at v3.10-rc3 36 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <linux/types.h> 29 30 31/* 32 * Implementation of host controlled snapshot of the guest. 33 */ 34 35#define VSS_OP_REGISTER 128 36 37enum hv_vss_op { 38 VSS_OP_CREATE = 0, 39 VSS_OP_DELETE, 40 VSS_OP_HOT_BACKUP, 41 VSS_OP_GET_DM_INFO, 42 VSS_OP_BU_COMPLETE, 43 /* 44 * Following operations are only supported with IC version >= 5.0 45 */ 46 VSS_OP_FREEZE, /* Freeze the file systems in the VM */ 47 VSS_OP_THAW, /* Unfreeze the file systems */ 48 VSS_OP_AUTO_RECOVER, 49 VSS_OP_COUNT /* Number of operations, must be last */ 50}; 51 52 53/* 54 * Header for all VSS messages. 55 */ 56struct hv_vss_hdr { 57 __u8 operation; 58 __u8 reserved[7]; 59} __attribute__((packed)); 60 61 62/* 63 * Flag values for the hv_vss_check_feature. Linux supports only 64 * one value. 65 */ 66#define VSS_HBU_NO_AUTO_RECOVERY 0x00000005 67 68struct hv_vss_check_feature { 69 __u32 flags; 70} __attribute__((packed)); 71 72struct hv_vss_check_dm_info { 73 __u32 flags; 74} __attribute__((packed)); 75 76struct hv_vss_msg { 77 union { 78 struct hv_vss_hdr vss_hdr; 79 int error; 80 }; 81 union { 82 struct hv_vss_check_feature vss_cf; 83 struct hv_vss_check_dm_info dm_info; 84 }; 85} __attribute__((packed)); 86 87/* 88 * An implementation of HyperV key value pair (KVP) functionality for Linux. 89 * 90 * 91 * Copyright (C) 2010, Novell, Inc. 92 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 93 * 94 */ 95 96/* 97 * Maximum value size - used for both key names and value data, and includes 98 * any applicable NULL terminators. 99 * 100 * Note: This limit is somewhat arbitrary, but falls easily within what is 101 * supported for all native guests (back to Win 2000) and what is reasonable 102 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 103 * limited to 255 character key names. 104 * 105 * MSDN recommends not storing data values larger than 2048 bytes in the 106 * registry. 107 * 108 * Note: This value is used in defining the KVP exchange message - this value 109 * cannot be modified without affecting the message size and compatibility. 110 */ 111 112/* 113 * bytes, including any null terminators 114 */ 115#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 116 117 118/* 119 * Maximum key size - the registry limit for the length of an entry name 120 * is 256 characters, including the null terminator 121 */ 122 123#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 124 125/* 126 * In Linux, we implement the KVP functionality in two components: 127 * 1) The kernel component which is packaged as part of the hv_utils driver 128 * is responsible for communicating with the host and responsible for 129 * implementing the host/guest protocol. 2) A user level daemon that is 130 * responsible for data gathering. 131 * 132 * Host/Guest Protocol: The host iterates over an index and expects the guest 133 * to assign a key name to the index and also return the value corresponding to 134 * the key. The host will have atmost one KVP transaction outstanding at any 135 * given point in time. The host side iteration stops when the guest returns 136 * an error. Microsoft has specified the following mapping of key names to 137 * host specified index: 138 * 139 * Index Key Name 140 * 0 FullyQualifiedDomainName 141 * 1 IntegrationServicesVersion 142 * 2 NetworkAddressIPv4 143 * 3 NetworkAddressIPv6 144 * 4 OSBuildNumber 145 * 5 OSName 146 * 6 OSMajorVersion 147 * 7 OSMinorVersion 148 * 8 OSVersion 149 * 9 ProcessorArchitecture 150 * 151 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 152 * 153 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 154 * data gathering functionality in a user mode daemon. The user level daemon 155 * is also responsible for binding the key name to the index as well. The 156 * kernel and user-level daemon communicate using a connector channel. 157 * 158 * The user mode component first registers with the 159 * the kernel component. Subsequently, the kernel component requests, data 160 * for the specified keys. In response to this message the user mode component 161 * fills in the value corresponding to the specified key. We overload the 162 * sequence field in the cn_msg header to define our KVP message types. 163 * 164 * 165 * The kernel component simply acts as a conduit for communication between the 166 * Windows host and the user-level daemon. The kernel component passes up the 167 * index received from the Host to the user-level daemon. If the index is 168 * valid (supported), the corresponding key as well as its 169 * value (both are strings) is returned. If the index is invalid 170 * (not supported), a NULL key string is returned. 171 */ 172 173 174/* 175 * Registry value types. 176 */ 177 178#define REG_SZ 1 179#define REG_U32 4 180#define REG_U64 8 181 182/* 183 * As we look at expanding the KVP functionality to include 184 * IP injection functionality, we need to maintain binary 185 * compatibility with older daemons. 