verd; /* traffic control verdict */ 476#endif 477#endif 478 479 __u16 queue_mapping; 480 kmemcheck_bitfield_begin(flags2); 481#ifdef CONFIG_IPV6_NDISC_NODETYPE 482 __u8 ndisc_nodetype:2; 483#endif 484 __u8 pfmemalloc:1; 485 __u8 ooo_okay:1; 486 __u8 l4_rxhash:1; 487 __u8 wifi_acked_valid:1; 488 __u8 wifi_acked:1; 489 __u8 no_fcs:1; 490 __u8 head_frag:1; 491 /* Encapsulation protocol and NIC drivers should use 492 * this flag to indicate to each other if the skb contains 493 * encapsulated packet or not and maybe use the inner packet 494 * headers if needed 495 */ 496 __u8 encapsulation:1; 497 /* 7/9 bit hole (depending on ndisc_nodetype presence) */ 498 kmemcheck_bitfield_end(flags2); 499 500#ifdef CONFIG_NET_DMA 501 dma_cookie_t dma_cookie; 502#endif 503#ifdef CONFIG_NETWORK_SECMARK 504 __u32 secmark; 505#endif 506 union { 507 __u32 mark; 508 __u32 dropcount; 509 __u32 reserved_tailroom; 510 }; 511 512 sk_buff_data_t inner_transport_header; 513 sk_buff_data_t inner_network_header; 514 sk_buff_data_t inner_mac_header; 515 sk_buff_data_t transport_header; 516 sk_buff_data_t network_header; 517 sk_buff_data_t mac_header; 518 /* These elements must be at the end, see alloc_skb() for details. */ 519 sk_buff_data_t tail; 520 sk_buff_data_t end; 521 unsigned char *head, 522 *data; 523 unsigned int truesize; 524 atomic_t users; 525}; 526 527#ifdef __KERNEL__ 528/* 529 * Handling routines are only of interest to the kernel 530 */ 531#include <linux/slab.h> 532 533 534#define SKB_ALLOC_FCLONE 0x01 535#define SKB_ALLOC_RX 0x02 536 537/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 538static inline bool skb_pfmemalloc(const struct sk_buff *skb) 539{ 540 return unlikely(skb->pfmemalloc); 541} 542 543/* 544 * skb might have a dst pointer attached, refcounted or not. 545 * _skb_refdst low order bit is set if refcount was _not_ taken 546 */ 547#define SKB_DST_NOREF 1UL 548#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 549 550/** 551 * skb_dst - returns skb dst_entry 552 * @skb: buffer 553 * 554 * Returns skb dst_entry, regardless of reference taken or not. 555 */ 556static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 557{ 558 /* If refdst was not refcounted, check we still are in a 559 * rcu_read_lock section 560 */ 561 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 562 !rcu_read_lock_held() && 563 !rcu_read_lock_bh_held()); 564 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 565} 566 567/** 568 * skb_dst_set - sets skb dst 569 * @skb: buffer 570 * @dst: dst entry 571 * 572 * Sets skb dst, assuming a reference was taken on dst and should 573 * be released by skb_dst_drop() 574 */ 575static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 576{ 577 skb->_skb_refdst = (unsigned long)dst; 578} 579 580extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 581 bool force); 582 583/** 584 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 585 * @skb: buffer 586 * @dst: dst entry 587 * 588 * Sets skb dst, assuming a reference was not taken on dst. 589 * If dst entry is cached, we do not take reference and dst_release 590 * will be avoided by refdst_drop. If dst entry is not cached, we take 591 * reference, so that last dst_release can destroy the dst immediately. 592 */ 593static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 594{ 595 __skb_dst_set_noref(skb, dst, false); 596} 597 598/** 599 * skb_dst_set_noref_force - sets skb dst, without taking reference 600 * @skb: buffer 601 * @dst: dst entry 602 * 603 * Sets skb dst, assuming a reference was not taken on dst. 604 * No reference is taken and no dst_release will be called. While for 605 * cached dsts deferred reclaim is a basic feature, for entries that are 606 * not cached it is caller's job to guarantee that last dst_release for 607 * provided dst happens when nobody uses it, eg. after a RCU grace period. 608 */ 609static inline void skb_dst_set_noref_force(struct sk_buff *skb, 610 struct dst_entry *dst) 611{ 612 __skb_dst_set_noref(skb, dst, true); 613} 614 615/** 616 * skb_dst_is_noref - Test if skb dst isn't refcounted 617 * @skb: buffer 618 */ 619static inline bool skb_dst_is_noref(const struct sk_buff *skb) 620{ 621 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 622} 623 624static inline struct rtable *skb_rtable(const struct sk_buff *skb) 625{ 626 return (struct rtable *)skb_dst(skb); 627} 628 629extern void kfree_skb(struct sk_buff *skb); 630extern void kfree_skb_list(struct sk_buff *segs); 631extern void skb_tx_error(struct sk_buff *skb); 632extern void consume_skb(struct sk_buff *skb); 633extern void __kfree_skb(struct sk_buff *skb); 634extern struct kmem_cache *skbuff_head_cache; 635 636extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 637extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 638 bool *fragstolen, int *delta_truesize); 639 640extern struct sk_buff *__alloc_skb(unsigned int size, 641 gfp_t priority, int flags, int node); 642extern struct sk_buff *build_skb(void *data, unsigned int frag_size); 643static inline struct sk_buff *alloc_skb(unsigned int size, 644 gfp_t priority) 645{ 646 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 647} 648 649static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 650 gfp_t priority) 651{ 652 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 653} 654 655extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 656static inline struct sk_buff *alloc_skb_head(gfp_t priority) 657{ 658 return __alloc_skb_head(priority, -1); 659} 660 661extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 662extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 663extern struct sk_buff *skb_clone(struct sk_buff *skb, 664 gfp_t priority); 665extern struct sk_buff *skb_copy(const struct sk_buff *skb, 666 gfp_t priority); 667extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 668 int headroom, gfp_t gfp_mask); 669 670extern int pskb_expand_head(struct sk_buff *skb, 671 int nhead, int ntail, 672 gfp_t gfp_mask); 673extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 674 unsigned int headroom); 675extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 676 int newheadroom, int newtailroom, 677 gfp_t priority); 678extern int skb_to_sgvec(struct sk_buff *skb, 679 struct scatterlist *sg, int offset, 680 int len); 681extern int skb_cow_data(struct sk_buff *skb, int tailbits, 682 struct sk_buff **trailer); 683extern int skb_pad(struct sk_buff *skb, int pad); 684#define dev_kfree_skb(a) consume_skb(a) 685 686extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 687 int getfrag(void *from, char *to, int offset, 688 int len,int odd, struct sk_buff *skb), 689 void *from, int length); 690 691struct skb_seq_state { 692 __u32 lower_offset; 693 __u32 upper_offset; 694 __u32 frag_idx; 695 __u32 stepped_offset; 696 struct sk_buff *root_skb; 697 struct sk_buff *cur_skb; 698 __u8 *frag_data; 699}; 700 701extern void skb_prepare_seq_read(struct sk_buff *skb, 702 unsigned int from, unsigned int to, 703 struct skb_seq_state *st); 704extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 705 struct skb_seq_state *st); 706extern void skb_abort_seq_read(struct skb_seq_state *st); 707 708extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 709 unsigned int to, struct ts_config *config, 710 struct ts_state *state); 711 712extern void __skb_get_rxhash(struct sk_buff *skb); 713static inline __u32 skb_get_rxhash(struct sk_buff *skb) 714{ 715 if (!skb->l4_rxhash) 716 __skb_get_rxhash(skb); 717 718 return skb->rxhash; 719} 720 721#ifdef NET_SKBUFF_DATA_USES_OFFSET 722static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 723{ 724 return skb->head + skb->end; 725} 726 727static inline unsigned int skb_end_offset(const struct sk_buff *skb) 728{ 729 return skb->end; 730} 731#else 732static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 733{ 734 return skb->end; 735} 736 737static inline unsigned int skb_end_offset(const struct sk_buff *skb) 738{ 739 return skb->end - skb->head; 740} 741#endif 742 743/* Internal */ 744#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 745 746static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 747{ 748 return &skb_shinfo(skb)->hwtstamps; 749} 750 751/** 752 * skb_queue_empty - check if a queue is empty 753 * @list: queue head 754 * 755 * Returns true if the queue is empty, false otherwise. 756 */ 757static inline int skb_queue_empty(const struct sk_buff_head *list) 758{ 759 return list->next == (struct sk_buff *)list; 760} 761 762/** 763 * skb_queue_is_last - check if skb is the last entry in the queue 764 * @list: queue head 765 * @skb: buffer 766 * 767 * Returns true if @skb is the last buffer on the list. 768 */ 769static inline bool skb_queue_is_last(const struct sk_buff_head *list, 770 const struct sk_buff *skb) 771{ 772 return skb->next == (struct sk_buff *)list; 773} 774 775/** 776 * skb_queue_is_first - check if skb is the first entry in the queue 777 * @list: queue head 778 * @skb: buffer 779 * 780 * Returns true if @skb is the first buffer on the list. 781 */ 782static inline bool skb_queue_is_first(const struct sk_buff_head *list, 783 const struct sk_buff *skb) 784{ 785 return skb->prev == (struct sk_buff *)list; 786} 787 788/** 789 * skb_queue_next - return the next packet in the queue 790 * @list: queue head 791 * @skb: current buffer 792 * 793 * Return the next packet in @list after @skb. It is only valid to 794 * call this if skb_queue_is_last() evaluates to false. 