Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/kmemcheck.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/bug.h>
22#include <linux/cache.h>
23
24#include <linux/atomic.h>
25#include <asm/types.h>
26#include <linux/spinlock.h>
27#include <linux/net.h>
28#include <linux/textsearch.h>
29#include <net/checksum.h>
30#include <linux/rcupdate.h>
31#include <linux/dmaengine.h>
32#include <linux/hrtimer.h>
33#include <linux/dma-mapping.h>
34#include <linux/netdev_features.h>
35#include <net/flow_keys.h>
36
37/* Don't change this without changing skb_csum_unnecessary! */
38#define CHECKSUM_NONE 0
39#define CHECKSUM_UNNECESSARY 1
40#define CHECKSUM_COMPLETE 2
41#define CHECKSUM_PARTIAL 3
42
43#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
44 ~(SMP_CACHE_BYTES - 1))
45#define SKB_WITH_OVERHEAD(X) \
46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
47#define SKB_MAX_ORDER(X, ORDER) \
48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
49#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
50#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51
52/* return minimum truesize of one skb containing X bytes of data */
53#define SKB_TRUESIZE(X) ((X) + \
54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
56
57/* A. Checksumming of received packets by device.
58 *
59 * NONE: device failed to checksum this packet.
60 * skb->csum is undefined.
61 *
62 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
63 * skb->csum is undefined.
64 * It is bad option, but, unfortunately, many of vendors do this.
65 * Apparently with secret goal to sell you new device, when you
66 * will add new protocol to your host. F.e. IPv6. 8)
67 *
68 * COMPLETE: the most generic way. Device supplied checksum of _all_
69 * the packet as seen by netif_rx in skb->csum.
70 * NOTE: Even if device supports only some protocols, but
71 * is able to produce some skb->csum, it MUST use COMPLETE,
72 * not UNNECESSARY.
73 *
74 * PARTIAL: identical to the case for output below. This may occur
75 * on a packet received directly from another Linux OS, e.g.,
76 * a virtualised Linux kernel on the same host. The packet can
77 * be treated in the same way as UNNECESSARY except that on
78 * output (i.e., forwarding) the checksum must be filled in
79 * by the OS or the hardware.
80 *
81 * B. Checksumming on output.
82 *
83 * NONE: skb is checksummed by protocol or csum is not required.
84 *
85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
86 * from skb->csum_start to the end and to record the checksum
87 * at skb->csum_start + skb->csum_offset.
88 *
89 * Device must show its capabilities in dev->features, set
90 * at device setup time.
91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
92 * everything.
93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
94 * TCP/UDP over IPv4. Sigh. Vendors like this
95 * way by an unknown reason. Though, see comment above
96 * about CHECKSUM_UNNECESSARY. 8)
97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
98 *
99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
100 * that do not want net to perform the checksum calculation should use
101 * this flag in their outgoing skbs.
102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
103 * offload. Correspondingly, the FCoE protocol driver
104 * stack should use CHECKSUM_UNNECESSARY.
105 *
106 * Any questions? No questions, good. --ANK
107 */
108
109struct net_device;
110struct scatterlist;
111struct pipe_inode_info;
112
113#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
114struct nf_conntrack {
115 atomic_t use;
116};
117#endif
118
119#ifdef CONFIG_BRIDGE_NETFILTER
120struct nf_bridge_info {
121 atomic_t use;
122 unsigned int mask;
123 struct net_device *physindev;
124 struct net_device *physoutdev;
125 unsigned long data[32 / sizeof(unsigned long)];
126};
127#endif
128
129struct sk_buff_head {
130 /* These two members must be first. */
131 struct sk_buff *next;
132 struct sk_buff *prev;
133
134 __u32 qlen;
135 spinlock_t lock;
136};
137
138struct sk_buff;
139
140/* To allow 64K frame to be packed as single skb without frag_list we
141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
142 * buffers which do not start on a page boundary.
143 *
144 * Since GRO uses frags we allocate at least 16 regardless of page
145 * size.
146 */
147#if (65536/PAGE_SIZE + 1) < 16
148#define MAX_SKB_FRAGS 16UL
149#else
150#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
151#endif
152
153typedef struct skb_frag_struct skb_frag_t;
154
155struct skb_frag_struct {
156 struct {
157 struct page *p;
158 } page;
159#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
160 __u32 page_offset;
161 __u32 size;
162#else
163 __u16 page_offset;
164 __u16 size;
165#endif
166};
167
168static inline unsigned int skb_frag_size(const skb_frag_t *frag)
169{
170 return frag->size;
171}
172
173static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
174{
175 frag->size = size;
176}
177
178static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
179{
180 frag->size += delta;
181}
182
183static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
184{
185 frag->size -= delta;
186}
187
188#define HAVE_HW_TIME_STAMP
189
190/**
191 * struct skb_shared_hwtstamps - hardware time stamps
192 * @hwtstamp: hardware time stamp transformed into duration
193 * since arbitrary point in time
194 * @syststamp: hwtstamp transformed to system time base
195 *
196 * Software time stamps generated by ktime_get_real() are stored in
197 * skb->tstamp. The relation between the different kinds of time
198 * stamps is as follows:
199 *
200 * syststamp and tstamp can be compared against each other in
201 * arbitrary combinations. The accuracy of a
202 * syststamp/tstamp/"syststamp from other device" comparison is
203 * limited by the accuracy of the transformation into system time
204 * base. This depends on the device driver and its underlying
205 * hardware.
206 *
207 * hwtstamps can only be compared against other hwtstamps from
208 * the same device.
209 *
210 * This structure is attached to packets as part of the
211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
212 */
213struct skb_shared_hwtstamps {
214 ktime_t hwtstamp;
215 ktime_t syststamp;
216};
217
218/* Definitions for tx_flags in struct skb_shared_info */
219enum {
220 /* generate hardware time stamp */
221 SKBTX_HW_TSTAMP = 1 << 0,
222
223 /* generate software time stamp */
224 SKBTX_SW_TSTAMP = 1 << 1,
225
226 /* device driver is going to provide hardware time stamp */
227 SKBTX_IN_PROGRESS = 1 << 2,
228
229 /* device driver supports TX zero-copy buffers */
230 SKBTX_DEV_ZEROCOPY = 1 << 3,
231
232 /* generate wifi status information (where possible) */
233 SKBTX_WIFI_STATUS = 1 << 4,
234
235 /* This indicates at least one fragment might be overwritten
236 * (as in vmsplice(), sendfile() ...)
237 * If we need to compute a TX checksum, we'll need to copy
238 * all frags to avoid possible bad checksum
239 */
240 SKBTX_SHARED_FRAG = 1 << 5,
241};
242
243/*
244 * The callback notifies userspace to release buffers when skb DMA is done in
245 * lower device, the skb last reference should be 0 when calling this.
246 * The zerocopy_success argument is true if zero copy transmit occurred,
247 * false on data copy or out of memory error caused by data copy attempt.
248 * The ctx field is used to track device context.
249 * The desc field is used to track userspace buffer index.
250 */
251struct ubuf_info {
252 void (*callback)(struct ubuf_info *, bool zerocopy_success);
253 void *ctx;
254 unsigned long desc;
255};
256
257/* This data is invariant across clones and lives at
258 * the end of the header data, ie. at skb->end.
259 */
260struct skb_shared_info {
261 unsigned char nr_frags;
262 __u8 tx_flags;
263 unsigned short gso_size;
264 /* Warning: this field is not always filled in (UFO)! */
265 unsigned short gso_segs;
266 unsigned short gso_type;
267 struct sk_buff *frag_list;
268 struct skb_shared_hwtstamps hwtstamps;
269 __be32 ip6_frag_id;
270
271 /*
272 * Warning : all fields before dataref are cleared in __alloc_skb()
273 */
274 atomic_t dataref;
275
276 /* Intermediate layers must ensure that destructor_arg
277 * remains valid until skb destructor */
278 void * destructor_arg;
279
280 /* must be last field, see pskb_expand_head() */
281 skb_frag_t frags[MAX_SKB_FRAGS];
282};
283
284/* We divide dataref into two halves. The higher 16 bits hold references
285 * to the payload part of skb->data. The lower 16 bits hold references to
286 * the entire skb->data. A clone of a headerless skb holds the length of
287 * the header in skb->hdr_len.
