at v3.10 1596 lines 47 kB view raw
1/* 2 * S390 version 3 * Copyright IBM Corp. 1999, 2000 4 * Author(s): Hartmut Penner (hp@de.ibm.com) 5 * Ulrich Weigand (weigand@de.ibm.com) 6 * Martin Schwidefsky (schwidefsky@de.ibm.com) 7 * 8 * Derived from "include/asm-i386/pgtable.h" 9 */ 10 11#ifndef _ASM_S390_PGTABLE_H 12#define _ASM_S390_PGTABLE_H 13 14/* 15 * The Linux memory management assumes a three-level page table setup. For 16 * s390 31 bit we "fold" the mid level into the top-level page table, so 17 * that we physically have the same two-level page table as the s390 mmu 18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 19 * the hardware provides (region first and region second tables are not 20 * used). 21 * 22 * The "pgd_xxx()" functions are trivial for a folded two-level 23 * setup: the pgd is never bad, and a pmd always exists (as it's folded 24 * into the pgd entry) 25 * 26 * This file contains the functions and defines necessary to modify and use 27 * the S390 page table tree. 28 */ 29#ifndef __ASSEMBLY__ 30#include <linux/sched.h> 31#include <linux/mm_types.h> 32#include <linux/page-flags.h> 33#include <asm/bug.h> 34#include <asm/page.h> 35 36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 37extern void paging_init(void); 38extern void vmem_map_init(void); 39 40/* 41 * The S390 doesn't have any external MMU info: the kernel page 42 * tables contain all the necessary information. 43 */ 44#define update_mmu_cache(vma, address, ptep) do { } while (0) 45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 46 47/* 48 * ZERO_PAGE is a global shared page that is always zero; used 49 * for zero-mapped memory areas etc.. 50 */ 51 52extern unsigned long empty_zero_page; 53extern unsigned long zero_page_mask; 54 55#define ZERO_PAGE(vaddr) \ 56 (virt_to_page((void *)(empty_zero_page + \ 57 (((unsigned long)(vaddr)) &zero_page_mask)))) 58#define __HAVE_COLOR_ZERO_PAGE 59 60/* TODO: s390 cannot support io_remap_pfn_range... */ 61#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 62 remap_pfn_range(vma, vaddr, pfn, size, prot) 63 64#endif /* !__ASSEMBLY__ */ 65 66/* 67 * PMD_SHIFT determines the size of the area a second-level page 68 * table can map 69 * PGDIR_SHIFT determines what a third-level page table entry can map 70 */ 71#ifndef CONFIG_64BIT 72# define PMD_SHIFT 20 73# define PUD_SHIFT 20 74# define PGDIR_SHIFT 20 75#else /* CONFIG_64BIT */ 76# define PMD_SHIFT 20 77# define PUD_SHIFT 31 78# define PGDIR_SHIFT 42 79#endif /* CONFIG_64BIT */ 80 81#define PMD_SIZE (1UL << PMD_SHIFT) 82#define PMD_MASK (~(PMD_SIZE-1)) 83#define PUD_SIZE (1UL << PUD_SHIFT) 84#define PUD_MASK (~(PUD_SIZE-1)) 85#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 86#define PGDIR_MASK (~(PGDIR_SIZE-1)) 87 88/* 89 * entries per page directory level: the S390 is two-level, so 90 * we don't really have any PMD directory physically. 91 * for S390 segment-table entries are combined to one PGD 92 * that leads to 1024 pte per pgd 93 */ 94#define PTRS_PER_PTE 256 95#ifndef CONFIG_64BIT 96#define PTRS_PER_PMD 1 97#define PTRS_PER_PUD 1 98#else /* CONFIG_64BIT */ 99#define PTRS_PER_PMD 2048 100#define PTRS_PER_PUD 2048 101#endif /* CONFIG_64BIT */ 102#define PTRS_PER_PGD 2048 103 104#define FIRST_USER_ADDRESS 0 105 106#define pte_ERROR(e) \ 107 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 108#define pmd_ERROR(e) \ 109 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 110#define pud_ERROR(e) \ 111 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 112#define pgd_ERROR(e) \ 113 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 114 115#ifndef __ASSEMBLY__ 116/* 117 * The vmalloc and module area will always be on the topmost area of the kernel 118 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules. 119 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 120 * modules will reside. That makes sure that inter module branches always 121 * happen without trampolines and in addition the placement within a 2GB frame 122 * is branch prediction unit friendly. 123 */ 124extern unsigned long VMALLOC_START; 125extern unsigned long VMALLOC_END; 126extern struct page *vmemmap; 127 128#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 129 130#ifdef CONFIG_64BIT 131extern unsigned long MODULES_VADDR; 132extern unsigned long MODULES_END; 133#define MODULES_VADDR MODULES_VADDR 134#define MODULES_END MODULES_END 135#define MODULES_LEN (1UL << 31) 136#endif 137 138/* 139 * A 31 bit pagetable entry of S390 has following format: 140 * | PFRA | | OS | 141 * 0 0IP0 142 * 00000000001111111111222222222233 143 * 01234567890123456789012345678901 144 * 145 * I Page-Invalid Bit: Page is not available for address-translation 146 * P Page-Protection Bit: Store access not possible for page 147 * 148 * A 31 bit segmenttable entry of S390 has following format: 149 * | P-table origin | |PTL 150 * 0 IC 151 * 00000000001111111111222222222233 152 * 01234567890123456789012345678901 153 * 154 * I Segment-Invalid Bit: Segment is not available for address-translation 155 * C Common-Segment Bit: Segment is not private (PoP 3-30) 156 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 157 * 158 * The 31 bit segmenttable origin of S390 has following format: 159 * 160 * |S-table origin | | STL | 161 * X **GPS 162 * 00000000001111111111222222222233 163 * 01234567890123456789012345678901 164 * 165 * X Space-Switch event: 166 * G Segment-Invalid Bit: * 167 * P Private-Space Bit: Segment is not private (PoP 3-30) 168 * S Storage-Alteration: 169 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 170 * 171 * A 64 bit pagetable entry of S390 has following format: 172 * | PFRA |0IPC| OS | 173 * 0000000000111111111122222222223333333333444444444455555555556666 174 * 0123456789012345678901234567890123456789012345678901234567890123 175 * 176 * I Page-Invalid Bit: Page is not available for address-translation 177 * P Page-Protection Bit: Store access not possible for page 178 * C Change-bit override: HW is not required to set change bit 179 * 180 * A 64 bit segmenttable entry of S390 has following format: 181 * | P-table origin | TT 182 * 0000000000111111111122222222223333333333444444444455555555556666 183 * 0123456789012345678901234567890123456789012345678901234567890123 