795 */ 796static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 797 const struct sk_buff *skb) 798{ 799 /* This BUG_ON may seem severe, but if we just return then we 800 * are going to dereference garbage. 801 */ 802 BUG_ON(skb_queue_is_last(list, skb)); 803 return skb->next; 804} 805 806/** 807 * skb_queue_prev - return the prev packet in the queue 808 * @list: queue head 809 * @skb: current buffer 810 * 811 * Return the prev packet in @list before @skb. It is only valid to 812 * call this if skb_queue_is_first() evaluates to false. 813 */ 814static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 815 const struct sk_buff *skb) 816{ 817 /* This BUG_ON may seem severe, but if we just return then we 818 * are going to dereference garbage. 819 */ 820 BUG_ON(skb_queue_is_first(list, skb)); 821 return skb->prev; 822} 823 824/** 825 * skb_get - reference buffer 826 * @skb: buffer to reference 827 * 828 * Makes another reference to a socket buffer and returns a pointer 829 * to the buffer. 830 */ 831static inline struct sk_buff *skb_get(struct sk_buff *skb) 832{ 833 atomic_inc(&skb->users); 834 return skb; 835} 836 837/* 838 * If users == 1, we are the only owner and are can avoid redundant 839 * atomic change. 840 */ 841 842/** 843 * skb_cloned - is the buffer a clone 844 * @skb: buffer to check 845 * 846 * Returns true if the buffer was generated with skb_clone() and is 847 * one of multiple shared copies of the buffer. Cloned buffers are 848 * shared data so must not be written to under normal circumstances. 849 */ 850static inline int skb_cloned(const struct sk_buff *skb) 851{ 852 return skb->cloned && 853 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 854} 855 856static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 857{ 858 might_sleep_if(pri & __GFP_WAIT); 859 860 if (skb_cloned(skb)) 861 return pskb_expand_head(skb, 0, 0, pri); 862 863 return 0; 864} 865 866/** 867 * skb_header_cloned - is the header a clone 868 * @skb: buffer to check 869 * 870 * Returns true if modifying the header part of the buffer requires 871 * the data to be copied. 872 */ 873static inline int skb_header_cloned(const struct sk_buff *skb) 874{ 875 int dataref; 876 877 if (!skb->cloned) 878 return 0; 879 880 dataref = atomic_read(&skb_shinfo(skb)->dataref); 881 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 882 return dataref != 1; 883} 884 885/** 886 * skb_header_release - release reference to header 887 * @skb: buffer to operate on 888 * 889 * Drop a reference to the header part of the buffer. This is done 890 * by acquiring a payload reference. You must not read from the header 891 * part of skb->data after this. 892 */ 893static inline void skb_header_release(struct sk_buff *skb) 894{ 895 BUG_ON(skb->nohdr); 896 skb->nohdr = 1; 897 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 898} 899 900/** 901 * skb_shared - is the buffer shared 902 * @skb: buffer to check 903 * 904 * Returns true if more than one person has a reference to this 905 * buffer. 906 */ 907static inline int skb_shared(const struct sk_buff *skb) 908{ 909 return atomic_read(&skb->users) != 1; 910} 911 912/** 913 * skb_share_check - check if buffer is shared and if so clone it 914 * @skb: buffer to check 915 * @pri: priority for memory allocation 916 * 917 * If the buffer is shared the buffer is cloned and the old copy 918 * drops a reference. A new clone with a single reference is returned. 919 * If the buffer is not shared the original buffer is returned. When 920 * being called from interrupt status or with spinlocks held pri must 921 * be GFP_ATOMIC. 922 * 923 * NULL is returned on a memory allocation failure. 924 */ 925static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 926{ 927 might_sleep_if(pri & __GFP_WAIT); 928 if (skb_shared(skb)) { 929 struct sk_buff *nskb = skb_clone(skb, pri); 930 931 if (likely(nskb)) 932 consume_skb(skb); 933 else 934 kfree_skb(skb); 935 skb = nskb; 936 } 937 return skb; 938} 939 940/* 941 * Copy shared buffers into a new sk_buff. We effectively do COW on 942 * packets to handle cases where we have a local reader and forward 943 * and a couple of other messy ones. The normal one is tcpdumping 944 * a packet thats being forwarded. 945 */ 946 947/** 948 * skb_unshare - make a copy of a shared buffer 949 * @skb: buffer to check 950 * @pri: priority for memory allocation 951 * 952 * If the socket buffer is a clone then this function creates a new 953 * copy of the data, drops a reference count on the old copy and returns 954 * the new copy with the reference count at 1. If the buffer is not a clone 955 * the original buffer is returned. When called with a spinlock held or 956 * from interrupt state @pri must be %GFP_ATOMIC 957 * 958 * %NULL is returned on a memory allocation failure. 959 */ 960static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 961 gfp_t pri) 962{ 963 might_sleep_if(pri & __GFP_WAIT); 964 if (skb_cloned(skb)) { 965 struct sk_buff *nskb = skb_copy(skb, pri); 966 kfree_skb(skb); /* Free our shared copy */ 967 skb = nskb; 968 } 969 return skb; 970} 971 972/** 973 * skb_peek - peek at the head of an &sk_buff_head 974 * @list_: list to peek at 975 * 976 * Peek an &sk_buff. Unlike most other operations you _MUST_ 977 * be careful with this one. A peek leaves the buffer on the 978 * list and someone else may run off with it. You must hold 979 * the appropriate locks or have a private queue to do this. 980 * 981 * Returns %NULL for an empty list or a pointer to the head element. 982 * The reference count is not incremented and the reference is therefore 983 * volatile. Use with caution. 984 */ 985static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 986{ 987 struct sk_buff *skb = list_->next; 988 989 if (skb == (struct sk_buff *)list_) 990 skb = NULL; 991 return skb; 992} 993 994/** 995 * skb_peek_next - peek skb following the given one from a queue 996 * @skb: skb to start from 997 * @list_: list to peek at 998 * 999 * Returns %NULL when the end of the list is met or a pointer to the 1000 * next element. The reference count is not incremented and the 1001 * reference is therefore volatile. Use with caution. 1002 */ 1003static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1004 const struct sk_buff_head *list_) 1005{ 1006 struct sk_buff *next = skb->next; 1007 1008 if (next == (struct sk_buff *)list_) 1009 next = NULL; 1010 return next; 1011} 1012 1013/** 1014 * skb_peek_tail - peek at the tail of an &sk_buff_head 1015 * @list_: list to peek at 1016 * 1017 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1018 * be careful with this one. A peek leaves the buffer on the 1019 * list and someone else may run off with it. You must hold 1020 * the appropriate locks or have a private queue to do this. 1021 * 1022 * Returns %NULL for an empty list or a pointer to the tail element. 1023 * The reference count is not incremented and the reference is therefore 1024 * volatile. Use with caution. 1025 */ 1026static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1027{ 1028 struct sk_buff *skb = list_->prev; 1029 1030 if (skb == (struct sk_buff *)list_) 1031 skb = NULL; 1032 return skb; 1033 1034} 1035 1036/** 1037 * skb_queue_len - get queue length 1038 * @list_: list to measure 1039 * 1040 * Return the length of an &sk_buff queue. 1041 */ 1042static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1043{ 1044 return list_->qlen; 1045} 1046 1047/** 1048 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1049 * @list: queue to initialize 1050 * 1051 * This initializes only the list and queue length aspects of 1052 * an sk_buff_head object. This allows to initialize the list 1053 * aspects of an sk_buff_head without reinitializing things like 1054 * the spinlock. It can also be used for on-stack sk_buff_head 1055 * objects where the spinlock is known to not be used. 1056 */ 1057static inline void __skb_queue_head_init(struct sk_buff_head *list) 1058{ 1059 list->prev = list->next = (struct sk_buff *)list; 1060 list->qlen = 0; 1061} 1062 1063/* 1064 * This function creates a split out lock class for each invocation; 1065 * this is needed for now since a whole lot of users of the skb-queue 1066 * infrastructure in drivers have different locking usage (in hardirq) 1067 * than the networking core (in softirq only). In the long run either the 1068 * network layer or drivers should need annotation to consolidate the 1069 * main types of usage into 3 classes. 1070 */ 1071static inline void skb_queue_head_init(struct sk_buff_head *list) 1072{ 1073 spin_lock_init(&list->lock); 1074 __skb_queue_head_init(list); 1075} 1076 1077static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1078 struct lock_class_key *class) 1079{ 1080 skb_queue_head_init(list); 1081 lockdep_set_class(&list->lock, class); 1082} 1083 1084/* 1085 * Insert an sk_buff on a list. 1086 * 1087 * The "__skb_xxxx()" functions are the non-atomic ones that 1088 * can only be called with interrupts disabled. 