288 *
289 * All users must obey the rule that the skb->data reference count must be
290 * greater than or equal to the payload reference count.
291 *
292 * Holding a reference to the payload part means that the user does not
293 * care about modifications to the header part of skb->data.
294 */
295#define SKB_DATAREF_SHIFT 16
296#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
297
298
299enum {
300 SKB_FCLONE_UNAVAILABLE,
301 SKB_FCLONE_ORIG,
302 SKB_FCLONE_CLONE,
303};
304
305enum {
306 SKB_GSO_TCPV4 = 1 << 0,
307 SKB_GSO_UDP = 1 << 1,
308
309 /* This indicates the skb is from an untrusted source. */
310 SKB_GSO_DODGY = 1 << 2,
311
312 /* This indicates the tcp segment has CWR set. */
313 SKB_GSO_TCP_ECN = 1 << 3,
314
315 SKB_GSO_TCPV6 = 1 << 4,
316
317 SKB_GSO_FCOE = 1 << 5,
318
319 SKB_GSO_GRE = 1 << 6,
320
321 SKB_GSO_UDP_TUNNEL = 1 << 7,
322};
323
324#if BITS_PER_LONG > 32
325#define NET_SKBUFF_DATA_USES_OFFSET 1
326#endif
327
328#ifdef NET_SKBUFF_DATA_USES_OFFSET
329typedef unsigned int sk_buff_data_t;
330#else
331typedef unsigned char *sk_buff_data_t;
332#endif
333
334#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
335 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
336#define NET_SKBUFF_NF_DEFRAG_NEEDED 1
337#endif
338
339/**
340 * struct sk_buff - socket buffer
341 * @next: Next buffer in list
342 * @prev: Previous buffer in list
343 * @tstamp: Time we arrived
344 * @sk: Socket we are owned by
345 * @dev: Device we arrived on/are leaving by
346 * @cb: Control buffer. Free for use by every layer. Put private vars here
347 * @_skb_refdst: destination entry (with norefcount bit)
348 * @sp: the security path, used for xfrm
349 * @len: Length of actual data
350 * @data_len: Data length
351 * @mac_len: Length of link layer header
352 * @hdr_len: writable header length of cloned skb
353 * @csum: Checksum (must include start/offset pair)
354 * @csum_start: Offset from skb->head where checksumming should start
355 * @csum_offset: Offset from csum_start where checksum should be stored
356 * @priority: Packet queueing priority
357 * @local_df: allow local fragmentation
358 * @cloned: Head may be cloned (check refcnt to be sure)
359 * @ip_summed: Driver fed us an IP checksum
360 * @nohdr: Payload reference only, must not modify header
361 * @nfctinfo: Relationship of this skb to the connection
362 * @pkt_type: Packet class
363 * @fclone: skbuff clone status
364 * @ipvs_property: skbuff is owned by ipvs
365 * @peeked: this packet has been seen already, so stats have been
366 * done for it, don't do them again
367 * @nf_trace: netfilter packet trace flag
368 * @protocol: Packet protocol from driver
369 * @destructor: Destruct function
370 * @nfct: Associated connection, if any
371 * @nfct_reasm: netfilter conntrack re-assembly pointer
372 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
373 * @skb_iif: ifindex of device we arrived on
374 * @tc_index: Traffic control index
375 * @tc_verd: traffic control verdict
376 * @rxhash: the packet hash computed on receive
377 * @queue_mapping: Queue mapping for multiqueue devices
378 * @ndisc_nodetype: router type (from link layer)
379 * @ooo_okay: allow the mapping of a socket to a queue to be changed
380 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
381 * ports.
382 * @wifi_acked_valid: wifi_acked was set
383 * @wifi_acked: whether frame was acked on wifi or not
384 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
385 * @dma_cookie: a cookie to one of several possible DMA operations
386 * done by skb DMA functions
387 * @secmark: security marking
388 * @mark: Generic packet mark
389 * @dropcount: total number of sk_receive_queue overflows
390 * @vlan_proto: vlan encapsulation protocol
391 * @vlan_tci: vlan tag control information
392 * @inner_transport_header: Inner transport layer header (encapsulation)
393 * @inner_network_header: Network layer header (encapsulation)
394 * @inner_mac_header: Link layer header (encapsulation)
395 * @transport_header: Transport layer header
396 * @network_header: Network layer header
397 * @mac_header: Link layer header
398 * @tail: Tail pointer
399 * @end: End pointer
400 * @head: Head of buffer
401 * @data: Data head pointer
402 * @truesize: Buffer size
403 * @users: User count - see {datagram,tcp}.c
404 */
405
406struct sk_buff {
407 /* These two members must be first. */
408 struct sk_buff *next;
409 struct sk_buff *prev;
410
411 ktime_t tstamp;
412
413 struct sock *sk;
414 struct net_device *dev;
415
416 /*
417 * This is the control buffer. It is free to use for every
418 * layer. Please put your private variables there. If you
419 * want to keep them across layers you have to do a skb_clone()
420 * first. This is owned by whoever has the skb queued ATM.
421 */
422 char cb[48] __aligned(8);
423
424 unsigned long _skb_refdst;
425#ifdef CONFIG_XFRM
426 struct sec_path *sp;
427#endif
428 unsigned int len,
429 data_len;
430 __u16 mac_len,
431 hdr_len;
432 union {
433 __wsum csum;
434 struct {
435 __u16 csum_start;
436 __u16 csum_offset;
437 };
438 };
439 __u32 priority;
440 kmemcheck_bitfield_begin(flags1);
441 __u8 local_df:1,
442 cloned:1,
443 ip_summed:2,
444 nohdr:1,
445 nfctinfo:3;
446 __u8 pkt_type:3,
447 fclone:2,
448 ipvs_property:1,
449 peeked:1,
450 nf_trace:1;
451 kmemcheck_bitfield_end(flags1);
452 __be16 protocol;
453
454 void (*destructor)(struct sk_buff *skb);
455#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
456 struct nf_conntrack *nfct;
457#endif
458#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
459 struct sk_buff *nfct_reasm;
460#endif
461#ifdef CONFIG_BRIDGE_NETFILTER
462 struct nf_bridge_info *nf_bridge;
463#endif
464
465 int skb_iif;
466
467 __u32 rxhash;
468
469 __be16 vlan_proto;
470 __u16 vlan_tci;
471
472#ifdef CONFIG_NET_SCHED
473 __u16 tc_index; /* traffic control index */
474#ifdef CONFIG_NET_CLS_ACT
475 __u16 tc_verd; /* traffic control verdict */
476#endif
477#endif
478
479 __u16 queue_mapping;
480 kmemcheck_bitfield_begin(flags2);
481#ifdef CONFIG_IPV6_NDISC_NODETYPE
482 __u8 ndisc_nodetype:2;
483#endif
484 __u8 pfmemalloc:1;
485 __u8 ooo_okay:1;
486 __u8 l4_rxhash:1;
487 __u8 wifi_acked_valid:1;
488 __u8 wifi_acked:1;
489 __u8 no_fcs:1;
490 __u8 head_frag:1;
491 /* Encapsulation protocol and NIC drivers should use
492 * this flag to indicate to each other if the skb contains
493 * encapsulated packet or not and maybe use the inner packet
494 * headers if needed
495 */
496 __u8 encapsulation:1;
497 /* 7/9 bit hole (depending on ndisc_nodetype presence) */
498 kmemcheck_bitfield_end(flags2);
499
500#ifdef CONFIG_NET_DMA
501 dma_cookie_t dma_cookie;
502#endif
503#ifdef CONFIG_NETWORK_SECMARK
504 __u32 secmark;
505#endif
506 union {
507 __u32 mark;
508 __u32 dropcount;
509 __u32 reserved_tailroom;
510 };
511
512 sk_buff_data_t inner_transport_header;
513 sk_buff_data_t inner_network_header;
514 sk_buff_data_t inner_mac_header;
515 sk_buff_data_t transport_header;
516 sk_buff_data_t network_header;
517 sk_buff_data_t mac_header;
518 /* These elements must be at the end, see alloc_skb() for details. */
519 sk_buff_data_t tail;
520 sk_buff_data_t end;
521 unsigned char *head,
522 *data;
523 unsigned int truesize;
524 atomic_t users;
525};
526
527#ifdef __KERNEL__
528/*
529 * Handling routines are only of interest to the kernel
530 */
531#include <linux/slab.h>
532
533
534#define SKB_ALLOC_FCLONE 0x01
535#define SKB_ALLOC_RX 0x02
536
537/* Returns true if the skb was allocated from PFMEMALLOC reserves */
538static inline bool skb_pfmemalloc(const struct sk_buff *skb)
539{
540 return unlikely(skb->pfmemalloc);
541}
542
543/*
544 * skb might have a dst pointer attached, refcounted or not.