184 * 185 * I Segment-Invalid Bit: Segment is not available for address-translation 186 * C Common-Segment Bit: Segment is not private (PoP 3-30) 187 * P Page-Protection Bit: Store access not possible for page 188 * TT Type 00 189 * 190 * A 64 bit region table entry of S390 has following format: 191 * | S-table origin | TF TTTL 192 * 0000000000111111111122222222223333333333444444444455555555556666 193 * 0123456789012345678901234567890123456789012345678901234567890123 194 * 195 * I Segment-Invalid Bit: Segment is not available for address-translation 196 * TT Type 01 197 * TF 198 * TL Table length 199 * 200 * The 64 bit regiontable origin of S390 has following format: 201 * | region table origon | DTTL 202 * 0000000000111111111122222222223333333333444444444455555555556666 203 * 0123456789012345678901234567890123456789012345678901234567890123 204 * 205 * X Space-Switch event: 206 * G Segment-Invalid Bit: 207 * P Private-Space Bit: 208 * S Storage-Alteration: 209 * R Real space 210 * TL Table-Length: 211 * 212 * A storage key has the following format: 213 * | ACC |F|R|C|0| 214 * 0 3 4 5 6 7 215 * ACC: access key 216 * F : fetch protection bit 217 * R : referenced bit 218 * C : changed bit 219 */ 220 221/* Hardware bits in the page table entry */ 222#define _PAGE_CO 0x100 /* HW Change-bit override */ 223#define _PAGE_RO 0x200 /* HW read-only bit */ 224#define _PAGE_INVALID 0x400 /* HW invalid bit */ 225 226/* Software bits in the page table entry */ 227#define _PAGE_SWT 0x001 /* SW pte type bit t */ 228#define _PAGE_SWX 0x002 /* SW pte type bit x */ 229#define _PAGE_SWC 0x004 /* SW pte changed bit */ 230#define _PAGE_SWR 0x008 /* SW pte referenced bit */ 231#define _PAGE_SWW 0x010 /* SW pte write bit */ 232#define _PAGE_SPECIAL 0x020 /* SW associated with special page */ 233#define __HAVE_ARCH_PTE_SPECIAL 234 235/* Set of bits not changed in pte_modify */ 236#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \ 237 _PAGE_SWC | _PAGE_SWR) 238 239/* Six different types of pages. */ 240#define _PAGE_TYPE_EMPTY 0x400 241#define _PAGE_TYPE_NONE 0x401 242#define _PAGE_TYPE_SWAP 0x403 243#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ 244#define _PAGE_TYPE_RO 0x200 245#define _PAGE_TYPE_RW 0x000 246 247/* 248 * Only four types for huge pages, using the invalid bit and protection bit 249 * of a segment table entry. 250 */ 251#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */ 252#define _HPAGE_TYPE_NONE 0x220 253#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */ 254#define _HPAGE_TYPE_RW 0x000 255 256/* 257 * PTE type bits are rather complicated. handle_pte_fault uses pte_present, 258 * pte_none and pte_file to find out the pte type WITHOUT holding the page 259 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to 260 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs 261 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. 262 * This change is done while holding the lock, but the intermediate step 263 * of a previously valid pte with the hw invalid bit set can be observed by 264 * handle_pte_fault. That makes it necessary that all valid pte types with 265 * the hw invalid bit set must be distinguishable from the four pte types 266 * empty, none, swap and file. 267 * 268 * irxt ipte irxt 269 * _PAGE_TYPE_EMPTY 1000 -> 1000 270 * _PAGE_TYPE_NONE 1001 -> 1001 271 * _PAGE_TYPE_SWAP 1011 -> 1011 272 * _PAGE_TYPE_FILE 11?1 -> 11?1 273 * _PAGE_TYPE_RO 0100 -> 1100 274 * _PAGE_TYPE_RW 0000 -> 1000 275 * 276 * pte_none is true for bits combinations 1000, 1010, 1100, 1110 277 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 278 * pte_file is true for bits combinations 1101, 1111 279 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid. 280 */ 281 282#ifndef CONFIG_64BIT 283 284/* Bits in the segment table address-space-control-element */ 285#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */ 286#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */ 287#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 288#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 289#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */ 290 291/* Bits in the segment table entry */ 292#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */ 293#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ 294#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 295#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */ 296#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */ 297 298#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL) 299#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 300 301/* Page status table bits for virtualization */ 302#define RCP_ACC_BITS 0xf0000000UL 303#define RCP_FP_BIT 0x08000000UL 304#define RCP_PCL_BIT 0x00800000UL 305#define RCP_HR_BIT 0x00400000UL 306#define RCP_HC_BIT 0x00200000UL 307#define RCP_GR_BIT 0x00040000UL 308#define RCP_GC_BIT 0x00020000UL 309#define RCP_IN_BIT 0x00002000UL /* IPTE notify bit */ 310 311/* User dirty / referenced bit for KVM's migration feature */ 312#define KVM_UR_BIT 0x00008000UL 313#define KVM_UC_BIT 0x00004000UL 314 315#else /* CONFIG_64BIT */ 316 317/* Bits in the segment/region table address-space-control-element */ 318#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ 319#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 320#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 321#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 322#define _ASCE_REAL_SPACE 0x20 /* real space control */ 323#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 324#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 325#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 326#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 327#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 328#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 329 330/* Bits in the region table entry */ 331#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 332#define _REGION_ENTRY_RO 0x200 /* region protection bit */ 333#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */ 334#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 335#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 336#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 