1089 */ 1090extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 1091static inline void __skb_insert(struct sk_buff *newsk, 1092 struct sk_buff *prev, struct sk_buff *next, 1093 struct sk_buff_head *list) 1094{ 1095 newsk->next = next; 1096 newsk->prev = prev; 1097 next->prev = prev->next = newsk; 1098 list->qlen++; 1099} 1100 1101static inline void __skb_queue_splice(const struct sk_buff_head *list, 1102 struct sk_buff *prev, 1103 struct sk_buff *next) 1104{ 1105 struct sk_buff *first = list->next; 1106 struct sk_buff *last = list->prev; 1107 1108 first->prev = prev; 1109 prev->next = first; 1110 1111 last->next = next; 1112 next->prev = last; 1113} 1114 1115/** 1116 * skb_queue_splice - join two skb lists, this is designed for stacks 1117 * @list: the new list to add 1118 * @head: the place to add it in the first list 1119 */ 1120static inline void skb_queue_splice(const struct sk_buff_head *list, 1121 struct sk_buff_head *head) 1122{ 1123 if (!skb_queue_empty(list)) { 1124 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1125 head->qlen += list->qlen; 1126 } 1127} 1128 1129/** 1130 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1131 * @list: the new list to add 1132 * @head: the place to add it in the first list 1133 * 1134 * The list at @list is reinitialised 1135 */ 1136static inline void skb_queue_splice_init(struct sk_buff_head *list, 1137 struct sk_buff_head *head) 1138{ 1139 if (!skb_queue_empty(list)) { 1140 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1141 head->qlen += list->qlen; 1142 __skb_queue_head_init(list); 1143 } 1144} 1145 1146/** 1147 * skb_queue_splice_tail - join two skb lists, each list being a queue 1148 * @list: the new list to add 1149 * @head: the place to add it in the first list 1150 */ 1151static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1152 struct sk_buff_head *head) 1153{ 1154 if (!skb_queue_empty(list)) { 1155 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1156 head->qlen += list->qlen; 1157 } 1158} 1159 1160/** 1161 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1162 * @list: the new list to add 1163 * @head: the place to add it in the first list 1164 * 1165 * Each of the lists is a queue. 1166 * The list at @list is reinitialised 1167 */ 1168static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1169 struct sk_buff_head *head) 1170{ 1171 if (!skb_queue_empty(list)) { 1172 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1173 head->qlen += list->qlen; 1174 __skb_queue_head_init(list); 1175 } 1176} 1177 1178/** 1179 * __skb_queue_after - queue a buffer at the list head 1180 * @list: list to use 1181 * @prev: place after this buffer 1182 * @newsk: buffer to queue 1183 * 1184 * Queue a buffer int the middle of a list. This function takes no locks 1185 * and you must therefore hold required locks before calling it. 1186 * 1187 * A buffer cannot be placed on two lists at the same time. 1188 */ 1189static inline void __skb_queue_after(struct sk_buff_head *list, 1190 struct sk_buff *prev, 1191 struct sk_buff *newsk) 1192{ 1193 __skb_insert(newsk, prev, prev->next, list); 1194} 1195 1196extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1197 struct sk_buff_head *list); 1198 1199static inline void __skb_queue_before(struct sk_buff_head *list, 1200 struct sk_buff *next, 1201 struct sk_buff *newsk) 1202{ 1203 __skb_insert(newsk, next->prev, next, list); 1204} 1205 1206/** 1207 * __skb_queue_head - queue a buffer at the list head 1208 * @list: list to use 1209 * @newsk: buffer to queue 1210 * 1211 * Queue a buffer at the start of a list. This function takes no locks 1212 * and you must therefore hold required locks before calling it. 1213 * 1214 * A buffer cannot be placed on two lists at the same time. 1215 */ 1216extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1217static inline void __skb_queue_head(struct sk_buff_head *list, 1218 struct sk_buff *newsk) 1219{ 1220 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1221} 1222 1223/** 1224 * __skb_queue_tail - queue a buffer at the list tail 1225 * @list: list to use 1226 * @newsk: buffer to queue 1227 * 1228 * Queue a buffer at the end of a list. This function takes no locks 1229 * and you must therefore hold required locks before calling it. 1230 * 1231 * A buffer cannot be placed on two lists at the same time. 1232 */ 1233extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1234static inline void __skb_queue_tail(struct sk_buff_head *list, 1235 struct sk_buff *newsk) 1236{ 1237 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1238} 1239 1240/* 1241 * remove sk_buff from list. _Must_ be called atomically, and with 1242 * the list known.. 1243 */ 1244extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1245static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1246{ 1247 struct sk_buff *next, *prev; 1248 1249 list->qlen--; 1250 next = skb->next; 1251 prev = skb->prev; 1252 skb->next = skb->prev = NULL; 1253 next->prev = prev; 1254 prev->next = next; 1255} 1256 1257/** 1258 * __skb_dequeue - remove from the head of the queue 1259 * @list: list to dequeue from 1260 * 1261 * Remove the head of the list. This function does not take any locks 1262 * so must be used with appropriate locks held only. The head item is 1263 * returned or %NULL if the list is empty. 1264 */ 1265extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1266static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1267{ 1268 struct sk_buff *skb = skb_peek(list); 1269 if (skb) 1270 __skb_unlink(skb, list); 1271 return skb; 1272} 1273 1274/** 1275 * __skb_dequeue_tail - remove from the tail of the queue 1276 * @list: list to dequeue from 1277 * 1278 * Remove the tail of the list. This function does not take any locks 1279 * so must be used with appropriate locks held only. The tail item is 1280 * returned or %NULL if the list is empty. 1281 */ 1282extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1283static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1284{ 1285 struct sk_buff *skb = skb_peek_tail(list); 1286 if (skb) 1287 __skb_unlink(skb, list); 1288 return skb; 1289} 1290 1291 1292static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1293{ 1294 return skb->data_len; 1295} 1296 1297static inline unsigned int skb_headlen(const struct sk_buff *skb) 1298{ 1299 return skb->len - skb->data_len; 1300} 1301 1302static inline int skb_pagelen(const struct sk_buff *skb) 1303{ 1304 int i, len = 0; 1305 1306 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1307 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1308 return len + skb_headlen(skb); 1309} 1310 1311/** 1312 * __skb_fill_page_desc - initialise a paged fragment in an skb 1313 * @skb: buffer containing fragment to be initialised 1314 * @i: paged fragment index to initialise 1315 * @page: the page to use for this fragment 1316 * @off: the offset to the data with @page 1317 * @size: the length of the data 1318 * 1319 * Initialises the @i'th fragment of @skb to point to &size bytes at 1320 * offset @off within @page. 1321 * 1322 * Does not take any additional reference on the fragment. 1323 */ 1324static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1325 struct page *page, int off, int size) 1326{ 1327 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1328 1329 /* 1330 * Propagate page->pfmemalloc to the skb if we can. The problem is 1331 * that not all callers have unique ownership of the page. If 1332 * pfmemalloc is set, we check the mapping as a mapping implies 1333 * page->index is set (index and pfmemalloc share space). 1334 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1335 * do not lose pfmemalloc information as the pages would not be 1336 * allocated using __GFP_MEMALLOC. 1337 */ 1338 frag->page.p = page; 1339 frag->page_offset = off; 1340 skb_frag_size_set(frag, size); 1341 1342 page = compound_head(page); 1343 if (page->pfmemalloc && !page->mapping) 1344 skb->pfmemalloc = true; 1345} 1346 1347/** 1348 * skb_fill_page_desc - initialise a paged fragment in an skb 1349 * @skb: buffer containing fragment to be initialised 1350 * @i: paged fragment index to initialise 1351 * @page: the page to use for this fragment 1352 * @off: the offset to the data with @page 1353 * @size: the length of the data 1354 * 1355 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1356 * @skb to point to &size bytes at offset @off within @page. In 1357 * addition updates @skb such that @i is the last fragment. 1358 * 1359 * Does not take any additional reference on the fragment. 