545 * _skb_refdst low order bit is set if refcount was _not_ taken
546 */
547#define SKB_DST_NOREF 1UL
548#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
549
550/**
551 * skb_dst - returns skb dst_entry
552 * @skb: buffer
553 *
554 * Returns skb dst_entry, regardless of reference taken or not.
555 */
556static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
557{
558 /* If refdst was not refcounted, check we still are in a
559 * rcu_read_lock section
560 */
561 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
562 !rcu_read_lock_held() &&
563 !rcu_read_lock_bh_held());
564 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
565}
566
567/**
568 * skb_dst_set - sets skb dst
569 * @skb: buffer
570 * @dst: dst entry
571 *
572 * Sets skb dst, assuming a reference was taken on dst and should
573 * be released by skb_dst_drop()
574 */
575static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
576{
577 skb->_skb_refdst = (unsigned long)dst;
578}
579
580extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
581 bool force);
582
583/**
584 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
585 * @skb: buffer
586 * @dst: dst entry
587 *
588 * Sets skb dst, assuming a reference was not taken on dst.
589 * If dst entry is cached, we do not take reference and dst_release
590 * will be avoided by refdst_drop. If dst entry is not cached, we take
591 * reference, so that last dst_release can destroy the dst immediately.
592 */
593static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
594{
595 __skb_dst_set_noref(skb, dst, false);
596}
597
598/**
599 * skb_dst_set_noref_force - sets skb dst, without taking reference
600 * @skb: buffer
601 * @dst: dst entry
602 *
603 * Sets skb dst, assuming a reference was not taken on dst.
604 * No reference is taken and no dst_release will be called. While for
605 * cached dsts deferred reclaim is a basic feature, for entries that are
606 * not cached it is caller's job to guarantee that last dst_release for
607 * provided dst happens when nobody uses it, eg. after a RCU grace period.
608 */
609static inline void skb_dst_set_noref_force(struct sk_buff *skb,
610 struct dst_entry *dst)
611{
612 __skb_dst_set_noref(skb, dst, true);
613}
614
615/**
616 * skb_dst_is_noref - Test if skb dst isn't refcounted
617 * @skb: buffer
618 */
619static inline bool skb_dst_is_noref(const struct sk_buff *skb)
620{
621 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
622}
623
624static inline struct rtable *skb_rtable(const struct sk_buff *skb)
625{
626 return (struct rtable *)skb_dst(skb);
627}
628
629extern void kfree_skb(struct sk_buff *skb);
630extern void skb_tx_error(struct sk_buff *skb);
631extern void consume_skb(struct sk_buff *skb);
632extern void __kfree_skb(struct sk_buff *skb);
633extern struct kmem_cache *skbuff_head_cache;
634
635extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
636extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
637 bool *fragstolen, int *delta_truesize);
638
639extern struct sk_buff *__alloc_skb(unsigned int size,
640 gfp_t priority, int flags, int node);
641extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
642static inline struct sk_buff *alloc_skb(unsigned int size,
643 gfp_t priority)
644{
645 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
646}
647
648static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
649 gfp_t priority)
650{
651 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
652}
653
654extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
655static inline struct sk_buff *alloc_skb_head(gfp_t priority)
656{
657 return __alloc_skb_head(priority, -1);
658}
659
660extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
661extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
662extern struct sk_buff *skb_clone(struct sk_buff *skb,
663 gfp_t priority);
664extern struct sk_buff *skb_copy(const struct sk_buff *skb,
665 gfp_t priority);
666extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
667 int headroom, gfp_t gfp_mask);
668
669extern int pskb_expand_head(struct sk_buff *skb,
670 int nhead, int ntail,
671 gfp_t gfp_mask);
672extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
673 unsigned int headroom);
674extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
675 int newheadroom, int newtailroom,
676 gfp_t priority);
677extern int skb_to_sgvec(struct sk_buff *skb,
678 struct scatterlist *sg, int offset,
679 int len);
680extern int skb_cow_data(struct sk_buff *skb, int tailbits,
681 struct sk_buff **trailer);
682extern int skb_pad(struct sk_buff *skb, int pad);
683#define dev_kfree_skb(a) consume_skb(a)
684
685extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
686 int getfrag(void *from, char *to, int offset,
687 int len,int odd, struct sk_buff *skb),
688 void *from, int length);
689
690struct skb_seq_state {
691 __u32 lower_offset;
692 __u32 upper_offset;
693 __u32 frag_idx;
694 __u32 stepped_offset;
695 struct sk_buff *root_skb;
696 struct sk_buff *cur_skb;
697 __u8 *frag_data;
698};
699
700extern void skb_prepare_seq_read(struct sk_buff *skb,
701 unsigned int from, unsigned int to,
702 struct skb_seq_state *st);
703extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
704 struct skb_seq_state *st);
705extern void skb_abort_seq_read(struct skb_seq_state *st);
706
707extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
708 unsigned int to, struct ts_config *config,
709 struct ts_state *state);
710
711extern void __skb_get_rxhash(struct sk_buff *skb);
712static inline __u32 skb_get_rxhash(struct sk_buff *skb)
713{
714 if (!skb->l4_rxhash)
715 __skb_get_rxhash(skb);
716
717 return skb->rxhash;
718}
719
720#ifdef NET_SKBUFF_DATA_USES_OFFSET
721static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
722{
723 return skb->head + skb->end;
724}
725
726static inline unsigned int skb_end_offset(const struct sk_buff *skb)
727{
728 return skb->end;
729}
730#else
731static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
732{
733 return skb->end;
734}
735
736static inline unsigned int skb_end_offset(const struct sk_buff *skb)
737{
738 return skb->end - skb->head;
739}
740#endif
741
742/* Internal */
743#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
744
745static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
746{
747 return &skb_shinfo(skb)->hwtstamps;
748}
749
750/**
751 * skb_queue_empty - check if a queue is empty
752 * @list: queue head
753 *
754 * Returns true if the queue is empty, false otherwise.
755 */
756static inline int skb_queue_empty(const struct sk_buff_head *list)
757{
758 return list->next == (struct sk_buff *)list;
759}
760
761/**
762 * skb_queue_is_last - check if skb is the last entry in the queue
763 * @list: queue head
764 * @skb: buffer
765 *
766 * Returns true if @skb is the last buffer on the list.
767 */
768static inline bool skb_queue_is_last(const struct sk_buff_head *list,
769 const struct sk_buff *skb)
770{
771 return skb->next == (struct sk_buff *)list;
772}
773
774/**
775 * skb_queue_is_first - check if skb is the first entry in the queue
776 * @list: queue head
777 * @skb: buffer
778 *
779 * Returns true if @skb is the first buffer on the list.
780 */
781static inline bool skb_queue_is_first(const struct sk_buff_head *list,
782 const struct sk_buff *skb)
783{
784 return skb->prev == (struct sk_buff *)list;
785}
786
787/**
788 * skb_queue_next - return the next packet in the queue
789 * @list: queue head
790 * @skb: current buffer
791 *
792 * Return the next packet in @list after @skb. It is only valid to
793 * call this if skb_queue_is_last() evaluates to false.