337#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 338#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 339 340#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 341#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV) 342#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 343#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV) 344#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 345#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV) 346 347#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */ 348#define _REGION3_ENTRY_RO 0x200 /* page protection bit */ 349#define _REGION3_ENTRY_CO 0x100 /* change-recording override */ 350 351/* Bits in the segment table entry */ 352#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 353#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ 354#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ 355#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 356 357#define _SEGMENT_ENTRY (0) 358#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 359 360#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */ 361#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */ 362#define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */ 363#define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT) 364 365/* Set of bits not changed in pmd_modify */ 366#define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \ 367 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO) 368 369/* Page status table bits for virtualization */ 370#define RCP_ACC_BITS 0xf000000000000000UL 371#define RCP_FP_BIT 0x0800000000000000UL 372#define RCP_PCL_BIT 0x0080000000000000UL 373#define RCP_HR_BIT 0x0040000000000000UL 374#define RCP_HC_BIT 0x0020000000000000UL 375#define RCP_GR_BIT 0x0004000000000000UL 376#define RCP_GC_BIT 0x0002000000000000UL 377#define RCP_IN_BIT 0x0000200000000000UL /* IPTE notify bit */ 378 379/* User dirty / referenced bit for KVM's migration feature */ 380#define KVM_UR_BIT 0x0000800000000000UL 381#define KVM_UC_BIT 0x0000400000000000UL 382 383#endif /* CONFIG_64BIT */ 384 385/* 386 * A user page table pointer has the space-switch-event bit, the 387 * private-space-control bit and the storage-alteration-event-control 388 * bit set. A kernel page table pointer doesn't need them. 389 */ 390#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 391 _ASCE_ALT_EVENT) 392 393/* 394 * Page protection definitions. 395 */ 396#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) 397#define PAGE_RO __pgprot(_PAGE_TYPE_RO) 398#define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW) 399#define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC) 400 401#define PAGE_KERNEL PAGE_RWC 402#define PAGE_SHARED PAGE_KERNEL 403#define PAGE_COPY PAGE_RO 404 405/* 406 * On s390 the page table entry has an invalid bit and a read-only bit. 407 * Read permission implies execute permission and write permission 408 * implies read permission. 409 */ 410 /*xwr*/ 411#define __P000 PAGE_NONE 412#define __P001 PAGE_RO 413#define __P010 PAGE_RO 414#define __P011 PAGE_RO 415#define __P100 PAGE_RO 416#define __P101 PAGE_RO 417#define __P110 PAGE_RO 418#define __P111 PAGE_RO 419 420#define __S000 PAGE_NONE 421#define __S001 PAGE_RO 422#define __S010 PAGE_RW 423#define __S011 PAGE_RW 424#define __S100 PAGE_RO 425#define __S101 PAGE_RO 426#define __S110 PAGE_RW 427#define __S111 PAGE_RW 428 429/* 430 * Segment entry (large page) protection definitions. 431 */ 432#define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE) 433#define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO) 434#define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW) 435 436static inline int mm_exclusive(struct mm_struct *mm) 437{ 438 return likely(mm == current->active_mm && 439 atomic_read(&mm->context.attach_count) <= 1); 440} 441 442static inline int mm_has_pgste(struct mm_struct *mm) 443{ 444#ifdef CONFIG_PGSTE 445 if (unlikely(mm->context.has_pgste)) 446 return 1; 447#endif 448 return 0; 449} 450/* 451 * pgd/pmd/pte query functions 452 */ 453#ifndef CONFIG_64BIT 454 455static inline int pgd_present(pgd_t pgd) { return 1; } 456static inline int pgd_none(pgd_t pgd) { return 0; } 457static inline int pgd_bad(pgd_t pgd) { return 0; } 458 459static inline int pud_present(pud_t pud) { return 1; } 460static inline int pud_none(pud_t pud) { return 0; } 461static inline int pud_large(pud_t pud) { return 0; } 462static inline int pud_bad(pud_t pud) { return 0; } 463 464#else /* CONFIG_64BIT */ 465 466static inline int pgd_present(pgd_t pgd) 467{ 468 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 469 return 1; 470 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 471} 472 473static inline int pgd_none(pgd_t pgd) 474{ 475 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 476 return 0; 477 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL; 478} 479 480static inline int pgd_bad(pgd_t pgd) 481{ 482 /* 483 * With dynamic page table levels the pgd can be a region table 484 * entry or a segment table entry. Check for the bit that are 485 * invalid for either table entry. 486 */ 487 unsigned long mask = 488 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 489 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 490 return (pgd_val(pgd) & mask) != 0; 491} 492 493static inline int pud_present(pud_t pud) 494{ 495 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 496 return 1; 497 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 498} 499 500static inline int pud_none(pud_t pud) 501{ 502 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 503 return 0; 504 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL; 505} 506 507static inline int pud_large(pud_t pud) 508{ 509 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 510 return 0; 511 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 512} 513 514static inline int pud_bad(pud_t pud) 515{ 516 /* 517 * With dynamic page table levels the pud can be a region table 518 * entry or a segment table entry. Check for the bit that are 519 * invalid for either table entry. 