at v3.10 77 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <uapi/linux/sched.h> 5 6 7struct sched_param { 8 int sched_priority; 9}; 10 11#include <asm/param.h> /* for HZ */ 12 13#include <linux/capability.h> 14#include <linux/threads.h> 15#include <linux/kernel.h> 16#include <linux/types.h> 17#include <linux/timex.h> 18#include <linux/jiffies.h> 19#include <linux/rbtree.h> 20#include <linux/thread_info.h> 21#include <linux/cpumask.h> 22#include <linux/errno.h> 23#include <linux/nodemask.h> 24#include <linux/mm_types.h> 25 26#include <asm/page.h> 27#include <asm/ptrace.h> 28#include <asm/cputime.h> 29 30#include <linux/smp.h> 31#include <linux/sem.h> 32#include <linux/signal.h> 33#include <linux/compiler.h> 34#include <linux/completion.h> 35#include <linux/pid.h> 36#include <linux/percpu.h> 37#include <linux/topology.h> 38#include <linux/proportions.h> 39#include <linux/seccomp.h> 40#include <linux/rcupdate.h> 41#include <linux/rculist.h> 42#include <linux/rtmutex.h> 43 44#include <linux/time.h> 45#include <linux/param.h> 46#include <linux/resource.h> 47#include <linux/timer.h> 48#include <linux/hrtimer.h> 49#include <linux/task_io_accounting.h> 50#include <linux/latencytop.h> 51#include <linux/cred.h> 52#include <linux/llist.h> 53#include <linux/uidgid.h> 54#include <linux/gfp.h> 55 56#include <asm/processor.h> 57 58struct exec_domain; 59struct futex_pi_state; 60struct robust_list_head; 61struct bio_list; 62struct fs_struct; 63struct perf_event_context; 64struct blk_plug; 65 66/* 67 * List of flags we want to share for kernel threads, 68 * if only because they are not used by them anyway. 69 */ 70#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 71 72/* 73 * These are the constant used to fake the fixed-point load-average 74 * counting. Some notes: 75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 76 * a load-average precision of 10 bits integer + 11 bits fractional 77 * - if you want to count load-averages more often, you need more 78 * precision, or rounding will get you. With 2-second counting freq, 79 * the EXP_n values would be 1981, 2034 and 2043 if still using only 80 * 11 bit fractions. 81 */ 82extern unsigned long avenrun[]; /* Load averages */ 83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 84 85#define FSHIFT 11 /* nr of bits of precision */ 86#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 87#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 88#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 89#define EXP_5 2014 /* 1/exp(5sec/5min) */ 90#define EXP_15 2037 /* 1/exp(5sec/15min) */ 91 92#define CALC_LOAD(load,exp,n) \ 93 load *= exp; \ 94 load += n*(FIXED_1-exp); \ 95 load >>= FSHIFT; 96 97extern unsigned long total_forks; 98extern int nr_threads; 99DECLARE_PER_CPU(unsigned long, process_counts); 100extern int nr_processes(void); 101extern unsigned long nr_running(void); 102extern unsigned long nr_iowait(void); 103extern unsigned long nr_iowait_cpu(int cpu); 104extern unsigned long this_cpu_load(void); 105 106 107extern void calc_global_load(unsigned long ticks); 108extern void update_cpu_load_nohz(void); 109 110/* Notifier for when a task gets migrated to a new CPU */ 111struct task_migration_notifier { 112 struct task_struct *task; 113 int from_cpu; 114 int to_cpu; 115}; 116extern void register_task_migration_notifier(struct notifier_block *n); 117 118extern unsigned long get_parent_ip(unsigned long addr); 119 120extern void dump_cpu_task(int cpu); 121 122struct seq_file; 123struct cfs_rq; 124struct task_group; 125#ifdef CONFIG_SCHED_DEBUG 126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 127extern void proc_sched_set_task(struct task_struct *p); 128extern void 129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 130#endif 131 132/* 133 * Task state bitmask. NOTE! These bits are also 134 * encoded in fs/proc/array.c: get_task_state(). 135 * 136 * We have two separate sets of flags: task->state 137 * is about runnability, while task->exit_state are 138 * about the task exiting. Confusing, but this way 139 * modifying one set can't modify the other one by 140 * mistake. 141 */ 142#define TASK_RUNNING 0 143#define TASK_INTERRUPTIBLE 1 144#define TASK_UNINTERRUPTIBLE 2 145#define __TASK_STOPPED 4 146#define __TASK_TRACED 8 147/* in tsk->exit_state */ 148#define EXIT_ZOMBIE 16 149#define EXIT_DEAD 32 150/* in tsk->state again */ 151#define TASK_DEAD 64 152#define TASK_WAKEKILL 128 153#define TASK_WAKING 256 154#define TASK_PARKED 512 155#define TASK_STATE_MAX 1024 156 157#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 158 159extern char ___assert_task_state[1 - 2*!!( 160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 161 162/* Convenience macros for the sake of set_task_state */ 163#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 164#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 165#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 166 167/* Convenience macros for the sake of wake_up */ 168#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 169#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 170 171/* get_task_state() */ 172#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 174 __TASK_TRACED) 175 176#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 177#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 178#define task_is_dead(task) ((task)->exit_state != 0) 179#define task_is_stopped_or_traced(task) \ 180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 181#define task_contributes_to_load(task) \ 182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 183 (task->flags & PF_FROZEN) == 0) 184 185#define __set_task_state(tsk, state_value) \ 186 do { (tsk)->state = (state_value); } while (0) 187#define set_task_state(tsk, state_value) \ 188 set_mb((tsk)->state, (state_value)) 189 190/* 191 * set_current_state() includes a barrier so that the write of current->state 192 * is correctly serialised wrt the caller's subsequent test of whether to 193 * actually sleep: 194 * 195 * set_current_state(TASK_UNINTERRUPTIBLE); 196 * if (do_i_need_to_sleep()) 197 * schedule(); 198 * 199 * If the caller does not need such serialisation then use __set_current_state() 200 */ 201#define __set_current_state(state_value) \ 202 do { current->state = (state_value); } while (0) 203#define set_current_state(state_value) \ 204 set_mb(current->state, (state_value)) 205 206/* Task command name length */ 207#define TASK_COMM_LEN 16 208 209#include <linux/spinlock.h> 210 211/* 212 * This serializes "schedule()" and also protects 213 * the run-queue from deletions/modifications (but 214 * _adding_ to the beginning of the run-queue has 215 * a separate lock). 216 */ 217extern rwlock_t tasklist_lock; 218extern spinlock_t mmlist_lock; 219 220struct task_struct; 221 222#ifdef CONFIG_PROVE_RCU 223extern int lockdep_tasklist_lock_is_held(void); 224#endif /* #ifdef CONFIG_PROVE_RCU */ 225 226extern void sched_init(void); 227extern void sched_init_smp(void); 228extern asmlinkage void schedule_tail(struct task_struct *prev); 229extern void init_idle(struct task_struct *idle, int cpu); 230extern void init_idle_bootup_task(struct task_struct *idle); 231 232extern int runqueue_is_locked(int cpu); 233 234#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 235extern void nohz_balance_enter_idle(int cpu); 236extern void set_cpu_sd_state_idle(void); 237extern int get_nohz_timer_target(void); 238#else 239static inline void nohz_balance_enter_idle(int cpu) { } 240static inline void set_cpu_sd_state_idle(void) { } 241#endif 242 243/* 244 * Only dump TASK_* tasks. (0 for all tasks) 245 */ 246extern void show_state_filter(unsigned long state_filter); 247 248static inline void show_state(void) 249{ 250 show_state_filter(0); 251} 252 253extern void show_regs(struct pt_regs *); 254 255/* 256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 257 * task), SP is the stack pointer of the first frame that should be shown in the back 258 * trace (or NULL if the entire call-chain of the task should be shown). 259 */ 260extern void show_stack(struct task_struct *task, unsigned long *sp); 261 262void io_schedule(void); 263long io_schedule_timeout(long timeout); 264 265extern void cpu_init (void); 266extern void trap_init(void); 267extern void update_process_times(int user); 268extern void scheduler_tick(void); 269 270extern void sched_show_task(struct task_struct *p); 271 272#ifdef CONFIG_LOCKUP_DETECTOR 273extern void touch_softlockup_watchdog(void); 274extern void touch_softlockup_watchdog_sync(void); 275extern void touch_all_softlockup_watchdogs(void); 276extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 277 void __user *buffer, 278 size_t *lenp, loff_t *ppos); 279extern unsigned int softlockup_panic; 280void lockup_detector_init(void); 281#else 282static inline void touch_softlockup_watchdog(void) 283{ 284} 285static inline void touch_softlockup_watchdog_sync(void) 286{ 287} 288static inline void touch_all_softlockup_watchdogs(void) 289{ 290} 291static inline void lockup_detector_init(void) 292{ 293} 294#endif 295 296/* Attach to any functions which should be ignored in wchan output. */ 297#define __sched __attribute__((__section__(".sched.text"))) 298 299/* Linker adds these: start and end of __sched functions */ 300extern char __sched_text_start[], __sched_text_end[]; 301 302/* Is this address in the __sched functions? */ 303extern int in_sched_functions(unsigned long addr); 304 305#define MAX_SCHEDULE_TIMEOUT LONG_MAX 306extern signed long schedule_timeout(signed long timeout); 307extern signed long schedule_timeout_interruptible(signed long timeout); 308extern signed long schedule_timeout_killable(signed long timeout); 309extern signed long schedule_timeout_uninterruptible(signed long timeout); 310asmlinkage void schedule(void); 311extern void schedule_preempt_disabled(void); 312 313struct nsproxy; 314struct user_namespace; 315 316#ifdef CONFIG_MMU 317extern void arch_pick_mmap_layout(struct mm_struct *mm); 318extern unsigned long 319arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 320 unsigned long, unsigned long); 321extern unsigned long 322arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 323 unsigned long len, unsigned long pgoff, 324 unsigned long flags); 325extern void arch_unmap_area(struct mm_struct *, unsigned long); 326extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 