794 */
795static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
796 const struct sk_buff *skb)
797{
798 /* This BUG_ON may seem severe, but if we just return then we
799 * are going to dereference garbage.
800 */
801 BUG_ON(skb_queue_is_last(list, skb));
802 return skb->next;
803}
804
805/**
806 * skb_queue_prev - return the prev packet in the queue
807 * @list: queue head
808 * @skb: current buffer
809 *
810 * Return the prev packet in @list before @skb. It is only valid to
811 * call this if skb_queue_is_first() evaluates to false.
812 */
813static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
814 const struct sk_buff *skb)
815{
816 /* This BUG_ON may seem severe, but if we just return then we
817 * are going to dereference garbage.
818 */
819 BUG_ON(skb_queue_is_first(list, skb));
820 return skb->prev;
821}
822
823/**
824 * skb_get - reference buffer
825 * @skb: buffer to reference
826 *
827 * Makes another reference to a socket buffer and returns a pointer
828 * to the buffer.
829 */
830static inline struct sk_buff *skb_get(struct sk_buff *skb)
831{
832 atomic_inc(&skb->users);
833 return skb;
834}
835
836/*
837 * If users == 1, we are the only owner and are can avoid redundant
838 * atomic change.
839 */
840
841/**
842 * skb_cloned - is the buffer a clone
843 * @skb: buffer to check
844 *
845 * Returns true if the buffer was generated with skb_clone() and is
846 * one of multiple shared copies of the buffer. Cloned buffers are
847 * shared data so must not be written to under normal circumstances.
848 */
849static inline int skb_cloned(const struct sk_buff *skb)
850{
851 return skb->cloned &&
852 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
853}
854
855static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
856{
857 might_sleep_if(pri & __GFP_WAIT);
858
859 if (skb_cloned(skb))
860 return pskb_expand_head(skb, 0, 0, pri);
861
862 return 0;
863}
864
865/**
866 * skb_header_cloned - is the header a clone
867 * @skb: buffer to check
868 *
869 * Returns true if modifying the header part of the buffer requires
870 * the data to be copied.
871 */
872static inline int skb_header_cloned(const struct sk_buff *skb)
873{
874 int dataref;
875
876 if (!skb->cloned)
877 return 0;
878
879 dataref = atomic_read(&skb_shinfo(skb)->dataref);
880 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
881 return dataref != 1;
882}
883
884/**
885 * skb_header_release - release reference to header
886 * @skb: buffer to operate on
887 *
888 * Drop a reference to the header part of the buffer. This is done
889 * by acquiring a payload reference. You must not read from the header
890 * part of skb->data after this.
891 */
892static inline void skb_header_release(struct sk_buff *skb)
893{
894 BUG_ON(skb->nohdr);
895 skb->nohdr = 1;
896 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
897}
898
899/**
900 * skb_shared - is the buffer shared
901 * @skb: buffer to check
902 *
903 * Returns true if more than one person has a reference to this
904 * buffer.
905 */
906static inline int skb_shared(const struct sk_buff *skb)
907{
908 return atomic_read(&skb->users) != 1;
909}
910
911/**
912 * skb_share_check - check if buffer is shared and if so clone it
913 * @skb: buffer to check
914 * @pri: priority for memory allocation
915 *
916 * If the buffer is shared the buffer is cloned and the old copy
917 * drops a reference. A new clone with a single reference is returned.
918 * If the buffer is not shared the original buffer is returned. When
919 * being called from interrupt status or with spinlocks held pri must
920 * be GFP_ATOMIC.
921 *
922 * NULL is returned on a memory allocation failure.
923 */
924static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
925{
926 might_sleep_if(pri & __GFP_WAIT);
927 if (skb_shared(skb)) {
928 struct sk_buff *nskb = skb_clone(skb, pri);
929
930 if (likely(nskb))
931 consume_skb(skb);
932 else
933 kfree_skb(skb);
934 skb = nskb;
935 }
936 return skb;
937}
938
939/*
940 * Copy shared buffers into a new sk_buff. We effectively do COW on
941 * packets to handle cases where we have a local reader and forward
942 * and a couple of other messy ones. The normal one is tcpdumping
943 * a packet thats being forwarded.
944 */
945
946/**
947 * skb_unshare - make a copy of a shared buffer
948 * @skb: buffer to check
949 * @pri: priority for memory allocation
950 *
951 * If the socket buffer is a clone then this function creates a new
952 * copy of the data, drops a reference count on the old copy and returns
953 * the new copy with the reference count at 1. If the buffer is not a clone
954 * the original buffer is returned. When called with a spinlock held or
955 * from interrupt state @pri must be %GFP_ATOMIC
956 *
957 * %NULL is returned on a memory allocation failure.
958 */
959static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
960 gfp_t pri)
961{
962 might_sleep_if(pri & __GFP_WAIT);
963 if (skb_cloned(skb)) {
964 struct sk_buff *nskb = skb_copy(skb, pri);
965 kfree_skb(skb); /* Free our shared copy */
966 skb = nskb;
967 }
968 return skb;
969}
970
971/**
972 * skb_peek - peek at the head of an &sk_buff_head
973 * @list_: list to peek at
974 *
975 * Peek an &sk_buff. Unlike most other operations you _MUST_
976 * be careful with this one. A peek leaves the buffer on the
977 * list and someone else may run off with it. You must hold
978 * the appropriate locks or have a private queue to do this.
979 *
980 * Returns %NULL for an empty list or a pointer to the head element.
981 * The reference count is not incremented and the reference is therefore
982 * volatile. Use with caution.
983 */
984static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
985{
986 struct sk_buff *skb = list_->next;
987
988 if (skb == (struct sk_buff *)list_)
989 skb = NULL;
990 return skb;
991}
992
993/**
994 * skb_peek_next - peek skb following the given one from a queue
995 * @skb: skb to start from
996 * @list_: list to peek at
997 *
998 * Returns %NULL when the end of the list is met or a pointer to the
999 * next element. The reference count is not incremented and the
1000 * reference is therefore volatile. Use with caution.
1001 */
1002static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1003 const struct sk_buff_head *list_)
1004{
1005 struct sk_buff *next = skb->next;
1006
1007 if (next == (struct sk_buff *)list_)
1008 next = NULL;
1009 return next;
1010}
1011
1012/**
1013 * skb_peek_tail - peek at the tail of an &sk_buff_head
1014 * @list_: list to peek at
1015 *
1016 * Peek an &sk_buff. Unlike most other operations you _MUST_
1017 * be careful with this one. A peek leaves the buffer on the
1018 * list and someone else may run off with it. You must hold
1019 * the appropriate locks or have a private queue to do this.
1020 *
1021 * Returns %NULL for an empty list or a pointer to the tail element.
1022 * The reference count is not incremented and the reference is therefore
1023 * volatile. Use with caution.
1024 */
1025static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1026{
1027 struct sk_buff *skb = list_->prev;
1028
1029 if (skb == (struct sk_buff *)list_)
1030 skb = NULL;
1031 return skb;
1032
1033}
1034
1035/**
1036 * skb_queue_len - get queue length
1037 * @list_: list to measure
1038 *
1039 * Return the length of an &sk_buff queue.
1040 */
1041static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1042{
1043 return list_->qlen;
1044}
1045
1046/**
1047 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1048 * @list: queue to initialize
1049 *
1050 * This initializes only the list and queue length aspects of
1051 * an sk_buff_head object. This allows to initialize the list
1052 * aspects of an sk_buff_head without reinitializing things like
1053 * the spinlock. It can also be used for on-stack sk_buff_head
1054 * objects where the spinlock is known to not be used.
1055 */
1056static inline void __skb_queue_head_init(struct sk_buff_head *list)
1057{
1058 list->prev = list->next = (struct sk_buff *)list;
1059 list->qlen = 0;
1060}
1061
1062/*
1063 * This function creates a split out lock class for each invocation;
1064 * this is needed for now since a whole lot of users of the skb-queue
1065 * infrastructure in drivers have different locking usage (in hardirq)
1066 * than the networking core (in softirq only). In the long run either the
1067 * network layer or drivers should need annotation to consolidate the
1068 * main types of usage into 3 classes.