520 */ 521 unsigned long mask = 522 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 523 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 524 return (pud_val(pud) & mask) != 0; 525} 526 527#endif /* CONFIG_64BIT */ 528 529static inline int pmd_present(pmd_t pmd) 530{ 531 unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO; 532 return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE || 533 !(pmd_val(pmd) & _SEGMENT_ENTRY_INV); 534} 535 536static inline int pmd_none(pmd_t pmd) 537{ 538 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) && 539 !(pmd_val(pmd) & _SEGMENT_ENTRY_RO); 540} 541 542static inline int pmd_large(pmd_t pmd) 543{ 544#ifdef CONFIG_64BIT 545 return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE); 546#else 547 return 0; 548#endif 549} 550 551static inline int pmd_bad(pmd_t pmd) 552{ 553 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV; 554 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY; 555} 556 557#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH 558extern void pmdp_splitting_flush(struct vm_area_struct *vma, 559 unsigned long addr, pmd_t *pmdp); 560 561#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 562extern int pmdp_set_access_flags(struct vm_area_struct *vma, 563 unsigned long address, pmd_t *pmdp, 564 pmd_t entry, int dirty); 565 566#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 567extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 568 unsigned long address, pmd_t *pmdp); 569 570#define __HAVE_ARCH_PMD_WRITE 571static inline int pmd_write(pmd_t pmd) 572{ 573 return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0; 574} 575 576static inline int pmd_young(pmd_t pmd) 577{ 578 return 0; 579} 580 581static inline int pte_none(pte_t pte) 582{ 583 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); 584} 585 586static inline int pte_present(pte_t pte) 587{ 588 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; 589 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || 590 (!(pte_val(pte) & _PAGE_INVALID) && 591 !(pte_val(pte) & _PAGE_SWT)); 592} 593 594static inline int pte_file(pte_t pte) 595{ 596 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; 597 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; 598} 599 600static inline int pte_special(pte_t pte) 601{ 602 return (pte_val(pte) & _PAGE_SPECIAL); 603} 604 605#define __HAVE_ARCH_PTE_SAME 606static inline int pte_same(pte_t a, pte_t b) 607{ 608 return pte_val(a) == pte_val(b); 609} 610 611static inline pgste_t pgste_get_lock(pte_t *ptep) 612{ 613 unsigned long new = 0; 614#ifdef CONFIG_PGSTE 615 unsigned long old; 616 617 preempt_disable(); 618 asm( 619 " lg %0,%2\n" 620 "0: lgr %1,%0\n" 621 " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */ 622 " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */ 623 " csg %0,%1,%2\n" 624 " jl 0b\n" 625 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE]) 626 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory"); 627#endif 628 return __pgste(new); 629} 630 631static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste) 632{ 633#ifdef CONFIG_PGSTE 634 asm( 635 " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */ 636 " stg %1,%0\n" 637 : "=Q" (ptep[PTRS_PER_PTE]) 638 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) 639 : "cc", "memory"); 640 preempt_enable(); 641#endif 642} 643 644static inline void pgste_set(pte_t *ptep, pgste_t pgste) 645{ 646#ifdef CONFIG_PGSTE 647 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste; 648#endif 649} 650 651static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste) 652{ 653#ifdef CONFIG_PGSTE 654 unsigned long address, bits; 655 unsigned char skey; 656 657 if (pte_val(*ptep) & _PAGE_INVALID) 658 return pgste; 659 address = pte_val(*ptep) & PAGE_MASK; 660 skey = page_get_storage_key(address); 661 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED); 662 /* Clear page changed & referenced bit in the storage key */ 663 if (bits & _PAGE_CHANGED) 664 page_set_storage_key(address, skey ^ bits, 0); 665 else if (bits) 666 page_reset_referenced(address); 667 /* Transfer page changed & referenced bit to guest bits in pgste */ 668 pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */ 669 /* Get host changed & referenced bits from pgste */ 670 bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52; 671 /* Transfer page changed & referenced bit to kvm user bits */ 672 pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */ 673 /* Clear relevant host bits in pgste. */ 674 pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT); 675 pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT); 676 /* Copy page access key and fetch protection bit to pgste */ 677 pgste_val(pgste) |= 678 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56; 679 /* Transfer referenced bit to pte */ 680 pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1; 681#endif 682 return pgste; 683 684} 685 686static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste) 687{ 688#ifdef CONFIG_PGSTE 689 int young; 690 691 if (pte_val(*ptep) & _PAGE_INVALID) 692 return pgste; 693 /* Get referenced bit from storage key */ 694 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK); 695 if (young) 696 pgste_val(pgste) |= RCP_GR_BIT; 697 /* Get host referenced bit from pgste */ 698 if (pgste_val(pgste) & RCP_HR_BIT) { 699 pgste_val(pgste) &= ~RCP_HR_BIT; 700 young = 1; 701 } 702 /* Transfer referenced bit to kvm user bits and pte */ 703 if (young) { 704 pgste_val(pgste) |= KVM_UR_BIT; 705 pte_val(*ptep) |= _PAGE_SWR; 706 } 707#endif 708 return pgste; 709} 710 711static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry) 712{ 713#ifdef CONFIG_PGSTE 714 unsigned long address; 715 unsigned long nkey; 716 717 if (pte_val(entry) & _PAGE_INVALID) 718 return; 719 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID)); 720 address = pte_val(entry) & PAGE_MASK; 721 /* 722 * Set page access key and fetch protection bit from pgste. 723 * The guest C/R information is still in the PGSTE, set real 724 * key C/R to 0. 