186 * 187 * The KVP opcodes are defined by the host and it was unfortunate 188 * that I chose to treat the registration operation as part of the 189 * KVP operations defined by the host. 190 * Here is the level of compatibility 191 * (between the user level daemon and the kernel KVP driver) that we 192 * will implement: 193 * 194 * An older daemon will always be supported on a newer driver. 195 * A given user level daemon will require a minimal version of the 196 * kernel driver. 197 * If we cannot handle the version differences, we will fail gracefully 198 * (this can happen when we have a user level daemon that is more 199 * advanced than the KVP driver. 200 * 201 * We will use values used in this handshake for determining if we have 202 * workable user level daemon and the kernel driver. We begin by taking the 203 * registration opcode out of the KVP opcode namespace. We will however, 204 * maintain compatibility with the existing user-level daemon code. 205 */ 206 207/* 208 * Daemon code not supporting IP injection (legacy daemon). 209 */ 210 211#define KVP_OP_REGISTER 4 212 213/* 214 * Daemon code supporting IP injection. 215 * The KVP opcode field is used to communicate the 216 * registration information; so define a namespace that 217 * will be distinct from the host defined KVP opcode. 218 */ 219 220#define KVP_OP_REGISTER1 100 221 222enum hv_kvp_exchg_op { 223 KVP_OP_GET = 0, 224 KVP_OP_SET, 225 KVP_OP_DELETE, 226 KVP_OP_ENUMERATE, 227 KVP_OP_GET_IP_INFO, 228 KVP_OP_SET_IP_INFO, 229 KVP_OP_COUNT /* Number of operations, must be last. */ 230}; 231 232enum hv_kvp_exchg_pool { 233 KVP_POOL_EXTERNAL = 0, 234 KVP_POOL_GUEST, 235 KVP_POOL_AUTO, 236 KVP_POOL_AUTO_EXTERNAL, 237 KVP_POOL_AUTO_INTERNAL, 238 KVP_POOL_COUNT /* Number of pools, must be last. */ 239}; 240 241/* 242 * Some Hyper-V status codes. 243 */ 244 245#define HV_S_OK 0x00000000 246#define HV_E_FAIL 0x80004005 247#define HV_S_CONT 0x80070103 248#define HV_ERROR_NOT_SUPPORTED 0x80070032 249#define HV_ERROR_MACHINE_LOCKED 0x800704F7 250#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 251#define HV_INVALIDARG 0x80070057 252#define HV_GUID_NOTFOUND 0x80041002 253 254#define ADDR_FAMILY_NONE 0x00 255#define ADDR_FAMILY_IPV4 0x01 256#define ADDR_FAMILY_IPV6 0x02 257 258#define MAX_ADAPTER_ID_SIZE 128 259#define MAX_IP_ADDR_SIZE 1024 260#define MAX_GATEWAY_SIZE 512 261 262 263struct hv_kvp_ipaddr_value { 264 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 265 __u8 addr_family; 266 __u8 dhcp_enabled; 267 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 268 __u16 sub_net[MAX_IP_ADDR_SIZE]; 269 __u16 gate_way[MAX_GATEWAY_SIZE]; 270 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 271} __attribute__((packed)); 272 273 274struct hv_kvp_hdr { 275 __u8 operation; 276 __u8 pool; 277 __u16 pad; 278} __attribute__((packed)); 279 280struct hv_kvp_exchg_msg_value { 281 __u32 value_type; 282 __u32 key_size; 283 __u32 value_size; 284 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 285 union { 286 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 287 __u32 value_u32; 288 __u64 value_u64; 289 }; 290} __attribute__((packed)); 291 292struct hv_kvp_msg_enumerate { 293 __u32 index; 294 struct hv_kvp_exchg_msg_value data; 295} __attribute__((packed)); 296 297struct hv_kvp_msg_get { 298 struct hv_kvp_exchg_msg_value data; 299}; 300 301struct hv_kvp_msg_set { 302 struct hv_kvp_exchg_msg_value data; 303}; 304 305struct hv_kvp_msg_delete { 306 __u32 key_size; 307 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 308}; 309 310struct hv_kvp_register { 311 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 312}; 313 314struct hv_kvp_msg { 315 union { 316 struct hv_kvp_hdr kvp_hdr; 317 int error; 318 }; 319 union { 320 struct hv_kvp_msg_get kvp_get; 321 struct hv_kvp_msg_set kvp_set; 322 struct hv_kvp_msg_delete kvp_delete; 323 struct hv_kvp_msg_enumerate kvp_enum_data; 324 struct hv_kvp_ipaddr_value kvp_ip_val; 325 struct hv_kvp_register kvp_register; 326 } body; 327} __attribute__((packed)); 328 329struct hv_kvp_ip_msg { 330 __u8 operation; 331 __u8 pool; 332 struct hv_kvp_ipaddr_value kvp_ip_val; 333} __attribute__((packed)); 334 335#ifdef __KERNEL__ 336#include <linux/scatterlist.h> 337#include <linux/list.h> 338#include <linux/uuid.h> 339#include <linux/timer.h> 340#include <linux/workqueue.h> 341#include <linux/completion.h> 342#include <linux/device.h> 343#include <linux/mod_devicetable.h> 344 345 346#define MAX_PAGE_BUFFER_COUNT 19 347#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 348 349#pragma pack(push, 1) 350 351/* Single-page buffer */ 352struct hv_page_buffer { 353 u32 len; 354 u32 offset; 355 u64 pfn; 356}; 357 358/* Multiple-page buffer */ 359struct hv_multipage_buffer { 360 /* Length and Offset determines the # of pfns in the array */ 361 u32 len; 362 u32 offset; 363 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 364}; 365 366/* 0x18 includes the proprietary packet header */ 367#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 368 (sizeof(struct hv_page_buffer) * \ 369 MAX_PAGE_BUFFER_COUNT)) 370#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 371 sizeof(struct hv_multipage_buffer)) 372 373 374#pragma pack(pop) 375 376struct hv_ring_buffer { 377 /* Offset in bytes from the start of ring data below */ 378 u32 write_index; 379 380 /* Offset in bytes from the start of ring data below */ 381 u32 read_index; 382 383 u32 interrupt_mask; 384 385 /* 386 * Win8 uses some of the reserved bits to implement 387 * interrupt driven flow management. On the send side 388 * we can request that the receiver interrupt the sender 389 * when the ring transitions from being full to being able 390 * to handle a message of size "pending_send_sz". 