1069 */
1070static inline void skb_queue_head_init(struct sk_buff_head *list)
1071{
1072 spin_lock_init(&list->lock);
1073 __skb_queue_head_init(list);
1074}
1075
1076static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1077 struct lock_class_key *class)
1078{
1079 skb_queue_head_init(list);
1080 lockdep_set_class(&list->lock, class);
1081}
1082
1083/*
1084 * Insert an sk_buff on a list.
1085 *
1086 * The "__skb_xxxx()" functions are the non-atomic ones that
1087 * can only be called with interrupts disabled.
1088 */
1089extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1090static inline void __skb_insert(struct sk_buff *newsk,
1091 struct sk_buff *prev, struct sk_buff *next,
1092 struct sk_buff_head *list)
1093{
1094 newsk->next = next;
1095 newsk->prev = prev;
1096 next->prev = prev->next = newsk;
1097 list->qlen++;
1098}
1099
1100static inline void __skb_queue_splice(const struct sk_buff_head *list,
1101 struct sk_buff *prev,
1102 struct sk_buff *next)
1103{
1104 struct sk_buff *first = list->next;
1105 struct sk_buff *last = list->prev;
1106
1107 first->prev = prev;
1108 prev->next = first;
1109
1110 last->next = next;
1111 next->prev = last;
1112}
1113
1114/**
1115 * skb_queue_splice - join two skb lists, this is designed for stacks
1116 * @list: the new list to add
1117 * @head: the place to add it in the first list
1118 */
1119static inline void skb_queue_splice(const struct sk_buff_head *list,
1120 struct sk_buff_head *head)
1121{
1122 if (!skb_queue_empty(list)) {
1123 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1124 head->qlen += list->qlen;
1125 }
1126}
1127
1128/**
1129 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1130 * @list: the new list to add
1131 * @head: the place to add it in the first list
1132 *
1133 * The list at @list is reinitialised
1134 */
1135static inline void skb_queue_splice_init(struct sk_buff_head *list,
1136 struct sk_buff_head *head)
1137{
1138 if (!skb_queue_empty(list)) {
1139 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1140 head->qlen += list->qlen;
1141 __skb_queue_head_init(list);
1142 }
1143}
1144
1145/**
1146 * skb_queue_splice_tail - join two skb lists, each list being a queue
1147 * @list: the new list to add
1148 * @head: the place to add it in the first list
1149 */
1150static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1151 struct sk_buff_head *head)
1152{
1153 if (!skb_queue_empty(list)) {
1154 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1155 head->qlen += list->qlen;
1156 }
1157}
1158
1159/**
1160 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1161 * @list: the new list to add
1162 * @head: the place to add it in the first list
1163 *
1164 * Each of the lists is a queue.
1165 * The list at @list is reinitialised
1166 */
1167static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1168 struct sk_buff_head *head)
1169{
1170 if (!skb_queue_empty(list)) {
1171 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1172 head->qlen += list->qlen;
1173 __skb_queue_head_init(list);
1174 }
1175}
1176
1177/**
1178 * __skb_queue_after - queue a buffer at the list head
1179 * @list: list to use
1180 * @prev: place after this buffer
1181 * @newsk: buffer to queue
1182 *
1183 * Queue a buffer int the middle of a list. This function takes no locks
1184 * and you must therefore hold required locks before calling it.
1185 *
1186 * A buffer cannot be placed on two lists at the same time.
1187 */
1188static inline void __skb_queue_after(struct sk_buff_head *list,
1189 struct sk_buff *prev,
1190 struct sk_buff *newsk)
1191{
1192 __skb_insert(newsk, prev, prev->next, list);
1193}
1194
1195extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1196 struct sk_buff_head *list);
1197
1198static inline void __skb_queue_before(struct sk_buff_head *list,
1199 struct sk_buff *next,
1200 struct sk_buff *newsk)
1201{
1202 __skb_insert(newsk, next->prev, next, list);
1203}
1204
1205/**
1206 * __skb_queue_head - queue a buffer at the list head
1207 * @list: list to use
1208 * @newsk: buffer to queue
1209 *
1210 * Queue a buffer at the start of a list. This function takes no locks
1211 * and you must therefore hold required locks before calling it.
1212 *
1213 * A buffer cannot be placed on two lists at the same time.
1214 */
1215extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1216static inline void __skb_queue_head(struct sk_buff_head *list,
1217 struct sk_buff *newsk)
1218{
1219 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1220}
1221
1222/**
1223 * __skb_queue_tail - queue a buffer at the list tail
1224 * @list: list to use
1225 * @newsk: buffer to queue
1226 *
1227 * Queue a buffer at the end of a list. This function takes no locks
1228 * and you must therefore hold required locks before calling it.
1229 *
1230 * A buffer cannot be placed on two lists at the same time.
1231 */
1232extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1233static inline void __skb_queue_tail(struct sk_buff_head *list,
1234 struct sk_buff *newsk)
1235{
1236 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1237}
1238
1239/*
1240 * remove sk_buff from list. _Must_ be called atomically, and with
1241 * the list known..
1242 */
1243extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1244static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1245{
1246 struct sk_buff *next, *prev;
1247
1248 list->qlen--;
1249 next = skb->next;
1250 prev = skb->prev;
1251 skb->next = skb->prev = NULL;
1252 next->prev = prev;
1253 prev->next = next;
1254}
1255
1256/**
1257 * __skb_dequeue - remove from the head of the queue
1258 * @list: list to dequeue from
1259 *
1260 * Remove the head of the list. This function does not take any locks
1261 * so must be used with appropriate locks held only. The head item is
1262 * returned or %NULL if the list is empty.
1263 */
1264extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1265static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1266{
1267 struct sk_buff *skb = skb_peek(list);
1268 if (skb)
1269 __skb_unlink(skb, list);
1270 return skb;
1271}
1272
1273/**
1274 * __skb_dequeue_tail - remove from the tail of the queue
1275 * @list: list to dequeue from
1276 *
1277 * Remove the tail of the list. This function does not take any locks
1278 * so must be used with appropriate locks held only. The tail item is
1279 * returned or %NULL if the list is empty.
1280 */
1281extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1282static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1283{
1284 struct sk_buff *skb = skb_peek_tail(list);
1285 if (skb)
1286 __skb_unlink(skb, list);
1287 return skb;
1288}
1289
1290
1291static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1292{
1293 return skb->data_len;
1294}
1295
1296static inline unsigned int skb_headlen(const struct sk_buff *skb)
1297{
1298 return skb->len - skb->data_len;
1299}
1300
1301static inline int skb_pagelen(const struct sk_buff *skb)
1302{
1303 int i, len = 0;
1304
1305 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1306 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1307 return len + skb_headlen(skb);
1308}
1309
1310/**
1311 * __skb_fill_page_desc - initialise a paged fragment in an skb
1312 * @skb: buffer containing fragment to be initialised
1313 * @i: paged fragment index to initialise
1314 * @page: the page to use for this fragment
1315 * @off: the offset to the data with @page
1316 * @size: the length of the data
1317 *
1318 * Initialises the @i'th fragment of @skb to point to &size bytes at
1319 * offset @off within @page.
1320 *
1321 * Does not take any additional reference on the fragment.
1322 */
1323static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1324 struct page *page, int off, int size)
1325{
1326 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1327
1328 /*
1329 * Propagate page->pfmemalloc to the skb if we can. The problem is
1330 * that not all callers have unique ownership of the page. If
1331 * pfmemalloc is set, we check the mapping as a mapping implies
1332 * page->index is set (index and pfmemalloc share space).
1333 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1334 * do not lose pfmemalloc information as the pages would not be
1335 * allocated using __GFP_MEMALLOC.