1360 */ 1361static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1362 struct page *page, int off, int size) 1363{ 1364 __skb_fill_page_desc(skb, i, page, off, size); 1365 skb_shinfo(skb)->nr_frags = i + 1; 1366} 1367 1368extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1369 int off, int size, unsigned int truesize); 1370 1371#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1372#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1373#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1374 1375#ifdef NET_SKBUFF_DATA_USES_OFFSET 1376static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1377{ 1378 return skb->head + skb->tail; 1379} 1380 1381static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1382{ 1383 skb->tail = skb->data - skb->head; 1384} 1385 1386static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1387{ 1388 skb_reset_tail_pointer(skb); 1389 skb->tail += offset; 1390} 1391#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1392static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1393{ 1394 return skb->tail; 1395} 1396 1397static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1398{ 1399 skb->tail = skb->data; 1400} 1401 1402static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1403{ 1404 skb->tail = skb->data + offset; 1405} 1406 1407#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1408 1409/* 1410 * Add data to an sk_buff 1411 */ 1412extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1413static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1414{ 1415 unsigned char *tmp = skb_tail_pointer(skb); 1416 SKB_LINEAR_ASSERT(skb); 1417 skb->tail += len; 1418 skb->len += len; 1419 return tmp; 1420} 1421 1422extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1423static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1424{ 1425 skb->data -= len; 1426 skb->len += len; 1427 return skb->data; 1428} 1429 1430extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1431static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1432{ 1433 skb->len -= len; 1434 BUG_ON(skb->len < skb->data_len); 1435 return skb->data += len; 1436} 1437 1438static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1439{ 1440 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1441} 1442 1443extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1444 1445static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1446{ 1447 if (len > skb_headlen(skb) && 1448 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1449 return NULL; 1450 skb->len -= len; 1451 return skb->data += len; 1452} 1453 1454static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1455{ 1456 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1457} 1458 1459static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1460{ 1461 if (likely(len <= skb_headlen(skb))) 1462 return 1; 1463 if (unlikely(len > skb->len)) 1464 return 0; 1465 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1466} 1467 1468/** 1469 * skb_headroom - bytes at buffer head 1470 * @skb: buffer to check 1471 * 1472 * Return the number of bytes of free space at the head of an &sk_buff. 1473 */ 1474static inline unsigned int skb_headroom(const struct sk_buff *skb) 1475{ 1476 return skb->data - skb->head; 1477} 1478 1479/** 1480 * skb_tailroom - bytes at buffer end 1481 * @skb: buffer to check 1482 * 1483 * Return the number of bytes of free space at the tail of an sk_buff 1484 */ 1485static inline int skb_tailroom(const struct sk_buff *skb) 1486{ 1487 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1488} 1489 1490/** 1491 * skb_availroom - bytes at buffer end 1492 * @skb: buffer to check 1493 * 1494 * Return the number of bytes of free space at the tail of an sk_buff 1495 * allocated by sk_stream_alloc() 1496 */ 1497static inline int skb_availroom(const struct sk_buff *skb) 1498{ 1499 if (skb_is_nonlinear(skb)) 1500 return 0; 1501 1502 return skb->end - skb->tail - skb->reserved_tailroom; 1503} 1504 1505/** 1506 * skb_reserve - adjust headroom 1507 * @skb: buffer to alter 1508 * @len: bytes to move 1509 * 1510 * Increase the headroom of an empty &sk_buff by reducing the tail 1511 * room. This is only allowed for an empty buffer. 1512 */ 1513static inline void skb_reserve(struct sk_buff *skb, int len) 1514{ 1515 skb->data += len; 1516 skb->tail += len; 1517} 1518 1519static inline void skb_reset_inner_headers(struct sk_buff *skb) 1520{ 1521 skb->inner_mac_header = skb->mac_header; 1522 skb->inner_network_header = skb->network_header; 1523 skb->inner_transport_header = skb->transport_header; 1524} 1525 1526static inline void skb_reset_mac_len(struct sk_buff *skb) 1527{ 1528 skb->mac_len = skb->network_header - skb->mac_header; 1529} 1530 1531#ifdef NET_SKBUFF_DATA_USES_OFFSET 1532static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1533 *skb) 1534{ 1535 return skb->head + skb->inner_transport_header; 1536} 1537 1538static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1539{ 1540 skb->inner_transport_header = skb->data - skb->head; 1541} 1542 1543static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1544 const int offset) 1545{ 1546 skb_reset_inner_transport_header(skb); 1547 skb->inner_transport_header += offset; 1548} 1549 1550static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1551{ 1552 return skb->head + skb->inner_network_header; 1553} 1554 1555static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1556{ 1557 skb->inner_network_header = skb->data - skb->head; 1558} 1559 1560static inline void skb_set_inner_network_header(struct sk_buff *skb, 1561 const int offset) 1562{ 1563 skb_reset_inner_network_header(skb); 1564 skb->inner_network_header += offset; 1565} 1566 1567static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1568{ 1569 return skb->head + skb->inner_mac_header; 1570} 1571 1572static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1573{ 1574 skb->inner_mac_header = skb->data - skb->head; 1575} 1576 1577static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1578 const int offset) 1579{ 1580 skb_reset_inner_mac_header(skb); 1581 skb->inner_mac_header += offset; 1582} 1583static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1584{ 1585 return skb->transport_header != ~0U; 1586} 1587 1588static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1589{ 1590 return skb->head + skb->transport_header; 1591} 1592 1593static inline void skb_reset_transport_header(struct sk_buff *skb) 1594{ 1595 skb->transport_header = skb->data - skb->head; 1596} 1597 1598static inline void skb_set_transport_header(struct sk_buff *skb, 1599 const int offset) 1600{ 1601 skb_reset_transport_header(skb); 1602 skb->transport_header += offset; 1603} 1604 1605static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1606{ 1607 return skb->head + skb->network_header; 1608} 1609 1610static inline void skb_reset_network_header(struct sk_buff *skb) 1611{ 1612 skb->network_header = skb->data - skb->head; 1613} 1614 1615static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1616{ 1617 skb_reset_network_header(skb); 1618 skb->network_header += offset; 1619} 1620 1621static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1622{ 1623 return skb->head + skb->mac_header; 1624} 1625 1626static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1627{ 1628 return skb->mac_header != ~0U; 1629} 1630 1631static inline void skb_reset_mac_header(struct sk_buff *skb) 1632{ 1633 skb->mac_header = skb->data - skb->head; 1634} 1635 1636static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1637{ 1638 skb_reset_mac_header(skb); 1639 skb->mac_header += offset; 1640} 1641 1642#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1643static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1644 *skb) 1645{ 1646 return skb->inner_transport_header; 1647} 1648 1649static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1650{ 1651 skb->inner_transport_header = skb->data; 1652} 1653 1654static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1655 const int offset) 1656{ 1657 skb->inner_transport_header = skb->data + offset; 1658} 1659 1660static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1661{ 1662 return skb->inner_network_header; 1663} 1664 1665static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1666{ 1667 skb->inner_network_header = skb->data; 1668} 1669 1670static inline void skb_set_inner_network_header(struct sk_buff *skb, 1671 const int offset) 1672{ 1673 skb->inner_network_header = skb->data + offset; 1674} 1675 1676static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1677{ 1678 return skb->inner_mac_header; 1679} 1680 1681static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1682{ 1683 skb->inner_mac_header = skb->data; 1684} 1685 1686static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1687 const int offset) 1688{ 1689 skb->inner_mac_header = skb->data + offset; 1690} 1691static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1692{ 1693 return skb->transport_header != NULL; 1694} 1695 1696static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1697{ 1698 return skb->transport_header; 1699} 1700 1701static inline void skb_reset_transport_header(struct sk_buff *skb) 1702{ 1703 skb->transport_header = skb->data; 1704} 1705 1706static inline void skb_set_transport_header(struct sk_buff *skb, 1707 const int offset) 1708{ 1709 skb->transport_header = skb->data + offset; 1710} 1711 1712static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1713{ 1714 return skb->network_header; 1715} 1716 1717static inline void skb_reset_network_header(struct sk_buff *skb) 1718{ 1719 skb->network_header = skb->data; 1720} 1721 1722static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1723{ 1724 skb->network_header = skb->data + offset; 1725} 1726 1727static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1728{ 1729 return