at v3.10 10 kB view raw
1/* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11/* start node id of a node block dedicated to the given node id */ 12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14/* node block offset on the NAT area dedicated to the given start node id */ 15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17/* # of pages to perform readahead before building free nids */ 18#define FREE_NID_PAGES 4 19 20/* maximum # of free node ids to produce during build_free_nids */ 21#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 22 23/* maximum readahead size for node during getting data blocks */ 24#define MAX_RA_NODE 128 25 26/* maximum cached nat entries to manage memory footprint */ 27#define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK) 28 29/* vector size for gang look-up from nat cache that consists of radix tree */ 30#define NATVEC_SIZE 64 31 32/* return value for read_node_page */ 33#define LOCKED_PAGE 1 34 35/* 36 * For node information 37 */ 38struct node_info { 39 nid_t nid; /* node id */ 40 nid_t ino; /* inode number of the node's owner */ 41 block_t blk_addr; /* block address of the node */ 42 unsigned char version; /* version of the node */ 43}; 44 45struct nat_entry { 46 struct list_head list; /* for clean or dirty nat list */ 47 bool checkpointed; /* whether it is checkpointed or not */ 48 struct node_info ni; /* in-memory node information */ 49}; 50 51#define nat_get_nid(nat) (nat->ni.nid) 52#define nat_set_nid(nat, n) (nat->ni.nid = n) 53#define nat_get_blkaddr(nat) (nat->ni.blk_addr) 54#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 55#define nat_get_ino(nat) (nat->ni.ino) 56#define nat_set_ino(nat, i) (nat->ni.ino = i) 57#define nat_get_version(nat) (nat->ni.version) 58#define nat_set_version(nat, v) (nat->ni.version = v) 59 60#define __set_nat_cache_dirty(nm_i, ne) \ 61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); 62#define __clear_nat_cache_dirty(nm_i, ne) \ 63 list_move_tail(&ne->list, &nm_i->nat_entries); 64#define inc_node_version(version) (++version) 65 66static inline void node_info_from_raw_nat(struct node_info *ni, 67 struct f2fs_nat_entry *raw_ne) 68{ 69 ni->ino = le32_to_cpu(raw_ne->ino); 70 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 71 ni->version = raw_ne->version; 72} 73 74/* 75 * For free nid mangement 76 */ 77enum nid_state { 78 NID_NEW, /* newly added to free nid list */ 79 NID_ALLOC /* it is allocated */ 80}; 81 82struct free_nid { 83 struct list_head list; /* for free node id list */ 84 nid_t nid; /* node id */ 85 int state; /* in use or not: NID_NEW or NID_ALLOC */ 86}; 87 88static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 89{ 90 struct f2fs_nm_info *nm_i = NM_I(sbi); 91 struct free_nid *fnid; 92 93 if (nm_i->fcnt <= 0) 94 return -1; 95 spin_lock(&nm_i->free_nid_list_lock); 96 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 97 *nid = fnid->nid; 98 spin_unlock(&nm_i->free_nid_list_lock); 99 return 0; 100} 101 102/* 103 * inline functions 104 */ 105static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 106{ 107 struct f2fs_nm_info *nm_i = NM_I(sbi); 108 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 109} 110 111static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 112{ 113 struct f2fs_nm_info *nm_i = NM_I(sbi); 114 pgoff_t block_off; 115 pgoff_t block_addr; 116 int seg_off; 117 118 block_off = NAT_BLOCK_OFFSET(start); 119 seg_off = block_off >> sbi->log_blocks_per_seg; 120 121 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 122 (seg_off << sbi->log_blocks_per_seg << 1) + 123 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 124 125 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 126 block_addr += sbi->blocks_per_seg; 127 128 return block_addr; 129} 130 131static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 132 pgoff_t block_addr) 133{ 134 struct f2fs_nm_info *nm_i = NM_I(sbi); 135 136 block_addr -= nm_i->nat_blkaddr; 137 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 138 block_addr -= sbi->blocks_per_seg; 139 else 140 block_addr += sbi->blocks_per_seg; 141 142 return block_addr + nm_i->nat_blkaddr; 143} 144 145static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 146{ 147 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 148 149 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 150 f2fs_clear_bit(block_off, nm_i->nat_bitmap); 151 else 152 f2fs_set_bit(block_off, nm_i->nat_bitmap); 153} 154 155static inline void fill_node_footer(struct page *page, nid_t nid, 156 nid_t ino, unsigned int ofs, bool reset) 157{ 158 void *kaddr = page_address(page); 159 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 160 if (reset) 161 memset(rn, 0, sizeof(*rn)); 162 rn->footer.nid = cpu_to_le32(nid); 163 rn->footer.ino = cpu_to_le32(ino); 164 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 165} 166 167static inline void copy_node_footer(struct page *dst, struct page *src) 168{ 169 void *src_addr = page_address(src); 170 void *dst_addr = page_address(dst); 171 struct f2fs_node *src_rn = (struct f2fs_node *)src_addr; 172 struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr; 173 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 174} 175 176static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 177{ 178 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 179 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 180 void *kaddr = page_address(page); 181 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 182 rn->footer.cp_ver = ckpt->checkpoint_ver; 