1336 */
1337 frag->page.p = page;
1338 frag->page_offset = off;
1339 skb_frag_size_set(frag, size);
1340
1341 page = compound_head(page);
1342 if (page->pfmemalloc && !page->mapping)
1343 skb->pfmemalloc = true;
1344}
1345
1346/**
1347 * skb_fill_page_desc - initialise a paged fragment in an skb
1348 * @skb: buffer containing fragment to be initialised
1349 * @i: paged fragment index to initialise
1350 * @page: the page to use for this fragment
1351 * @off: the offset to the data with @page
1352 * @size: the length of the data
1353 *
1354 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1355 * @skb to point to &size bytes at offset @off within @page. In
1356 * addition updates @skb such that @i is the last fragment.
1357 *
1358 * Does not take any additional reference on the fragment.
1359 */
1360static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1361 struct page *page, int off, int size)
1362{
1363 __skb_fill_page_desc(skb, i, page, off, size);
1364 skb_shinfo(skb)->nr_frags = i + 1;
1365}
1366
1367extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1368 int off, int size, unsigned int truesize);
1369
1370#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1371#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1372#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1373
1374#ifdef NET_SKBUFF_DATA_USES_OFFSET
1375static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1376{
1377 return skb->head + skb->tail;
1378}
1379
1380static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1381{
1382 skb->tail = skb->data - skb->head;
1383}
1384
1385static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1386{
1387 skb_reset_tail_pointer(skb);
1388 skb->tail += offset;
1389}
1390#else /* NET_SKBUFF_DATA_USES_OFFSET */
1391static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1392{
1393 return skb->tail;
1394}
1395
1396static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1397{
1398 skb->tail = skb->data;
1399}
1400
1401static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1402{
1403 skb->tail = skb->data + offset;
1404}
1405
1406#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1407
1408/*
1409 * Add data to an sk_buff
1410 */
1411extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1412static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1413{
1414 unsigned char *tmp = skb_tail_pointer(skb);
1415 SKB_LINEAR_ASSERT(skb);
1416 skb->tail += len;
1417 skb->len += len;
1418 return tmp;
1419}
1420
1421extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1422static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1423{
1424 skb->data -= len;
1425 skb->len += len;
1426 return skb->data;
1427}
1428
1429extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1430static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1431{
1432 skb->len -= len;
1433 BUG_ON(skb->len < skb->data_len);
1434 return skb->data += len;
1435}
1436
1437static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1438{
1439 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1440}
1441
1442extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1443
1444static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1445{
1446 if (len > skb_headlen(skb) &&
1447 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1448 return NULL;
1449 skb->len -= len;
1450 return skb->data += len;
1451}
1452
1453static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1454{
1455 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1456}
1457
1458static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1459{
1460 if (likely(len <= skb_headlen(skb)))
1461 return 1;
1462 if (unlikely(len > skb->len))
1463 return 0;
1464 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1465}
1466
1467/**
1468 * skb_headroom - bytes at buffer head
1469 * @skb: buffer to check
1470 *
1471 * Return the number of bytes of free space at the head of an &sk_buff.
1472 */
1473static inline unsigned int skb_headroom(const struct sk_buff *skb)
1474{
1475 return skb->data - skb->head;
1476}
1477
1478/**
1479 * skb_tailroom - bytes at buffer end
1480 * @skb: buffer to check
1481 *
1482 * Return the number of bytes of free space at the tail of an sk_buff
1483 */
1484static inline int skb_tailroom(const struct sk_buff *skb)
1485{
1486 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1487}
1488
1489/**
1490 * skb_availroom - bytes at buffer end
1491 * @skb: buffer to check
1492 *
1493 * Return the number of bytes of free space at the tail of an sk_buff
1494 * allocated by sk_stream_alloc()
1495 */
1496static inline int skb_availroom(const struct sk_buff *skb)
1497{
1498 if (skb_is_nonlinear(skb))
1499 return 0;
1500
1501 return skb->end - skb->tail - skb->reserved_tailroom;
1502}
1503
1504/**
1505 * skb_reserve - adjust headroom
1506 * @skb: buffer to alter
1507 * @len: bytes to move
1508 *
1509 * Increase the headroom of an empty &sk_buff by reducing the tail
1510 * room. This is only allowed for an empty buffer.
1511 */
1512static inline void skb_reserve(struct sk_buff *skb, int len)
1513{
1514 skb->data += len;
1515 skb->tail += len;
1516}
1517
1518static inline void skb_reset_inner_headers(struct sk_buff *skb)
1519{
1520 skb->inner_mac_header = skb->mac_header;
1521 skb->inner_network_header = skb->network_header;
1522 skb->inner_transport_header = skb->transport_header;
1523}
1524
1525static inline void skb_reset_mac_len(struct sk_buff *skb)
1526{
1527 skb->mac_len = skb->network_header - skb->mac_header;
1528}
1529
1530#ifdef NET_SKBUFF_DATA_USES_OFFSET
1531static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1532 *skb)
1533{
1534 return skb->head + skb->inner_transport_header;
1535}
1536
1537static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1538{
1539 skb->inner_transport_header = skb->data - skb->head;
1540}
1541
1542static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1543 const int offset)
1544{
1545 skb_reset_inner_transport_header(skb);
1546 skb->inner_transport_header += offset;
1547}
1548
1549static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1550{
1551 return skb->head + skb->inner_network_header;
1552}
1553
1554static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1555{
1556 skb->inner_network_header = skb->data - skb->head;
1557}
1558
1559static inline void skb_set_inner_network_header(struct sk_buff *skb,
1560 const int offset)
1561{
1562 skb_reset_inner_network_header(skb);
1563 skb->inner_network_header += offset;
1564}
1565
1566static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1567{
1568 return skb->head + skb->inner_mac_header;
1569}
1570
1571static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1572{
1573 skb->inner_mac_header = skb->data - skb->head;
1574}
1575
1576static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1577 const int offset)
1578{
1579 skb_reset_inner_mac_header(skb);
1580 skb->inner_mac_header += offset;
1581}
1582static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1583{
1584 return skb->transport_header != ~0U;
1585}
1586
1587static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1588{
1589 return skb->head + skb->transport_header;
1590}
1591
1592static inline void skb_reset_transport_header(struct sk_buff *skb)
1593{
1594 skb->transport_header = skb->data - skb->head;
1595}
1596
1597static inline void skb_set_transport_header(struct sk_buff *skb,
1598 const int offset)
1599{
1600 skb_reset_transport_header(skb);
1601 skb->transport_header += offset;
1602}
1603
1604static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1605{
1606 return skb->head + skb->network_header;
1607}
1608
1609static inline void skb_reset_network_header(struct sk_buff *skb)
1610{
1611 skb->network_header = skb->data - skb->head;
1612}
1613
1614static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1615{
1616 skb_reset_network_header(skb);
1617 skb->network_header += offset;
1618}
1619
1620static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1621{
1622 return skb->head + skb->mac_header;
1623}
1624
1625static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1626{
1627 return skb->mac_header != ~0U;
1628}
1629
1630static inline void skb_reset_mac_header(struct sk_buff *skb)
1631{
1632 skb->mac_header = skb->data - skb->head;
1633}
1634
1635static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1636{
1637 skb_reset_mac_header(skb);
1638 skb->mac_header += offset;
1639}
1640
1641#else /* NET_SKBUFF_DATA_USES_OFFSET */
1642static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1643 *skb)
1644{
1645 return skb->inner_transport_header;
1646}
1647
1648static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1649{
1650 skb->inner_transport_header = skb->data;
1651}
1652
1653static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1654 const int offset)
1655{
1656 skb->inner_transport_header = skb->data + offset;
1657}
1658
1659static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1660{
1661 return skb->inner_network_header;
1662}
1663
1664static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1665{
1666 skb->inner_network_header = skb->data;
1667}
1668
1669static inline void skb_set_inner_network_header(struct sk_buff *skb,
1670 const int offset)
1671{
1672 skb->inner_network_header = skb->data + offset;
1673}
1674
1675static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1676{
1677 return skb->inner_mac_header;
1678}
1679
1680static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1681{
1682 skb->inner_mac_header = skb->data;
1683}
1684
1685static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1686 const int offset)
1687{
1688 skb->inner_mac_header = skb->data + offset;
1689}
1690static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1691{
1692 return skb->transport_header != NULL;
1693}
1694
