at v3.10 43 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/magic.h> 20#include <linux/buffer_head.h> 21#include <linux/swap.h> 22#include <linux/pagevec.h> 23#include <linux/writeback.h> 24#include <linux/mpage.h> 25#include <linux/mount.h> 26#include <linux/uio.h> 27#include <linux/namei.h> 28#include <linux/log2.h> 29#include <linux/cleancache.h> 30#include <linux/aio.h> 31#include <asm/uaccess.h> 32#include "internal.h" 33 34struct bdev_inode { 35 struct block_device bdev; 36 struct inode vfs_inode; 37}; 38 39static const struct address_space_operations def_blk_aops; 40 41static inline struct bdev_inode *BDEV_I(struct inode *inode) 42{ 43 return container_of(inode, struct bdev_inode, vfs_inode); 44} 45 46inline struct block_device *I_BDEV(struct inode *inode) 47{ 48 return &BDEV_I(inode)->bdev; 49} 50EXPORT_SYMBOL(I_BDEV); 51 52/* 53 * Move the inode from its current bdi to a new bdi. If the inode is dirty we 54 * need to move it onto the dirty list of @dst so that the inode is always on 55 * the right list. 56 */ 57static void bdev_inode_switch_bdi(struct inode *inode, 58 struct backing_dev_info *dst) 59{ 60 struct backing_dev_info *old = inode->i_data.backing_dev_info; 61 62 if (unlikely(dst == old)) /* deadlock avoidance */ 63 return; 64 bdi_lock_two(&old->wb, &dst->wb); 65 spin_lock(&inode->i_lock); 66 inode->i_data.backing_dev_info = dst; 67 if (inode->i_state & I_DIRTY) 68 list_move(&inode->i_wb_list, &dst->wb.b_dirty); 69 spin_unlock(&inode->i_lock); 70 spin_unlock(&old->wb.list_lock); 71 spin_unlock(&dst->wb.list_lock); 72} 73 74/* Kill _all_ buffers and pagecache , dirty or not.. */ 75void kill_bdev(struct block_device *bdev) 76{ 77 struct address_space *mapping = bdev->bd_inode->i_mapping; 78 79 if (mapping->nrpages == 0) 80 return; 81 82 invalidate_bh_lrus(); 83 truncate_inode_pages(mapping, 0); 84} 85EXPORT_SYMBOL(kill_bdev); 86 87/* Invalidate clean unused buffers and pagecache. */ 88void invalidate_bdev(struct block_device *bdev) 89{ 90 struct address_space *mapping = bdev->bd_inode->i_mapping; 91 92 if (mapping->nrpages == 0) 93 return; 94 95 invalidate_bh_lrus(); 96 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 97 invalidate_mapping_pages(mapping, 0, -1); 98 /* 99% of the time, we don't need to flush the cleancache on the bdev. 99 * But, for the strange corners, lets be cautious 100 */ 101 cleancache_invalidate_inode(mapping); 102} 103EXPORT_SYMBOL(invalidate_bdev); 104 105int set_blocksize(struct block_device *bdev, int size) 106{ 107 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 108 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 109 return -EINVAL; 110 111 /* Size cannot be smaller than the size supported by the device */ 112 if (size < bdev_logical_block_size(bdev)) 113 return -EINVAL; 114 115 /* Don't change the size if it is same as current */ 116 if (bdev->bd_block_size != size) { 117 sync_blockdev(bdev); 118 bdev->bd_block_size = size; 119 bdev->bd_inode->i_blkbits = blksize_bits(size); 120 kill_bdev(bdev); 121 } 122 return 0; 123} 124 125EXPORT_SYMBOL(set_blocksize); 126 127int sb_set_blocksize(struct super_block *sb, int size) 128{ 129 if (set_blocksize(sb->s_bdev, size)) 130 return 0; 131 /* If we get here, we know size is power of two 132 * and it's value is between 512 and PAGE_SIZE */ 133 sb->s_blocksize = size; 134 sb->s_blocksize_bits = blksize_bits(size); 135 return sb->s_blocksize; 136} 137 138EXPORT_SYMBOL(sb_set_blocksize); 139 140int sb_min_blocksize(struct super_block *sb, int size) 141{ 142 int minsize = bdev_logical_block_size(sb->s_bdev); 143 if (size < minsize) 144 size = minsize; 145 return sb_set_blocksize(sb, size); 146} 147 148EXPORT_SYMBOL(sb_min_blocksize); 149 150static int 151blkdev_get_block(struct inode *inode, sector_t iblock, 152 struct buffer_head *bh, int create) 153{ 154 bh->b_bdev = I_BDEV(inode); 155 bh->b_blocknr = iblock; 156 set_buffer_mapped(bh); 157 return 0; 158} 159 160static ssize_t 161blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 162 loff_t offset, unsigned long nr_segs) 163{ 164 struct file *file = iocb->ki_filp; 165 struct inode *inode = file->f_mapping->host; 166 167 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset, 168 nr_segs, blkdev_get_block, NULL, NULL, 0); 169} 170 171int __sync_blockdev(struct block_device *bdev, int wait) 172{ 173 if (!bdev) 174 return 0; 175 if (!wait) 176 return filemap_flush(bdev->bd_inode->i_mapping); 177 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 178} 179 180/* 181 * Write out and wait upon all the dirty data associated with a block 182 * device via its mapping. Does not take the superblock lock. 183 */ 184int sync_blockdev(struct block_device *bdev) 185{ 186 return __sync_blockdev(bdev, 1); 187} 188EXPORT_SYMBOL(sync_blockdev); 189 190/* 191 * Write out and wait upon all dirty data associated with this 192 * device. Filesystem data as well as the underlying block 193 * device. Takes the superblock lock. 194 */ 195int fsync_bdev(struct block_device *bdev) 196{ 197 struct super_block *sb = get_super(bdev); 198 if (sb) { 199 int res = sync_filesystem(sb); 200 drop_super(sb); 201 return res; 202 } 203 return sync_blockdev(bdev); 204} 205EXPORT_SYMBOL(fsync_bdev); 206 207/** 208 * freeze_bdev -- lock a filesystem and force it into a consistent state 209 * @bdev: blockdevice to lock 210 * 211 * If a superblock is found on this device, we take the s_umount semaphore 212 * on it to make sure nobody unmounts until the snapshot creation is done. 213 * The reference counter (bd_fsfreeze_count) guarantees that only the last 214 * unfreeze process can unfreeze the frozen filesystem actually when multiple 215 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 216 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 217 * actually. 