at v3.10 20 kB view raw
1#ifndef _ASM_GENERIC_PGTABLE_H 2#define _ASM_GENERIC_PGTABLE_H 3 4#ifndef __ASSEMBLY__ 5#ifdef CONFIG_MMU 6 7#include <linux/mm_types.h> 8#include <linux/bug.h> 9 10/* 11 * On almost all architectures and configurations, 0 can be used as the 12 * upper ceiling to free_pgtables(): on many architectures it has the same 13 * effect as using TASK_SIZE. However, there is one configuration which 14 * must impose a more careful limit, to avoid freeing kernel pgtables. 15 */ 16#ifndef USER_PGTABLES_CEILING 17#define USER_PGTABLES_CEILING 0UL 18#endif 19 20#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 21extern int ptep_set_access_flags(struct vm_area_struct *vma, 22 unsigned long address, pte_t *ptep, 23 pte_t entry, int dirty); 24#endif 25 26#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 27extern int pmdp_set_access_flags(struct vm_area_struct *vma, 28 unsigned long address, pmd_t *pmdp, 29 pmd_t entry, int dirty); 30#endif 31 32#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 33static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 34 unsigned long address, 35 pte_t *ptep) 36{ 37 pte_t pte = *ptep; 38 int r = 1; 39 if (!pte_young(pte)) 40 r = 0; 41 else 42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 43 return r; 44} 45#endif 46 47#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 48#ifdef CONFIG_TRANSPARENT_HUGEPAGE 49static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 50 unsigned long address, 51 pmd_t *pmdp) 52{ 53 pmd_t pmd = *pmdp; 54 int r = 1; 55 if (!pmd_young(pmd)) 56 r = 0; 57 else 58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 59 return r; 60} 61#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 62static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 63 unsigned long address, 64 pmd_t *pmdp) 65{ 66 BUG(); 67 return 0; 68} 69#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 70#endif 71 72#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 73int ptep_clear_flush_young(struct vm_area_struct *vma, 74 unsigned long address, pte_t *ptep); 75#endif 76 77#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 78int pmdp_clear_flush_young(struct vm_area_struct *vma, 79 unsigned long address, pmd_t *pmdp); 80#endif 81 82#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 83static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 84 unsigned long address, 85 pte_t *ptep) 86{ 87 pte_t pte = *ptep; 88 pte_clear(mm, address, ptep); 89 return pte; 90} 91#endif 92 93#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR 94#ifdef CONFIG_TRANSPARENT_HUGEPAGE 95static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 96 unsigned long address, 97 pmd_t *pmdp) 98{ 99 pmd_t pmd = *pmdp; 100 pmd_clear(pmdp); 101 return pmd; 102} 103#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 104#endif 105 106#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 107static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 108 unsigned long address, pte_t *ptep, 109 int full) 110{ 111 pte_t pte; 112 pte = ptep_get_and_clear(mm, address, ptep); 113 return pte; 114} 115#endif 116 117/* 118 * Some architectures may be able to avoid expensive synchronization 119 * primitives when modifications are made to PTE's which are already 120 * not present, or in the process of an address space destruction. 121 */ 122#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 123static inline void pte_clear_not_present_full(struct mm_struct *mm, 124 unsigned long address, 125 pte_t *ptep, 126 int full) 127{ 128 pte_clear(mm, address, ptep); 129} 130#endif 131 132#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 133extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 134 unsigned long address, 135 pte_t *ptep); 136#endif 137 138#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH 139extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, 140 unsigned long address, 141 pmd_t *pmdp); 142#endif 143 144#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 145struct mm_struct; 146static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 147{ 148 pte_t old_pte = *ptep; 149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 150} 151#endif 152 153#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 