skb->mac_header; 1730} 1731 1732static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1733{ 1734 return skb->mac_header != NULL; 1735} 1736 1737static inline void skb_reset_mac_header(struct sk_buff *skb) 1738{ 1739 skb->mac_header = skb->data; 1740} 1741 1742static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1743{ 1744 skb->mac_header = skb->data + offset; 1745} 1746#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1747 1748static inline void skb_probe_transport_header(struct sk_buff *skb, 1749 const int offset_hint) 1750{ 1751 struct flow_keys keys; 1752 1753 if (skb_transport_header_was_set(skb)) 1754 return; 1755 else if (skb_flow_dissect(skb, &keys)) 1756 skb_set_transport_header(skb, keys.thoff); 1757 else 1758 skb_set_transport_header(skb, offset_hint); 1759} 1760 1761static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1762{ 1763 if (skb_mac_header_was_set(skb)) { 1764 const unsigned char *old_mac = skb_mac_header(skb); 1765 1766 skb_set_mac_header(skb, -skb->mac_len); 1767 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1768 } 1769} 1770 1771static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1772{ 1773 return skb->csum_start - skb_headroom(skb); 1774} 1775 1776static inline int skb_transport_offset(const struct sk_buff *skb) 1777{ 1778 return skb_transport_header(skb) - skb->data; 1779} 1780 1781static inline u32 skb_network_header_len(const struct sk_buff *skb) 1782{ 1783 return skb->transport_header - skb->network_header; 1784} 1785 1786static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1787{ 1788 return skb->inner_transport_header - skb->inner_network_header; 1789} 1790 1791static inline int skb_network_offset(const struct sk_buff *skb) 1792{ 1793 return skb_network_header(skb) - skb->data; 1794} 1795 1796static inline int skb_inner_network_offset(const struct sk_buff *skb) 1797{ 1798 return skb_inner_network_header(skb) - skb->data; 1799} 1800 1801static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1802{ 1803 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1804} 1805 1806/* 1807 * CPUs often take a performance hit when accessing unaligned memory 1808 * locations. The actual performance hit varies, it can be small if the 1809 * hardware handles it or large if we have to take an exception and fix it 1810 * in software. 1811 * 1812 * Since an ethernet header is 14 bytes network drivers often end up with 1813 * the IP header at an unaligned offset. The IP header can be aligned by 1814 * shifting the start of the packet by 2 bytes. Drivers should do this 1815 * with: 1816 * 1817 * skb_reserve(skb, NET_IP_ALIGN); 1818 * 1819 * The downside to this alignment of the IP header is that the DMA is now 1820 * unaligned. On some architectures the cost of an unaligned DMA is high 1821 * and this cost outweighs the gains made by aligning the IP header. 1822 * 1823 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1824 * to be overridden. 1825 */ 1826#ifndef NET_IP_ALIGN 1827#define NET_IP_ALIGN 2 1828#endif 1829 1830/* 1831 * The networking layer reserves some headroom in skb data (via 1832 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1833 * the header has to grow. In the default case, if the header has to grow 1834 * 32 bytes or less we avoid the reallocation. 1835 * 1836 * Unfortunately this headroom changes the DMA alignment of the resulting 1837 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1838 * on some architectures. An architecture can override this value, 1839 * perhaps setting it to a cacheline in size (since that will maintain 1840 * cacheline alignment of the DMA). It must be a power of 2. 1841 * 1842 * Various parts of the networking layer expect at least 32 bytes of 1843 * headroom, you should not reduce this. 1844 * 1845 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1846 * to reduce average number of cache lines per packet. 1847 * get_rps_cpus() for example only access one 64 bytes aligned block : 1848 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1849 */ 1850#ifndef NET_SKB_PAD 1851#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1852#endif 1853 1854extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1855 1856static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1857{ 1858 if (unlikely(skb_is_nonlinear(skb))) { 1859 WARN_ON(1); 1860 return; 1861 } 1862 skb->len = len; 1863 skb_set_tail_pointer(skb, len); 1864} 1865 1866extern void skb_trim(struct sk_buff *skb, unsigned int len); 1867 1868static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1869{ 1870 if (skb->data_len) 1871 return ___pskb_trim(skb, len); 1872 __skb_trim(skb, len); 1873 return 0; 1874} 1875 1876static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1877{ 1878 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1879} 1880 1881/** 1882 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1883 * @skb: buffer to alter 1884 * @len: new length 1885 * 1886 * This is identical to pskb_trim except that the caller knows that 1887 * the skb is not cloned so we should never get an error due to out- 1888 * of-memory. 1889 */ 1890static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1891{ 1892 int err = pskb_trim(skb, len); 1893 BUG_ON(err); 1894} 1895 1896/** 1897 * skb_orphan - orphan a buffer 1898 * @skb: buffer to orphan 1899 * 1900 * If a buffer currently has an owner then we call the owner's 1901 * destructor function and make the @skb unowned. The buffer continues 1902 * to exist but is no longer charged to its former owner. 1903 */ 1904static inline void skb_orphan(struct sk_buff *skb) 1905{ 1906 if (skb->destructor) 1907 skb->destructor(skb); 1908 skb->destructor = NULL; 1909 skb->sk = NULL; 1910} 1911 1912/** 1913 * skb_orphan_frags - orphan the frags contained in a buffer 1914 * @skb: buffer to orphan frags from 1915 * @gfp_mask: allocation mask for replacement pages 1916 * 1917 * For each frag in the SKB which needs a destructor (i.e. has an 1918 * owner) create a copy of that frag and release the original 1919 * page by calling the destructor. 1920 */ 1921static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1922{ 1923 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1924 return 0; 1925 return skb_copy_ubufs(skb, gfp_mask); 1926} 1927 1928/** 1929 * __skb_queue_purge - empty a list 1930 * @list: list to empty 1931 * 1932 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1933 * the list and one reference dropped. This function does not take the 1934 * list lock and the caller must hold the relevant locks to use it. 1935 */ 1936extern void skb_queue_purge(struct sk_buff_head *list); 1937static inline void __skb_queue_purge(struct sk_buff_head *list) 1938{ 1939 struct sk_buff *skb; 1940 while ((skb = __skb_dequeue(list)) != NULL) 1941 kfree_skb(skb); 1942} 1943 1944#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 1945#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 1946#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 1947 1948extern void *netdev_alloc_frag(unsigned int fragsz); 1949 1950extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1951 unsigned int length, 1952 gfp_t gfp_mask); 1953 1954/** 1955 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1956 * @dev: network device to receive on 1957 * @length: length to allocate 1958 * 1959 * Allocate a new &sk_buff and assign it a usage count of one. The 1960 * buffer has unspecified headroom built in. Users should allocate 1961 * the headroom they think they need without accounting for the 1962 * built in space. The built in space is used for optimisations. 1963 * 1964 * %NULL is returned if there is no free memory. Although this function 1965 * allocates memory it can be called from an interrupt. 1966 */ 1967static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1968 unsigned int length) 1969{ 1970 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1971} 1972 1973/* legacy helper around __netdev_alloc_skb() */ 1974static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1975 gfp_t gfp_mask) 1976{ 1977 return __netdev_alloc_skb(NULL, length, gfp_mask); 1978} 1979 1980/* legacy helper around netdev_alloc_skb() */ 1981static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1982{ 1983 return netdev_alloc_skb(NULL, length); 1984} 1985 1986 1987static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1988 unsigned int length, gfp_t gfp) 1989{ 1990 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1991 1992 if (NET_IP_ALIGN && skb) 1993 skb_reserve(skb, NET_IP_ALIGN); 1994 return skb; 1995} 1996 1997static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1998 unsigned int length) 1999{ 2000 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2001} 2002 2003/* 2004 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data 2005 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2006 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2007 * @order: size of the allocation 2008 * 2009 * Allocate a new page. 2010 * 2011 * %NULL is returned if there is no free memory. 