1695static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1696{
1697 return skb->transport_header;
1698}
1699
1700static inline void skb_reset_transport_header(struct sk_buff *skb)
1701{
1702 skb->transport_header = skb->data;
1703}
1704
1705static inline void skb_set_transport_header(struct sk_buff *skb,
1706 const int offset)
1707{
1708 skb->transport_header = skb->data + offset;
1709}
1710
1711static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1712{
1713 return skb->network_header;
1714}
1715
1716static inline void skb_reset_network_header(struct sk_buff *skb)
1717{
1718 skb->network_header = skb->data;
1719}
1720
1721static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1722{
1723 skb->network_header = skb->data + offset;
1724}
1725
1726static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1727{
1728 return skb->mac_header;
1729}
1730
1731static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1732{
1733 return skb->mac_header != NULL;
1734}
1735
1736static inline void skb_reset_mac_header(struct sk_buff *skb)
1737{
1738 skb->mac_header = skb->data;
1739}
1740
1741static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1742{
1743 skb->mac_header = skb->data + offset;
1744}
1745#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1746
1747static inline void skb_probe_transport_header(struct sk_buff *skb,
1748 const int offset_hint)
1749{
1750 struct flow_keys keys;
1751
1752 if (skb_transport_header_was_set(skb))
1753 return;
1754 else if (skb_flow_dissect(skb, &keys))
1755 skb_set_transport_header(skb, keys.thoff);
1756 else
1757 skb_set_transport_header(skb, offset_hint);
1758}
1759
1760static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1761{
1762 if (skb_mac_header_was_set(skb)) {
1763 const unsigned char *old_mac = skb_mac_header(skb);
1764
1765 skb_set_mac_header(skb, -skb->mac_len);
1766 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1767 }
1768}
1769
1770static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1771{
1772 return skb->csum_start - skb_headroom(skb);
1773}
1774
1775static inline int skb_transport_offset(const struct sk_buff *skb)
1776{
1777 return skb_transport_header(skb) - skb->data;
1778}
1779
1780static inline u32 skb_network_header_len(const struct sk_buff *skb)
1781{
1782 return skb->transport_header - skb->network_header;
1783}
1784
1785static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1786{
1787 return skb->inner_transport_header - skb->inner_network_header;
1788}
1789
1790static inline int skb_network_offset(const struct sk_buff *skb)
1791{
1792 return skb_network_header(skb) - skb->data;
1793}
1794
1795static inline int skb_inner_network_offset(const struct sk_buff *skb)
1796{
1797 return skb_inner_network_header(skb) - skb->data;
1798}
1799
1800static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1801{
1802 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1803}
1804
1805/*
1806 * CPUs often take a performance hit when accessing unaligned memory
1807 * locations. The actual performance hit varies, it can be small if the
1808 * hardware handles it or large if we have to take an exception and fix it
1809 * in software.
1810 *
1811 * Since an ethernet header is 14 bytes network drivers often end up with
1812 * the IP header at an unaligned offset. The IP header can be aligned by
1813 * shifting the start of the packet by 2 bytes. Drivers should do this
1814 * with:
1815 *
1816 * skb_reserve(skb, NET_IP_ALIGN);
1817 *
1818 * The downside to this alignment of the IP header is that the DMA is now
1819 * unaligned. On some architectures the cost of an unaligned DMA is high
1820 * and this cost outweighs the gains made by aligning the IP header.
1821 *
1822 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1823 * to be overridden.
1824 */
1825#ifndef NET_IP_ALIGN
1826#define NET_IP_ALIGN 2
1827#endif
1828
1829/*
1830 * The networking layer reserves some headroom in skb data (via
1831 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1832 * the header has to grow. In the default case, if the header has to grow
1833 * 32 bytes or less we avoid the reallocation.
1834 *
1835 * Unfortunately this headroom changes the DMA alignment of the resulting
1836 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1837 * on some architectures. An architecture can override this value,
1838 * perhaps setting it to a cacheline in size (since that will maintain
1839 * cacheline alignment of the DMA). It must be a power of 2.
1840 *
1841 * Various parts of the networking layer expect at least 32 bytes of
1842 * headroom, you should not reduce this.
1843 *
1844 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1845 * to reduce average number of cache lines per packet.
1846 * get_rps_cpus() for example only access one 64 bytes aligned block :
1847 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1848 */
1849#ifndef NET_SKB_PAD
1850#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1851#endif
1852
1853extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1854
1855static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1856{
1857 if (unlikely(skb_is_nonlinear(skb))) {
1858 WARN_ON(1);
1859 return;
1860 }
1861 skb->len = len;
1862 skb_set_tail_pointer(skb, len);
1863}
1864
1865extern void skb_trim(struct sk_buff *skb, unsigned int len);
1866
1867static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1868{
1869 if (skb->data_len)
1870 return ___pskb_trim(skb, len);
1871 __skb_trim(skb, len);
1872 return 0;
1873}
1874
1875static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1876{
1877 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1878}
1879
1880/**
1881 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1882 * @skb: buffer to alter
1883 * @len: new length
1884 *
1885 * This is identical to pskb_trim except that the caller knows that
1886 * the skb is not cloned so we should never get an error due to out-
1887 * of-memory.
1888 */
1889static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1890{
1891 int err = pskb_trim(skb, len);
1892 BUG_ON(err);
1893}
1894
1895/**
1896 * skb_orphan - orphan a buffer
1897 * @skb: buffer to orphan
1898 *
1899 * If a buffer currently has an owner then we call the owner's
1900 * destructor function and make the @skb unowned. The buffer continues
1901 * to exist but is no longer charged to its former owner.
1902 */
1903static inline void skb_orphan(struct sk_buff *skb)
1904{
1905 if (skb->destructor)
1906 skb->destructor(skb);
1907 skb->destructor = NULL;
1908 skb->sk = NULL;
1909}
1910
1911/**
1912 * skb_orphan_frags - orphan the frags contained in a buffer
1913 * @skb: buffer to orphan frags from
1914 * @gfp_mask: allocation mask for replacement pages
1915 *
1916 * For each frag in the SKB which needs a destructor (i.e. has an
1917 * owner) create a copy of that frag and release the original
1918 * page by calling the destructor.
1919 */
1920static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1921{
1922 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1923 return 0;
1924 return skb_copy_ubufs(skb, gfp_mask);
1925}
1926
1927/**
1928 * __skb_queue_purge - empty a list
1929 * @list: list to empty
1930 *
1931 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1932 * the list and one reference dropped. This function does not take the
1933 * list lock and the caller must hold the relevant locks to use it.
1934 */
1935extern void skb_queue_purge(struct sk_buff_head *list);
1936static inline void __skb_queue_purge(struct sk_buff_head *list)
1937{
1938 struct sk_buff *skb;
1939 while ((skb = __skb_dequeue(list)) != NULL)
1940 kfree_skb(skb);
1941}
1942
1943#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1944#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1945#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
1946
1947extern void *netdev_alloc_frag(unsigned int fragsz);
1948
1949extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1950 unsigned int length,
1951 gfp_t gfp_mask);
1952
1953/**
1954 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1955 * @dev: network device to receive on
1956 * @length: length to allocate
1957 *
1958 * Allocate a new &sk_buff and assign it a usage count of one. The
1959 * buffer has unspecified headroom built in. Users should allocate
1960 * the headroom they think they need without accounting for the
1961 * built in space. The built in space is used for optimisations.
1962 *
1963 * %NULL is returned if there is no free memory. Although this function
1964 * allocates memory it can be called from an interrupt.
1965 */
1966static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1967 unsigned int length)
1968{
1969 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1970}
1971
1972/* legacy helper around __netdev_alloc_skb() */
1973static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1974 gfp_t gfp_mask)
1975{
1976 return __netdev_alloc_skb(NULL, length, gfp_mask);
1977}
1978
1979/* legacy helper around netdev_alloc_skb() */
1980static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1981{
1982 return netdev_alloc_skb(NULL, length);
1983}
1984
1985
1986static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1987 unsigned int length, gfp_t gfp)
1988{
1989 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1990
1991 if (NET_IP_ALIGN && skb)
1992 skb_reserve(skb, NET_IP_ALIGN);
1993 return skb;
1994}
1995
1996static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1997 unsigned int length)
1998{
1999 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2000}
2001
2002/*
2003 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2004 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2005 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2006 * @order: size of the allocation
2007 *
2008 * Allocate a new page.