391 * 392 * Add necessary state for this enhancement. 393 */ 394 u32 pending_send_sz; 395 396 u32 reserved1[12]; 397 398 union { 399 struct { 400 u32 feat_pending_send_sz:1; 401 }; 402 u32 value; 403 } feature_bits; 404 405 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 406 u8 reserved2[4028]; 407 408 /* 409 * Ring data starts here + RingDataStartOffset 410 * !!! DO NOT place any fields below this !!! 411 */ 412 u8 buffer[0]; 413} __packed; 414 415struct hv_ring_buffer_info { 416 struct hv_ring_buffer *ring_buffer; 417 u32 ring_size; /* Include the shared header */ 418 spinlock_t ring_lock; 419 420 u32 ring_datasize; /* < ring_size */ 421 u32 ring_data_startoffset; 422}; 423 424struct hv_ring_buffer_debug_info { 425 u32 current_interrupt_mask; 426 u32 current_read_index; 427 u32 current_write_index; 428 u32 bytes_avail_toread; 429 u32 bytes_avail_towrite; 430}; 431 432 433/* 434 * 435 * hv_get_ringbuffer_availbytes() 436 * 437 * Get number of bytes available to read and to write to 438 * for the specified ring buffer 439 */ 440static inline void 441hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 442 u32 *read, u32 *write) 443{ 444 u32 read_loc, write_loc, dsize; 445 446 smp_read_barrier_depends(); 447 448 /* Capture the read/write indices before they changed */ 449 read_loc = rbi->ring_buffer->read_index; 450 write_loc = rbi->ring_buffer->write_index; 451 dsize = rbi->ring_datasize; 452 453 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 454 read_loc - write_loc; 455 *read = dsize - *write; 456} 457 458 459/* 460 * We use the same version numbering for all Hyper-V modules. 461 * 462 * Definition of versioning is as follows; 463 * 464 * Major Number Changes for these scenarios; 465 * 1. When a new version of Windows Hyper-V 466 * is released. 467 * 2. A Major change has occurred in the 468 * Linux IC's. 469 * (For example the merge for the first time 470 * into the kernel) Every time the Major Number 471 * changes, the Revision number is reset to 0. 472 * Minor Number Changes when new functionality is added 473 * to the Linux IC's that is not a bug fix. 474 * 475 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync 476 */ 477#define HV_DRV_VERSION "3.1" 478 479/* 480 * VMBUS version is 32 bit entity broken up into 481 * two 16 bit quantities: major_number. minor_number. 482 * 483 * 0 . 13 (Windows Server 2008) 484 * 1 . 1 (Windows 7) 485 * 2 . 4 (Windows 8) 486 */ 487 488#define VERSION_WS2008 ((0 << 16) | (13)) 489#define VERSION_WIN7 ((1 << 16) | (1)) 490#define VERSION_WIN8 ((2 << 16) | (4)) 491 492#define VERSION_INVAL -1 493 494#define VERSION_CURRENT VERSION_WIN8 495 496/* Make maximum size of pipe payload of 16K */ 497#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 498 499/* Define PipeMode values. */ 500#define VMBUS_PIPE_TYPE_BYTE 0x00000000 501#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 502 503/* The size of the user defined data buffer for non-pipe offers. */ 504#define MAX_USER_DEFINED_BYTES 120 505 506/* The size of the user defined data buffer for pipe offers. */ 507#define MAX_PIPE_USER_DEFINED_BYTES 116 508 509/* 510 * At the center of the Channel Management library is the Channel Offer. This 511 * struct contains the fundamental information about an offer. 512 */ 513struct vmbus_channel_offer { 514 uuid_le if_type; 515 uuid_le if_instance; 516 517 /* 518 * These two fields are not currently used. 519 */ 520 u64 reserved1; 521 u64 reserved2; 522 523 u16 chn_flags; 524 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 525 526 union { 527 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 528 struct { 529 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 530 } std; 531 532 /* 533 * Pipes: 534 * The following sructure is an integrated pipe protocol, which 535 * is implemented on top of standard user-defined data. Pipe 536 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 537 * use. 538 */ 539 struct { 540 u32 pipe_mode; 541 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 542 } pipe; 543 } u; 544 /* 545 * The sub_channel_index is defined in win8. 