2012*/ 2013static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 2014 struct sk_buff *skb, 2015 unsigned int order) 2016{ 2017 struct page *page; 2018 2019 gfp_mask |= __GFP_COLD; 2020 2021 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2022 gfp_mask |= __GFP_MEMALLOC; 2023 2024 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2025 if (skb && page && page->pfmemalloc) 2026 skb->pfmemalloc = true; 2027 2028 return page; 2029} 2030 2031/** 2032 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 2033 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2034 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2035 * 2036 * Allocate a new page. 2037 * 2038 * %NULL is returned if there is no free memory. 2039 */ 2040static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 2041 struct sk_buff *skb) 2042{ 2043 return __skb_alloc_pages(gfp_mask, skb, 0); 2044} 2045 2046/** 2047 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2048 * @page: The page that was allocated from skb_alloc_page 2049 * @skb: The skb that may need pfmemalloc set 2050 */ 2051static inline void skb_propagate_pfmemalloc(struct page *page, 2052 struct sk_buff *skb) 2053{ 2054 if (page && page->pfmemalloc) 2055 skb->pfmemalloc = true; 2056} 2057 2058/** 2059 * skb_frag_page - retrieve the page refered to by a paged fragment 2060 * @frag: the paged fragment 2061 * 2062 * Returns the &struct page associated with @frag. 2063 */ 2064static inline struct page *skb_frag_page(const skb_frag_t *frag) 2065{ 2066 return frag->page.p; 2067} 2068 2069/** 2070 * __skb_frag_ref - take an addition reference on a paged fragment. 2071 * @frag: the paged fragment 2072 * 2073 * Takes an additional reference on the paged fragment @frag. 2074 */ 2075static inline void __skb_frag_ref(skb_frag_t *frag) 2076{ 2077 get_page(skb_frag_page(frag)); 2078} 2079 2080/** 2081 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2082 * @skb: the buffer 2083 * @f: the fragment offset. 2084 * 2085 * Takes an additional reference on the @f'th paged fragment of @skb. 2086 */ 2087static inline void skb_frag_ref(struct sk_buff *skb, int f) 2088{ 2089 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2090} 2091 2092/** 2093 * __skb_frag_unref - release a reference on a paged fragment. 2094 * @frag: the paged fragment 2095 * 2096 * Releases a reference on the paged fragment @frag. 2097 */ 2098static inline void __skb_frag_unref(skb_frag_t *frag) 2099{ 2100 put_page(skb_frag_page(frag)); 2101} 2102 2103/** 2104 * skb_frag_unref - release a reference on a paged fragment of an skb. 2105 * @skb: the buffer 2106 * @f: the fragment offset 2107 * 2108 * Releases a reference on the @f'th paged fragment of @skb. 2109 */ 2110static inline void skb_frag_unref(struct sk_buff *skb, int f) 2111{ 2112 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2113} 2114 2115/** 2116 * skb_frag_address - gets the address of the data contained in a paged fragment 2117 * @frag: the paged fragment buffer 2118 * 2119 * Returns the address of the data within @frag. The page must already 2120 * be mapped. 2121 */ 2122static inline void *skb_frag_address(const skb_frag_t *frag) 2123{ 2124 return page_address(skb_frag_page(frag)) + frag->page_offset; 2125} 2126 2127/** 2128 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2129 * @frag: the paged fragment buffer 2130 * 2131 * Returns the address of the data within @frag. Checks that the page 2132 * is mapped and returns %NULL otherwise. 2133 */ 2134static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2135{ 2136 void *ptr = page_address(skb_frag_page(frag)); 2137 if (unlikely(!ptr)) 2138 return NULL; 2139 2140 return ptr + frag->page_offset; 2141} 2142 2143/** 2144 * __skb_frag_set_page - sets the page contained in a paged fragment 2145 * @frag: the paged fragment 2146 * @page: the page to set 2147 * 2148 * Sets the fragment @frag to contain @page. 2149 */ 2150static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2151{ 2152 frag->page.p = page; 2153} 2154 2155/** 2156 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2157 * @skb: the buffer 2158 * @f: the fragment offset 2159 * @page: the page to set 2160 * 2161 * Sets the @f'th fragment of @skb to contain @page. 2162 */ 2163static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2164 struct page *page) 2165{ 2166 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2167} 2168 2169/** 2170 * skb_frag_dma_map - maps a paged fragment via the DMA API 2171 * @dev: the device to map the fragment to 2172 * @frag: the paged fragment to map 2173 * @offset: the offset within the fragment (starting at the 2174 * fragment's own offset) 2175 * @size: the number of bytes to map 2176 * @dir: the direction of the mapping (%PCI_DMA_*) 2177 * 2178 * Maps the page associated with @frag to @device. 2179 */ 2180static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2181 const skb_frag_t *frag, 2182 size_t offset, size_t size, 2183 enum dma_data_direction dir) 2184{ 2185 return dma_map_page(dev, skb_frag_page(frag), 2186 frag->page_offset + offset, size, dir); 2187} 2188 2189static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2190 gfp_t gfp_mask) 2191{ 2192 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2193} 2194 2195/** 2196 * skb_clone_writable - is the header of a clone writable 2197 * @skb: buffer to check 2198 * @len: length up to which to write 2199 * 2200 * Returns true if modifying the header part of the cloned buffer 2201 * does not requires the data to be copied. 2202 */ 2203static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2204{ 2205 return !skb_header_cloned(skb) && 2206 skb_headroom(skb) + len <= skb->hdr_len; 2207} 2208 2209static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2210 int cloned) 2211{ 2212 int delta = 0; 2213 2214 if (headroom > skb_headroom(skb)) 2215 delta = headroom - skb_headroom(skb); 2216 2217 if (delta || cloned) 2218 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2219 GFP_ATOMIC); 2220 return 0; 2221} 2222 2223/** 2224 * skb_cow - copy header of skb when it is required 2225 * @skb: buffer to cow 2226 * @headroom: needed headroom 2227 * 2228 * If the skb passed lacks sufficient headroom or its data part 2229 * is shared, data is reallocated. If reallocation fails, an error 2230 * is returned and original skb is not changed. 2231 * 2232 * The result is skb with writable area skb->head...skb->tail 2233 * and at least @headroom of space at head. 2234 */ 2235static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2236{ 2237 return __skb_cow(skb, headroom, skb_cloned(skb)); 2238} 2239 2240/** 2241 * skb_cow_head - skb_cow but only making the head writable 2242 * @skb: buffer to cow 2243 * @headroom: needed headroom 2244 * 2245 * This function is identical to skb_cow except that we replace the 2246 * skb_cloned check by skb_header_cloned. It should be used when 2247 * you only need to push on some header and do not need to modify 2248 * the data. 2249 */ 2250static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2251{ 2252 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2253} 2254 2255/** 2256 * skb_padto - pad an skbuff up to a minimal size 2257 * @skb: buffer to pad 2258 * @len: minimal length 2259 * 2260 * Pads up a buffer to ensure the trailing bytes exist and are 2261 * blanked. If the buffer already contains sufficient data it 2262 * is untouched. Otherwise it is extended. Returns zero on 2263 * success. The skb is freed on error. 2264 */ 2265 2266static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2267{ 2268 unsigned int size = skb->len; 2269 if (likely(size >= len)) 2270 return 0; 2271 return skb_pad(skb, len - size); 2272} 2273 2274static inline int skb_add_data(struct sk_buff *skb, 2275 char __user *from, int copy) 2276{ 2277 const int off = skb->len; 2278 2279 if (skb->ip_summed == CHECKSUM_NONE) { 2280 int err = 0; 2281 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2282 copy, 0, &err); 2283 if (!err) { 2284 skb->csum = csum_block_add(skb->csum, csum, off); 2285 return 0; 2286 } 2287 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2288 return 0; 2289 2290 __skb_trim(skb, off); 2291 return -EFAULT; 2292} 2293 2294static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2295 const struct page *page, int off) 2296{ 2297 if (i) { 2298 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2299 2300 return page == skb_frag_page(frag) && 2301 off == frag->page_offset + skb_frag_size(frag); 2302 } 2303 return false; 2304} 2305 2306static inline int __skb_linearize(struct sk_buff *skb) 2307{ 2308 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2309} 2310 2311/** 2312 * skb_linearize - convert paged skb to linear one 2313 * @skb: buffer to linarize 2314 * 2315 * If there is no free memory -ENOMEM is returned, otherwise zero 2316 * is returned and the old skb data released. 2317 */ 2318static inline int skb_linearize(struct sk_buff *skb) 2319{ 2320 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2321} 2322 2323/** 2324 * skb_has_shared_frag - can any frag be overwritten 2325 * @skb: buffer to test 2326 * 2327 * Return true if the skb has at least one frag that might be modified 2328 * by an external entity (as in vmsplice()/sendfile()) 2329 */ 2330static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2331{ 2332 return skb_is_nonlinear(skb) && 2333 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2334} 2335 2336/** 2337 * skb_linearize_cow - make sure skb is linear and writable 2338 * @skb: buffer to process 2339 * 2340 * If there is no free memory -ENOMEM is returned, otherwise zero 2341 * is returned and the old skb data released. 