218 */ 219struct super_block *freeze_bdev(struct block_device *bdev) 220{ 221 struct super_block *sb; 222 int error = 0; 223 224 mutex_lock(&bdev->bd_fsfreeze_mutex); 225 if (++bdev->bd_fsfreeze_count > 1) { 226 /* 227 * We don't even need to grab a reference - the first call 228 * to freeze_bdev grab an active reference and only the last 229 * thaw_bdev drops it. 230 */ 231 sb = get_super(bdev); 232 drop_super(sb); 233 mutex_unlock(&bdev->bd_fsfreeze_mutex); 234 return sb; 235 } 236 237 sb = get_active_super(bdev); 238 if (!sb) 239 goto out; 240 error = freeze_super(sb); 241 if (error) { 242 deactivate_super(sb); 243 bdev->bd_fsfreeze_count--; 244 mutex_unlock(&bdev->bd_fsfreeze_mutex); 245 return ERR_PTR(error); 246 } 247 deactivate_super(sb); 248 out: 249 sync_blockdev(bdev); 250 mutex_unlock(&bdev->bd_fsfreeze_mutex); 251 return sb; /* thaw_bdev releases s->s_umount */ 252} 253EXPORT_SYMBOL(freeze_bdev); 254 255/** 256 * thaw_bdev -- unlock filesystem 257 * @bdev: blockdevice to unlock 258 * @sb: associated superblock 259 * 260 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 261 */ 262int thaw_bdev(struct block_device *bdev, struct super_block *sb) 263{ 264 int error = -EINVAL; 265 266 mutex_lock(&bdev->bd_fsfreeze_mutex); 267 if (!bdev->bd_fsfreeze_count) 268 goto out; 269 270 error = 0; 271 if (--bdev->bd_fsfreeze_count > 0) 272 goto out; 273 274 if (!sb) 275 goto out; 276 277 error = thaw_super(sb); 278 if (error) { 279 bdev->bd_fsfreeze_count++; 280 mutex_unlock(&bdev->bd_fsfreeze_mutex); 281 return error; 282 } 283out: 284 mutex_unlock(&bdev->bd_fsfreeze_mutex); 285 return 0; 286} 287EXPORT_SYMBOL(thaw_bdev); 288 289static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 290{ 291 return block_write_full_page(page, blkdev_get_block, wbc); 292} 293 294static int blkdev_readpage(struct file * file, struct page * page) 295{ 296 return block_read_full_page(page, blkdev_get_block); 297} 298 299static int blkdev_write_begin(struct file *file, struct address_space *mapping, 300 loff_t pos, unsigned len, unsigned flags, 301 struct page **pagep, void **fsdata) 302{ 303 return block_write_begin(mapping, pos, len, flags, pagep, 304 blkdev_get_block); 305} 306 307static int blkdev_write_end(struct file *file, struct address_space *mapping, 308 loff_t pos, unsigned len, unsigned copied, 309 struct page *page, void *fsdata) 310{ 311 int ret; 312 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 313 314 unlock_page(page); 315 page_cache_release(page); 316 317 return ret; 318} 319 320/* 321 * private llseek: 322 * for a block special file file_inode(file)->i_size is zero 323 * so we compute the size by hand (just as in block_read/write above) 324 */ 325static loff_t block_llseek(struct file *file, loff_t offset, int whence) 326{ 327 struct inode *bd_inode = file->f_mapping->host; 328 loff_t size; 329 loff_t retval; 330 331 mutex_lock(&bd_inode->i_mutex); 332 size = i_size_read(bd_inode); 333 334 retval = -EINVAL; 335 switch (whence) { 336 case SEEK_END: 337 offset += size; 338 break; 339 case SEEK_CUR: 340 offset += file->f_pos; 341 case SEEK_SET: 342 break; 343 default: 344 goto out; 345 } 346 if (offset >= 0 && offset <= size) { 347 if (offset != file->f_pos) { 348 file->f_pos = offset; 349 } 350 retval = offset; 351 } 352out: 353 mutex_unlock(&bd_inode->i_mutex); 354 return retval; 355} 356 357int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 358{ 359 struct inode *bd_inode = filp->f_mapping->host; 360 struct block_device *bdev = I_BDEV(bd_inode); 361 int error; 362 363 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 364 if (error) 365 return error; 366 367 /* 368 * There is no need to serialise calls to blkdev_issue_flush with 369 * i_mutex and doing so causes performance issues with concurrent 370 * O_SYNC writers to a block device. 371 */ 372 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 373 if (error == -EOPNOTSUPP) 374 error = 0; 375 376 return error; 377} 378EXPORT_SYMBOL(blkdev_fsync); 379 380/* 381 * pseudo-fs 382 */ 383 384static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 385static struct kmem_cache * bdev_cachep __read_mostly; 386 387static struct inode *bdev_alloc_inode(struct super_block *sb) 388{ 389 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 390 if (!ei) 391 return NULL; 392 return &ei->vfs_inode; 393} 394 395static void bdev_i_callback(struct rcu_head *head) 396{ 397 struct inode *inode = container_of(head, struct inode, i_rcu); 398 struct bdev_inode *bdi = BDEV_I(inode); 399 400 kmem_cache_free(bdev_cachep, bdi); 401} 402 403static void bdev_destroy_inode(struct inode *inode) 404{ 405 call_rcu(&inode->i_rcu, bdev_i_callback); 406} 407 408static void init_once(void *foo) 409{ 410 struct bdev_inode *ei = (struct bdev_inode *) foo; 411 struct block_device *bdev = &ei->bdev; 412 413 memset(bdev, 0, sizeof(*bdev)); 414 mutex_init(&bdev->bd_mutex); 415 INIT_LIST_HEAD(&bdev->bd_inodes); 416 INIT_LIST_HEAD(&bdev->bd_list); 417#ifdef CONFIG_SYSFS 418 INIT_LIST_HEAD(&bdev->bd_holder_disks); 419#endif 420 inode_init_once(&ei->vfs_inode); 421 /* Initialize mutex for freeze. */ 422 mutex_init(&bdev->bd_fsfreeze_mutex); 423} 424 425static inline void __bd_forget(struct inode *inode) 426{ 427 list_del_init(&inode->i_devices); 428 inode->i_bdev = NULL; 429 inode->i_mapping = &inode->i_data; 430} 431 432static void bdev_evict_inode(struct inode *inode) 433{ 434 struct block_device *bdev = &BDEV_I(inode)->bdev; 435 struct list_head *p; 436 truncate_inode_pages(&inode->i_data, 0); 437 invalidate_inode_buffers(inode); /* is it needed here? */ 438 clear_inode(inode); 439 spin_lock(&bdev_lock); 440 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 441 __bd_forget(list_entry(p, struct inode, i_devices)); 442 } 443 list_del_init(&bdev->bd_list); 444 spin_unlock(&bdev_lock); 445} 446 447static const struct super_operations bdev_sops = { 448 .statfs = simple_statfs, 449 .alloc_inode = bdev_alloc_inode, 450 .destroy_inode = bdev_destroy_inode, 451 .drop_inode = generic_delete_inode, 452 .evict_inode = bdev_evict_inode, 453}; 454 455static struct dentry *bd_mount(struct file_system_type *fs_type, 456 int flags, const char *dev_name, void *data) 457{ 458 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 459} 460 461static struct file_system_type bd_type = { 462 .name = "bdev", 463 .mount = bd_mount, 464 .kill_sb = kill_anon_super, 465}; 466 467static struct super_block *blockdev_superblock __read_mostly; 468 469void __init bdev_cache_init(void) 470{ 471 int err; 472 static struct vfsmount *bd_mnt; 473 474 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 475 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 476 SLAB_MEM_SPREAD|SLAB_PANIC), 477 init_once); 478 err = register_filesystem(&bd_type); 479 if (err) 480 panic("Cannot register bdev pseudo-fs"); 481 bd_mnt = kern_mount(&bd_type); 482 if (IS_ERR(bd_mnt)) 483 panic("Cannot create bdev pseudo-fs"); 484 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 485} 486 487/* 488 * Most likely _very_ bad one - but then it's hardly critical for small 489 * /dev and can be fixed when somebody will need really large one. 490 * Keep in mind that it will be fed through icache hash function too. 491 */ 492static inline unsigned long hash(dev_t dev) 493{ 494 return MAJOR(dev)+MINOR(dev); 495} 496 497static int bdev_test(struct inode *inode, void *data) 498{ 499 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 500} 501 502static int bdev_set(struct inode *inode, void *data) 503{ 504 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 505 return 0; 506} 507 508static LIST_HEAD(all_bdevs); 509 510struct block_device *bdget(dev_t dev) 511{ 512 struct block_device *bdev; 513 struct inode *inode; 514 515 inode = iget5_locked(blockdev_superblock, hash(dev), 516 bdev_test, bdev_set, &dev); 517 518 if (!inode) 519 return NULL; 520 521 bdev = &BDEV_I(inode)->bdev; 522 523 if (inode->i_state & I_NEW) { 524 bdev->bd_contains = NULL; 525 bdev->bd_super = NULL; 526 bdev->bd_inode = inode; 527 bdev->bd_block_size = (1 << inode->i_blkbits); 528 bdev->bd_part_count = 0; 529 bdev->bd_invalidated = 0; 530 inode->i_mode = S_IFBLK; 531 inode->i_rdev = dev; 532 inode->i_bdev = bdev; 533 inode->i_data.a_ops = &def_blk_aops; 534 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 535 inode->i_data.backing_dev_info = &default_backing_dev_info; 536 spin_lock(&bdev_lock); 537 list_add(&bdev->bd_list, &all_bdevs); 538 spin_unlock(&bdev_lock); 539 unlock_new_inode(inode); 540 } 541 return bdev; 542} 543 544EXPORT_SYMBOL(bdget); 545 546/** 547 * bdgrab -- Grab a reference to an already referenced block device 548 * @bdev: Block device to grab a reference to. 549 */ 550struct block_device *bdgrab(struct block_device *bdev) 551{ 552 ihold(bdev->bd_inode); 553 return bdev; 554} 555EXPORT_SYMBOL(bdgrab); 556 557long nr_blockdev_pages(void) 558{ 559 struct block_device *bdev; 560 long ret = 0; 561 spin_lock(&bdev_lock); 562 list_for_each_entry(bdev, &all_bdevs, bd_list) { 563 ret += bdev->bd_inode->i_mapping->nrpages; 564 } 565 spin_unlock(&bdev_lock); 566 return ret; 567} 568 569void bdput(struct block_device *bdev) 570{ 571 iput(bdev->bd_inode); 572} 573 574EXPORT_SYMBOL(bdput); 575 576static struct block_device *bd_acquire(struct inode *inode) 577{ 578 struct block_device *bdev; 579 580 spin_lock(&bdev_lock); 581 bdev = inode->i_bdev; 582 if (bdev) { 583 ihold(bdev->bd_inode); 584 spin_unlock(&bdev_lock); 585 return bdev; 586 } 587 spin_unlock(&bdev_lock); 588 589 bdev = bdget(inode->i_rdev); 590 if (bdev) { 591 spin_lock(&bdev_lock); 592 if (!inode->i_bdev) { 593 /* 594 * We take an additional reference to bd_inode, 595 * and it's released in clear_inode() of inode. 596 * So, we can access it via ->i_mapping always 597 * without igrab(). 598 */ 599 ihold(bdev->bd_inode); 600 inode->i_bdev = bdev; 601 inode->i_mapping = bdev->bd_inode->i_mapping; 602 list_add(&inode->i_devices, &bdev->bd_inodes); 603 } 604 spin_unlock(&bdev_lock); 605 } 606 return bdev; 607} 608 609static inline int sb_is_blkdev_sb(struct super_block *sb) 610{ 611 return sb == blockdev_superblock; 612} 613 614/* Call when you free inode */ 615 616void bd_forget(struct inode *inode) 617{ 618 struct block_device *bdev = NULL; 619 620 spin_lock(&bdev_lock); 621 if (!sb_is_blkdev_sb(inode->i_sb)) 622 bdev = inode->i_bdev; 623 __bd_forget(inode); 624 spin_unlock(&bdev_lock); 625 626 if (bdev) 627 iput(bdev->bd_inode); 628} 629 630/** 631 * bd_may_claim - test whether a block device can be claimed 632 * @bdev: block device of interest 633 * @whole: whole block device containing @bdev, may equal @bdev 634 * @holder: holder trying to claim @bdev 635 * 636 * Test whether @bdev can be claimed by @holder. 637 * 638 * CONTEXT: 639 * spin_lock(&bdev_lock). 640 * 641 * RETURNS: 642 * %true if @bdev can be claimed, %false otherwise. 643 */ 644static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 645 void *holder) 646{ 647 if (bdev->bd_holder == holder) 648 return true; /* already a holder */ 649 else if (bdev->bd_holder != NULL) 650 return false; /* held by someone else */ 651 else if (bdev->bd_contains == bdev) 652 return true; /* is a whole device which isn't held */ 653 654 else if (whole->bd_holder == bd_may_claim) 655 return true; /* is a partition of a device that is being partitioned */ 656 else if (whole->bd_holder != NULL) 657 return false; /* is a partition of a held device */ 658 else 659 return true; /* is a partition of an un-held device */ 660} 661 662/** 663 * bd_prepare_to_claim - prepare to claim a block device 664 * @bdev: block device of interest 665 * @whole: the whole device containing @bdev, may equal @bdev 666 * @holder: holder trying to claim @bdev 667 * 668 * Prepare to claim @bdev. This function fails if @bdev is already 669 * claimed by another holder and waits if another claiming is in 670 * progress. This function doesn't actually claim. On successful 671 * return, the caller has ownership of bd_claiming and bd_holder[s]. 