546 */ 547 u16 sub_channel_index; 548 u16 reserved3; 549} __packed; 550 551/* Server Flags */ 552#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 553#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 554#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 555#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 556#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 557#define VMBUS_CHANNEL_PARENT_OFFER 0x200 558#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 559 560struct vmpacket_descriptor { 561 u16 type; 562 u16 offset8; 563 u16 len8; 564 u16 flags; 565 u64 trans_id; 566} __packed; 567 568struct vmpacket_header { 569 u32 prev_pkt_start_offset; 570 struct vmpacket_descriptor descriptor; 571} __packed; 572 573struct vmtransfer_page_range { 574 u32 byte_count; 575 u32 byte_offset; 576} __packed; 577 578struct vmtransfer_page_packet_header { 579 struct vmpacket_descriptor d; 580 u16 xfer_pageset_id; 581 u8 sender_owns_set; 582 u8 reserved; 583 u32 range_cnt; 584 struct vmtransfer_page_range ranges[1]; 585} __packed; 586 587struct vmgpadl_packet_header { 588 struct vmpacket_descriptor d; 589 u32 gpadl; 590 u32 reserved; 591} __packed; 592 593struct vmadd_remove_transfer_page_set { 594 struct vmpacket_descriptor d; 595 u32 gpadl; 596 u16 xfer_pageset_id; 597 u16 reserved; 598} __packed; 599 600/* 601 * This structure defines a range in guest physical space that can be made to 602 * look virtually contiguous. 603 */ 604struct gpa_range { 605 u32 byte_count; 606 u32 byte_offset; 607 u64 pfn_array[0]; 608}; 609 610/* 611 * This is the format for an Establish Gpadl packet, which contains a handle by 612 * which this GPADL will be known and a set of GPA ranges associated with it. 613 * This can be converted to a MDL by the guest OS. If there are multiple GPA 614 * ranges, then the resulting MDL will be "chained," representing multiple VA 615 * ranges. 616 */ 617struct vmestablish_gpadl { 618 struct vmpacket_descriptor d; 619 u32 gpadl; 620 u32 range_cnt; 621 struct gpa_range range[1]; 622} __packed; 623 624/* 625 * This is the format for a Teardown Gpadl packet, which indicates that the 626 * GPADL handle in the Establish Gpadl packet will never be referenced again. 627 */ 628struct vmteardown_gpadl { 629 struct vmpacket_descriptor d; 630 u32 gpadl; 631 u32 reserved; /* for alignment to a 8-byte boundary */ 632} __packed; 633 634/* 635 * This is the format for a GPA-Direct packet, which contains a set of GPA 636 * ranges, in addition to commands and/or data. 637 */ 638struct vmdata_gpa_direct { 639 struct vmpacket_descriptor d; 640 u32 reserved; 641 u32 range_cnt; 642 struct gpa_range range[1]; 643} __packed; 644 645/* This is the format for a Additional Data Packet. */ 646struct vmadditional_data { 647 struct vmpacket_descriptor d; 648 u64 total_bytes; 649 u32 offset; 650 u32 byte_cnt; 651 unsigned char data[1]; 652} __packed; 653 654union vmpacket_largest_possible_header { 655 struct vmpacket_descriptor simple_hdr; 656 struct vmtransfer_page_packet_header xfer_page_hdr; 657 struct vmgpadl_packet_header gpadl_hdr; 658 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 659 struct vmestablish_gpadl establish_gpadl_hdr; 660 struct vmteardown_gpadl teardown_gpadl_hdr; 661 struct vmdata_gpa_direct data_gpa_direct_hdr; 662}; 663 664#define VMPACKET_DATA_START_ADDRESS(__packet) \ 665 (void *)(((unsigned char *)__packet) + \ 666 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 667 668#define VMPACKET_DATA_LENGTH(__packet) \ 669 ((((struct vmpacket_descriptor)__packet)->len8 - \ 670 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 671 672#define VMPACKET_TRANSFER_MODE(__packet) \ 673 (((struct IMPACT)__packet)->type) 674 675enum vmbus_packet_type { 676 VM_PKT_INVALID = 0x0, 677 VM_PKT_SYNCH = 0x1, 678 VM_PKT_ADD_XFER_PAGESET = 0x2, 679 VM_PKT_RM_XFER_PAGESET = 0x3, 680 VM_PKT_ESTABLISH_GPADL = 0x4, 681 VM_PKT_TEARDOWN_GPADL = 0x5, 682 VM_PKT_DATA_INBAND = 0x6, 683 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 684 VM_PKT_DATA_USING_GPADL = 0x8, 685 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 686 VM_PKT_CANCEL_REQUEST = 0xa, 687 VM_PKT_COMP = 0xb, 688 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 689 VM_PKT_ADDITIONAL_DATA = 0xd 690}; 691 692#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 693 694 695/* Version 1 messages */ 696enum vmbus_channel_message_type { 697 CHANNELMSG_INVALID = 0, 698 CHANNELMSG_OFFERCHANNEL = 1, 699 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 700 CHANNELMSG_REQUESTOFFERS = 3, 701 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 702 CHANNELMSG_OPENCHANNEL = 5, 703 CHANNELMSG_OPENCHANNEL_RESULT = 6, 704 CHANNELMSG_CLOSECHANNEL = 7, 705 CHANNELMSG_GPADL_HEADER = 8, 706 CHANNELMSG_GPADL_BODY = 9, 707 CHANNELMSG_GPADL_CREATED = 10, 708 CHANNELMSG_GPADL_TEARDOWN = 11, 709 CHANNELMSG_GPADL_TORNDOWN = 12, 710 CHANNELMSG_RELID_RELEASED = 13, 711 CHANNELMSG_INITIATE_CONTACT = 14, 712 CHANNELMSG_VERSION_RESPONSE = 15, 713 CHANNELMSG_UNLOAD = 16, 714#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 715 CHANNELMSG_VIEWRANGE_ADD = 17, 716 CHANNELMSG_VIEWRANGE_REMOVE = 18, 717#endif 718 CHANNELMSG_COUNT 719}; 720 721struct vmbus_channel_message_header { 722 enum vmbus_channel_message_type msgtype; 723 u32 padding; 724} __packed; 725 726/* Query VMBus Version parameters */ 727struct vmbus_channel_query_vmbus_version { 728 struct vmbus_channel_message_header header; 729 u32 version; 730} __packed; 731 732/* VMBus Version Supported parameters */ 733struct vmbus_channel_version_supported { 734 struct vmbus_channel_message_header header; 735 u8 version_supported; 736} __packed; 737 738/* Offer Channel parameters */ 739struct vmbus_channel_offer_channel { 740 struct vmbus_channel_message_header header; 741 struct vmbus_channel_offer offer; 742 u32 child_relid; 743 u8 monitorid; 744 /* 745 * win7 and beyond splits this field into a bit field. 746 */ 747 u8 monitor_allocated:1; 748 u8 reserved:7; 749 /* 750 * These are new fields added in win7 and later. 751 * Do not access these fields without checking the 752 * negotiated protocol. 753 * 754 * If "is_dedicated_interrupt" is set, we must not set the 755 * associated bit in the channel bitmap while sending the 756 * interrupt to the host. 757 * 758 * connection_id is to be used in signaling the host. 759 */ 760 u16 is_dedicated_interrupt:1; 761 u16 reserved1:15; 762 u32 connection_id; 763} __packed; 764 765/* Rescind Offer parameters */ 766struct vmbus_channel_rescind_offer { 767 struct vmbus_channel_message_header header; 768 u32 child_relid; 769} __packed; 770 771/* 772 * Request Offer -- no parameters, SynIC message contains the partition ID 773 * Set Snoop -- no parameters, SynIC message contains the partition ID 774 * Clear Snoop -- no parameters, SynIC message contains the partition ID 775 * All Offers Delivered -- no parameters, SynIC message contains the partition 776 * ID 777 * Flush Client -- no parameters, SynIC message contains the partition ID 778 */ 779 780/* Open Channel parameters */ 781struct vmbus_channel_open_channel { 782 struct vmbus_channel_message_header header; 783 784 /* Identifies the specific VMBus channel that is being opened. */ 785 u32 child_relid; 786 787 /* ID making a particular open request at a channel offer unique. */ 788 u32 openid; 789 790 /* GPADL for the channel's ring buffer. */ 791 u32 ringbuffer_gpadlhandle; 792 793 /* 794 * Starting with win8, this field will be used to specify 795 * the target virtual processor on which to deliver the interrupt for 796 * the host to guest communication. 797 * Prior to win8, incoming channel interrupts would only 798 * be delivered on cpu 0. Setting this value to 0 would 799 * preserve the earlier behavior. 800 */ 801 u32 target_vp; 802 803 /* 804 * The upstream ring buffer begins at offset zero in the memory 805 * described by RingBufferGpadlHandle. The downstream ring buffer 806 * follows it at this offset (in pages). 807 */ 808 u32 downstream_ringbuffer_pageoffset; 809 810 /* User-specific data to be passed along to the server endpoint. */ 811 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 812} __packed; 813 814/* Open Channel Result parameters */ 815struct vmbus_channel_open_result { 816 struct vmbus_channel_message_header header; 817 u32 child_relid; 818 u32 openid; 819 u32 status; 820} __packed; 821 822/* Close channel parameters; */ 823struct vmbus_channel_close_channel { 824 struct vmbus_channel_message_header header; 825 u32 child_relid; 826} __packed; 827 828/* Channel Message GPADL */ 829#define GPADL_TYPE_RING_BUFFER 1 830#define GPADL_TYPE_SERVER_SAVE_AREA 2 831#define GPADL_TYPE_TRANSACTION 8 832 833/* 834 * The number of PFNs in a GPADL message is defined by the number of 835 * pages that would be spanned by ByteCount and ByteOffset. If the 836 * implied number of PFNs won't fit in this packet, there will be a 837 * follow-up packet that contains more. 838 */ 839struct vmbus_channel_gpadl_header { 840 struct vmbus_channel_message_header header; 841 u32 child_relid; 842 u32 gpadl; 843 u16 range_buflen; 844 u16 rangecount; 845 struct gpa_range range[0]; 846} __packed; 847 848/* This is the followup packet that contains more PFNs. */ 849struct vmbus_channel_gpadl_body { 850 struct vmbus_channel_message_header header; 851 u32 msgnumber; 852 u32 gpadl; 853 u64 pfn[0]; 854} __packed; 855 856struct vmbus_channel_gpadl_created { 857 struct vmbus_channel_message_header header; 858 u32 child_relid; 859 u32 gpadl; 860 u32 creation_status; 861} __packed; 862 863struct vmbus_channel_gpadl_teardown { 864 struct vmbus_channel_message_header header; 865 u32 child_relid; 866 u32 gpadl; 867} __packed; 868 869struct vmbus_channel_gpadl_torndown { 870 struct vmbus_channel_message_header header; 871 u32 gpadl; 872} __packed; 873 874#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 875struct vmbus_channel_view_range_add { 876 struct vmbus_channel_message_header header; 877 PHYSICAL_ADDRESS viewrange_base; 878 u64 viewrange_length; 879 u32 child_relid; 880} __packed; 881 882struct vmbus_channel_view_range_remove { 883 struct