154#ifdef CONFIG_TRANSPARENT_HUGEPAGE 155static inline void pmdp_set_wrprotect(struct mm_struct *mm, 156 unsigned long address, pmd_t *pmdp) 157{ 158 pmd_t old_pmd = *pmdp; 159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 160} 161#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 162static inline void pmdp_set_wrprotect(struct mm_struct *mm, 163 unsigned long address, pmd_t *pmdp) 164{ 165 BUG(); 166} 167#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 168#endif 169 170#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH 171extern void pmdp_splitting_flush(struct vm_area_struct *vma, 172 unsigned long address, pmd_t *pmdp); 173#endif 174 175#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 176extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable); 177#endif 178 179#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 180extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm); 181#endif 182 183#ifndef __HAVE_ARCH_PMDP_INVALIDATE 184extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 185 pmd_t *pmdp); 186#endif 187 188#ifndef __HAVE_ARCH_PTE_SAME 189static inline int pte_same(pte_t pte_a, pte_t pte_b) 190{ 191 return pte_val(pte_a) == pte_val(pte_b); 192} 193#endif 194 195#ifndef __HAVE_ARCH_PMD_SAME 196#ifdef CONFIG_TRANSPARENT_HUGEPAGE 197static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 198{ 199 return pmd_val(pmd_a) == pmd_val(pmd_b); 200} 201#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 202static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 203{ 204 BUG(); 205 return 0; 206} 207#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 208#endif 209 210#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG 211#define page_test_and_clear_young(pfn) (0) 212#endif 213 214#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 215#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 216#endif 217 218#ifndef __HAVE_ARCH_MOVE_PTE 219#define move_pte(pte, prot, old_addr, new_addr) (pte) 220#endif 221 222#ifndef pte_accessible 223# define pte_accessible(pte) ((void)(pte),1) 224#endif 225 226#ifndef flush_tlb_fix_spurious_fault 227#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 228#endif 229 230#ifndef pgprot_noncached 231#define pgprot_noncached(prot) (prot) 232#endif 233 234#ifndef pgprot_writecombine 235#define pgprot_writecombine pgprot_noncached 236#endif 237 238/* 239 * When walking page tables, get the address of the next boundary, 240 * or the end address of the range if that comes earlier. Although no 241 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 242 */ 243 244#define pgd_addr_end(addr, end) \ 245({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 246 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 247}) 248 249#ifndef pud_addr_end 250#define pud_addr_end(addr, end) \ 251({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 252 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 253}) 254#endif 255 256#ifndef pmd_addr_end 257#define pmd_addr_end(addr, end) \ 258({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 259 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 260}) 261#endif 262 263/* 264 * When walking page tables, we usually want to skip any p?d_none entries; 265 * and any p?d_bad entries - reporting the error before resetting to none. 266 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 267 */ 268void pgd_clear_bad(pgd_t *); 269void pud_clear_bad(pud_t *); 270void pmd_clear_bad(pmd_t *); 271 272static inline int pgd_none_or_clear_bad(pgd_t *pgd) 273{ 274 if (pgd_none(*pgd)) 275 return 1; 276 if (unlikely(pgd_bad(*pgd))) { 277 pgd_clear_bad(pgd); 278 return 1; 279 } 280 return 0; 281} 282 283static inline int pud_none_or_clear_bad(pud_t *pud) 284{ 285 if (pud_none(*pud)) 286 return 1; 287 if (unlikely(pud_bad(*pud))) { 288 pud_clear_bad(pud); 289 return 1; 290 } 291 return 0; 292} 293 294static inline int pmd_none_or_clear_bad(pmd_t *pmd) 295{ 296 if (pmd_none(*pmd)) 297 return 1; 298 if (unlikely(pmd_bad(*pmd))) { 299 pmd_clear_bad(pmd); 300 return 1; 301 } 302 return 0; 303} 304 305static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 306 unsigned long addr, 307 pte_t *ptep) 308{ 309 /* 310 * Get the current pte state, but zero it out to make it 311 * non-present, preventing the hardware from asynchronously 312 * updating it. 313 */ 314 return ptep_get_and_clear(mm, addr, ptep); 315} 316 317static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 318 unsigned long addr, 319 pte_t *ptep, pte_t pte) 320{ 321 /* 322 * The pte is non-present, so there's no hardware state to 323 * preserve. 