183 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 184} 185 186static inline nid_t ino_of_node(struct page *node_page) 187{ 188 void *kaddr = page_address(node_page); 189 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 190 return le32_to_cpu(rn->footer.ino); 191} 192 193static inline nid_t nid_of_node(struct page *node_page) 194{ 195 void *kaddr = page_address(node_page); 196 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 197 return le32_to_cpu(rn->footer.nid); 198} 199 200static inline unsigned int ofs_of_node(struct page *node_page) 201{ 202 void *kaddr = page_address(node_page); 203 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 204 unsigned flag = le32_to_cpu(rn->footer.flag); 205 return flag >> OFFSET_BIT_SHIFT; 206} 207 208static inline unsigned long long cpver_of_node(struct page *node_page) 209{ 210 void *kaddr = page_address(node_page); 211 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 212 return le64_to_cpu(rn->footer.cp_ver); 213} 214 215static inline block_t next_blkaddr_of_node(struct page *node_page) 216{ 217 void *kaddr = page_address(node_page); 218 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 219 return le32_to_cpu(rn->footer.next_blkaddr); 220} 221 222/* 223 * f2fs assigns the following node offsets described as (num). 224 * N = NIDS_PER_BLOCK 225 * 226 * Inode block (0) 227 * |- direct node (1) 228 * |- direct node (2) 229 * |- indirect node (3) 230 * | `- direct node (4 => 4 + N - 1) 231 * |- indirect node (4 + N) 232 * | `- direct node (5 + N => 5 + 2N - 1) 233 * `- double indirect node (5 + 2N) 234 * `- indirect node (6 + 2N) 235 * `- direct node (x(N + 1)) 236 */ 237static inline bool IS_DNODE(struct page *node_page) 238{ 239 unsigned int ofs = ofs_of_node(node_page); 240 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 241 ofs == 5 + 2 * NIDS_PER_BLOCK) 242 return false; 243 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 244 ofs -= 6 + 2 * NIDS_PER_BLOCK; 245 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 246 return false; 247 } 248 return true; 249} 250 251static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 252{ 253 struct f2fs_node *rn = (struct f2fs_node *)page_address(p); 254 255 wait_on_page_writeback(p); 256 257 if (i) 258 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 259 else 260 rn->in.nid[off] = cpu_to_le32(nid); 261 set_page_dirty(p); 262} 263 264static inline nid_t get_nid(struct page *p, int off, bool i) 265{ 266 struct f2fs_node *rn = (struct f2fs_node *)page_address(p); 267 if (i) 268 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 269 return le32_to_cpu(rn->in.nid[off]); 270} 271 272/* 273 * Coldness identification: 274 * - Mark cold files in f2fs_inode_info 275 * - Mark cold node blocks in their node footer 276 * - Mark cold data pages in page cache 277 */ 278static inline int is_cold_file(struct inode *inode) 279{ 280 return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT; 281} 282 283static inline void set_cold_file(struct inode *inode) 284{ 285 F2FS_I(inode)->i_advise |= FADVISE_COLD_BIT; 286} 287 288static inline int is_cp_file(struct inode *inode) 289{ 290 return F2FS_I(inode)->i_advise & FADVISE_CP_BIT; 291} 292 293static inline void set_cp_file(struct inode *inode) 294{ 295 F2FS_I(inode)->i_advise |= FADVISE_CP_BIT; 296} 297 298static inline int is_cold_data(struct page *page) 299{ 300 return PageChecked(page); 301} 302 303static inline void set_cold_data(struct page *page) 304{ 305 SetPageChecked(page); 306} 307 308static inline void clear_cold_data(struct page *page) 309{ 310 ClearPageChecked(page); 311} 312 313static inline int is_cold_node(struct page *page) 314{ 315 void *kaddr = page_address(page); 316 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 317 unsigned int flag = le32_to_cpu(rn->footer.flag); 318 return flag & (0x1 << COLD_BIT_SHIFT); 319} 320 321static inline unsigned char is_fsync_dnode(struct page *page) 322{ 323 void *kaddr = page_address(page); 324 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 325 unsigned int flag = le32_to_cpu(rn->footer.flag); 326 return flag & (0x1 << FSYNC_BIT_SHIFT); 327} 328 329static inline unsigned char is_dent_dnode(struct page *page) 330{ 331 void *kaddr = page_address(page); 332 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 333 unsigned int flag = le32_to_cpu(rn->footer.flag); 334 return flag & (0x1 << DENT_BIT_SHIFT); 335} 336 337static inline void set_cold_node(struct inode *inode, struct page *page) 338{ 339 struct f2fs_node *rn = (struct f2fs_node *)page_address(page); 340 unsigned int flag = le32_to_cpu(rn->footer.flag); 341 342 if (S_ISDIR(inode->i_mode)) 343 flag &= ~(0x1 << COLD_BIT_SHIFT); 344 else 345 flag |= (0x1 << COLD_BIT_SHIFT); 346 rn->footer.flag = cpu_to_le32(flag); 347} 348 349static inline void set_fsync_mark(struct page *page, int mark) 350{ 351 void *kaddr = page_address(page); 352 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 353 unsigned int flag = le32_to_cpu(rn->footer.flag); 354 if (mark) 355 flag |= (0x1 << FSYNC_BIT_SHIFT); 356 else 357 flag &= ~(0x1 << FSYNC_BIT_SHIFT); 358 rn->footer.flag = cpu_to_le32(flag); 359} 360 361static inline void set_dentry_mark(struct page *page, int mark) 362{ 363 void *kaddr = page_address(page); 364 struct f2fs_node *rn = (struct f2fs_node *)kaddr; 365 unsigned int flag = le32_to_cpu(rn->footer.flag); 366 if (mark) 367 flag |= (0x1 << DENT_BIT_SHIFT); 368 else 369 flag &= ~(0x1 << DENT_BIT_SHIFT); 370 rn->footer.flag = cpu_to_le32(flag); 371}