vmbus_channel_message_header header; 884 PHYSICAL_ADDRESS viewrange_base; 885 u32 child_relid; 886} __packed; 887#endif 888 889struct vmbus_channel_relid_released { 890 struct vmbus_channel_message_header header; 891 u32 child_relid; 892} __packed; 893 894struct vmbus_channel_initiate_contact { 895 struct vmbus_channel_message_header header; 896 u32 vmbus_version_requested; 897 u32 padding2; 898 u64 interrupt_page; 899 u64 monitor_page1; 900 u64 monitor_page2; 901} __packed; 902 903struct vmbus_channel_version_response { 904 struct vmbus_channel_message_header header; 905 u8 version_supported; 906} __packed; 907 908enum vmbus_channel_state { 909 CHANNEL_OFFER_STATE, 910 CHANNEL_OPENING_STATE, 911 CHANNEL_OPEN_STATE, 912}; 913 914struct vmbus_channel_debug_info { 915 u32 relid; 916 enum vmbus_channel_state state; 917 uuid_le interfacetype; 918 uuid_le interface_instance; 919 u32 monitorid; 920 u32 servermonitor_pending; 921 u32 servermonitor_latency; 922 u32 servermonitor_connectionid; 923 u32 clientmonitor_pending; 924 u32 clientmonitor_latency; 925 u32 clientmonitor_connectionid; 926 927 struct hv_ring_buffer_debug_info inbound; 928 struct hv_ring_buffer_debug_info outbound; 929}; 930 931/* 932 * Represents each channel msg on the vmbus connection This is a 933 * variable-size data structure depending on the msg type itself 934 */ 935struct vmbus_channel_msginfo { 936 /* Bookkeeping stuff */ 937 struct list_head msglistentry; 938 939 /* So far, this is only used to handle gpadl body message */ 940 struct list_head submsglist; 941 942 /* Synchronize the request/response if needed */ 943 struct completion waitevent; 944 union { 945 struct vmbus_channel_version_supported version_supported; 946 struct vmbus_channel_open_result open_result; 947 struct vmbus_channel_gpadl_torndown gpadl_torndown; 948 struct vmbus_channel_gpadl_created gpadl_created; 949 struct vmbus_channel_version_response version_response; 950 } response; 951 952 u32 msgsize; 953 /* 954 * The channel message that goes out on the "wire". 955 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 956 */ 957 unsigned char msg[0]; 958}; 959 960struct vmbus_close_msg { 961 struct vmbus_channel_msginfo info; 962 struct vmbus_channel_close_channel msg; 963}; 964 965/* Define connection identifier type. */ 966union hv_connection_id { 967 u32 asu32; 968 struct { 969 u32 id:24; 970 u32 reserved:8; 971 } u; 972}; 973 974/* Definition of the hv_signal_event hypercall input structure. */ 975struct hv_input_signal_event { 976 union hv_connection_id connectionid; 977 u16 flag_number; 978 u16 rsvdz; 979}; 980 981struct hv_input_signal_event_buffer { 982 u64 align8; 983 struct hv_input_signal_event event; 984}; 985 986struct vmbus_channel { 987 struct list_head listentry; 988 989 struct hv_device *device_obj; 990 991 struct work_struct work; 992 993 enum vmbus_channel_state state; 994 995 struct vmbus_channel_offer_channel offermsg; 996 /* 997 * These are based on the OfferMsg.MonitorId. 998 * Save it here for easy access. 999 */ 1000 u8 monitor_grp; 1001 u8 monitor_bit; 1002 1003 u32 ringbuffer_gpadlhandle; 1004 1005 /* Allocated memory for ring buffer */ 1006 void *ringbuffer_pages; 1007 u32 ringbuffer_pagecount; 1008 struct hv_ring_buffer_info outbound; /* send to parent */ 1009 struct hv_ring_buffer_info inbound; /* receive from parent */ 1010 spinlock_t inbound_lock; 1011 struct workqueue_struct *controlwq; 1012 1013 struct vmbus_close_msg close_msg; 1014 1015 /* Channel callback are invoked in this workqueue context */ 1016 /* HANDLE dataWorkQueue; */ 1017 1018 void (*onchannel_callback)(void *context); 1019 void *channel_callback_context; 1020 1021 /* 1022 * A channel can be marked for efficient (batched) 1023 * reading: 1024 * If batched_reading is set to "true", we read until the 1025 * channel is empty and hold off interrupts from the host 1026 * during the entire read process. 1027 * If batched_reading is set to "false", the client is not 1028 * going to perform batched reading. 1029 * 1030 * By default we will enable batched reading; specific 1031 * drivers that don't want this behavior can turn it off. 1032 */ 1033 1034 bool batched_reading; 1035 1036 bool is_dedicated_interrupt; 1037 struct hv_input_signal_event_buffer sig_buf; 1038 struct hv_input_signal_event *sig_event; 1039 1040 /* 1041 * Starting with win8, this field will be used to specify 1042 * the target virtual processor on which to deliver the interrupt for 1043 * the host to guest communication. 1044 * Prior to win8, incoming channel interrupts would only 1045 * be delivered on cpu 0. Setting this value to 0 would 1046 * preserve the earlier behavior. 