324 */ 325 set_pte_at(mm, addr, ptep, pte); 326} 327 328#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 329/* 330 * Start a pte protection read-modify-write transaction, which 331 * protects against asynchronous hardware modifications to the pte. 332 * The intention is not to prevent the hardware from making pte 333 * updates, but to prevent any updates it may make from being lost. 334 * 335 * This does not protect against other software modifications of the 336 * pte; the appropriate pte lock must be held over the transation. 337 * 338 * Note that this interface is intended to be batchable, meaning that 339 * ptep_modify_prot_commit may not actually update the pte, but merely 340 * queue the update to be done at some later time. The update must be 341 * actually committed before the pte lock is released, however. 342 */ 343static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 344 unsigned long addr, 345 pte_t *ptep) 346{ 347 return __ptep_modify_prot_start(mm, addr, ptep); 348} 349 350/* 351 * Commit an update to a pte, leaving any hardware-controlled bits in 352 * the PTE unmodified. 353 */ 354static inline void ptep_modify_prot_commit(struct mm_struct *mm, 355 unsigned long addr, 356 pte_t *ptep, pte_t pte) 357{ 358 __ptep_modify_prot_commit(mm, addr, ptep, pte); 359} 360#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 361#endif /* CONFIG_MMU */ 362 363/* 364 * A facility to provide lazy MMU batching. This allows PTE updates and 365 * page invalidations to be delayed until a call to leave lazy MMU mode 366 * is issued. Some architectures may benefit from doing this, and it is 367 * beneficial for both shadow and direct mode hypervisors, which may batch 368 * the PTE updates which happen during this window. Note that using this 369 * interface requires that read hazards be removed from the code. A read 370 * hazard could result in the direct mode hypervisor case, since the actual 371 * write to the page tables may not yet have taken place, so reads though 372 * a raw PTE pointer after it has been modified are not guaranteed to be 373 * up to date. This mode can only be entered and left under the protection of 374 * the page table locks for all page tables which may be modified. In the UP 375 * case, this is required so that preemption is disabled, and in the SMP case, 376 * it must synchronize the delayed page table writes properly on other CPUs. 377 */ 378#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 379#define arch_enter_lazy_mmu_mode() do {} while (0) 380#define arch_leave_lazy_mmu_mode() do {} while (0) 381#define arch_flush_lazy_mmu_mode() do {} while (0) 382#endif 383 384/* 385 * A facility to provide batching of the reload of page tables and 386 * other process state with the actual context switch code for 387 * paravirtualized guests. By convention, only one of the batched 388 * update (lazy) modes (CPU, MMU) should be active at any given time, 389 * entry should never be nested, and entry and exits should always be 390 * paired. This is for sanity of maintaining and reasoning about the 391 * kernel code. In this case, the exit (end of the context switch) is 392 * in architecture-specific code, and so doesn't need a generic 393 * definition. 394 */ 395#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 396#define arch_start_context_switch(prev) do {} while (0) 397#endif 398 399#ifndef __HAVE_PFNMAP_TRACKING 400/* 401 * Interfaces that can be used by architecture code to keep track of 402 * memory type of pfn mappings specified by the remap_pfn_range, 403 * vm_insert_pfn. 404 */ 405 406/* 407 * track_pfn_remap is called when a _new_ pfn mapping is being established 408 * by remap_pfn_range() for physical range indicated by pfn and size. 409 */ 410static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 411 unsigned long pfn, unsigned long addr, 412 unsigned long size) 413{ 414 return 0; 415} 416 417/* 418 * track_pfn_insert is called when a _new_ single pfn is established 419 * by vm_insert_pfn(). 