672 * 673 * CONTEXT: 674 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 675 * it multiple times. 676 * 677 * RETURNS: 678 * 0 if @bdev can be claimed, -EBUSY otherwise. 679 */ 680static int bd_prepare_to_claim(struct block_device *bdev, 681 struct block_device *whole, void *holder) 682{ 683retry: 684 /* if someone else claimed, fail */ 685 if (!bd_may_claim(bdev, whole, holder)) 686 return -EBUSY; 687 688 /* if claiming is already in progress, wait for it to finish */ 689 if (whole->bd_claiming) { 690 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 691 DEFINE_WAIT(wait); 692 693 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 694 spin_unlock(&bdev_lock); 695 schedule(); 696 finish_wait(wq, &wait); 697 spin_lock(&bdev_lock); 698 goto retry; 699 } 700 701 /* yay, all mine */ 702 return 0; 703} 704 705/** 706 * bd_start_claiming - start claiming a block device 707 * @bdev: block device of interest 708 * @holder: holder trying to claim @bdev 709 * 710 * @bdev is about to be opened exclusively. Check @bdev can be opened 711 * exclusively and mark that an exclusive open is in progress. Each 712 * successful call to this function must be matched with a call to 713 * either bd_finish_claiming() or bd_abort_claiming() (which do not 714 * fail). 715 * 716 * This function is used to gain exclusive access to the block device 717 * without actually causing other exclusive open attempts to fail. It 718 * should be used when the open sequence itself requires exclusive 719 * access but may subsequently fail. 720 * 721 * CONTEXT: 722 * Might sleep. 723 * 724 * RETURNS: 725 * Pointer to the block device containing @bdev on success, ERR_PTR() 726 * value on failure. 727 */ 728static struct block_device *bd_start_claiming(struct block_device *bdev, 729 void *holder) 730{ 731 struct gendisk *disk; 732 struct block_device *whole; 733 int partno, err; 734 735 might_sleep(); 736 737 /* 738 * @bdev might not have been initialized properly yet, look up 739 * and grab the outer block device the hard way. 740 */ 741 disk = get_gendisk(bdev->bd_dev, &partno); 742 if (!disk) 743 return ERR_PTR(-ENXIO); 744 745 /* 746 * Normally, @bdev should equal what's returned from bdget_disk() 747 * if partno is 0; however, some drivers (floppy) use multiple 748 * bdev's for the same physical device and @bdev may be one of the 749 * aliases. Keep @bdev if partno is 0. This means claimer 750 * tracking is broken for those devices but it has always been that 751 * way. 752 */ 753 if (partno) 754 whole = bdget_disk(disk, 0); 755 else 756 whole = bdgrab(bdev); 757 758 module_put(disk->fops->owner); 759 put_disk(disk); 760 if (!whole) 761 return ERR_PTR(-ENOMEM); 762 763 /* prepare to claim, if successful, mark claiming in progress */ 764 spin_lock(&bdev_lock); 765 766 err = bd_prepare_to_claim(bdev, whole, holder); 767 if (err == 0) { 768 whole->bd_claiming = holder; 769 spin_unlock(&bdev_lock); 770 return whole; 771 } else { 772 spin_unlock(&bdev_lock); 773 bdput(whole); 774 return ERR_PTR(err); 775 } 776} 777 778#ifdef CONFIG_SYSFS 779struct bd_holder_disk { 780 struct list_head list; 781 struct gendisk *disk; 782 int refcnt; 783}; 784 785static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 786 struct gendisk *disk) 787{ 788 struct bd_holder_disk *holder; 789 790 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 791 if (holder->disk == disk) 792 return holder; 793 return NULL; 794} 795 796static int add_symlink(struct kobject *from, struct kobject *to) 797{ 798 return sysfs_create_link(from, to, kobject_name(to)); 799} 800 801static void del_symlink(struct kobject *from, struct kobject *to) 802{ 803 sysfs_remove_link(from, kobject_name(to)); 804} 805 806/** 807 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 808 * @bdev: the claimed slave bdev 809 * @disk: the holding disk 810 * 811 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 812 * 813 * This functions creates the following sysfs symlinks. 814 * 815 * - from "slaves" directory of the holder @disk to the claimed @bdev 816 * - from "holders" directory of the @bdev to the holder @disk 817 * 818 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 819 * passed to bd_link_disk_holder(), then: 820 * 821 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 822 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 823 * 824 * The caller must have claimed @bdev before calling this function and 825 * ensure that both @bdev and @disk are valid during the creation and 826 * lifetime of these symlinks. 827 * 828 * CONTEXT: 829 * Might sleep. 830 * 831 * RETURNS: 832 * 0 on success, -errno on failure. 833 */ 834int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 835{ 836 struct bd_holder_disk *holder; 837 int ret = 0; 838 839 mutex_lock(&bdev->bd_mutex); 840 841 WARN_ON_ONCE(!bdev->bd_holder); 842 843 /* FIXME: remove the following once add_disk() handles errors */ 844 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 845 goto out_unlock; 846 847 holder = bd_find_holder_disk(bdev, disk); 848 if (holder) { 849 holder->refcnt++; 850 goto out_unlock; 851 } 852 853 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 854 if (!holder) { 855 ret = -ENOMEM; 856 goto out_unlock; 857 } 858 859 INIT_LIST_HEAD(&holder->list); 860 holder->disk = disk; 861 holder->refcnt = 1; 862 863 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 864 if (ret) 865 goto out_free; 866 867 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 868 if (ret) 869 goto out_del; 870 /* 871 * bdev could be deleted beneath us which would implicitly destroy 872 * the holder directory. Hold on to it. 873 */ 874 kobject_get(bdev->bd_part->holder_dir); 875 876 list_add(&holder->list, &bdev->bd_holder_disks); 877 goto out_unlock; 878 879out_del: 880 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 881out_free: 882 kfree(holder); 883out_unlock: 884 mutex_unlock(&bdev->bd_mutex); 885 return ret; 886} 887EXPORT_SYMBOL_GPL(bd_link_disk_holder); 888 889/** 890 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 891 * @bdev: the calimed slave bdev 892 * @disk: the holding disk 893 * 894 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 895 * 896 * CONTEXT: 897 * Might sleep. 