2342 */ 2343static inline int skb_linearize_cow(struct sk_buff *skb) 2344{ 2345 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2346 __skb_linearize(skb) : 0; 2347} 2348 2349/** 2350 * skb_postpull_rcsum - update checksum for received skb after pull 2351 * @skb: buffer to update 2352 * @start: start of data before pull 2353 * @len: length of data pulled 2354 * 2355 * After doing a pull on a received packet, you need to call this to 2356 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2357 * CHECKSUM_NONE so that it can be recomputed from scratch. 2358 */ 2359 2360static inline void skb_postpull_rcsum(struct sk_buff *skb, 2361 const void *start, unsigned int len) 2362{ 2363 if (skb->ip_summed == CHECKSUM_COMPLETE) 2364 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2365} 2366 2367unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2368 2369/** 2370 * pskb_trim_rcsum - trim received skb and update checksum 2371 * @skb: buffer to trim 2372 * @len: new length 2373 * 2374 * This is exactly the same as pskb_trim except that it ensures the 2375 * checksum of received packets are still valid after the operation. 2376 */ 2377 2378static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2379{ 2380 if (likely(len >= skb->len)) 2381 return 0; 2382 if (skb->ip_summed == CHECKSUM_COMPLETE) 2383 skb->ip_summed = CHECKSUM_NONE; 2384 return __pskb_trim(skb, len); 2385} 2386 2387#define skb_queue_walk(queue, skb) \ 2388 for (skb = (queue)->next; \ 2389 skb != (struct sk_buff *)(queue); \ 2390 skb = skb->next) 2391 2392#define skb_queue_walk_safe(queue, skb, tmp) \ 2393 for (skb = (queue)->next, tmp = skb->next; \ 2394 skb != (struct sk_buff *)(queue); \ 2395 skb = tmp, tmp = skb->next) 2396 2397#define skb_queue_walk_from(queue, skb) \ 2398 for (; skb != (struct sk_buff *)(queue); \ 2399 skb = skb->next) 2400 2401#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2402 for (tmp = skb->next; \ 2403 skb != (struct sk_buff *)(queue); \ 2404 skb = tmp, tmp = skb->next) 2405 2406#define skb_queue_reverse_walk(queue, skb) \ 2407 for (skb = (queue)->prev; \ 2408 skb != (struct sk_buff *)(queue); \ 2409 skb = skb->prev) 2410 2411#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2412 for (skb = (queue)->prev, tmp = skb->prev; \ 2413 skb != (struct sk_buff *)(queue); \ 2414 skb = tmp, tmp = skb->prev) 2415 2416#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2417 for (tmp = skb->prev; \ 2418 skb != (struct sk_buff *)(queue); \ 2419 skb = tmp, tmp = skb->prev) 2420 2421static inline bool skb_has_frag_list(const struct sk_buff *skb) 2422{ 2423 return skb_shinfo(skb)->frag_list != NULL; 2424} 2425 2426static inline void skb_frag_list_init(struct sk_buff *skb) 2427{ 2428 skb_shinfo(skb)->frag_list = NULL; 2429} 2430 2431static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2432{ 2433 frag->next = skb_shinfo(skb)->frag_list; 2434 skb_shinfo(skb)->frag_list = frag; 2435} 2436 2437#define skb_walk_frags(skb, iter) \ 2438 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2439 2440extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2441 int *peeked, int *off, int *err); 2442extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2443 int noblock, int *err); 2444extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2445 struct poll_table_struct *wait); 2446extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2447 int offset, struct iovec *to, 2448 int size); 2449extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2450 int hlen, 2451 struct iovec *iov); 2452extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2453 int offset, 2454 const struct iovec *from, 2455 int from_offset, 2456 int len); 2457extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2458 int offset, 2459 const struct iovec *to, 2460 int to_offset, 2461 int size); 2462extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2463extern void skb_free_datagram_locked(struct sock *sk, 2464 struct sk_buff *skb); 2465extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2466 unsigned int flags); 2467extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2468 int len, __wsum csum); 2469extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2470 void *to, int len); 2471extern int skb_store_bits(struct sk_buff *skb, int offset, 2472 const void *from, int len); 2473extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2474 int offset, u8 *to, int len, 2475 __wsum csum); 2476extern int skb_splice_bits(struct sk_buff *skb, 2477 unsigned int offset, 2478 struct pipe_inode_info *pipe, 2479 unsigned int len, 2480 unsigned int flags); 2481extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2482extern void skb_split(struct sk_buff *skb, 2483 struct sk_buff *skb1, const u32 len); 2484extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2485 int shiftlen); 2486 2487extern struct sk_buff *skb_segment(struct sk_buff *skb, 2488 netdev_features_t features); 2489 2490static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2491 int len, void *buffer) 2492{ 2493 int hlen = skb_headlen(skb); 2494 2495 if (hlen - offset >= len) 2496 return skb->data + offset; 2497 2498 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2499 return NULL; 2500 2501 return buffer; 2502} 2503 2504static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2505 void *to, 2506 const unsigned int len) 2507{ 2508 memcpy(to, skb->data, len); 2509} 2510 2511static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2512 const int offset, void *to, 2513 const unsigned int len) 2514{ 2515 memcpy(to, skb->data + offset, len); 2516} 2517 2518static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2519 const void *from, 2520 const unsigned int len) 2521{ 2522 memcpy(skb->data, from, len); 2523} 2524 2525static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2526 const int offset, 2527 const void *from, 2528 const unsigned int len) 2529{ 2530 memcpy(skb->data + offset, from, len); 2531} 2532 2533extern void skb_init(void); 2534 2535static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2536{ 2537 return skb->tstamp; 2538} 2539 2540/** 2541 * skb_get_timestamp - get timestamp from a skb 2542 * @skb: skb to get stamp from 2543 * @stamp: pointer to struct timeval to store stamp in 2544 * 2545 * Timestamps are stored in the skb as offsets to a base timestamp. 2546 * This function converts the offset back to a struct timeval and stores 2547 * it in stamp. 2548 */ 2549static inline void skb_get_timestamp(const struct sk_buff *skb, 2550 struct timeval *stamp) 2551{ 2552 *stamp = ktime_to_timeval(skb->tstamp); 2553} 2554 2555static inline void skb_get_timestampns(const struct sk_buff *skb, 2556 struct timespec *stamp) 2557{ 2558 *stamp = ktime_to_timespec(skb->tstamp); 2559} 2560 2561static inline void __net_timestamp(struct sk_buff *skb) 2562{ 2563 skb->tstamp = ktime_get_real(); 2564} 2565 2566static inline ktime_t net_timedelta(ktime_t t) 2567{ 2568 return ktime_sub(ktime_get_real(), t); 2569} 2570 2571static inline ktime_t net_invalid_timestamp(void) 2572{ 2573 return ktime_set(0, 0); 2574} 2575 2576extern void skb_timestamping_init(void); 2577 2578#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2579 2580extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2581extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2582 2583#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2584 2585static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2586{ 2587} 2588 2589static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2590{ 2591 return false; 2592} 2593 2594#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2595 2596/** 2597 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2598 * 2599 * PHY drivers may accept clones of transmitted packets for 2600 * timestamping via their phy_driver.txtstamp method. These drivers 2601 * must call this function to return the skb back to the stack, with 2602 * or without a timestamp. 2603 * 2604 * @skb: clone of the the original outgoing packet 2605 * @hwtstamps: hardware time stamps, may be NULL if not available 2606 * 2607 */ 2608void skb_complete_tx_timestamp(struct sk_buff *skb, 2609 struct skb_shared_hwtstamps *hwtstamps); 2610 2611/** 2612 * skb_tstamp_tx - queue clone of skb with send time stamps 2613 * @orig_skb: the original outgoing packet 2614 * @hwtstamps: hardware time stamps, may be NULL if not available 2615 * 2616 * If the skb has a socket associated, then this function clones the 2617 * skb (thus sharing the actual data and optional structures), stores 2618 * the optional hardware time stamping information (if non NULL) or 2619 * generates a software time stamp (otherwise), then queues the clone 2620 * to the error queue of the socket. Errors are silently ignored. 