725 */ 726 nkey = (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56; 727 page_set_storage_key(address, nkey, 0); 728#endif 729} 730 731static inline void pgste_set_pte(pte_t *ptep, pte_t entry) 732{ 733 if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) { 734 /* 735 * Without enhanced suppression-on-protection force 736 * the dirty bit on for all writable ptes. 737 */ 738 pte_val(entry) |= _PAGE_SWC; 739 pte_val(entry) &= ~_PAGE_RO; 740 } 741 *ptep = entry; 742} 743 744/** 745 * struct gmap_struct - guest address space 746 * @mm: pointer to the parent mm_struct 747 * @table: pointer to the page directory 748 * @asce: address space control element for gmap page table 749 * @crst_list: list of all crst tables used in the guest address space 750 */ 751struct gmap { 752 struct list_head list; 753 struct mm_struct *mm; 754 unsigned long *table; 755 unsigned long asce; 756 struct list_head crst_list; 757}; 758 759/** 760 * struct gmap_rmap - reverse mapping for segment table entries 761 * @gmap: pointer to the gmap_struct 762 * @entry: pointer to a segment table entry 763 * @vmaddr: virtual address in the guest address space 764 */ 765struct gmap_rmap { 766 struct list_head list; 767 struct gmap *gmap; 768 unsigned long *entry; 769 unsigned long vmaddr; 770}; 771 772/** 773 * struct gmap_pgtable - gmap information attached to a page table 774 * @vmaddr: address of the 1MB segment in the process virtual memory 775 * @mapper: list of segment table entries mapping a page table 776 */ 777struct gmap_pgtable { 778 unsigned long vmaddr; 779 struct list_head mapper; 780}; 781 782/** 783 * struct gmap_notifier - notify function block for page invalidation 784 * @notifier_call: address of callback function 785 */ 786struct gmap_notifier { 787 struct list_head list; 788 void (*notifier_call)(struct gmap *gmap, unsigned long address); 789}; 790 791struct gmap *gmap_alloc(struct mm_struct *mm); 792void gmap_free(struct gmap *gmap); 793void gmap_enable(struct gmap *gmap); 794void gmap_disable(struct gmap *gmap); 795int gmap_map_segment(struct gmap *gmap, unsigned long from, 796 unsigned long to, unsigned long len); 797int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len); 798unsigned long __gmap_translate(unsigned long address, struct gmap *); 799unsigned long gmap_translate(unsigned long address, struct gmap *); 800unsigned long __gmap_fault(unsigned long address, struct gmap *); 801unsigned long gmap_fault(unsigned long address, struct gmap *); 802void gmap_discard(unsigned long from, unsigned long to, struct gmap *); 803 804void gmap_register_ipte_notifier(struct gmap_notifier *); 805void gmap_unregister_ipte_notifier(struct gmap_notifier *); 806int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len); 807void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *); 808 809static inline pgste_t pgste_ipte_notify(struct mm_struct *mm, 810 unsigned long addr, 811 pte_t *ptep, pgste_t pgste) 812{ 813#ifdef CONFIG_PGSTE 814 if (pgste_val(pgste) & RCP_IN_BIT) { 815 pgste_val(pgste) &= ~RCP_IN_BIT; 816 gmap_do_ipte_notify(mm, addr, ptep); 817 } 818#endif 819 return pgste; 820} 821 822/* 823 * Certain architectures need to do special things when PTEs 824 * within a page table are directly modified. Thus, the following 825 * hook is made available. 826 */ 827static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 828 pte_t *ptep, pte_t entry) 829{ 830 pgste_t pgste; 831 832 if (mm_has_pgste(mm)) { 833 pgste = pgste_get_lock(ptep); 834 pgste_set_key(ptep, pgste, entry); 835 pgste_set_pte(ptep, entry); 836 pgste_set_unlock(ptep, pgste); 837 } else { 838 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1) 839 pte_val(entry) |= _PAGE_CO; 840 *ptep = entry; 841 } 842} 843 844/* 845 * query functions pte_write/pte_dirty/pte_young only work if 846 * pte_present() is true. Undefined behaviour if not.. 847 */ 848static inline int pte_write(pte_t pte) 849{ 850 return (pte_val(pte) & _PAGE_SWW) != 0; 851} 852 853static inline int pte_dirty(pte_t pte) 854{ 855 return (pte_val(pte) & _PAGE_SWC) != 0; 856} 857 858static inline int pte_young(pte_t pte) 859{ 860#ifdef CONFIG_PGSTE 861 if (pte_val(pte) & _PAGE_SWR) 862 return 1; 863#endif 864 return 0; 865} 866 867/* 868 * pgd/pmd/pte modification functions 869 */ 870 871static inline void pgd_clear(pgd_t *pgd) 872{ 873#ifdef CONFIG_64BIT 874 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 875 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; 876#endif 877} 878 879static inline void pud_clear(pud_t *pud) 880{ 881#ifdef CONFIG_64BIT 882 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 883 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 884#endif 885} 886 887static inline void pmd_clear(pmd_t *pmdp) 888{ 889 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 890} 891 892static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 893{ 894 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 895} 896 897/* 898 * The following pte modification functions only work if 899 * pte_present() is true. Undefined behaviour if not.. 900 */ 901static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 902{ 903 pte_val(pte) &= _PAGE_CHG_MASK; 904 pte_val(pte) |= pgprot_val(newprot); 905 if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW)) 906 pte_val(pte) &= ~_PAGE_RO; 907 return pte; 908} 909 910static inline pte_t pte_wrprotect(pte_t pte) 911{ 912 pte_val(pte) &= ~_PAGE_SWW; 913 /* Do not clobber _PAGE_TYPE_NONE pages! */ 914 if (!(pte_val(pte) & _PAGE_INVALID)) 915 pte_val(pte) |= _PAGE_RO; 916 return pte; 917} 918 919static inline pte_t pte_mkwrite(pte_t pte) 920{ 921 pte_val(pte) |= _PAGE_SWW; 922 if (pte_val(pte) & _PAGE_SWC) 923 pte_val(pte) &= ~_PAGE_RO; 924 return pte; 925} 926 927static inline pte_t pte_mkclean(pte_t pte) 928{ 929 pte_val(pte) &= ~_PAGE_SWC; 930 /* Do not clobber _PAGE_TYPE_NONE pages! */ 931 if (!(pte_val(pte) & _PAGE_INVALID)) 932 pte_val(pte) |= _PAGE_RO; 933 return pte; 934} 935 936static inline pte_t pte_mkdirty(pte_t pte) 937{ 938 pte_val(pte) |= _PAGE_SWC; 939 if (pte_val(pte) & _PAGE_SWW) 940 pte_val(pte) &= ~_PAGE_RO; 941 return pte; 942} 943 944static inline pte_t pte_mkold(pte_t pte) 945{ 946#ifdef CONFIG_PGSTE 947 pte_val(pte) &= ~_PAGE_SWR; 948#endif 949 return pte; 950} 951 952static inline pte_t pte_mkyoung(pte_t pte) 953{ 954 return pte; 955} 956 957static inline pte_t pte_mkspecial(pte_t pte) 958{ 959 pte_val(pte) |= _PAGE_SPECIAL; 960 return pte; 961} 962 963#ifdef CONFIG_HUGETLB_PAGE 964static inline pte_t pte_mkhuge(pte_t pte) 965{ 966 pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO); 967 return pte; 968} 969#endif 970 971/* 972 * Get (and clear) the user dirty bit for a pte. 973 */ 974static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm, 975 pte_t *ptep) 976{ 977 pgste_t pgste; 978 int dirty = 0; 979 980 if (mm_has_pgste(mm)) { 981 pgste = pgste_get_lock(ptep); 982 pgste = pgste_update_all(ptep, pgste); 983 dirty = !!