327#else 328static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 329#endif 330 331 332extern void set_dumpable(struct mm_struct *mm, int value); 333extern int get_dumpable(struct mm_struct *mm); 334 335/* mm flags */ 336/* dumpable bits */ 337#define MMF_DUMPABLE 0 /* core dump is permitted */ 338#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 339 340#define MMF_DUMPABLE_BITS 2 341#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 342 343/* coredump filter bits */ 344#define MMF_DUMP_ANON_PRIVATE 2 345#define MMF_DUMP_ANON_SHARED 3 346#define MMF_DUMP_MAPPED_PRIVATE 4 347#define MMF_DUMP_MAPPED_SHARED 5 348#define MMF_DUMP_ELF_HEADERS 6 349#define MMF_DUMP_HUGETLB_PRIVATE 7 350#define MMF_DUMP_HUGETLB_SHARED 8 351 352#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 353#define MMF_DUMP_FILTER_BITS 7 354#define MMF_DUMP_FILTER_MASK \ 355 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 356#define MMF_DUMP_FILTER_DEFAULT \ 357 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 358 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 359 360#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 361# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 362#else 363# define MMF_DUMP_MASK_DEFAULT_ELF 0 364#endif 365 /* leave room for more dump flags */ 366#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 367#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 368#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 369 370#define MMF_HAS_UPROBES 19 /* has uprobes */ 371#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 372 373#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 374 375struct sighand_struct { 376 atomic_t count; 377 struct k_sigaction action[_NSIG]; 378 spinlock_t siglock; 379 wait_queue_head_t signalfd_wqh; 380}; 381 382struct pacct_struct { 383 int ac_flag; 384 long ac_exitcode; 385 unsigned long ac_mem; 386 cputime_t ac_utime, ac_stime; 387 unsigned long ac_minflt, ac_majflt; 388}; 389 390struct cpu_itimer { 391 cputime_t expires; 392 cputime_t incr; 393 u32 error; 394 u32 incr_error; 395}; 396 397/** 398 * struct cputime - snaphsot of system and user cputime 399 * @utime: time spent in user mode 400 * @stime: time spent in system mode 401 * 402 * Gathers a generic snapshot of user and system time. 403 */ 404struct cputime { 405 cputime_t utime; 406 cputime_t stime; 407}; 408 409/** 410 * struct task_cputime - collected CPU time counts 411 * @utime: time spent in user mode, in &cputime_t units 412 * @stime: time spent in kernel mode, in &cputime_t units 413 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 414 * 415 * This is an extension of struct cputime that includes the total runtime 416 * spent by the task from the scheduler point of view. 417 * 418 * As a result, this structure groups together three kinds of CPU time 419 * that are tracked for threads and thread groups. Most things considering 420 * CPU time want to group these counts together and treat all three 421 * of them in parallel. 422 */ 423struct task_cputime { 424 cputime_t utime; 425 cputime_t stime; 426 unsigned long long sum_exec_runtime; 427}; 428/* Alternate field names when used to cache expirations. */ 429#define prof_exp stime 430#define virt_exp utime 431#define sched_exp sum_exec_runtime 432 433#define INIT_CPUTIME \ 434 (struct task_cputime) { \ 435 .utime = 0, \ 436 .stime = 0, \ 437 .sum_exec_runtime = 0, \ 438 } 439 440/* 441 * Disable preemption until the scheduler is running. 442 * Reset by start_kernel()->sched_init()->init_idle(). 443 * 444 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 445 * before the scheduler is active -- see should_resched(). 446 */ 447#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 448 449/** 450 * struct thread_group_cputimer - thread group interval timer counts 451 * @cputime: thread group interval timers. 452 * @running: non-zero when there are timers running and 453 * @cputime receives updates. 454 * @lock: lock for fields in this struct. 455 * 456 * This structure contains the version of task_cputime, above, that is 457 * used for thread group CPU timer calculations. 458 */ 459struct thread_group_cputimer { 460 struct task_cputime cputime; 461 int running; 462 raw_spinlock_t lock; 463}; 464 465#include <linux/rwsem.h> 466struct autogroup; 467 468/* 469 * NOTE! "signal_struct" does not have its own 470 * locking, because a shared signal_struct always 471 * implies a shared sighand_struct, so locking 472 * sighand_struct is always a proper superset of 473 * the locking of signal_struct. 474 */ 475struct signal_struct { 476 atomic_t sigcnt; 477 atomic_t live; 478 int nr_threads; 479 480 wait_queue_head_t wait_chldexit; /* for wait4() */ 481 482 /* current thread group signal load-balancing target: */ 483 struct task_struct *curr_target; 484 485 /* shared signal handling: */ 486 struct sigpending shared_pending; 487 488 /* thread group exit support */ 489 int group_exit_code; 490 /* overloaded: 491 * - notify group_exit_task when ->count is equal to notify_count 492 * - everyone except group_exit_task is stopped during signal delivery 493 * of fatal signals, group_exit_task processes the signal. 494 */ 495 int notify_count; 496 struct task_struct *group_exit_task; 497 498 /* thread group stop support, overloads group_exit_code too */ 499 int group_stop_count; 500 unsigned int flags; /* see SIGNAL_* flags below */ 501 502 /* 503 * PR_SET_CHILD_SUBREAPER marks a process, like a service 504 * manager, to re-parent orphan (double-forking) child processes 505 * to this process instead of 'init'. The service manager is 506 * able to receive SIGCHLD signals and is able to investigate 507 * the process until it calls wait(). All children of this 508 * process will inherit a flag if they should look for a 509 * child_subreaper process at exit. 510 */ 511 unsigned int is_child_subreaper:1; 512 unsigned int has_child_subreaper:1; 513 514 /* POSIX.1b Interval Timers */ 515 int posix_timer_id; 516 struct list_head posix_timers; 517 518 /* ITIMER_REAL timer for the process */ 519 struct hrtimer real_timer; 520 struct pid *leader_pid; 521 ktime_t it_real_incr; 522 523 /* 524 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 525 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 526 * values are defined to 0 and 1 respectively 527 */ 528 struct cpu_itimer it[2]; 529 530 /* 531 * Thread group totals for process CPU timers. 532 * See thread_group_cputimer(), et al, for details. 533 */ 534 struct thread_group_cputimer cputimer; 535 536 /* Earliest-expiration cache. */ 537 struct task_cputime cputime_expires; 538 539 struct list_head cpu_timers[3]; 540 541 struct pid *tty_old_pgrp; 542 543 /* boolean value for session group leader */ 544 int leader; 545 546 struct tty_struct *tty; /* NULL if no tty */ 547 548#ifdef CONFIG_SCHED_AUTOGROUP 549 struct autogroup *autogroup; 550#endif 551 /* 552 * Cumulative resource counters for dead threads in the group, 553 * and for reaped dead child processes forked by this group. 554 * Live threads maintain their own counters and add to these 555 * in __exit_signal, except for the group leader. 556 */ 557 cputime_t utime, stime, cutime, cstime; 558 cputime_t gtime; 559 cputime_t cgtime; 560#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 561 struct cputime prev_cputime; 562#endif 563 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 564 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 565 unsigned long inblock, oublock, cinblock, coublock; 566 unsigned long maxrss, cmaxrss; 567 struct task_io_accounting ioac; 568 569 /* 570 * Cumulative ns of schedule CPU time fo dead threads in the 571 * group, not including a zombie group leader, (This only differs 572 * from jiffies_to_ns(utime + stime) if sched_clock uses something 573 * other than jiffies.) 574 */ 575 unsigned long long sum_sched_runtime; 576 577 /* 578 * We don't bother to synchronize most readers of this at all, 579 * because there is no reader checking a limit that actually needs 580 * to get both rlim_cur and rlim_max atomically, and either one 581 * alone is a single word that can safely be read normally. 582 * getrlimit/setrlimit use task_lock(current->group_leader) to 583 * protect this instead of the siglock, because they really 584 * have no need to disable irqs. 585 */ 586 struct rlimit rlim[RLIM_NLIMITS]; 587 588#ifdef CONFIG_BSD_PROCESS_ACCT 589 struct pacct_struct pacct; /* per-process accounting information */ 590#endif 591#ifdef CONFIG_TASKSTATS 592 struct taskstats *stats; 593#endif 594#ifdef CONFIG_AUDIT 595 unsigned audit_tty; 596 unsigned audit_tty_log_passwd; 597 struct tty_audit_buf *tty_audit_buf; 598#endif 599#ifdef CONFIG_CGROUPS 600 /* 601 * group_rwsem prevents new tasks from entering the threadgroup and 602 * member tasks from exiting,a more specifically, setting of 603 * PF_EXITING. fork and exit paths are protected with this rwsem 604 * using threadgroup_change_begin/end(). Users which require 605 * threadgroup to remain stable should use threadgroup_[un]lock() 606 * which also takes care of exec path. Currently, cgroup is the 607 * only user. 608 */ 609 struct rw_semaphore group_rwsem; 610#endif 611 612 oom_flags_t oom_flags; 613 short oom_score_adj; /* OOM kill score adjustment */ 614 short oom_score_adj_min; /* OOM kill score adjustment min value. 615 * Only settable by CAP_SYS_RESOURCE. */ 616 617 struct mutex cred_guard_mutex; /* guard against foreign influences on 618 * credential calculations 619 * (notably. ptrace) */ 620}; 621 622/* 623 * Bits in flags field of signal_struct. 624 */ 625#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 626#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 627#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 628#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 629/* 630 * Pending notifications to parent. 631 */ 632#define SIGNAL_CLD_STOPPED 0x00000010 633#define SIGNAL_CLD_CONTINUED 0x00000020 634#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 635 636#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 637 638/* If true, all threads except ->group_exit_task have pending SIGKILL */ 639static inline int signal_group_exit(const struct signal_struct *sig) 640{ 641 return (sig->flags & SIGNAL_GROUP_EXIT) || 642 (sig->group_exit_task != NULL); 643} 644 645/* 646 * Some day this will be a full-fledged user tracking system.. 