1047 */ 1048 u32 target_vp; 1049}; 1050 1051static inline void set_channel_read_state(struct vmbus_channel *c, bool state) 1052{ 1053 c->batched_reading = state; 1054} 1055 1056void vmbus_onmessage(void *context); 1057 1058int vmbus_request_offers(void); 1059 1060/* The format must be the same as struct vmdata_gpa_direct */ 1061struct vmbus_channel_packet_page_buffer { 1062 u16 type; 1063 u16 dataoffset8; 1064 u16 length8; 1065 u16 flags; 1066 u64 transactionid; 1067 u32 reserved; 1068 u32 rangecount; 1069 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1070} __packed; 1071 1072/* The format must be the same as struct vmdata_gpa_direct */ 1073struct vmbus_channel_packet_multipage_buffer { 1074 u16 type; 1075 u16 dataoffset8; 1076 u16 length8; 1077 u16 flags; 1078 u64 transactionid; 1079 u32 reserved; 1080 u32 rangecount; /* Always 1 in this case */ 1081 struct hv_multipage_buffer range; 1082} __packed; 1083 1084 1085extern int vmbus_open(struct vmbus_channel *channel, 1086 u32 send_ringbuffersize, 1087 u32 recv_ringbuffersize, 1088 void *userdata, 1089 u32 userdatalen, 1090 void(*onchannel_callback)(void *context), 1091 void *context); 1092 1093extern void vmbus_close(struct vmbus_channel *channel); 1094 1095extern int vmbus_sendpacket(struct vmbus_channel *channel, 1096 const void *buffer, 1097 u32 bufferLen, 1098 u64 requestid, 1099 enum vmbus_packet_type type, 1100 u32 flags); 1101 1102extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1103 struct hv_page_buffer pagebuffers[], 1104 u32 pagecount, 1105 void *buffer, 1106 u32 bufferlen, 1107 u64 requestid); 1108 1109extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1110 struct hv_multipage_buffer *mpb, 1111 void *buffer, 1112 u32 bufferlen, 1113 u64 requestid); 1114 1115extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1116 void *kbuffer, 1117 u32 size, 1118 u32 *gpadl_handle); 1119 1120extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1121 u32 gpadl_handle); 1122 1123extern int vmbus_recvpacket(struct vmbus_channel *channel, 1124 void *buffer, 1125 u32 bufferlen, 1126 u32 *buffer_actual_len, 1127 u64 *requestid); 1128 1129extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1130 void *buffer, 1131 u32 bufferlen, 1132 u32 *buffer_actual_len, 1133 u64 *requestid); 1134 1135 1136extern void vmbus_get_debug_info(struct vmbus_channel *channel, 1137 struct vmbus_channel_debug_info *debug); 1138 1139extern void vmbus_ontimer(unsigned long data); 1140 1141struct hv_dev_port_info { 1142 u32 int_mask; 1143 u32 read_idx; 1144 u32 write_idx; 1145 u32 bytes_avail_toread; 1146 u32 bytes_avail_towrite; 1147}; 1148 1149/* Base driver object */ 1150struct hv_driver { 1151 const char *name; 1152 1153 /* the device type supported by this driver */ 1154 uuid_le dev_type; 1155 const struct hv_vmbus_device_id *id_table; 1156 1157 struct device_driver driver; 1158 1159 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1160 int (*remove)(struct hv_device *); 1161 void (*shutdown)(struct hv_device *); 1162 1163}; 1164 1165/* Base device object */ 1166struct hv_device { 1167 /* the device type id of this device */ 1168 uuid_le dev_type; 1169 1170 /* the device instance id of this device */ 1171 uuid_le dev_instance; 1172 1173 struct device device; 1174 1175 struct vmbus_channel *channel; 1176}; 1177 1178 1179static inline struct hv_device *device_to_hv_device(struct device *d) 1180{ 1181 return container_of(d, struct hv_device, device); 1182} 1183 1184static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1185{ 1186 return container_of(d, struct hv_driver, driver); 1187} 1188 1189static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1190{ 1191 dev_set_drvdata(&dev->device, data); 1192} 1193 1194static inline void *hv_get_drvdata(struct hv_device *dev) 1195{ 1196 return dev_get_drvdata(&dev->device); 1197} 1198 1199/* Vmbus interface */ 1200#define vmbus_driver_register(driver) \ 1201 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1202int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1203 struct module *owner, 1204 const char *mod_name); 1205void vmbus_driver_unregister(struct hv_driver *hv_driver); 1206 1207/** 1208 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device 1209 * 1210 * This macro is used to create a struct hv_vmbus_device_id that matches a 1211 * specific device. 1212 */ 1213#define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \ 1214 g8, g9, ga, gb, gc, gd, ge, gf) \ 1215 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \ 1216 g8, g9, ga, gb, gc, gd, ge, gf }, 1217 1218/* 1219 * GUID definitions of various offer types - services offered to the guest. 