898 */ 899void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 900{ 901 struct bd_holder_disk *holder; 902 903 mutex_lock(&bdev->bd_mutex); 904 905 holder = bd_find_holder_disk(bdev, disk); 906 907 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 908 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 909 del_symlink(bdev->bd_part->holder_dir, 910 &disk_to_dev(disk)->kobj); 911 kobject_put(bdev->bd_part->holder_dir); 912 list_del_init(&holder->list); 913 kfree(holder); 914 } 915 916 mutex_unlock(&bdev->bd_mutex); 917} 918EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 919#endif 920 921/** 922 * flush_disk - invalidates all buffer-cache entries on a disk 923 * 924 * @bdev: struct block device to be flushed 925 * @kill_dirty: flag to guide handling of dirty inodes 926 * 927 * Invalidates all buffer-cache entries on a disk. It should be called 928 * when a disk has been changed -- either by a media change or online 929 * resize. 930 */ 931static void flush_disk(struct block_device *bdev, bool kill_dirty) 932{ 933 if (__invalidate_device(bdev, kill_dirty)) { 934 char name[BDEVNAME_SIZE] = ""; 935 936 if (bdev->bd_disk) 937 disk_name(bdev->bd_disk, 0, name); 938 printk(KERN_WARNING "VFS: busy inodes on changed media or " 939 "resized disk %s\n", name); 940 } 941 942 if (!bdev->bd_disk) 943 return; 944 if (disk_part_scan_enabled(bdev->bd_disk)) 945 bdev->bd_invalidated = 1; 946} 947 948/** 949 * check_disk_size_change - checks for disk size change and adjusts bdev size. 950 * @disk: struct gendisk to check 951 * @bdev: struct bdev to adjust. 952 * 953 * This routine checks to see if the bdev size does not match the disk size 954 * and adjusts it if it differs. 955 */ 956void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 957{ 958 loff_t disk_size, bdev_size; 959 960 disk_size = (loff_t)get_capacity(disk) << 9; 961 bdev_size = i_size_read(bdev->bd_inode); 962 if (disk_size != bdev_size) { 963 char name[BDEVNAME_SIZE]; 964 965 disk_name(disk, 0, name); 966 printk(KERN_INFO 967 "%s: detected capacity change from %lld to %lld\n", 968 name, bdev_size, disk_size); 969 i_size_write(bdev->bd_inode, disk_size); 970 flush_disk(bdev, false); 971 } 972} 973EXPORT_SYMBOL(check_disk_size_change); 974 975/** 976 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 977 * @disk: struct gendisk to be revalidated 978 * 979 * This routine is a wrapper for lower-level driver's revalidate_disk 980 * call-backs. It is used to do common pre and post operations needed 981 * for all revalidate_disk operations. 982 */ 983int revalidate_disk(struct gendisk *disk) 984{ 985 struct block_device *bdev; 986 int ret = 0; 987 988 if (disk->fops->revalidate_disk) 989 ret = disk->fops->revalidate_disk(disk); 990 991 bdev = bdget_disk(disk, 0); 992 if (!bdev) 993 return ret; 994 995 mutex_lock(&bdev->bd_mutex); 996 check_disk_size_change(disk, bdev); 997 bdev->bd_invalidated = 0; 998 mutex_unlock(&bdev->bd_mutex); 999 bdput(bdev); 1000 return ret; 1001} 1002EXPORT_SYMBOL(revalidate_disk); 1003 1004/* 1005 * This routine checks whether a removable media has been changed, 1006 * and invalidates all buffer-cache-entries in that case. This 1007 * is a relatively slow routine, so we have to try to minimize using 1008 * it. Thus it is called only upon a 'mount' or 'open'. This 1009 * is the best way of combining speed and utility, I think. 1010 * People changing diskettes in the middle of an operation deserve 1011 * to lose :-) 1012 */ 1013int check_disk_change(struct block_device *bdev) 1014{ 1015 struct gendisk *disk = bdev->bd_disk; 1016 const struct block_device_operations *bdops = disk->fops; 1017 unsigned int events; 1018 1019 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1020 DISK_EVENT_EJECT_REQUEST); 1021 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1022 return 0; 1023 1024 flush_disk(bdev, true); 1025 if (bdops->revalidate_disk) 1026 bdops->revalidate_disk(bdev->bd_disk); 1027 return 1; 1028} 1029 1030EXPORT_SYMBOL(check_disk_change); 1031 1032void bd_set_size(struct block_device *bdev, loff_t size) 1033{ 1034 unsigned bsize = bdev_logical_block_size(bdev); 1035 1036 mutex_lock(&bdev->bd_inode->i_mutex); 1037 i_size_write(bdev->bd_inode, size); 1038 mutex_unlock(&bdev->bd_inode->i_mutex); 1039 while (bsize < PAGE_CACHE_SIZE) { 1040 if (size & bsize) 1041 break; 1042 bsize <<= 1; 1043 } 1044 bdev->bd_block_size = bsize; 1045 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1046} 1047EXPORT_SYMBOL(bd_set_size); 1048 1049static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1050 1051/* 1052 * bd_mutex locking: 1053 * 1054 * mutex_lock(part->bd_mutex) 1055 * mutex_lock_nested(whole->bd_mutex, 1) 1056 */ 1057 1058static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1059{ 1060 struct gendisk *disk; 1061 struct module *owner; 1062 int ret; 1063 int partno; 1064 int perm = 0; 1065 1066 if (mode & FMODE_READ) 1067 perm |= MAY_READ; 1068 if (mode & FMODE_WRITE) 1069 perm |= MAY_WRITE; 1070 /* 1071 * hooks: /n/, see "layering violations". 