647 */ 648struct user_struct { 649 atomic_t __count; /* reference count */ 650 atomic_t processes; /* How many processes does this user have? */ 651 atomic_t files; /* How many open files does this user have? */ 652 atomic_t sigpending; /* How many pending signals does this user have? */ 653#ifdef CONFIG_INOTIFY_USER 654 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 655 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 656#endif 657#ifdef CONFIG_FANOTIFY 658 atomic_t fanotify_listeners; 659#endif 660#ifdef CONFIG_EPOLL 661 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 662#endif 663#ifdef CONFIG_POSIX_MQUEUE 664 /* protected by mq_lock */ 665 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 666#endif 667 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 668 669#ifdef CONFIG_KEYS 670 struct key *uid_keyring; /* UID specific keyring */ 671 struct key *session_keyring; /* UID's default session keyring */ 672#endif 673 674 /* Hash table maintenance information */ 675 struct hlist_node uidhash_node; 676 kuid_t uid; 677 678#ifdef CONFIG_PERF_EVENTS 679 atomic_long_t locked_vm; 680#endif 681}; 682 683extern int uids_sysfs_init(void); 684 685extern struct user_struct *find_user(kuid_t); 686 687extern struct user_struct root_user; 688#define INIT_USER (&root_user) 689 690 691struct backing_dev_info; 692struct reclaim_state; 693 694#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 695struct sched_info { 696 /* cumulative counters */ 697 unsigned long pcount; /* # of times run on this cpu */ 698 unsigned long long run_delay; /* time spent waiting on a runqueue */ 699 700 /* timestamps */ 701 unsigned long long last_arrival,/* when we last ran on a cpu */ 702 last_queued; /* when we were last queued to run */ 703}; 704#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 705 706#ifdef CONFIG_TASK_DELAY_ACCT 707struct task_delay_info { 708 spinlock_t lock; 709 unsigned int flags; /* Private per-task flags */ 710 711 /* For each stat XXX, add following, aligned appropriately 712 * 713 * struct timespec XXX_start, XXX_end; 714 * u64 XXX_delay; 715 * u32 XXX_count; 716 * 717 * Atomicity of updates to XXX_delay, XXX_count protected by 718 * single lock above (split into XXX_lock if contention is an issue). 719 */ 720 721 /* 722 * XXX_count is incremented on every XXX operation, the delay 723 * associated with the operation is added to XXX_delay. 724 * XXX_delay contains the accumulated delay time in nanoseconds. 725 */ 726 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 727 u64 blkio_delay; /* wait for sync block io completion */ 728 u64 swapin_delay; /* wait for swapin block io completion */ 729 u32 blkio_count; /* total count of the number of sync block */ 730 /* io operations performed */ 731 u32 swapin_count; /* total count of the number of swapin block */ 732 /* io operations performed */ 733 734 struct timespec freepages_start, freepages_end; 735 u64 freepages_delay; /* wait for memory reclaim */ 736 u32 freepages_count; /* total count of memory reclaim */ 737}; 738#endif /* CONFIG_TASK_DELAY_ACCT */ 739 740static inline int sched_info_on(void) 741{ 742#ifdef CONFIG_SCHEDSTATS 743 return 1; 744#elif defined(CONFIG_TASK_DELAY_ACCT) 745 extern int delayacct_on; 746 return delayacct_on; 747#else 748 return 0; 749#endif 750} 751 752enum cpu_idle_type { 753 CPU_IDLE, 754 CPU_NOT_IDLE, 755 CPU_NEWLY_IDLE, 756 CPU_MAX_IDLE_TYPES 757}; 758 759/* 760 * Increase resolution of cpu_power calculations 761 */ 762#define SCHED_POWER_SHIFT 10 763#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 764 765/* 766 * sched-domains (multiprocessor balancing) declarations: 767 */ 768#ifdef CONFIG_SMP 769#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 770#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 771#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 772#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 773#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 774#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 775#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 776#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 777#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 778#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 779#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 780#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 781 782extern int __weak arch_sd_sibiling_asym_packing(void); 783 784struct sched_domain_attr { 785 int relax_domain_level; 786}; 787 788#define SD_ATTR_INIT (struct sched_domain_attr) { \ 789 .relax_domain_level = -1, \ 790} 791 792extern int sched_domain_level_max; 793 794struct sched_group; 795 796struct sched_domain { 797 /* These fields must be setup */ 798 struct sched_domain *parent; /* top domain must be null terminated */ 799 struct sched_domain *child; /* bottom domain must be null terminated */ 800 struct sched_group *groups; /* the balancing groups of the domain */ 801 unsigned long min_interval; /* Minimum balance interval ms */ 802 unsigned long max_interval; /* Maximum balance interval ms */ 803 unsigned int busy_factor; /* less balancing by factor if busy */ 804 unsigned int imbalance_pct; /* No balance until over watermark */ 805 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 806 unsigned int busy_idx; 807 unsigned int idle_idx; 808 unsigned int newidle_idx; 809 unsigned int wake_idx; 810 unsigned int forkexec_idx; 811 unsigned int smt_gain; 812 813 int nohz_idle; /* NOHZ IDLE status */ 814 int flags; /* See SD_* */ 815 int level; 816 817 /* Runtime fields. */ 818 unsigned long last_balance; /* init to jiffies. units in jiffies */ 819 unsigned int balance_interval; /* initialise to 1. units in ms. */ 820 unsigned int nr_balance_failed; /* initialise to 0 */ 821 822 u64 last_update; 823 824#ifdef CONFIG_SCHEDSTATS 825 /* load_balance() stats */ 826 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 827 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 828 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 829 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 830 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 831 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 832 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 833 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 834 835 /* Active load balancing */ 836 unsigned int alb_count; 837 unsigned int alb_failed; 838 unsigned int alb_pushed; 839 840 /* SD_BALANCE_EXEC stats */ 841 unsigned int sbe_count; 842 unsigned int sbe_balanced; 843 unsigned int sbe_pushed; 844 845 /* SD_BALANCE_FORK stats */ 846 unsigned int sbf_count; 847 unsigned int sbf_balanced; 848 unsigned int sbf_pushed; 849 850 /* try_to_wake_up() stats */ 851 unsigned int ttwu_wake_remote; 852 unsigned int ttwu_move_affine; 853 unsigned int ttwu_move_balance; 854#endif 855#ifdef CONFIG_SCHED_DEBUG 856 char *name; 857#endif 858 union { 859 void *private; /* used during construction */ 860 struct rcu_head rcu; /* used during destruction */ 861 }; 862 863 unsigned int span_weight; 864 /* 865 * Span of all CPUs in this domain. 866 * 867 * NOTE: this field is variable length. (Allocated dynamically 868 * by attaching extra space to the end of the structure, 869 * depending on how many CPUs the kernel has booted up with) 870 */ 871 unsigned long span[0]; 872}; 873 874static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 875{ 876 return to_cpumask(sd->span); 877} 878 879extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 880 struct sched_domain_attr *dattr_new); 881 882/* Allocate an array of sched domains, for partition_sched_domains(). */ 883cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 884void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 885 886bool cpus_share_cache(int this_cpu, int that_cpu); 887 888#else /* CONFIG_SMP */ 889 890struct sched_domain_attr; 891 892static inline void 893partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 894 struct sched_domain_attr *dattr_new) 895{ 896} 897 898static inline bool cpus_share_cache(int this_cpu, int that_cpu) 899{ 900 return true; 901} 902 903#endif /* !CONFIG_SMP */ 904 905 906struct io_context; /* See blkdev.h */ 907 908 909#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 910extern void prefetch_stack(struct task_struct *t); 911#else 912static inline void prefetch_stack(struct task_struct *t) { } 913#endif 914 915struct audit_context; /* See audit.c */ 916struct mempolicy; 917struct pipe_inode_info; 918struct uts_namespace; 919 920struct load_weight { 921 unsigned long weight, inv_weight; 922}; 923 924struct sched_avg { 925 /* 926 * These sums represent an infinite geometric series and so are bound 927 * above by 1024/(1-y). Thus we only need a u32 to store them for for all 928 * choices of y < 1-2^(-32)*1024. 929 */ 930 u32 runnable_avg_sum, runnable_avg_period; 931 u64 last_runnable_update; 932 s64 decay_count; 933 unsigned long load_avg_contrib; 934}; 935 936#ifdef CONFIG_SCHEDSTATS 937struct sched_statistics { 938 u64 wait_start; 939 u64 wait_max; 940 u64 wait_count; 941 u64 wait_sum; 942 u64 iowait_count; 943 u64 iowait_sum; 944 945 u64 sleep_start; 946 u64 sleep_max; 947 s64 sum_sleep_runtime; 948 949 u64 block_start; 950 u64 block_max; 951 u64 exec_max; 952 u64 slice_max; 953 954 u64 nr_migrations_cold; 955 u64 nr_failed_migrations_affine; 956 u64 nr_failed_migrations_running; 957 u64 nr_failed_migrations_hot; 958 u64 nr_forced_migrations; 959 960 u64 nr_wakeups; 961 u64 nr_wakeups_sync; 962 u64 nr_wakeups_migrate; 963 u64 nr_wakeups_local; 964 u64 nr_wakeups_remote; 965 u64 nr_wakeups_affine; 966 u64 nr_wakeups_affine_attempts; 967 u64 nr_wakeups_passive; 968 u64 nr_wakeups_idle; 969}; 970#endif 971 972struct sched_entity { 973 struct load_weight load; /* for load-balancing */ 974 struct rb_node run_node; 975 struct list_head group_node; 976 unsigned int on_rq; 977 978 u64 exec_start; 979 u64 sum_exec_runtime; 980 u64 vruntime; 981 u64 prev_sum_exec_runtime; 982 983 u64 nr_migrations; 984 985#ifdef CONFIG_SCHEDSTATS 986 struct sched_statistics statistics; 987#endif 988 989#ifdef CONFIG_FAIR_GROUP_SCHED 990 struct sched_entity *parent; 991 /* rq on which this entity is (to be) queued: */ 992 struct cfs_rq *cfs_rq; 993 /* rq "owned" by this entity/group: */ 994 struct cfs_rq *my_q; 995#endif 996 997/* 998 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 999 * removed when useful for applications beyond shares distribution (e.g. 1000 * load-balance). 