1220 */ 1221 1222/* 1223 * Network GUID 1224 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1225 */ 1226#define HV_NIC_GUID \ 1227 .guid = { \ 1228 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \ 1229 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \ 1230 } 1231 1232/* 1233 * IDE GUID 1234 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1235 */ 1236#define HV_IDE_GUID \ 1237 .guid = { \ 1238 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \ 1239 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \ 1240 } 1241 1242/* 1243 * SCSI GUID 1244 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1245 */ 1246#define HV_SCSI_GUID \ 1247 .guid = { \ 1248 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \ 1249 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \ 1250 } 1251 1252/* 1253 * Shutdown GUID 1254 * {0e0b6031-5213-4934-818b-38d90ced39db} 1255 */ 1256#define HV_SHUTDOWN_GUID \ 1257 .guid = { \ 1258 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \ 1259 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \ 1260 } 1261 1262/* 1263 * Time Synch GUID 1264 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1265 */ 1266#define HV_TS_GUID \ 1267 .guid = { \ 1268 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \ 1269 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \ 1270 } 1271 1272/* 1273 * Heartbeat GUID 1274 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1275 */ 1276#define HV_HEART_BEAT_GUID \ 1277 .guid = { \ 1278 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \ 1279 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \ 1280 } 1281 1282/* 1283 * KVP GUID 1284 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1285 */ 1286#define HV_KVP_GUID \ 1287 .guid = { \ 1288 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \ 1289 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \ 1290 } 1291 1292/* 1293 * Dynamic memory GUID 1294 * {525074dc-8985-46e2-8057-a307dc18a502} 1295 */ 1296#define HV_DM_GUID \ 1297 .guid = { \ 1298 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \ 1299 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \ 1300 } 1301 1302/* 1303 * Mouse GUID 1304 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1305 */ 1306#define HV_MOUSE_GUID \ 1307 .guid = { \ 1308 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \ 1309 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \ 1310 } 1311 1312/* 1313 * VSS (Backup/Restore) GUID 1314 */ 1315#define HV_VSS_GUID \ 1316 .guid = { \ 1317 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \ 1318 0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 \ 1319 } 1320/* 1321 * Synthetic Video GUID 1322 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1323 */ 1324#define HV_SYNTHVID_GUID \ 1325 .guid = { \ 1326 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \ 1327 0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \ 1328 } 1329 1330 1331/* 1332 * Common header for Hyper-V ICs 1333 */ 1334 1335#define ICMSGTYPE_NEGOTIATE 0 1336#define ICMSGTYPE_HEARTBEAT 1 1337#define ICMSGTYPE_KVPEXCHANGE 2 1338#define ICMSGTYPE_SHUTDOWN 3 1339#define ICMSGTYPE_TIMESYNC 4 1340#define ICMSGTYPE_VSS 5 1341 1342#define ICMSGHDRFLAG_TRANSACTION 1 1343#define ICMSGHDRFLAG_REQUEST 2 1344#define ICMSGHDRFLAG_RESPONSE 4 1345 1346 1347/* 1348 * While we want to handle util services as regular devices, 1349 * there is only one instance of each of these services; so 1350 * we statically allocate the service specific state. 1351 */ 1352 1353struct hv_util_service { 1354 u8 *recv_buffer; 1355 void (*util_cb)(void *); 1356 int (*util_init)(struct hv_util_service *); 1357 void (*util_deinit)(void); 1358}; 1359 1360struct vmbuspipe_hdr { 1361 u32 flags; 1362 u32 msgsize; 1363} __packed; 1364 1365struct ic_version { 1366 u16 major; 1367 u16 minor; 1368} __packed; 1369 1370struct icmsg_hdr { 1371 struct ic_version icverframe; 1372 u16 icmsgtype; 1373 struct ic_version icvermsg; 1374 u16 icmsgsize; 1375 u32 status; 1376 u8 ictransaction_id; 1377 u8 icflags; 1378 u8 reserved[2]; 1379} __packed; 1380 1381struct icmsg_negotiate { 1382 u16 icframe_vercnt; 1383 u16 icmsg_vercnt; 1384 u32 reserved; 1385 struct ic_version icversion_data[1]; /* any size array */ 1386} __packed; 1387 1388struct shutdown_msg_data { 1389 u32 reason_code; 1390 u32 timeout_seconds; 1391 u32 flags; 1392 u8 display_message[2048]; 1393} __packed; 1394 1395struct heartbeat_msg_data { 1396 u64 seq_num; 1397 u32 reserved[8]; 1398} __packed; 1399 1400/* Time Sync IC defs */ 1401#define ICTIMESYNCFLAG_PROBE 0 1402#define ICTIMESYNCFLAG_SYNC 1 1403#define ICTIMESYNCFLAG_SAMPLE 2 1404 1405#ifdef __x86_64__ 1406#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1407#else 1408#define WLTIMEDELTA 116444736000000000LL 1409#endif 1410 1411struct ictimesync_data { 1412 u64 parenttime; 1413 u64 childtime; 1414 u64 roundtriptime; 1415 u8 flags; 1416} __packed; 1417 1418struct hyperv_service_callback { 1419 u8 msg_type; 1420 char *log_msg; 1421 uuid_le data; 1422 struct vmbus_channel *channel; 1423 void (*callback) (void *context); 1424}; 1425 1426#define MAX_SRV_VER 0x7ffffff 1427extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1428 struct icmsg_negotiate *, u8 *, int, 1429 int); 1430 1431int hv_kvp_init(struct hv_util_service *); 1432void hv_kvp_deinit(void); 1433void hv_kvp_onchannelcallback(void *); 1434 1435int hv_vss_init(struct hv_util_service *); 1436void hv_vss_deinit(void); 1437void hv_vss_onchannelcallback(void *); 1438 1439/* 1440 * Negotiated version with the Host. 1441 */ 1442 1443extern __u32 vmbus_proto_version; 1444 1445#endif /* __KERNEL__ */ 1446#endif /* _HYPERV_H */