2621 */ 2622extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2623 struct skb_shared_hwtstamps *hwtstamps); 2624 2625static inline void sw_tx_timestamp(struct sk_buff *skb) 2626{ 2627 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2628 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2629 skb_tstamp_tx(skb, NULL); 2630} 2631 2632/** 2633 * skb_tx_timestamp() - Driver hook for transmit timestamping 2634 * 2635 * Ethernet MAC Drivers should call this function in their hard_xmit() 2636 * function immediately before giving the sk_buff to the MAC hardware. 2637 * 2638 * @skb: A socket buffer. 2639 */ 2640static inline void skb_tx_timestamp(struct sk_buff *skb) 2641{ 2642 skb_clone_tx_timestamp(skb); 2643 sw_tx_timestamp(skb); 2644} 2645 2646/** 2647 * skb_complete_wifi_ack - deliver skb with wifi status 2648 * 2649 * @skb: the original outgoing packet 2650 * @acked: ack status 2651 * 2652 */ 2653void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2654 2655extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2656extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2657 2658static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2659{ 2660 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2661} 2662 2663/** 2664 * skb_checksum_complete - Calculate checksum of an entire packet 2665 * @skb: packet to process 2666 * 2667 * This function calculates the checksum over the entire packet plus 2668 * the value of skb->csum. The latter can be used to supply the 2669 * checksum of a pseudo header as used by TCP/UDP. It returns the 2670 * checksum. 2671 * 2672 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2673 * this function can be used to verify that checksum on received 2674 * packets. In that case the function should return zero if the 2675 * checksum is correct. In particular, this function will return zero 2676 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2677 * hardware has already verified the correctness of the checksum. 2678 */ 2679static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2680{ 2681 return skb_csum_unnecessary(skb) ? 2682 0 : __skb_checksum_complete(skb); 2683} 2684 2685#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2686extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2687static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2688{ 2689 if (nfct && atomic_dec_and_test(&nfct->use)) 2690 nf_conntrack_destroy(nfct); 2691} 2692static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2693{ 2694 if (nfct) 2695 atomic_inc(&nfct->use); 2696} 2697#endif 2698#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2699static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2700{ 2701 if (skb) 2702 atomic_inc(&skb->users); 2703} 2704static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2705{ 2706 if (skb) 2707 kfree_skb(skb); 2708} 2709#endif 2710#ifdef CONFIG_BRIDGE_NETFILTER 2711static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2712{ 2713 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2714 kfree(nf_bridge); 2715} 2716static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2717{ 2718 if (nf_bridge) 2719 atomic_inc(&nf_bridge->use); 2720} 2721#endif /* CONFIG_BRIDGE_NETFILTER */ 2722static inline void nf_reset(struct sk_buff *skb) 2723{ 2724#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2725 nf_conntrack_put(skb->nfct); 2726 skb->nfct = NULL; 2727#endif 2728#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2729 nf_conntrack_put_reasm(skb->nfct_reasm); 2730 skb->nfct_reasm = NULL; 2731#endif 2732#ifdef CONFIG_BRIDGE_NETFILTER 2733 nf_bridge_put(skb->nf_bridge); 2734 skb->nf_bridge = NULL; 2735#endif 2736} 2737 2738static inline void nf_reset_trace(struct sk_buff *skb) 2739{ 2740#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 2741 skb->nf_trace = 0; 2742#endif 2743} 2744 2745/* Note: This doesn't put any conntrack and bridge info in dst. */ 2746static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2747{ 2748#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2749 dst->nfct = src->nfct; 2750 nf_conntrack_get(src->nfct); 2751 dst->nfctinfo = src->nfctinfo; 2752#endif 2753#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2754 dst->nfct_reasm = src->nfct_reasm; 2755 nf_conntrack_get_reasm(src->nfct_reasm); 2756#endif 2757#ifdef CONFIG_BRIDGE_NETFILTER 2758 dst->nf_bridge = src->nf_bridge; 2759 nf_bridge_get(src->nf_bridge); 2760#endif 2761} 2762 2763static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2764{ 2765#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2766 nf_conntrack_put(dst->nfct); 2767#endif 2768#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2769 nf_conntrack_put_reasm(dst->nfct_reasm); 2770#endif 2771#ifdef CONFIG_BRIDGE_NETFILTER 2772 nf_bridge_put(dst->nf_bridge); 2773#endif 2774 __nf_copy(dst, src); 2775} 2776 2777#ifdef CONFIG_NETWORK_SECMARK 2778static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2779{ 2780 to->secmark = from->secmark; 2781} 2782 2783static inline void skb_init_secmark(struct sk_buff *skb) 2784{ 2785 skb->secmark = 0; 2786} 2787#else 2788static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2789{ } 2790 2791static inline void skb_init_secmark(struct sk_buff *skb) 2792{ } 2793#endif 2794 2795static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2796{ 2797 skb->queue_mapping = queue_mapping; 2798} 2799 2800static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2801{ 2802 return skb->queue_mapping; 2803} 2804 2805static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2806{ 2807 to->queue_mapping = from->queue_mapping; 2808} 2809 2810static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2811{ 2812 skb->queue_mapping = rx_queue + 1; 2813} 2814 2815static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2816{ 2817 return skb->queue_mapping - 1; 2818} 2819 2820static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2821{ 2822 return skb->queue_mapping != 0; 2823} 2824 2825extern u16 __skb_tx_hash(const struct net_device *dev, 2826 const struct sk_buff *skb, 2827 unsigned int num_tx_queues); 2828 2829#ifdef CONFIG_XFRM 2830static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2831{ 2832 return skb->sp; 2833} 2834#else 2835static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2836{ 2837 return NULL; 2838} 2839#endif 2840 2841/* Keeps track of mac header offset relative to skb->head. 2842 * It is useful for TSO of Tunneling protocol. e.g. GRE. 2843 * For non-tunnel skb it points to skb_mac_header() and for 2844 * tunnel skb it points to outer mac header. */ 2845struct skb_gso_cb { 2846 int mac_offset; 2847}; 2848#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 2849 2850static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 2851{ 2852 return (skb_mac_header(inner_skb) - inner_skb->head) - 2853 SKB_GSO_CB(inner_skb)->mac_offset; 2854} 2855 2856static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 2857{ 2858 int new_headroom, headroom; 2859 int ret; 2860 2861 headroom = skb_headroom(skb); 2862 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 2863 if (ret) 2864 return ret; 2865 2866 new_headroom = skb_headroom(skb); 2867 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 2868 return 0; 2869} 2870 2871static inline bool skb_is_gso(const struct sk_buff *skb) 2872{ 2873 return skb_shinfo(skb)->gso_size; 2874} 2875 2876static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2877{ 2878 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2879} 2880 2881extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2882 2883static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2884{ 2885 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2886 * wanted then gso_type will be set. */ 2887 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2888 2889 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2890 unlikely(shinfo->gso_type == 0)) { 2891 __skb_warn_lro_forwarding(skb); 2892 return true; 2893 } 2894 return false; 2895} 2896 2897static inline void skb_forward_csum(struct sk_buff *skb) 2898{ 2899 /* Unfortunately we don't support this one. Any brave souls? */ 2900 if (skb->ip_summed == CHECKSUM_COMPLETE) 2901 skb->ip_summed = CHECKSUM_NONE; 2902} 2903 2904/** 2905 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2906 * @skb: skb to check 2907 * 2908 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2909 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2910 * use this helper, to document places where we make this assertion. 2911 */ 2912static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2913{ 2914#ifdef DEBUG 2915 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2916#endif 2917} 2918 2919bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2920 2921u32 __skb_get_poff(const struct sk_buff *skb); 2922 2923/** 2924 * skb_head_is_locked - Determine if the skb->head is locked down 2925 * @skb: skb to check 2926 * 2927 * The head on skbs build around a head frag can be removed if they are 2928 * not cloned. This function returns true if the skb head is locked down 2929 * due to either being allocated via kmalloc, or by being a clone with 2930 * multiple references to the head. 2931 */ 2932static inline bool skb_head_is_locked(const struct sk_buff *skb) 2933{ 2934 return !skb->head_frag || skb_cloned(skb); 2935} 2936#endif /* __KERNEL__ */ 2937#endif /* _LINUX_SKBUFF_H */