1001 */ 1002#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1003 /* Per-entity load-tracking */ 1004 struct sched_avg avg; 1005#endif 1006}; 1007 1008struct sched_rt_entity { 1009 struct list_head run_list; 1010 unsigned long timeout; 1011 unsigned long watchdog_stamp; 1012 unsigned int time_slice; 1013 1014 struct sched_rt_entity *back; 1015#ifdef CONFIG_RT_GROUP_SCHED 1016 struct sched_rt_entity *parent; 1017 /* rq on which this entity is (to be) queued: */ 1018 struct rt_rq *rt_rq; 1019 /* rq "owned" by this entity/group: */ 1020 struct rt_rq *my_q; 1021#endif 1022}; 1023 1024 1025struct rcu_node; 1026 1027enum perf_event_task_context { 1028 perf_invalid_context = -1, 1029 perf_hw_context = 0, 1030 perf_sw_context, 1031 perf_nr_task_contexts, 1032}; 1033 1034struct task_struct { 1035 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1036 void *stack; 1037 atomic_t usage; 1038 unsigned int flags; /* per process flags, defined below */ 1039 unsigned int ptrace; 1040 1041#ifdef CONFIG_SMP 1042 struct llist_node wake_entry; 1043 int on_cpu; 1044#endif 1045 int on_rq; 1046 1047 int prio, static_prio, normal_prio; 1048 unsigned int rt_priority; 1049 const struct sched_class *sched_class; 1050 struct sched_entity se; 1051 struct sched_rt_entity rt; 1052#ifdef CONFIG_CGROUP_SCHED 1053 struct task_group *sched_task_group; 1054#endif 1055 1056#ifdef CONFIG_PREEMPT_NOTIFIERS 1057 /* list of struct preempt_notifier: */ 1058 struct hlist_head preempt_notifiers; 1059#endif 1060 1061 /* 1062 * fpu_counter contains the number of consecutive context switches 1063 * that the FPU is used. If this is over a threshold, the lazy fpu 1064 * saving becomes unlazy to save the trap. This is an unsigned char 1065 * so that after 256 times the counter wraps and the behavior turns 1066 * lazy again; this to deal with bursty apps that only use FPU for 1067 * a short time 1068 */ 1069 unsigned char fpu_counter; 1070#ifdef CONFIG_BLK_DEV_IO_TRACE 1071 unsigned int btrace_seq; 1072#endif 1073 1074 unsigned int policy; 1075 int nr_cpus_allowed; 1076 cpumask_t cpus_allowed; 1077 1078#ifdef CONFIG_PREEMPT_RCU 1079 int rcu_read_lock_nesting; 1080 char rcu_read_unlock_special; 1081 struct list_head rcu_node_entry; 1082#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1083#ifdef CONFIG_TREE_PREEMPT_RCU 1084 struct rcu_node *rcu_blocked_node; 1085#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1086#ifdef CONFIG_RCU_BOOST 1087 struct rt_mutex *rcu_boost_mutex; 1088#endif /* #ifdef CONFIG_RCU_BOOST */ 1089 1090#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1091 struct sched_info sched_info; 1092#endif 1093 1094 struct list_head tasks; 1095#ifdef CONFIG_SMP 1096 struct plist_node pushable_tasks; 1097#endif 1098 1099 struct mm_struct *mm, *active_mm; 1100#ifdef CONFIG_COMPAT_BRK 1101 unsigned brk_randomized:1; 1102#endif 1103#if defined(SPLIT_RSS_COUNTING) 1104 struct task_rss_stat rss_stat; 1105#endif 1106/* task state */ 1107 int exit_state; 1108 int exit_code, exit_signal; 1109 int pdeath_signal; /* The signal sent when the parent dies */ 1110 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1111 1112 /* Used for emulating ABI behavior of previous Linux versions */ 1113 unsigned int personality; 1114 1115 unsigned did_exec:1; 1116 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1117 * execve */ 1118 unsigned in_iowait:1; 1119 1120 /* task may not gain privileges */ 1121 unsigned no_new_privs:1; 1122 1123 /* Revert to default priority/policy when forking */ 1124 unsigned sched_reset_on_fork:1; 1125 unsigned sched_contributes_to_load:1; 1126 1127 pid_t pid; 1128 pid_t tgid; 1129 1130#ifdef CONFIG_CC_STACKPROTECTOR 1131 /* Canary value for the -fstack-protector gcc feature */ 1132 unsigned long stack_canary; 1133#endif 1134 /* 1135 * pointers to (original) parent process, youngest child, younger sibling, 1136 * older sibling, respectively. (p->father can be replaced with 1137 * p->real_parent->pid) 1138 */ 1139 struct task_struct __rcu *real_parent; /* real parent process */ 1140 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1141 /* 1142 * children/sibling forms the list of my natural children 1143 */ 1144 struct list_head children; /* list of my children */ 1145 struct list_head sibling; /* linkage in my parent's children list */ 1146 struct task_struct *group_leader; /* threadgroup leader */ 1147 1148 /* 1149 * ptraced is the list of tasks this task is using ptrace on. 1150 * This includes both natural children and PTRACE_ATTACH targets. 1151 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1152 */ 1153 struct list_head ptraced; 1154 struct list_head ptrace_entry; 1155 1156 /* PID/PID hash table linkage. */ 1157 struct pid_link pids[PIDTYPE_MAX]; 1158 struct list_head thread_group; 1159 1160 struct completion *vfork_done; /* for vfork() */ 1161 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1162 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1163 1164 cputime_t utime, stime, utimescaled, stimescaled; 1165 cputime_t gtime; 1166#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1167 struct cputime prev_cputime; 1168#endif 1169#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1170 seqlock_t vtime_seqlock; 1171 unsigned long long vtime_snap; 1172 enum { 1173 VTIME_SLEEPING = 0, 1174 VTIME_USER, 1175 VTIME_SYS, 1176 } vtime_snap_whence; 1177#endif 1178 unsigned long nvcsw, nivcsw; /* context switch counts */ 1179 struct timespec start_time; /* monotonic time */ 1180 struct timespec real_start_time; /* boot based time */ 1181/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1182 unsigned long min_flt, maj_flt; 1183 1184 struct task_cputime cputime_expires; 1185 struct list_head cpu_timers[3]; 1186 1187/* process credentials */ 1188 const struct cred __rcu *real_cred; /* objective and real subjective task 1189 * credentials (COW) */ 1190 const struct cred __rcu *cred; /* effective (overridable) subjective task 1191 * credentials (COW) */ 1192 char comm[TASK_COMM_LEN]; /* executable name excluding path 1193 - access with [gs]et_task_comm (which lock 1194 it with task_lock()) 1195 - initialized normally by setup_new_exec */ 1196/* file system info */ 1197 int link_count, total_link_count; 1198#ifdef CONFIG_SYSVIPC 1199/* ipc stuff */ 1200 struct sysv_sem sysvsem; 1201#endif 1202#ifdef CONFIG_DETECT_HUNG_TASK 1203/* hung task detection */ 1204 unsigned long last_switch_count; 1205#endif 1206/* CPU-specific state of this task */ 1207 struct thread_struct thread; 1208/* filesystem information */ 1209 struct fs_struct *fs; 1210/* open file information */ 1211 struct files_struct *files; 1212/* namespaces */ 1213 struct nsproxy *nsproxy; 1214/* signal handlers */ 1215 struct signal_struct *signal; 1216 struct sighand_struct *sighand; 1217 1218 sigset_t blocked, real_blocked; 1219 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1220 struct sigpending pending; 1221 1222 unsigned long sas_ss_sp; 1223 size_t sas_ss_size; 1224 int (*notifier)(void *priv); 1225 void *notifier_data; 1226 sigset_t *notifier_mask; 1227 struct callback_head *task_works; 1228 1229 struct audit_context *audit_context; 1230#ifdef CONFIG_AUDITSYSCALL 1231 kuid_t loginuid; 1232 unsigned int sessionid; 1233#endif 1234 struct seccomp seccomp; 1235 1236/* Thread group tracking */ 1237 u32 parent_exec_id; 1238 u32 self_exec_id; 1239/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1240 * mempolicy */ 1241 spinlock_t alloc_lock; 1242 1243 /* Protection of the PI data structures: */ 1244 raw_spinlock_t pi_lock; 1245 1246#ifdef CONFIG_RT_MUTEXES 1247 /* PI waiters blocked on a rt_mutex held by this task */ 1248 struct plist_head pi_waiters; 1249 /* Deadlock detection and priority inheritance handling */ 1250 struct rt_mutex_waiter *pi_blocked_on; 1251#endif 1252 1253#ifdef CONFIG_DEBUG_MUTEXES 1254 /* mutex deadlock detection */ 1255 struct mutex_waiter *blocked_on; 1256#endif 1257#ifdef CONFIG_TRACE_IRQFLAGS 1258 unsigned int irq_events; 1259 unsigned long hardirq_enable_ip; 1260 unsigned long hardirq_disable_ip; 1261 unsigned int hardirq_enable_event; 1262 unsigned int hardirq_disable_event; 1263 int hardirqs_enabled; 1264 int hardirq_context; 1265 unsigned long softirq_disable_ip; 1266 unsigned long softirq_enable_ip; 1267 unsigned int softirq_disable_event; 1268 unsigned int softirq_enable_event; 1269 int softirqs_enabled; 1270 int softirq_context; 1271#endif 1272#ifdef CONFIG_LOCKDEP 1273# define MAX_LOCK_DEPTH 48UL 1274 u64 curr_chain_key; 1275 int lockdep_depth; 1276 unsigned int lockdep_recursion; 1277 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1278 gfp_t lockdep_reclaim_gfp; 1279#endif 1280 1281/* journalling filesystem info */ 1282 void *journal_info; 1283 1284/* stacked block device info */ 1285 struct bio_list *bio_list; 1286 1287#ifdef CONFIG_BLOCK 1288/* stack plugging */ 1289 struct blk_plug *plug; 1290#endif 1291 1292/* VM state */ 1293 struct reclaim_state *reclaim_state; 1294 1295 struct backing_dev_info *backing_dev_info; 1296 1297 struct io_context *io_context; 1298 1299 unsigned long ptrace_message; 1300 siginfo_t *last_siginfo; /* For ptrace use. */ 1301 struct task_io_accounting ioac; 1302#if defined(CONFIG_TASK_XACCT) 1303 u64 acct_rss_mem1; /* accumulated rss usage */ 1304 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1305 cputime_t acct_timexpd; /* stime + utime since last update */ 1306#endif 1307#ifdef CONFIG_CPUSETS 1308 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1309 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1310 int cpuset_mem_spread_rotor; 1311 int cpuset_slab_spread_rotor; 1312#endif 1313#ifdef CONFIG_CGROUPS 1314 /* Control Group info protected by css_set_lock */ 1315 struct css_set __rcu *cgroups; 1316 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1317 struct list_head cg_list; 1318#endif 1319#ifdef CONFIG_FUTEX 1320 struct robust_list_head __user *robust_list; 1321#ifdef CONFIG_COMPAT 1322 struct compat_robust_list_head __user *compat_robust_list; 1323#endif 1324 struct list_head pi_state_list; 1325 struct futex_pi_state *pi_state_cache; 1326#endif 1327#ifdef CONFIG_PERF_EVENTS 1328 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1329 struct mutex perf_event_mutex; 1330 struct list_head perf_event_list; 1331#endif 1332#ifdef CONFIG_NUMA 1333 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1334 short il_next; 1335 short pref_node_fork; 1336#endif 1337#ifdef CONFIG_NUMA_BALANCING 1338 int numa_scan_seq; 1339 int numa_migrate_seq; 1340 unsigned int numa_scan_period; 1341 u64 node_stamp; /* migration stamp */ 1342 struct callback_head numa_work; 1343#endif /* CONFIG_NUMA_BALANCING */ 1344 1345 struct rcu_head rcu; 1346 1347 /* 1348 * cache last used pipe for splice 1349 */ 1350 struct pipe_inode_info *splice_pipe; 1351 1352 struct page_frag task_frag; 1353 1354#ifdef CONFIG_TASK_DELAY_ACCT 1355 struct task_delay_info *delays; 1356#endif 1357#ifdef CONFIG_FAULT_INJECTION 1358 int make_it_fail; 1359#endif 1360 /* 1361 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1362 * balance_dirty_pages() for some dirty throttling pause 1363 */ 1364 int nr_dirtied; 1365 int nr_dirtied_pause; 1366 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1367 1368#ifdef CONFIG_LATENCYTOP 1369 int latency_record_count; 1370 struct latency_record latency_record[LT_SAVECOUNT]; 1371#endif 1372 /* 1373 * time slack values; these are used to round up poll() and 1374 * select() etc timeout values. These are in nanoseconds. 