1072 */ 1073 if (!for_part) { 1074 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1075 if (ret != 0) { 1076 bdput(bdev); 1077 return ret; 1078 } 1079 } 1080 1081 restart: 1082 1083 ret = -ENXIO; 1084 disk = get_gendisk(bdev->bd_dev, &partno); 1085 if (!disk) 1086 goto out; 1087 owner = disk->fops->owner; 1088 1089 disk_block_events(disk); 1090 mutex_lock_nested(&bdev->bd_mutex, for_part); 1091 if (!bdev->bd_openers) { 1092 bdev->bd_disk = disk; 1093 bdev->bd_queue = disk->queue; 1094 bdev->bd_contains = bdev; 1095 if (!partno) { 1096 struct backing_dev_info *bdi; 1097 1098 ret = -ENXIO; 1099 bdev->bd_part = disk_get_part(disk, partno); 1100 if (!bdev->bd_part) 1101 goto out_clear; 1102 1103 ret = 0; 1104 if (disk->fops->open) { 1105 ret = disk->fops->open(bdev, mode); 1106 if (ret == -ERESTARTSYS) { 1107 /* Lost a race with 'disk' being 1108 * deleted, try again. 1109 * See md.c 1110 */ 1111 disk_put_part(bdev->bd_part); 1112 bdev->bd_part = NULL; 1113 bdev->bd_disk = NULL; 1114 bdev->bd_queue = NULL; 1115 mutex_unlock(&bdev->bd_mutex); 1116 disk_unblock_events(disk); 1117 put_disk(disk); 1118 module_put(owner); 1119 goto restart; 1120 } 1121 } 1122 1123 if (!ret) { 1124 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1125 bdi = blk_get_backing_dev_info(bdev); 1126 if (bdi == NULL) 1127 bdi = &default_backing_dev_info; 1128 bdev_inode_switch_bdi(bdev->bd_inode, bdi); 1129 } 1130 1131 /* 1132 * If the device is invalidated, rescan partition 1133 * if open succeeded or failed with -ENOMEDIUM. 1134 * The latter is necessary to prevent ghost 1135 * partitions on a removed medium. 1136 */ 1137 if (bdev->bd_invalidated) { 1138 if (!ret) 1139 rescan_partitions(disk, bdev); 1140 else if (ret == -ENOMEDIUM) 1141 invalidate_partitions(disk, bdev); 1142 } 1143 if (ret) 1144 goto out_clear; 1145 } else { 1146 struct block_device *whole; 1147 whole = bdget_disk(disk, 0); 1148 ret = -ENOMEM; 1149 if (!whole) 1150 goto out_clear; 1151 BUG_ON(for_part); 1152 ret = __blkdev_get(whole, mode, 1); 1153 if (ret) 1154 goto out_clear; 1155 bdev->bd_contains = whole; 1156 bdev_inode_switch_bdi(bdev->bd_inode, 1157 whole->bd_inode->i_data.backing_dev_info); 1158 bdev->bd_part = disk_get_part(disk, partno); 1159 if (!(disk->flags & GENHD_FL_UP) || 1160 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1161 ret = -ENXIO; 1162 goto out_clear; 1163 } 1164 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1165 } 1166 } else { 1167 if (bdev->bd_contains == bdev) { 1168 ret = 0; 1169 if (bdev->bd_disk->fops->open) 1170 ret = bdev->bd_disk->fops->open(bdev, mode); 1171 /* the same as first opener case, read comment there */ 1172 if (bdev->bd_invalidated) { 1173 if (!ret) 1174 rescan_partitions(bdev->bd_disk, bdev); 1175 else if (ret == -ENOMEDIUM) 1176 invalidate_partitions(bdev->bd_disk, bdev); 1177 } 1178 if (ret) 1179 goto out_unlock_bdev; 1180 } 1181 /* only one opener holds refs to the module and disk */ 1182 put_disk(disk); 1183 module_put(owner); 1184 } 1185 bdev->bd_openers++; 1186 if (for_part) 1187 bdev->bd_part_count++; 1188 mutex_unlock(&bdev->bd_mutex); 1189 disk_unblock_events(disk); 1190 return 0; 1191 1192 out_clear: 1193 disk_put_part(bdev->bd_part); 1194 bdev->bd_disk = NULL; 1195 bdev->bd_part = NULL; 1196 bdev->bd_queue = NULL; 1197 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info); 1198 if (bdev != bdev->bd_contains) 1199 __blkdev_put(bdev->bd_contains, mode, 1); 1200 bdev->bd_contains = NULL; 1201 out_unlock_bdev: 1202 mutex_unlock(&bdev->bd_mutex); 1203 disk_unblock_events(disk); 1204 put_disk(disk); 1205 module_put(owner); 1206 out: 1207 bdput(bdev); 1208 1209 return ret; 1210} 1211 1212/** 1213 * blkdev_get - open a block device 1214 * @bdev: block_device to open 1215 * @mode: FMODE_* mask 1216 * @holder: exclusive holder identifier 1217 * 1218 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1219 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1220 * @holder is invalid. Exclusive opens may nest for the same @holder. 1221 * 1222 * On success, the reference count of @bdev is unchanged. On failure, 1223 * @bdev is put. 1224 * 1225 * CONTEXT: 1226 * Might sleep. 1227 * 1228 * RETURNS: 1229 * 0 on success, -errno on failure. 1230 */ 1231int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1232{ 1233 struct block_device *whole = NULL; 1234 int res; 1235 1236 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1237 1238 if ((mode & FMODE_EXCL) && holder) { 1239 whole = bd_start_claiming(bdev, holder); 1240 if (IS_ERR(whole)) { 1241 bdput(bdev); 1242 return PTR_ERR(whole); 1243 } 1244 } 1245 1246 res = __blkdev_get(bdev, mode, 0); 1247 1248 if (whole) { 1249 struct gendisk *disk = whole->bd_disk; 1250 1251 /* finish claiming */ 1252 mutex_lock(&bdev->bd_mutex); 1253 spin_lock(&bdev_lock); 1254 1255 if (!res) { 1256 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1257 /* 1258 * Note that for a whole device bd_holders 1259 * will be incremented twice, and bd_holder 1260 * will be set to bd_may_claim before being 1261 * set to holder 1262 */ 1263 whole->bd_holders++; 1264 whole->bd_holder = bd_may_claim; 1265 bdev->bd_holders++; 1266 bdev->bd_holder = holder; 1267 } 1268 1269 /* tell others that we're done */ 1270 BUG_ON(whole->bd_claiming != holder); 1271 whole->bd_claiming = NULL; 1272 wake_up_bit(&whole->bd_claiming, 0); 1273 1274 spin_unlock(&bdev_lock); 1275 1276 /* 1277 * Block event polling for write claims if requested. Any 1278 * write holder makes the write_holder state stick until 1279 * all are released. This is good enough and tracking 1280 * individual writeable reference is too fragile given the 1281 * way @mode is used in blkdev_get/put(). 1282 */ 1283 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1284 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1285 bdev->bd_write_holder = true; 1286 disk_block_events(disk); 1287 } 1288 1289 mutex_unlock(&bdev->bd_mutex); 1290 bdput(whole); 1291 } 1292 1293 return res; 1294} 1295EXPORT_SYMBOL(blkdev_get); 1296 1297/** 1298 * blkdev_get_by_path - open a block device by name 1299 * @path: path to the block device to open 1300 * @mode: FMODE_* mask 1301 * @holder: exclusive holder identifier 1302 * 1303 * Open the blockdevice described by the device file at @path. @mode 1304 * and @holder are identical to blkdev_get(). 