(pgste_val(pgste) & KVM_UC_BIT); 984 pgste_val(pgste) &= ~KVM_UC_BIT; 985 pgste_set_unlock(ptep, pgste); 986 return dirty; 987 } 988 return dirty; 989} 990 991/* 992 * Get (and clear) the user referenced bit for a pte. 993 */ 994static inline int ptep_test_and_clear_user_young(struct mm_struct *mm, 995 pte_t *ptep) 996{ 997 pgste_t pgste; 998 int young = 0; 999 1000 if (mm_has_pgste(mm)) { 1001 pgste = pgste_get_lock(ptep); 1002 pgste = pgste_update_young(ptep, pgste); 1003 young = !!(pgste_val(pgste) & KVM_UR_BIT); 1004 pgste_val(pgste) &= ~KVM_UR_BIT; 1005 pgste_set_unlock(ptep, pgste); 1006 } 1007 return young; 1008} 1009 1010#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1011static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1012 unsigned long addr, pte_t *ptep) 1013{ 1014 pgste_t pgste; 1015 pte_t pte; 1016 1017 if (mm_has_pgste(vma->vm_mm)) { 1018 pgste = pgste_get_lock(ptep); 1019 pgste = pgste_update_young(ptep, pgste); 1020 pte = *ptep; 1021 *ptep = pte_mkold(pte); 1022 pgste_set_unlock(ptep, pgste); 1023 return pte_young(pte); 1024 } 1025 return 0; 1026} 1027 1028#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1029static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1030 unsigned long address, pte_t *ptep) 1031{ 1032 /* No need to flush TLB 1033 * On s390 reference bits are in storage key and never in TLB 1034 * With virtualization we handle the reference bit, without we 1035 * we can simply return */ 1036 return ptep_test_and_clear_young(vma, address, ptep); 1037} 1038 1039static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 1040{ 1041 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 1042#ifndef CONFIG_64BIT 1043 /* pto must point to the start of the segment table */ 1044 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 1045#else 1046 /* ipte in zarch mode can do the math */ 1047 pte_t *pto = ptep; 1048#endif 1049 asm volatile( 1050 " ipte %2,%3" 1051 : "=m" (*ptep) : "m" (*ptep), 1052 "a" (pto), "a" (address)); 1053 } 1054} 1055 1056/* 1057 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1058 * both clear the TLB for the unmapped pte. The reason is that 1059 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1060 * to modify an active pte. The sequence is 1061 * 1) ptep_get_and_clear 1062 * 2) set_pte_at 1063 * 3) flush_tlb_range 1064 * On s390 the tlb needs to get flushed with the modification of the pte 1065 * if the pte is active. The only way how this can be implemented is to 1066 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1067 * is a nop. 1068 */ 1069#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1070static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1071 unsigned long address, pte_t *ptep) 1072{ 1073 pgste_t pgste; 1074 pte_t pte; 1075 1076 mm->context.flush_mm = 1; 1077 if (mm_has_pgste(mm)) { 1078 pgste = pgste_get_lock(ptep); 1079 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1080 } 1081 1082 pte = *ptep; 1083 if (!mm_exclusive(mm)) 1084 __ptep_ipte(address, ptep); 1085 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 1086 1087 if (mm_has_pgste(mm)) { 1088 pgste = pgste_update_all(&pte, pgste); 1089 pgste_set_unlock(ptep, pgste); 1090 } 1091 return pte; 1092} 1093 1094#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1095static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 1096 unsigned long address, 1097 pte_t *ptep) 1098{ 1099 pgste_t pgste; 1100 pte_t pte; 1101 1102 mm->context.flush_mm = 1; 1103 if (mm_has_pgste(mm)) { 1104 pgste = pgste_get_lock(ptep); 1105 pgste_ipte_notify(mm, address, ptep, pgste); 1106 } 1107 1108 pte = *ptep; 1109 if (!mm_exclusive(mm)) 1110 __ptep_ipte(address, ptep); 1111 1112 if (mm_has_pgste(mm)) { 1113 pgste = pgste_update_all(&pte, pgste); 1114 pgste_set(ptep, pgste); 1115 } 1116 return pte; 1117} 1118 1119static inline void ptep_modify_prot_commit(struct mm_struct *mm, 1120 unsigned long address, 1121 pte_t *ptep, pte_t pte) 1122{ 1123 pgste_t pgste; 1124 1125 if (mm_has_pgste(mm)) { 1126 pgste = *(pgste_t *)(ptep + PTRS_PER_PTE); 1127 pgste_set_key(ptep, pgste, pte); 1128 pgste_set_pte(ptep, pte); 1129 pgste_set_unlock(ptep, pgste); 1130 } else 1131 *ptep = pte; 1132} 1133 1134#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1135static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1136 unsigned long address, pte_t *ptep) 1137{ 1138 pgste_t pgste; 1139 pte_t pte; 1140 1141 if (mm_has_pgste(vma->vm_mm)) { 1142 pgste = pgste_get_lock(ptep); 1143 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); 1144 } 1145 1146 pte = *ptep; 1147 __ptep_ipte(address, ptep); 1148 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 1149 1150 if (mm_has_pgste(vma->vm_mm)) { 1151 pgste = pgste_update_all(&pte, pgste); 1152 pgste_set_unlock(ptep, pgste); 1153 } 1154 return pte; 1155} 1156 1157/* 1158 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1159 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1160 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1161 * cannot be accessed while the batched unmap is running. In this case 1162 * full==1 and a simple pte_clear is enough. See tlb.h. 1163 */ 1164#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1165static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1166 unsigned long address, 1167 pte_t *ptep, int full) 1168{ 1169 pgste_t pgste; 1170 pte_t pte; 1171 1172 if (mm_has_pgste(mm)) { 1173 pgste = pgste_get_lock(ptep); 1174 if (!full) 1175 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1176 } 1177 1178 pte = *ptep; 1179 if (!full) 1180 __ptep_ipte(address, ptep); 1181 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 1182 1183 if (mm_has_pgste(mm)) { 1184 pgste = pgste_update_all(&pte, pgste); 1185 pgste_set_unlock(ptep, pgste); 1186 } 1187 return pte; 1188} 1189 1190#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1191static inline pte_t ptep_set_wrprotect(struct