1375 */ 1376 unsigned long timer_slack_ns; 1377 unsigned long default_timer_slack_ns; 1378 1379#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1380 /* Index of current stored address in ret_stack */ 1381 int curr_ret_stack; 1382 /* Stack of return addresses for return function tracing */ 1383 struct ftrace_ret_stack *ret_stack; 1384 /* time stamp for last schedule */ 1385 unsigned long long ftrace_timestamp; 1386 /* 1387 * Number of functions that haven't been traced 1388 * because of depth overrun. 1389 */ 1390 atomic_t trace_overrun; 1391 /* Pause for the tracing */ 1392 atomic_t tracing_graph_pause; 1393#endif 1394#ifdef CONFIG_TRACING 1395 /* state flags for use by tracers */ 1396 unsigned long trace; 1397 /* bitmask and counter of trace recursion */ 1398 unsigned long trace_recursion; 1399#endif /* CONFIG_TRACING */ 1400#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1401 struct memcg_batch_info { 1402 int do_batch; /* incremented when batch uncharge started */ 1403 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1404 unsigned long nr_pages; /* uncharged usage */ 1405 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1406 } memcg_batch; 1407 unsigned int memcg_kmem_skip_account; 1408#endif 1409#ifdef CONFIG_HAVE_HW_BREAKPOINT 1410 atomic_t ptrace_bp_refcnt; 1411#endif 1412#ifdef CONFIG_UPROBES 1413 struct uprobe_task *utask; 1414#endif 1415#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1416 unsigned int sequential_io; 1417 unsigned int sequential_io_avg; 1418#endif 1419}; 1420 1421/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1422#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1423 1424#ifdef CONFIG_NUMA_BALANCING 1425extern void task_numa_fault(int node, int pages, bool migrated); 1426extern void set_numabalancing_state(bool enabled); 1427#else 1428static inline void task_numa_fault(int node, int pages, bool migrated) 1429{ 1430} 1431static inline void set_numabalancing_state(bool enabled) 1432{ 1433} 1434#endif 1435 1436static inline struct pid *task_pid(struct task_struct *task) 1437{ 1438 return task->pids[PIDTYPE_PID].pid; 1439} 1440 1441static inline struct pid *task_tgid(struct task_struct *task) 1442{ 1443 return task->group_leader->pids[PIDTYPE_PID].pid; 1444} 1445 1446/* 1447 * Without tasklist or rcu lock it is not safe to dereference 1448 * the result of task_pgrp/task_session even if task == current, 1449 * we can race with another thread doing sys_setsid/sys_setpgid. 1450 */ 1451static inline struct pid *task_pgrp(struct task_struct *task) 1452{ 1453 return task->group_leader->pids[PIDTYPE_PGID].pid; 1454} 1455 1456static inline struct pid *task_session(struct task_struct *task) 1457{ 1458 return task->group_leader->pids[PIDTYPE_SID].pid; 1459} 1460 1461struct pid_namespace; 1462 1463/* 1464 * the helpers to get the task's different pids as they are seen 1465 * from various namespaces 1466 * 1467 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1468 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1469 * current. 1470 * task_xid_nr_ns() : id seen from the ns specified; 1471 * 1472 * set_task_vxid() : assigns a virtual id to a task; 1473 * 1474 * see also pid_nr() etc in include/linux/pid.h 1475 */ 1476pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1477 struct pid_namespace *ns); 1478 1479static inline pid_t task_pid_nr(struct task_struct *tsk) 1480{ 1481 return tsk->pid; 1482} 1483 1484static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1485 struct pid_namespace *ns) 1486{ 1487 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1488} 1489 1490static inline pid_t task_pid_vnr(struct task_struct *tsk) 1491{ 1492 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1493} 1494 1495 1496static inline pid_t task_tgid_nr(struct task_struct *tsk) 1497{ 1498 return tsk->tgid; 1499} 1500 1501pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1502 1503static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1504{ 1505 return pid_vnr(task_tgid(tsk)); 1506} 1507 1508 1509static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1510 struct pid_namespace *ns) 1511{ 1512 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1513} 1514 1515static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1516{ 1517 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1518} 1519 1520 1521static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1522 struct pid_namespace *ns) 1523{ 1524 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1525} 1526 1527static inline pid_t task_session_vnr(struct task_struct *tsk) 1528{ 1529 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1530} 1531 1532/* obsolete, do not use */ 1533static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1534{ 1535 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1536} 1537 1538/** 1539 * pid_alive - check that a task structure is not stale 1540 * @p: Task structure to be checked. 1541 * 1542 * Test if a process is not yet dead (at most zombie state) 1543 * If pid_alive fails, then pointers within the task structure 1544 * can be stale and must not be dereferenced. 1545 */ 1546static inline int pid_alive(struct task_struct *p) 1547{ 1548 return p->pids[PIDTYPE_PID].pid != NULL; 1549} 1550 1551/** 1552 * is_global_init - check if a task structure is init 1553 * @tsk: Task structure to be checked. 1554 * 1555 * Check if a task structure is the first user space task the kernel created. 1556 */ 1557static inline int is_global_init(struct task_struct *tsk) 1558{ 1559 return tsk->pid == 1; 1560} 1561 1562extern struct pid *cad_pid; 1563 1564extern void free_task(struct task_struct *tsk); 1565#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1566 1567extern void __put_task_struct(struct task_struct *t); 1568 1569static inline void put_task_struct(struct task_struct *t) 1570{ 1571 if (atomic_dec_and_test(&t->usage)) 1572 __put_task_struct(t); 1573} 1574 1575#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1576extern void task_cputime(struct task_struct *t, 1577 cputime_t *utime, cputime_t *stime); 1578extern void task_cputime_scaled(struct task_struct *t, 1579 cputime_t *utimescaled, cputime_t *stimescaled); 1580extern cputime_t task_gtime(struct task_struct *t); 1581#else 1582static inline void task_cputime(struct task_struct *t, 1583 cputime_t *utime, cputime_t *stime) 1584{ 1585 if (utime) 1586 *utime = t->utime; 1587 if (stime) 1588 *stime = t->stime; 1589} 1590 1591static inline void task_cputime_scaled(struct task_struct *t, 1592 cputime_t *utimescaled, 1593 cputime_t *stimescaled) 1594{ 1595 if (utimescaled) 1596 *utimescaled = t->utimescaled; 1597 if (stimescaled) 1598 *stimescaled = t->stimescaled; 1599} 1600 1601static inline cputime_t task_gtime(struct task_struct *t) 1602{ 1603 return t->gtime; 1604} 1605#endif 1606extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1607extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1608 1609/* 1610 * Per process flags 1611 */ 1612#define PF_EXITING 0x00000004 /* getting shut down */ 1613#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1614#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1615#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1616#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1617#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1618#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1619#define PF_DUMPCORE 0x00000200 /* dumped core */ 1620#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1621#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1622#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1623#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1624#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1625#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1626#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1627#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1628#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1629#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1630#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1631#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1632#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1633#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1634#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1635#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1636#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1637#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1638#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1639#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1640#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1641 1642/* 1643 * Only the _current_ task can read/write to tsk->flags, but other 1644 * tasks can access tsk->flags in readonly mode for example 1645 * with tsk_used_math (like during threaded core dumping). 