1305 * 1306 * On success, the returned block_device has reference count of one. 1307 * 1308 * CONTEXT: 1309 * Might sleep. 1310 * 1311 * RETURNS: 1312 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1313 */ 1314struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1315 void *holder) 1316{ 1317 struct block_device *bdev; 1318 int err; 1319 1320 bdev = lookup_bdev(path); 1321 if (IS_ERR(bdev)) 1322 return bdev; 1323 1324 err = blkdev_get(bdev, mode, holder); 1325 if (err) 1326 return ERR_PTR(err); 1327 1328 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1329 blkdev_put(bdev, mode); 1330 return ERR_PTR(-EACCES); 1331 } 1332 1333 return bdev; 1334} 1335EXPORT_SYMBOL(blkdev_get_by_path); 1336 1337/** 1338 * blkdev_get_by_dev - open a block device by device number 1339 * @dev: device number of block device to open 1340 * @mode: FMODE_* mask 1341 * @holder: exclusive holder identifier 1342 * 1343 * Open the blockdevice described by device number @dev. @mode and 1344 * @holder are identical to blkdev_get(). 1345 * 1346 * Use it ONLY if you really do not have anything better - i.e. when 1347 * you are behind a truly sucky interface and all you are given is a 1348 * device number. _Never_ to be used for internal purposes. If you 1349 * ever need it - reconsider your API. 1350 * 1351 * On success, the returned block_device has reference count of one. 1352 * 1353 * CONTEXT: 1354 * Might sleep. 1355 * 1356 * RETURNS: 1357 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1358 */ 1359struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1360{ 1361 struct block_device *bdev; 1362 int err; 1363 1364 bdev = bdget(dev); 1365 if (!bdev) 1366 return ERR_PTR(-ENOMEM); 1367 1368 err = blkdev_get(bdev, mode, holder); 1369 if (err) 1370 return ERR_PTR(err); 1371 1372 return bdev; 1373} 1374EXPORT_SYMBOL(blkdev_get_by_dev); 1375 1376static int blkdev_open(struct inode * inode, struct file * filp) 1377{ 1378 struct block_device *bdev; 1379 1380 /* 1381 * Preserve backwards compatibility and allow large file access 1382 * even if userspace doesn't ask for it explicitly. Some mkfs 1383 * binary needs it. We might want to drop this workaround 1384 * during an unstable branch. 1385 */ 1386 filp->f_flags |= O_LARGEFILE; 1387 1388 if (filp->f_flags & O_NDELAY) 1389 filp->f_mode |= FMODE_NDELAY; 1390 if (filp->f_flags & O_EXCL) 1391 filp->f_mode |= FMODE_EXCL; 1392 if ((filp->f_flags & O_ACCMODE) == 3) 1393 filp->f_mode |= FMODE_WRITE_IOCTL; 1394 1395 bdev = bd_acquire(inode); 1396 if (bdev == NULL) 1397 return -ENOMEM; 1398 1399 filp->f_mapping = bdev->bd_inode->i_mapping; 1400 1401 return blkdev_get(bdev, filp->f_mode, filp); 1402} 1403 1404static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1405{ 1406 struct gendisk *disk = bdev->bd_disk; 1407 struct block_device *victim = NULL; 1408 1409 mutex_lock_nested(&bdev->bd_mutex, for_part); 1410 if (for_part) 1411 bdev->bd_part_count--; 1412 1413 if (!--bdev->bd_openers) { 1414 WARN_ON_ONCE(bdev->bd_holders); 1415 sync_blockdev(bdev); 1416 kill_bdev(bdev); 1417 /* ->release can cause the old bdi to disappear, 1418 * so must switch it out first 1419 */ 1420 bdev_inode_switch_bdi(bdev->bd_inode, 1421 &default_backing_dev_info); 1422 } 1423 if (bdev->bd_contains == bdev) { 1424 if (disk->fops->release) 1425 disk->fops->release(disk, mode); 1426 } 1427 if (!bdev->bd_openers) { 1428 struct module *owner = disk->fops->owner; 1429 1430 disk_put_part(bdev->bd_part); 1431 bdev->bd_part = NULL; 1432 bdev->bd_disk = NULL; 1433 if (bdev != bdev->bd_contains) 1434 victim = bdev->bd_contains; 1435 bdev->bd_contains = NULL; 1436 1437 put_disk(disk); 1438 module_put(owner); 1439 } 1440 mutex_unlock(&bdev->bd_mutex); 1441 bdput(bdev); 1442 if (victim) 1443 __blkdev_put(victim, mode, 1); 1444} 1445 1446void blkdev_put(struct block_device *bdev, fmode_t mode) 1447{ 1448 mutex_lock(&bdev->bd_mutex); 1449 1450 if (mode & FMODE_EXCL) { 1451 bool bdev_free; 1452 1453 /* 1454 * Release a claim on the device. The holder fields 1455 * are protected with bdev_lock. bd_mutex is to 1456 * synchronize disk_holder unlinking. 1457 */ 1458 spin_lock(&bdev_lock); 1459 1460 WARN_ON_ONCE(--bdev->bd_holders < 0); 1461 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1462 1463 /* bd_contains might point to self, check in a separate step */ 1464 if ((bdev_free = !bdev->bd_holders)) 1465 bdev->bd_holder = NULL; 1466 if (!bdev->bd_contains->bd_holders) 1467 bdev->bd_contains->bd_holder = NULL; 1468 1469 spin_unlock(&bdev_lock); 1470 1471 /* 1472 * If this was the last claim, remove holder link and 1473 * unblock evpoll if it was a write holder. 1474 */ 1475 if (bdev_free && bdev->bd_write_holder) { 1476 disk_unblock_events(bdev->bd_disk); 1477 bdev->bd_write_holder = false; 1478 } 1479 } 1480 1481 /* 1482 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1483 * event. This is to ensure detection of media removal commanded 1484 * from userland - e.g. eject(1). 1485 */ 1486 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1487 1488 mutex_unlock(&bdev->bd_mutex); 1489 1490 __blkdev_put(bdev, mode, 0); 1491} 1492EXPORT_SYMBOL(blkdev_put); 1493 1494static int blkdev_close(struct inode * inode, struct file * filp) 1495{ 1496 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1497 blkdev_put(bdev, filp->f_mode); 1498 return 0; 1499} 1500 1501static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1502{ 1503 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1504 fmode_t mode = file->f_mode; 1505 1506 /* 1507 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1508 * to updated it before every ioctl. 