420 */ 421static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 422 unsigned long pfn) 423{ 424 return 0; 425} 426 427/* 428 * track_pfn_copy is called when vma that is covering the pfnmap gets 429 * copied through copy_page_range(). 430 */ 431static inline int track_pfn_copy(struct vm_area_struct *vma) 432{ 433 return 0; 434} 435 436/* 437 * untrack_pfn_vma is called while unmapping a pfnmap for a region. 438 * untrack can be called for a specific region indicated by pfn and size or 439 * can be for the entire vma (in which case pfn, size are zero). 440 */ 441static inline void untrack_pfn(struct vm_area_struct *vma, 442 unsigned long pfn, unsigned long size) 443{ 444} 445#else 446extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 447 unsigned long pfn, unsigned long addr, 448 unsigned long size); 449extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 450 unsigned long pfn); 451extern int track_pfn_copy(struct vm_area_struct *vma); 452extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 453 unsigned long size); 454#endif 455 456#ifdef __HAVE_COLOR_ZERO_PAGE 457static inline int is_zero_pfn(unsigned long pfn) 458{ 459 extern unsigned long zero_pfn; 460 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 461 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 462} 463 464#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 465 466#else 467static inline int is_zero_pfn(unsigned long pfn) 468{ 469 extern unsigned long zero_pfn; 470 return pfn == zero_pfn; 471} 472 473static inline unsigned long my_zero_pfn(unsigned long addr) 474{ 475 extern unsigned long zero_pfn; 476 return zero_pfn; 477} 478#endif 479 480#ifdef CONFIG_MMU 481 482#ifndef CONFIG_TRANSPARENT_HUGEPAGE 483static inline int pmd_trans_huge(pmd_t pmd) 484{ 485 return 0; 486} 487static inline int pmd_trans_splitting(pmd_t pmd) 488{ 489 return 0; 490} 491#ifndef __HAVE_ARCH_PMD_WRITE 492static inline int pmd_write(pmd_t pmd) 493{ 494 BUG(); 495 return 0; 496} 497#endif /* __HAVE_ARCH_PMD_WRITE */ 498#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 499 500#ifndef pmd_read_atomic 501static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 502{ 503 /* 504 * Depend on compiler for an atomic pmd read. NOTE: this is 505 * only going to work, if the pmdval_t isn't larger than 506 * an unsigned long. 507 */ 508 return *pmdp; 509} 510#endif 511 512/* 513 * This function is meant to be used by sites walking pagetables with 514 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 515 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 516 * into a null pmd and the transhuge page fault can convert a null pmd 517 * into an hugepmd or into a regular pmd (if the hugepage allocation 518 * fails). While holding the mmap_sem in read mode the pmd becomes 519 * stable and stops changing under us only if it's not null and not a 520 * transhuge pmd. When those races occurs and this function makes a 521 * difference vs the standard pmd_none_or_clear_bad, the result is 522 * undefined so behaving like if the pmd was none is safe (because it 523 * can return none anyway). The compiler level barrier() is critically 524 * important to compute the two checks atomically on the same pmdval. 525 * 526 * For 32bit kernels with a 64bit large pmd_t this automatically takes 527 * care of reading the pmd atomically to avoid SMP race conditions 528 * against pmd_populate() when the mmap_sem is hold for reading by the 529 * caller (a special atomic read not done by "gcc" as in the generic 530 * version above, is also needed when THP is disabled because the page 531 * fault can populate the pmd from under us). 532 */ 533static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 534{ 535 pmd_t pmdval = pmd_read_atomic(pmd); 536 /* 537 * The barrier will stabilize the pmdval in a register or on 538 * the stack so that it will stop changing under the code. 539 * 540 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 541 * pmd_read_atomic is allowed to return a not atomic pmdval 542 * (for example pointing to an hugepage that has never been 543 * mapped in the pmd). The below checks will only care about 544 * the low part of the pmd with 32bit PAE x86 anyway, with the 545 * exception of pmd_none(). So the important thing is that if 546 * the low part of the pmd is found null, the high part will 547 * be also null or the pmd_none() check below would be 548 * confused. 