1646 * There is however an exception to this rule during ptrace 1647 * or during fork: the ptracer task is allowed to write to the 1648 * child->flags of its traced child (same goes for fork, the parent 1649 * can write to the child->flags), because we're guaranteed the 1650 * child is not running and in turn not changing child->flags 1651 * at the same time the parent does it. 1652 */ 1653#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1654#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1655#define clear_used_math() clear_stopped_child_used_math(current) 1656#define set_used_math() set_stopped_child_used_math(current) 1657#define conditional_stopped_child_used_math(condition, child) \ 1658 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1659#define conditional_used_math(condition) \ 1660 conditional_stopped_child_used_math(condition, current) 1661#define copy_to_stopped_child_used_math(child) \ 1662 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1663/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1664#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1665#define used_math() tsk_used_math(current) 1666 1667/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1668static inline gfp_t memalloc_noio_flags(gfp_t flags) 1669{ 1670 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1671 flags &= ~__GFP_IO; 1672 return flags; 1673} 1674 1675static inline unsigned int memalloc_noio_save(void) 1676{ 1677 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1678 current->flags |= PF_MEMALLOC_NOIO; 1679 return flags; 1680} 1681 1682static inline void memalloc_noio_restore(unsigned int flags) 1683{ 1684 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1685} 1686 1687/* 1688 * task->jobctl flags 1689 */ 1690#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1691 1692#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1693#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1694#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1695#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1696#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1697#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1698#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1699 1700#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1701#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1702#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1703#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1704#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1705#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1706#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1707 1708#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1709#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1710 1711extern bool task_set_jobctl_pending(struct task_struct *task, 1712 unsigned int mask); 1713extern void task_clear_jobctl_trapping(struct task_struct *task); 1714extern void task_clear_jobctl_pending(struct task_struct *task, 1715 unsigned int mask); 1716 1717#ifdef CONFIG_PREEMPT_RCU 1718 1719#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1720#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1721 1722static inline void rcu_copy_process(struct task_struct *p) 1723{ 1724 p->rcu_read_lock_nesting = 0; 1725 p->rcu_read_unlock_special = 0; 1726#ifdef CONFIG_TREE_PREEMPT_RCU 1727 p->rcu_blocked_node = NULL; 1728#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1729#ifdef CONFIG_RCU_BOOST 1730 p->rcu_boost_mutex = NULL; 1731#endif /* #ifdef CONFIG_RCU_BOOST */ 1732 INIT_LIST_HEAD(&p->rcu_node_entry); 1733} 1734 1735#else 1736 1737static inline void rcu_copy_process(struct task_struct *p) 1738{ 1739} 1740 1741#endif 1742 1743static inline void tsk_restore_flags(struct task_struct *task, 1744 unsigned long orig_flags, unsigned long flags) 1745{ 1746 task->flags &= ~flags; 1747 task->flags |= orig_flags & flags; 1748} 1749 1750#ifdef CONFIG_SMP 1751extern void do_set_cpus_allowed(struct task_struct *p, 1752 const struct cpumask *new_mask); 1753 1754extern int set_cpus_allowed_ptr(struct task_struct *p, 1755 const struct cpumask *new_mask); 1756#else 1757static inline void do_set_cpus_allowed(struct task_struct *p, 1758 const struct cpumask *new_mask) 1759{ 1760} 1761static inline int set_cpus_allowed_ptr(struct task_struct *p, 1762 const struct cpumask *new_mask) 1763{ 1764 if (!cpumask_test_cpu(0, new_mask)) 1765 return -EINVAL; 1766 return 0; 1767} 1768#endif 1769 1770#ifdef CONFIG_NO_HZ_COMMON 1771void calc_load_enter_idle(void); 1772void calc_load_exit_idle(void); 1773#else 1774static inline void calc_load_enter_idle(void) { } 1775static inline void calc_load_exit_idle(void) { } 1776#endif /* CONFIG_NO_HZ_COMMON */ 1777 1778#ifndef CONFIG_CPUMASK_OFFSTACK 1779static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1780{ 1781 return set_cpus_allowed_ptr(p, &new_mask); 1782} 1783#endif 1784 1785/* 1786 * Do not use outside of architecture code which knows its limitations. 1787 * 1788 * sched_clock() has no promise of monotonicity or bounded drift between 1789 * CPUs, use (which you should not) requires disabling IRQs. 1790 * 1791 * Please use one of the three interfaces below. 1792 */ 1793extern unsigned long long notrace sched_clock(void); 1794/* 1795 * See the comment in kernel/sched/clock.c 1796 */ 1797extern u64 cpu_clock(int cpu); 1798extern u64 local_clock(void); 1799extern u64 sched_clock_cpu(int cpu); 1800 1801 1802extern void sched_clock_init(void); 1803 1804#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1805static inline void sched_clock_tick(void) 1806{ 1807} 1808 1809static inline void sched_clock_idle_sleep_event(void) 1810{ 1811} 1812 1813static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1814{ 1815} 1816#else 1817/* 1818 * Architectures can set this to 1 if they have specified 1819 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1820 * but then during bootup it turns out that sched_clock() 1821 * is reliable after all: 1822 */ 1823extern int sched_clock_stable; 1824 1825extern void sched_clock_tick(void); 1826extern void sched_clock_idle_sleep_event(void); 1827extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1828#endif 1829 1830#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1831/* 1832 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1833 * The reason for this explicit opt-in is not to have perf penalty with 1834 * slow sched_clocks. 1835 */ 1836extern void enable_sched_clock_irqtime(void); 1837extern void disable_sched_clock_irqtime(void); 1838#else 1839static inline void enable_sched_clock_irqtime(void) {} 1840static inline void disable_sched_clock_irqtime(void) {} 1841#endif 1842 1843extern unsigned long long 1844task_sched_runtime(struct task_struct *task); 1845 1846/* sched_exec is called by processes performing an exec */ 1847#ifdef CONFIG_SMP 1848extern void sched_exec(void); 1849#else 1850#define sched_exec() {} 1851#endif 1852 1853extern void sched_clock_idle_sleep_event(void); 1854extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1855 1856#ifdef CONFIG_HOTPLUG_CPU 1857extern void idle_task_exit(void); 1858#else 1859static inline void idle_task_exit(void) {} 1860#endif 1861 1862#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 1863extern void wake_up_nohz_cpu(int cpu); 1864#else 1865static inline void wake_up_nohz_cpu(int cpu) { } 1866#endif 1867 1868#ifdef CONFIG_NO_HZ_FULL 1869extern bool sched_can_stop_tick(void); 1870extern u64 scheduler_tick_max_deferment(void); 1871#else 1872static inline bool sched_can_stop_tick(void) { return false; } 1873#endif 1874 1875#ifdef CONFIG_SCHED_AUTOGROUP 1876extern void sched_autogroup_create_attach(struct task_struct *p); 1877extern void sched_autogroup_detach(struct task_struct *p); 1878extern void sched_autogroup_fork(struct signal_struct *sig); 1879extern void sched_autogroup_exit(struct signal_struct *sig); 1880#ifdef CONFIG_PROC_FS 1881extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1882extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 1883#endif 1884#else 1885static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1886static inline void sched_autogroup_detach(struct task_struct *p) { } 1887static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1888static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1889#endif 1890 1891extern bool yield_to(struct task_struct *p, bool preempt); 1892extern void set_user_nice(struct task_struct *p, long nice); 1893extern int task_prio(const struct task_struct *p); 1894extern int task_nice(const struct task_struct *p); 1895extern int can_nice(const struct task_struct *p, const int nice); 1896extern int task_curr(const struct task_struct *p); 1897extern int idle_cpu(int cpu); 1898extern int sched_setscheduler(struct task_struct *, int, 1899 const struct sched_param *); 1900extern int sched_setscheduler_nocheck(struct task_struct *, int, 1901 const struct sched_param *); 1902extern struct task_struct *idle_task(int cpu); 1903/** 1904 * is_idle_task - is the specified task an idle task? 1905 * @p: the task in question. 1906 */ 1907static inline bool is_idle_task(const struct task_struct *p) 1908{ 1909 return p->pid == 0; 1910} 1911extern struct task_struct *curr_task(int cpu); 1912extern void set_curr_task(int cpu, struct task_struct *p); 1913 1914void yield(void); 1915 1916/* 1917 * The default (Linux) execution domain. 