1509 */ 1510 if (file->f_flags & O_NDELAY) 1511 mode |= FMODE_NDELAY; 1512 else 1513 mode &= ~FMODE_NDELAY; 1514 1515 return blkdev_ioctl(bdev, mode, cmd, arg); 1516} 1517 1518/* 1519 * Write data to the block device. Only intended for the block device itself 1520 * and the raw driver which basically is a fake block device. 1521 * 1522 * Does not take i_mutex for the write and thus is not for general purpose 1523 * use. 1524 */ 1525ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, 1526 unsigned long nr_segs, loff_t pos) 1527{ 1528 struct file *file = iocb->ki_filp; 1529 struct blk_plug plug; 1530 ssize_t ret; 1531 1532 BUG_ON(iocb->ki_pos != pos); 1533 1534 blk_start_plug(&plug); 1535 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 1536 if (ret > 0 || ret == -EIOCBQUEUED) { 1537 ssize_t err; 1538 1539 err = generic_write_sync(file, pos, ret); 1540 if (err < 0 && ret > 0) 1541 ret = err; 1542 } 1543 blk_finish_plug(&plug); 1544 return ret; 1545} 1546EXPORT_SYMBOL_GPL(blkdev_aio_write); 1547 1548static ssize_t blkdev_aio_read(struct kiocb *iocb, const struct iovec *iov, 1549 unsigned long nr_segs, loff_t pos) 1550{ 1551 struct file *file = iocb->ki_filp; 1552 struct inode *bd_inode = file->f_mapping->host; 1553 loff_t size = i_size_read(bd_inode); 1554 1555 if (pos >= size) 1556 return 0; 1557 1558 size -= pos; 1559 if (size < iocb->ki_left) 1560 nr_segs = iov_shorten((struct iovec *)iov, nr_segs, size); 1561 return generic_file_aio_read(iocb, iov, nr_segs, pos); 1562} 1563 1564/* 1565 * Try to release a page associated with block device when the system 1566 * is under memory pressure. 1567 */ 1568static int blkdev_releasepage(struct page *page, gfp_t wait) 1569{ 1570 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1571 1572 if (super && super->s_op->bdev_try_to_free_page) 1573 return super->s_op->bdev_try_to_free_page(super, page, wait); 1574 1575 return try_to_free_buffers(page); 1576} 1577 1578static const struct address_space_operations def_blk_aops = { 1579 .readpage = blkdev_readpage, 1580 .writepage = blkdev_writepage, 1581 .write_begin = blkdev_write_begin, 1582 .write_end = blkdev_write_end, 1583 .writepages = generic_writepages, 1584 .releasepage = blkdev_releasepage, 1585 .direct_IO = blkdev_direct_IO, 1586}; 1587 1588const struct file_operations def_blk_fops = { 1589 .open = blkdev_open, 1590 .release = blkdev_close, 1591 .llseek = block_llseek, 1592 .read = do_sync_read, 1593 .write = do_sync_write, 1594 .aio_read = blkdev_aio_read, 1595 .aio_write = blkdev_aio_write, 1596 .mmap = generic_file_mmap, 1597 .fsync = blkdev_fsync, 1598 .unlocked_ioctl = block_ioctl, 1599#ifdef CONFIG_COMPAT 1600 .compat_ioctl = compat_blkdev_ioctl, 1601#endif 1602 .splice_read = generic_file_splice_read, 1603 .splice_write = generic_file_splice_write, 1604}; 1605 1606int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1607{ 1608 int res; 1609 mm_segment_t old_fs = get_fs(); 1610 set_fs(KERNEL_DS); 1611 res = blkdev_ioctl(bdev, 0, cmd, arg); 1612 set_fs(old_fs); 1613 return res; 1614} 1615 1616EXPORT_SYMBOL(ioctl_by_bdev); 1617 1618/** 1619 * lookup_bdev - lookup a struct block_device by name 1620 * @pathname: special file representing the block device 1621 * 1622 * Get a reference to the blockdevice at @pathname in the current 1623 * namespace if possible and return it. Return ERR_PTR(error) 1624 * otherwise. 1625 */ 1626struct block_device *lookup_bdev(const char *pathname) 1627{ 1628 struct block_device *bdev; 1629 struct inode *inode; 1630 struct path path; 1631 int error; 1632 1633 if (!pathname || !*pathname) 1634 return ERR_PTR(-EINVAL); 1635 1636 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1637 if (error) 1638 return ERR_PTR(error); 1639 1640 inode = path.dentry->d_inode; 1641 error = -ENOTBLK; 1642 if (!S_ISBLK(inode->i_mode)) 1643 goto fail; 1644 error = -EACCES; 1645 if (path.mnt->mnt_flags & MNT_NODEV) 1646 goto fail; 1647 error = -ENOMEM; 1648 bdev = bd_acquire(inode); 1649 if (!bdev) 1650 goto fail; 1651out: 1652 path_put(&path); 1653 return bdev; 1654fail: 1655 bdev = ERR_PTR(error); 1656 goto out; 1657} 1658EXPORT_SYMBOL(lookup_bdev); 1659 1660int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1661{ 1662 struct super_block *sb = get_super(bdev); 1663 int res = 0; 1664 1665 if (sb) { 1666 /* 1667 * no need to lock the super, get_super holds the 1668 * read mutex so the filesystem cannot go away 1669 * under us (->put_super runs with the write lock 1670 * hold). 1671 */ 1672 shrink_dcache_sb(sb); 1673 res = invalidate_inodes(sb, kill_dirty); 1674 drop_super(sb); 1675 } 1676 invalidate_bdev(bdev); 1677 return res; 1678} 1679EXPORT_SYMBOL(__invalidate_device); 1680 1681void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1682{ 1683 struct inode *inode, *old_inode = NULL; 1684 1685 spin_lock(&inode_sb_list_lock); 1686 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1687 struct address_space *mapping = inode->i_mapping; 1688 1689 spin_lock(&inode->i_lock); 1690 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1691 mapping->nrpages == 0) { 1692 spin_unlock(&inode->i_lock); 1693 continue; 1694 } 1695 __iget(inode); 1696 spin_unlock(&inode->i_lock); 1697 spin_unlock(&inode_sb_list_lock); 1698 /* 1699 * We hold a reference to 'inode' so it couldn't have been 1700 * removed from s_inodes list while we dropped the 1701 * inode_sb_list_lock. We cannot iput the inode now as we can 1702 * be holding the last reference and we cannot iput it under 1703 * inode_sb_list_lock. So we keep the reference and iput it 1704 * later. 1705 */ 1706 iput(old_inode); 1707 old_inode = inode; 1708 1709 func(I_BDEV(inode), arg); 1710 1711 spin_lock(&inode_sb_list_lock); 1712 } 1713 spin_unlock(&inode_sb_list_lock); 1714 iput(old_inode); 1715}