mm_struct *mm, 1192 unsigned long address, pte_t *ptep) 1193{ 1194 pgste_t pgste; 1195 pte_t pte = *ptep; 1196 1197 if (pte_write(pte)) { 1198 mm->context.flush_mm = 1; 1199 if (mm_has_pgste(mm)) { 1200 pgste = pgste_get_lock(ptep); 1201 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1202 } 1203 1204 if (!mm_exclusive(mm)) 1205 __ptep_ipte(address, ptep); 1206 pte = pte_wrprotect(pte); 1207 1208 if (mm_has_pgste(mm)) { 1209 pgste_set_pte(ptep, pte); 1210 pgste_set_unlock(ptep, pgste); 1211 } else 1212 *ptep = pte; 1213 } 1214 return pte; 1215} 1216 1217#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1218static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1219 unsigned long address, pte_t *ptep, 1220 pte_t entry, int dirty) 1221{ 1222 pgste_t pgste; 1223 1224 if (pte_same(*ptep, entry)) 1225 return 0; 1226 if (mm_has_pgste(vma->vm_mm)) { 1227 pgste = pgste_get_lock(ptep); 1228 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); 1229 } 1230 1231 __ptep_ipte(address, ptep); 1232 1233 if (mm_has_pgste(vma->vm_mm)) { 1234 pgste_set_pte(ptep, entry); 1235 pgste_set_unlock(ptep, pgste); 1236 } else 1237 *ptep = entry; 1238 return 1; 1239} 1240 1241/* 1242 * Conversion functions: convert a page and protection to a page entry, 1243 * and a page entry and page directory to the page they refer to. 1244 */ 1245static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1246{ 1247 pte_t __pte; 1248 pte_val(__pte) = physpage + pgprot_val(pgprot); 1249 return __pte; 1250} 1251 1252static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1253{ 1254 unsigned long physpage = page_to_phys(page); 1255 pte_t __pte = mk_pte_phys(physpage, pgprot); 1256 1257 if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) { 1258 pte_val(__pte) |= _PAGE_SWC; 1259 pte_val(__pte) &= ~_PAGE_RO; 1260 } 1261 return __pte; 1262} 1263 1264#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1265#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1266#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1267#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1268 1269#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 1270#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1271 1272#ifndef CONFIG_64BIT 1273 1274#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1275#define pud_deref(pmd) ({ BUG(); 0UL; }) 1276#define pgd_deref(pmd) ({ BUG(); 0UL; }) 1277 1278#define pud_offset(pgd, address) ((pud_t *) pgd) 1279#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address)) 1280 1281#else /* CONFIG_64BIT */ 1282 1283#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1284#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1285#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1286 1287static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 1288{ 1289 pud_t *pud = (pud_t *) pgd; 1290 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 1291 pud = (pud_t *) pgd_deref(*pgd); 1292 return pud + pud_index(address); 1293} 1294 1295static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1296{ 1297 pmd_t *pmd = (pmd_t *) pud; 1298 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 1299 pmd = (pmd_t *) pud_deref(*pud); 1300 return pmd + pmd_index(address); 1301} 1302 1303#endif /* CONFIG_64BIT */ 1304 1305#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1306#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1307#define pte_page(x) pfn_to_page(pte_pfn(x)) 1308 1309#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 1310 1311/* Find an entry in the lowest level page table.. */ 1312#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 1313#define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 1314#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1315#define pte_unmap(pte) do { } while (0) 1316 1317static inline void __pmd_idte(unsigned long address, pmd_t *pmdp) 1318{ 1319 unsigned long sto = (unsigned long) pmdp - 1320 pmd_index(address) * sizeof(pmd_t); 1321 1322 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) { 1323 asm volatile( 1324 " .insn rrf,0xb98e0000,%2,%3,0,0" 1325 : "=m" (*pmdp) 1326 : "m" (*pmdp), "a" (sto), 1327 "a" ((address & HPAGE_MASK)) 1328 : "cc" 1329 ); 1330 } 1331} 1332 1333#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1334static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1335{ 1336 /* 1337 * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx) 1338 * Convert to segment table entry format. 1339 */ 1340 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1341 return pgprot_val(SEGMENT_NONE); 1342 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1343 return pgprot_val(SEGMENT_RO); 1344 return pgprot_val(SEGMENT_RW); 1345} 1346 1347static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1348{ 1349 pmd_val(pmd) &= _SEGMENT_CHG_MASK; 1350 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1351 return pmd; 1352} 1353 1354static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1355{ 1356 pmd_t __pmd; 1357 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1358 return __pmd; 1359} 1360 1361static inline pmd_t pmd_mkwrite(pmd_t pmd) 1362{ 1363 /* Do not clobber _HPAGE_TYPE_NONE pages! */ 1364 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV)) 1365 pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO; 1366 return pmd; 1367} 1368#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1369 1370#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1371 1372#define __HAVE_ARCH_PGTABLE_DEPOSIT 1373extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable); 1374 1375#define __HAVE_ARCH_PGTABLE_WITHDRAW 1376extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm); 1377 1378static inline int pmd_trans_splitting(pmd_t pmd) 1379{ 1380 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT; 1381} 1382 1383static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1384 pmd_t *pmdp, pmd_t entry) 1385{ 1386 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1) 1387 pmd_val(entry) |= _SEGMENT_ENTRY_CO; 1388 *pmdp = entry; 1389} 1390 1391static inline pmd_t pmd_mkhuge(pmd_t pmd) 1392{ 1393 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1394 return pmd; 1395} 1396 1397static inline pmd_t pmd_wrprotect(pmd_t pmd) 1398{ 1399 pmd_val(pmd) |= _SEGMENT_ENTRY_RO; 