1918 */ 1919extern struct exec_domain default_exec_domain; 1920 1921union thread_union { 1922 struct thread_info thread_info; 1923 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1924}; 1925 1926#ifndef __HAVE_ARCH_KSTACK_END 1927static inline int kstack_end(void *addr) 1928{ 1929 /* Reliable end of stack detection: 1930 * Some APM bios versions misalign the stack 1931 */ 1932 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1933} 1934#endif 1935 1936extern union thread_union init_thread_union; 1937extern struct task_struct init_task; 1938 1939extern struct mm_struct init_mm; 1940 1941extern struct pid_namespace init_pid_ns; 1942 1943/* 1944 * find a task by one of its numerical ids 1945 * 1946 * find_task_by_pid_ns(): 1947 * finds a task by its pid in the specified namespace 1948 * find_task_by_vpid(): 1949 * finds a task by its virtual pid 1950 * 1951 * see also find_vpid() etc in include/linux/pid.h 1952 */ 1953 1954extern struct task_struct *find_task_by_vpid(pid_t nr); 1955extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1956 struct pid_namespace *ns); 1957 1958extern void __set_special_pids(struct pid *pid); 1959 1960/* per-UID process charging. */ 1961extern struct user_struct * alloc_uid(kuid_t); 1962static inline struct user_struct *get_uid(struct user_struct *u) 1963{ 1964 atomic_inc(&u->__count); 1965 return u; 1966} 1967extern void free_uid(struct user_struct *); 1968 1969#include <asm/current.h> 1970 1971extern void xtime_update(unsigned long ticks); 1972 1973extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1974extern int wake_up_process(struct task_struct *tsk); 1975extern void wake_up_new_task(struct task_struct *tsk); 1976#ifdef CONFIG_SMP 1977 extern void kick_process(struct task_struct *tsk); 1978#else 1979 static inline void kick_process(struct task_struct *tsk) { } 1980#endif 1981extern void sched_fork(struct task_struct *p); 1982extern void sched_dead(struct task_struct *p); 1983 1984extern void proc_caches_init(void); 1985extern void flush_signals(struct task_struct *); 1986extern void __flush_signals(struct task_struct *); 1987extern void ignore_signals(struct task_struct *); 1988extern void flush_signal_handlers(struct task_struct *, int force_default); 1989extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1990 1991static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1992{ 1993 unsigned long flags; 1994 int ret; 1995 1996 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1997 ret = dequeue_signal(tsk, mask, info); 1998 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1999 2000 return ret; 2001} 2002 2003extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2004 sigset_t *mask); 2005extern void unblock_all_signals(void); 2006extern void release_task(struct task_struct * p); 2007extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2008extern int force_sigsegv(int, struct task_struct *); 2009extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2010extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2011extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2012extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2013 const struct cred *, u32); 2014extern int kill_pgrp(struct pid *pid, int sig, int priv); 2015extern int kill_pid(struct pid *pid, int sig, int priv); 2016extern int kill_proc_info(int, struct siginfo *, pid_t); 2017extern __must_check bool do_notify_parent(struct task_struct *, int); 2018extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2019extern void force_sig(int, struct task_struct *); 2020extern int send_sig(int, struct task_struct *, int); 2021extern int zap_other_threads(struct task_struct *p); 2022extern struct sigqueue *sigqueue_alloc(void); 2023extern void sigqueue_free(struct sigqueue *); 2024extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2025extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2026 2027static inline void restore_saved_sigmask(void) 2028{ 2029 if (test_and_clear_restore_sigmask()) 2030 __set_current_blocked(&current->saved_sigmask); 2031} 2032 2033static inline sigset_t *sigmask_to_save(void) 2034{ 2035 sigset_t *res = &current->blocked; 2036 if (unlikely(test_restore_sigmask())) 2037 res = &current->saved_sigmask; 2038 return res; 2039} 2040 2041static inline int kill_cad_pid(int sig, int priv) 2042{ 2043 return kill_pid(cad_pid, sig, priv); 2044} 2045 2046/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2047#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2048#define SEND_SIG_PRIV ((struct siginfo *) 1) 2049#define SEND_SIG_FORCED ((struct siginfo *) 2) 2050 2051/* 2052 * True if we are on the alternate signal stack. 2053 */ 2054static inline int on_sig_stack(unsigned long sp) 2055{ 2056#ifdef CONFIG_STACK_GROWSUP 2057 return sp >= current->sas_ss_sp && 2058 sp - current->sas_ss_sp < current->sas_ss_size; 2059#else 2060 return sp > current->sas_ss_sp && 2061 sp - current->sas_ss_sp <= current->sas_ss_size; 2062#endif 2063} 2064 2065static inline int sas_ss_flags(unsigned long sp) 2066{ 2067 return (current->sas_ss_size == 0 ? SS_DISABLE 2068 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2069} 2070 2071static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2072{ 2073 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2074#ifdef CONFIG_STACK_GROWSUP 2075 return current->sas_ss_sp; 2076#else 2077 return current->sas_ss_sp + current->sas_ss_size; 2078#endif 2079 return sp; 2080} 2081 2082/* 2083 * Routines for handling mm_structs 2084 */ 2085extern struct mm_struct * mm_alloc(void); 2086 2087/* mmdrop drops the mm and the page tables */ 2088extern void __mmdrop(struct mm_struct *); 2089static inline void mmdrop(struct mm_struct * mm) 2090{ 2091 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2092 __mmdrop(mm); 2093} 2094 2095/* mmput gets rid of the mappings and all user-space */ 2096extern void mmput(struct mm_struct *); 2097/* Grab a reference to a task's mm, if it is not already going away */ 2098extern struct mm_struct *get_task_mm(struct task_struct *task); 2099/* 2100 * Grab a reference to a task's mm, if it is not already going away 2101 * and ptrace_may_access with the mode parameter passed to it 2102 * succeeds. 2103 */ 2104extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2105/* Remove the current tasks stale references to the old mm_struct */ 2106extern void mm_release(struct task_struct *, struct mm_struct *); 2107/* Allocate a new mm structure and copy contents from tsk->mm */ 2108extern struct mm_struct *dup_mm(struct task_struct *tsk); 2109 2110extern int copy_thread(unsigned long, unsigned long, unsigned long, 2111 struct task_struct *); 2112extern void flush_thread(void); 2113extern void exit_thread(void); 2114 2115extern void exit_files(struct task_struct *); 2116extern void __cleanup_sighand(struct sighand_struct *); 2117 2118extern void exit_itimers(struct signal_struct *); 2119extern void flush_itimer_signals(void); 2120 2121extern void do_group_exit(int); 2122 2123extern int allow_signal(int); 2124extern int disallow_signal(int); 2125 2126extern int do_execve(const char *, 2127 const char __user * const __user *, 2128 const char __user * const __user *); 2129extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2130struct task_struct *fork_idle(int); 2131extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2132 2133extern void set_task_comm(struct task_struct *tsk, char *from); 2134extern char *get_task_comm(char *to, struct task_struct *tsk); 2135 2136#ifdef CONFIG_SMP 2137void scheduler_ipi(void); 2138extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2139#else 2140static inline void scheduler_ipi(void) { } 2141static inline unsigned long wait_task_inactive(struct task_struct *p, 2142 long match_state) 2143{ 2144 return 1; 2145} 2146#endif 2147 2148#define next_task(p) \ 2149 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2150 2151#define for_each_process(p) \ 2152 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2153 2154extern bool current_is_single_threaded(void); 2155 2156/* 2157 * Careful: do_each_thread/while_each_thread is a double loop so 2158 * 'break' will not work as expected - use goto instead. 2159 */ 2160#define do_each_thread(g, t) \ 2161 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2162 2163#define while_each_thread(g, t) \ 2164 while ((t = next_thread(t)) != g) 2165 2166static inline int get_nr_threads(struct task_struct *tsk) 2167{ 2168 return tsk->signal->nr_threads; 2169} 2170 2171static inline bool thread_group_leader(struct task_struct *p) 2172{ 2173 return p->exit_signal >= 0; 2174} 2175 2176/* Do to the insanities of de_thread it is possible for a process 2177 * to have the pid of the thread group leader without actually being 2178 * the thread group leader. For iteration through the pids in proc 2179 * all we care about is that we have a task with the appropriate 2180 * pid, we don't actually care if we have the right task. 2181 */ 2182static inline int has_group_leader_pid(struct task_struct *p) 2183{ 2184 return p->pid == p->tgid; 2185} 2186 2187static inline 2188int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2189{ 2190 return p1->tgid == p2->tgid; 2191} 2192 2193static inline struct task_struct *next_thread(const struct task_struct *p) 2194{ 2195 return list_entry_rcu(p->thread_group.next, 2196 struct task_struct, thread_group); 2197} 2198 2199static inline int thread_group_empty(struct task_struct *p) 2200{ 2201 return list_empty(&p->thread_group); 2202} 2203 2204#define delay_group_leader(p) \ 2205 (thread_group_leader(p) && !thread_group_empty(p)) 2206 2207/* 2208 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2209 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2210 * pins the final release of task.io_context. Also protects ->cpuset and 2211 * ->cgroup.subsys[]. And ->vfork_done. 2212 * 2213 * Nests both inside and outside of read_lock(&tasklist_lock). 2214 * It must not be nested with write_lock_irq(&tasklist_lock), 2215 * neither inside nor outside. 2216 */ 2217static inline void task_lock(struct task_struct *p) 2218{ 2219 spin_lock(&p->alloc_lock); 2220} 2221 2222static inline void task_unlock(struct task_struct *p) 2223{ 2224 spin_unlock(&p->alloc_lock); 2225} 2226 2227extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2228 unsigned long *flags); 2229 2230static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2231 unsigned long *flags) 2232{ 2233 struct sighand_struct *ret; 2234 2235 ret = __lock_task_sighand(tsk, flags); 2236 (void)__cond_lock(&tsk->sighand->siglock, ret); 2237 return ret; 2238} 2239 2240static inline void unlock_task_sighand(struct task_struct *tsk, 2241 unsigned long *flags) 2242{ 2243 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2244} 2245 2246#ifdef CONFIG_CGROUPS 2247static inline void threadgroup_change_begin(struct task_struct *tsk) 2248{ 2249 down_read(&tsk->signal->group_rwsem); 2250} 2251static inline void threadgroup_change_end(struct task_struct *tsk) 2252{ 2253 up_read(&tsk->signal->group_rwsem); 2254} 2255 2256/** 2257 * threadgroup_lock - lock threadgroup 2258 * @tsk: member task of the threadgroup to lock 2259 * 2260 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2261 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2262 * change ->group_leader/pid. This is useful for cases where the threadgroup 2263 * needs to stay stable across blockable operations. 