549 */ 550#ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 barrier(); 552#endif 553 if (pmd_none(pmdval)) 554 return 1; 555 if (unlikely(pmd_bad(pmdval))) { 556 if (!pmd_trans_huge(pmdval)) 557 pmd_clear_bad(pmd); 558 return 1; 559 } 560 return 0; 561} 562 563/* 564 * This is a noop if Transparent Hugepage Support is not built into 565 * the kernel. Otherwise it is equivalent to 566 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 567 * places that already verified the pmd is not none and they want to 568 * walk ptes while holding the mmap sem in read mode (write mode don't 569 * need this). If THP is not enabled, the pmd can't go away under the 570 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 571 * run a pmd_trans_unstable before walking the ptes after 572 * split_huge_page_pmd returns (because it may have run when the pmd 573 * become null, but then a page fault can map in a THP and not a 574 * regular page). 575 */ 576static inline int pmd_trans_unstable(pmd_t *pmd) 577{ 578#ifdef CONFIG_TRANSPARENT_HUGEPAGE 579 return pmd_none_or_trans_huge_or_clear_bad(pmd); 580#else 581 return 0; 582#endif 583} 584 585#ifdef CONFIG_NUMA_BALANCING 586#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 587/* 588 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the 589 * same bit too). It's set only when _PAGE_PRESET is not set and it's 590 * never set if _PAGE_PRESENT is set. 591 * 592 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page 593 * fault triggers on those regions if pte/pmd_numa returns true 594 * (because _PAGE_PRESENT is not set). 595 */ 596#ifndef pte_numa 597static inline int pte_numa(pte_t pte) 598{ 599 return (pte_flags(pte) & 600 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; 601} 602#endif 603 604#ifndef pmd_numa 605static inline int pmd_numa(pmd_t pmd) 606{ 607 return (pmd_flags(pmd) & 608 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; 609} 610#endif 611 612/* 613 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically 614 * because they're called by the NUMA hinting minor page fault. If we 615 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler 616 * would be forced to set it later while filling the TLB after we 617 * return to userland. That would trigger a second write to memory 618 * that we optimize away by setting _PAGE_ACCESSED here. 619 */ 620#ifndef pte_mknonnuma 621static inline pte_t pte_mknonnuma(pte_t pte) 622{ 623 pte = pte_clear_flags(pte, _PAGE_NUMA); 624 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED); 625} 626#endif 627 628#ifndef pmd_mknonnuma 629static inline pmd_t pmd_mknonnuma(pmd_t pmd) 630{ 631 pmd = pmd_clear_flags(pmd, _PAGE_NUMA); 632 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED); 633} 634#endif 635 636#ifndef pte_mknuma 637static inline pte_t pte_mknuma(pte_t pte) 638{ 639 pte = pte_set_flags(pte, _PAGE_NUMA); 640 return pte_clear_flags(pte, _PAGE_PRESENT); 641} 642#endif 643 644#ifndef pmd_mknuma 645static inline pmd_t pmd_mknuma(pmd_t pmd) 646{ 647 pmd = pmd_set_flags(pmd, _PAGE_NUMA); 648 return pmd_clear_flags(pmd, _PAGE_PRESENT); 649} 650#endif 651#else 652extern int pte_numa(pte_t pte); 653extern int pmd_numa(pmd_t pmd); 654extern pte_t pte_mknonnuma(pte_t pte); 655extern pmd_t pmd_mknonnuma(pmd_t pmd); 656extern pte_t pte_mknuma(pte_t pte); 657extern pmd_t pmd_mknuma(pmd_t pmd); 658#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ 659#else 660static inline int pmd_numa(pmd_t pmd) 661{ 662 return 0; 663} 664 665static inline int pte_numa(pte_t pte) 666{ 667 return 0; 668} 669 670static inline pte_t pte_mknonnuma(pte_t pte) 671{ 672 return pte; 673} 674 675static inline pmd_t pmd_mknonnuma(pmd_t pmd) 676{ 677 return pmd; 678} 679 680static inline pte_t pte_mknuma(pte_t pte) 681{ 682 return pte; 683} 684 685static inline pmd_t pmd_mknuma(pmd_t pmd) 686{ 687 return pmd; 688} 689#endif /* CONFIG_NUMA_BALANCING */ 690 691#endif /* CONFIG_MMU */ 692 693#endif /* !__ASSEMBLY__ */ 694 695#endif /* _ASM_GENERIC_PGTABLE_H */