1400 return pmd; 1401} 1402 1403static inline pmd_t pmd_mkdirty(pmd_t pmd) 1404{ 1405 /* No dirty bit in the segment table entry. */ 1406 return pmd; 1407} 1408 1409static inline pmd_t pmd_mkold(pmd_t pmd) 1410{ 1411 /* No referenced bit in the segment table entry. */ 1412 return pmd; 1413} 1414 1415static inline pmd_t pmd_mkyoung(pmd_t pmd) 1416{ 1417 /* No referenced bit in the segment table entry. */ 1418 return pmd; 1419} 1420 1421#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1422static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1423 unsigned long address, pmd_t *pmdp) 1424{ 1425 unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK; 1426 long tmp, rc; 1427 int counter; 1428 1429 rc = 0; 1430 if (MACHINE_HAS_RRBM) { 1431 counter = PTRS_PER_PTE >> 6; 1432 asm volatile( 1433 "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */ 1434 " ogr %1,%0\n" 1435 " la %3,0(%4,%3)\n" 1436 " brct %2,0b\n" 1437 : "=&d" (tmp), "+&d" (rc), "+d" (counter), 1438 "+a" (pmd_addr) 1439 : "a" (64 * 4096UL) : "cc"); 1440 rc = !!rc; 1441 } else { 1442 counter = PTRS_PER_PTE; 1443 asm volatile( 1444 "0: rrbe 0,%2\n" 1445 " la %2,0(%3,%2)\n" 1446 " brc 12,1f\n" 1447 " lhi %0,1\n" 1448 "1: brct %1,0b\n" 1449 : "+d" (rc), "+d" (counter), "+a" (pmd_addr) 1450 : "a" (4096UL) : "cc"); 1451 } 1452 return rc; 1453} 1454 1455#define __HAVE_ARCH_PMDP_GET_AND_CLEAR 1456static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 1457 unsigned long address, pmd_t *pmdp) 1458{ 1459 pmd_t pmd = *pmdp; 1460 1461 __pmd_idte(address, pmdp); 1462 pmd_clear(pmdp); 1463 return pmd; 1464} 1465 1466#define __HAVE_ARCH_PMDP_CLEAR_FLUSH 1467static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma, 1468 unsigned long address, pmd_t *pmdp) 1469{ 1470 return pmdp_get_and_clear(vma->vm_mm, address, pmdp); 1471} 1472 1473#define __HAVE_ARCH_PMDP_INVALIDATE 1474static inline void pmdp_invalidate(struct vm_area_struct *vma, 1475 unsigned long address, pmd_t *pmdp) 1476{ 1477 __pmd_idte(address, pmdp); 1478} 1479 1480#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1481static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1482 unsigned long address, pmd_t *pmdp) 1483{ 1484 pmd_t pmd = *pmdp; 1485 1486 if (pmd_write(pmd)) { 1487 __pmd_idte(address, pmdp); 1488 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd)); 1489 } 1490} 1491 1492#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1493#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1494 1495static inline int pmd_trans_huge(pmd_t pmd) 1496{ 1497 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1498} 1499 1500static inline int has_transparent_hugepage(void) 1501{ 1502 return MACHINE_HAS_HPAGE ? 1 : 0; 1503} 1504 1505static inline unsigned long pmd_pfn(pmd_t pmd) 1506{ 1507 return pmd_val(pmd) >> PAGE_SHIFT; 1508} 1509#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1510 1511/* 1512 * 31 bit swap entry format: 1513 * A page-table entry has some bits we have to treat in a special way. 1514 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 1515 * exception will occur instead of a page translation exception. The 1516 * specifiation exception has the bad habit not to store necessary 1517 * information in the lowcore. 1518 * Bit 21 and bit 22 are the page invalid bit and the page protection 1519 * bit. We set both to indicate a swapped page. 1520 * Bit 30 and 31 are used to distinguish the different page types. For 1521 * a swapped page these bits need to be zero. 1522 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 1523 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 1524 * plus 24 for the offset. 1525 * 0| offset |0110|o|type |00| 1526 * 0 0000000001111111111 2222 2 22222 33 1527 * 0 1234567890123456789 0123 4 56789 01 1528 * 1529 * 64 bit swap entry format: 1530 * A page-table entry has some bits we have to treat in a special way. 1531 * Bits 52 and bit 55 have to be zero, otherwise an specification 1532 * exception will occur instead of a page translation exception. The 1533 * specifiation exception has the bad habit not to store necessary 1534 * information in the lowcore. 1535 * Bit 53 and bit 54 are the page invalid bit and the page protection 1536 * bit. We set both to indicate a swapped page. 1537 * Bit 62 and 63 are used to distinguish the different page types. For 1538 * a swapped page these bits need to be zero. 1539 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 1540 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 1541 * plus 56 for the offset. 1542 * | offset |0110|o|type |00| 1543 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 1544 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 1545 */ 1546#ifndef CONFIG_64BIT 1547#define __SWP_OFFSET_MASK (~0UL >> 12) 1548#else 1549#define __SWP_OFFSET_MASK (~0UL >> 11) 1550#endif 1551static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1552{ 1553 pte_t pte; 1554 offset &= __SWP_OFFSET_MASK; 1555 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | 1556 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 1557 return pte; 1558} 1559 1560#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 1561#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 1562#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 1563 1564#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1565#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1566 1567#ifndef CONFIG_64BIT 1568# define PTE_FILE_MAX_BITS 26 1569#else /* CONFIG_64BIT */ 1570# define PTE_FILE_MAX_BITS 59 1571#endif /* CONFIG_64BIT */ 1572 1573#define pte_to_pgoff(__pte) \ 1574 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 1575 1576#define pgoff_to_pte(__off) \ 1577 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 1578 | _PAGE_TYPE_FILE }) 1579 1580#endif /* !__ASSEMBLY__ */ 1581 1582#define kern_addr_valid(addr) (1) 1583 1584extern int vmem_add_mapping(unsigned long start, unsigned long size); 1585extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1586extern int s390_enable_sie(void); 1587 1588/* 1589 * No page table caches to initialise 1590 */ 1591static inline void pgtable_cache_init(void) { } 1592static inline void check_pgt_cache(void) { } 1593 1594#include <asm-generic/pgtable.h> 1595 1596#endif /* _S390_PAGE_H */