2264 * 2265 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2266 * synchronization. While held, no new task will be added to threadgroup 2267 * and no existing live task will have its PF_EXITING set. 2268 * 2269 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2270 * sub-thread becomes a new leader. 2271 */ 2272static inline void threadgroup_lock(struct task_struct *tsk) 2273{ 2274 down_write(&tsk->signal->group_rwsem); 2275} 2276 2277/** 2278 * threadgroup_unlock - unlock threadgroup 2279 * @tsk: member task of the threadgroup to unlock 2280 * 2281 * Reverse threadgroup_lock(). 2282 */ 2283static inline void threadgroup_unlock(struct task_struct *tsk) 2284{ 2285 up_write(&tsk->signal->group_rwsem); 2286} 2287#else 2288static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2289static inline void threadgroup_change_end(struct task_struct *tsk) {} 2290static inline void threadgroup_lock(struct task_struct *tsk) {} 2291static inline void threadgroup_unlock(struct task_struct *tsk) {} 2292#endif 2293 2294#ifndef __HAVE_THREAD_FUNCTIONS 2295 2296#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2297#define task_stack_page(task) ((task)->stack) 2298 2299static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2300{ 2301 *task_thread_info(p) = *task_thread_info(org); 2302 task_thread_info(p)->task = p; 2303} 2304 2305static inline unsigned long *end_of_stack(struct task_struct *p) 2306{ 2307 return (unsigned long *)(task_thread_info(p) + 1); 2308} 2309 2310#endif 2311 2312static inline int object_is_on_stack(void *obj) 2313{ 2314 void *stack = task_stack_page(current); 2315 2316 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2317} 2318 2319extern void thread_info_cache_init(void); 2320 2321#ifdef CONFIG_DEBUG_STACK_USAGE 2322static inline unsigned long stack_not_used(struct task_struct *p) 2323{ 2324 unsigned long *n = end_of_stack(p); 2325 2326 do { /* Skip over canary */ 2327 n++; 2328 } while (!*n); 2329 2330 return (unsigned long)n - (unsigned long)end_of_stack(p); 2331} 2332#endif 2333 2334/* set thread flags in other task's structures 2335 * - see asm/thread_info.h for TIF_xxxx flags available 2336 */ 2337static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2338{ 2339 set_ti_thread_flag(task_thread_info(tsk), flag); 2340} 2341 2342static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2343{ 2344 clear_ti_thread_flag(task_thread_info(tsk), flag); 2345} 2346 2347static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2348{ 2349 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2350} 2351 2352static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2353{ 2354 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2355} 2356 2357static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2358{ 2359 return test_ti_thread_flag(task_thread_info(tsk), flag); 2360} 2361 2362static inline void set_tsk_need_resched(struct task_struct *tsk) 2363{ 2364 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2365} 2366 2367static inline void clear_tsk_need_resched(struct task_struct *tsk) 2368{ 2369 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2370} 2371 2372static inline int test_tsk_need_resched(struct task_struct *tsk) 2373{ 2374 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2375} 2376 2377static inline int restart_syscall(void) 2378{ 2379 set_tsk_thread_flag(current, TIF_SIGPENDING); 2380 return -ERESTARTNOINTR; 2381} 2382 2383static inline int signal_pending(struct task_struct *p) 2384{ 2385 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2386} 2387 2388static inline int __fatal_signal_pending(struct task_struct *p) 2389{ 2390 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2391} 2392 2393static inline int fatal_signal_pending(struct task_struct *p) 2394{ 2395 return signal_pending(p) && __fatal_signal_pending(p); 2396} 2397 2398static inline int signal_pending_state(long state, struct task_struct *p) 2399{ 2400 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2401 return 0; 2402 if (!signal_pending(p)) 2403 return 0; 2404 2405 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2406} 2407 2408static inline int need_resched(void) 2409{ 2410 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2411} 2412 2413/* 2414 * cond_resched() and cond_resched_lock(): latency reduction via 2415 * explicit rescheduling in places that are safe. The return 2416 * value indicates whether a reschedule was done in fact. 2417 * cond_resched_lock() will drop the spinlock before scheduling, 2418 * cond_resched_softirq() will enable bhs before scheduling. 2419 */ 2420extern int _cond_resched(void); 2421 2422#define cond_resched() ({ \ 2423 __might_sleep(__FILE__, __LINE__, 0); \ 2424 _cond_resched(); \ 2425}) 2426 2427extern int __cond_resched_lock(spinlock_t *lock); 2428 2429#ifdef CONFIG_PREEMPT_COUNT 2430#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2431#else 2432#define PREEMPT_LOCK_OFFSET 0 2433#endif 2434 2435#define cond_resched_lock(lock) ({ \ 2436 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2437 __cond_resched_lock(lock); \ 2438}) 2439 2440extern int __cond_resched_softirq(void); 2441 2442#define cond_resched_softirq() ({ \ 2443 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2444 __cond_resched_softirq(); \ 2445}) 2446 2447/* 2448 * Does a critical section need to be broken due to another 2449 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2450 * but a general need for low latency) 2451 */ 2452static inline int spin_needbreak(spinlock_t *lock) 2453{ 2454#ifdef CONFIG_PREEMPT 2455 return spin_is_contended(lock); 2456#else 2457 return 0; 2458#endif 2459} 2460 2461/* 2462 * Idle thread specific functions to determine the need_resched 2463 * polling state. We have two versions, one based on TS_POLLING in 2464 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2465 * thread_info.flags 2466 */ 2467#ifdef TS_POLLING 2468static inline int tsk_is_polling(struct task_struct *p) 2469{ 2470 return task_thread_info(p)->status & TS_POLLING; 2471} 2472static inline void current_set_polling(void) 2473{ 2474 current_thread_info()->status |= TS_POLLING; 2475} 2476 2477static inline void current_clr_polling(void) 2478{ 2479 current_thread_info()->status &= ~TS_POLLING; 2480 smp_mb__after_clear_bit(); 2481} 2482#elif defined(TIF_POLLING_NRFLAG) 2483static inline int tsk_is_polling(struct task_struct *p) 2484{ 2485 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2486} 2487static inline void current_set_polling(void) 2488{ 2489 set_thread_flag(TIF_POLLING_NRFLAG); 2490} 2491 2492static inline void current_clr_polling(void) 2493{ 2494 clear_thread_flag(TIF_POLLING_NRFLAG); 2495} 2496#else 2497static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2498static inline void current_set_polling(void) { } 2499static inline void current_clr_polling(void) { } 2500#endif 2501 2502/* 2503 * Thread group CPU time accounting. 2504 */ 2505void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2506void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2507 2508static inline void thread_group_cputime_init(struct signal_struct *sig) 2509{ 2510 raw_spin_lock_init(&sig->cputimer.lock); 2511} 2512 2513/* 2514 * Reevaluate whether the task has signals pending delivery. 2515 * Wake the task if so. 2516 * This is required every time the blocked sigset_t changes. 2517 * callers must hold sighand->siglock. 2518 */ 2519extern void recalc_sigpending_and_wake(struct task_struct *t); 2520extern void recalc_sigpending(void); 2521 2522extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2523 2524static inline void signal_wake_up(struct task_struct *t, bool resume) 2525{ 2526 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2527} 2528static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2529{ 2530 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2531} 2532 2533/* 2534 * Wrappers for p->thread_info->cpu access. No-op on UP. 2535 */ 2536#ifdef CONFIG_SMP 2537 2538static inline unsigned int task_cpu(const struct task_struct *p) 2539{ 2540 return task_thread_info(p)->cpu; 2541} 2542 2543extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2544 2545#else 2546 2547static inline unsigned int task_cpu(const struct task_struct *p) 2548{ 2549 return 0; 2550} 2551 2552static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2553{ 2554} 2555 2556#endif /* CONFIG_SMP */ 2557 2558extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2559extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2560 2561#ifdef CONFIG_CGROUP_SCHED 2562extern struct task_group root_task_group; 2563#endif /* CONFIG_CGROUP_SCHED */ 2564 2565extern int task_can_switch_user(struct user_struct *up, 2566 struct task_struct *tsk); 2567 2568#ifdef CONFIG_TASK_XACCT 2569static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2570{ 2571 tsk->ioac.rchar += amt; 2572} 2573 2574static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2575{ 2576 tsk->ioac.wchar += amt; 2577} 2578 2579static inline void inc_syscr(struct task_struct *tsk) 2580{ 2581 tsk->ioac.syscr++; 2582} 2583 2584static inline void inc_syscw(struct task_struct *tsk) 2585{ 2586 tsk->ioac.syscw++; 2587} 2588#else 2589static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2590{ 2591} 2592 2593static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2594{ 2595} 2596 2597static inline void inc_syscr(struct task_struct *tsk) 2598{ 2599} 2600 2601static inline void inc_syscw(struct task_struct *tsk) 2602{ 2603} 2604#endif 2605 2606#ifndef TASK_SIZE_OF 2607#define TASK_SIZE_OF(tsk) TASK_SIZE 2608#endif 2609 2610#ifdef CONFIG_MM_OWNER 2611extern void mm_update_next_owner(struct mm_struct *mm); 2612extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2613#else 2614static inline void mm_update_next_owner(struct mm_struct *mm) 2615{ 2616} 2617 2618static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2619{ 2620} 2621#endif /* CONFIG_MM_OWNER */ 2622 2623static inline unsigned long task_rlimit(const struct task_struct *tsk, 2624 unsigned int limit) 2625{ 2626 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2627} 2628 2629static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2630 unsigned int limit) 2631{ 2632 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2633} 2634 2635static inline unsigned long rlimit(unsigned int limit) 2636{ 2637 return task_rlimit(current, limit); 2638} 2639 2640static inline unsigned long rlimit_max(unsigned int limit) 2641{ 2642 return task_rlimit_max(current, limit); 2643} 2644 2645#endif