2009 *
2010 * %NULL is returned if there is no free memory.
2011*/
2012static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2013 struct sk_buff *skb,
2014 unsigned int order)
2015{
2016 struct page *page;
2017
2018 gfp_mask |= __GFP_COLD;
2019
2020 if (!(gfp_mask & __GFP_NOMEMALLOC))
2021 gfp_mask |= __GFP_MEMALLOC;
2022
2023 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2024 if (skb && page && page->pfmemalloc)
2025 skb->pfmemalloc = true;
2026
2027 return page;
2028}
2029
2030/**
2031 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2032 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2033 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2034 *
2035 * Allocate a new page.
2036 *
2037 * %NULL is returned if there is no free memory.
2038 */
2039static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2040 struct sk_buff *skb)
2041{
2042 return __skb_alloc_pages(gfp_mask, skb, 0);
2043}
2044
2045/**
2046 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2047 * @page: The page that was allocated from skb_alloc_page
2048 * @skb: The skb that may need pfmemalloc set
2049 */
2050static inline void skb_propagate_pfmemalloc(struct page *page,
2051 struct sk_buff *skb)
2052{
2053 if (page && page->pfmemalloc)
2054 skb->pfmemalloc = true;
2055}
2056
2057/**
2058 * skb_frag_page - retrieve the page refered to by a paged fragment
2059 * @frag: the paged fragment
2060 *
2061 * Returns the &struct page associated with @frag.
2062 */
2063static inline struct page *skb_frag_page(const skb_frag_t *frag)
2064{
2065 return frag->page.p;
2066}
2067
2068/**
2069 * __skb_frag_ref - take an addition reference on a paged fragment.
2070 * @frag: the paged fragment
2071 *
2072 * Takes an additional reference on the paged fragment @frag.
2073 */
2074static inline void __skb_frag_ref(skb_frag_t *frag)
2075{
2076 get_page(skb_frag_page(frag));
2077}
2078
2079/**
2080 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2081 * @skb: the buffer
2082 * @f: the fragment offset.
2083 *
2084 * Takes an additional reference on the @f'th paged fragment of @skb.
2085 */
2086static inline void skb_frag_ref(struct sk_buff *skb, int f)
2087{
2088 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2089}
2090
2091/**
2092 * __skb_frag_unref - release a reference on a paged fragment.
2093 * @frag: the paged fragment
2094 *
2095 * Releases a reference on the paged fragment @frag.
2096 */
2097static inline void __skb_frag_unref(skb_frag_t *frag)
2098{
2099 put_page(skb_frag_page(frag));
2100}
2101
2102/**
2103 * skb_frag_unref - release a reference on a paged fragment of an skb.
2104 * @skb: the buffer
2105 * @f: the fragment offset
2106 *
2107 * Releases a reference on the @f'th paged fragment of @skb.
2108 */
2109static inline void skb_frag_unref(struct sk_buff *skb, int f)
2110{
2111 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2112}
2113
2114/**
2115 * skb_frag_address - gets the address of the data contained in a paged fragment
2116 * @frag: the paged fragment buffer
2117 *
2118 * Returns the address of the data within @frag. The page must already
2119 * be mapped.
2120 */
2121static inline void *skb_frag_address(const skb_frag_t *frag)
2122{
2123 return page_address(skb_frag_page(frag)) + frag->page_offset;
2124}
2125
2126/**
2127 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2128 * @frag: the paged fragment buffer
2129 *
2130 * Returns the address of the data within @frag. Checks that the page
2131 * is mapped and returns %NULL otherwise.
2132 */
2133static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2134{
2135 void *ptr = page_address(skb_frag_page(frag));
2136 if (unlikely(!ptr))
2137 return NULL;
2138
2139 return ptr + frag->page_offset;
2140}
2141
2142/**
2143 * __skb_frag_set_page - sets the page contained in a paged fragment
2144 * @frag: the paged fragment
2145 * @page: the page to set
2146 *
2147 * Sets the fragment @frag to contain @page.
2148 */
2149static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2150{
2151 frag->page.p = page;
2152}
2153
2154/**
2155 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2156 * @skb: the buffer
2157 * @f: the fragment offset
2158 * @page: the page to set
2159 *
2160 * Sets the @f'th fragment of @skb to contain @page.
2161 */
2162static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2163 struct page *page)
2164{
2165 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2166}
2167
2168/**
2169 * skb_frag_dma_map - maps a paged fragment via the DMA API
2170 * @dev: the device to map the fragment to
2171 * @frag: the paged fragment to map
2172 * @offset: the offset within the fragment (starting at the
2173 * fragment's own offset)
2174 * @size: the number of bytes to map
2175 * @dir: the direction of the mapping (%PCI_DMA_*)
2176 *
2177 * Maps the page associated with @frag to @device.
2178 */
2179static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2180 const skb_frag_t *frag,
2181 size_t offset, size_t size,
2182 enum dma_data_direction dir)
2183{
2184 return dma_map_page(dev, skb_frag_page(frag),
2185 frag->page_offset + offset, size, dir);
2186}
2187
2188static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2189 gfp_t gfp_mask)
2190{
2191 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2192}
2193
2194/**
2195 * skb_clone_writable - is the header of a clone writable
2196 * @skb: buffer to check
2197 * @len: length up to which to write
2198 *
2199 * Returns true if modifying the header part of the cloned buffer
2200 * does not requires the data to be copied.
2201 */
2202static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2203{
2204 return !skb_header_cloned(skb) &&
2205 skb_headroom(skb) + len <= skb->hdr_len;
2206}
2207
2208static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2209 int cloned)
2210{
2211 int delta = 0;
2212
2213 if (headroom > skb_headroom(skb))
2214 delta = headroom - skb_headroom(skb);
2215
2216 if (delta || cloned)
2217 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2218 GFP_ATOMIC);
2219 return 0;
2220}
2221
2222/**
2223 * skb_cow - copy header of skb when it is required
2224 * @skb: buffer to cow
2225 * @headroom: needed headroom
2226 *
2227 * If the skb passed lacks sufficient headroom or its data part
2228 * is shared, data is reallocated. If reallocation fails, an error
2229 * is returned and original skb is not changed.
2230 *
2231 * The result is skb with writable area skb->head...skb->tail
2232 * and at least @headroom of space at head.
2233 */
2234static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2235{
2236 return __skb_cow(skb, headroom, skb_cloned(skb));
2237}
2238
2239/**
2240 * skb_cow_head - skb_cow but only making the head writable
2241 * @skb: buffer to cow
2242 * @headroom: needed headroom
2243 *
2244 * This function is identical to skb_cow except that we replace the
2245 * skb_cloned check by skb_header_cloned. It should be used when
2246 * you only need to push on some header and do not need to modify
2247 * the data.
2248 */
2249static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2250{
2251 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2252}
2253
2254/**
2255 * skb_padto - pad an skbuff up to a minimal size
2256 * @skb: buffer to pad
2257 * @len: minimal length
2258 *
2259 * Pads up a buffer to ensure the trailing bytes exist and are
2260 * blanked. If the buffer already contains sufficient data it
2261 * is untouched. Otherwise it is extended. Returns zero on
2262 * success. The skb is freed on error.
2263 */
2264
2265static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2266{
2267 unsigned int size = skb->len;
2268 if (likely(size >= len))
2269 return 0;
2270 return skb_pad(skb, len - size);
2271}
2272
2273static inline int skb_add_data(struct sk_buff *skb,
2274 char __user *from, int copy)
2275{
2276 const int off = skb->len;
2277
2278 if (skb->ip_summed == CHECKSUM_NONE) {
2279 int err = 0;
2280 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2281 copy, 0, &err);
2282 if (!err) {
2283 skb->csum = csum_block_add(skb->csum, csum, off);
2284 return 0;
2285 }
2286 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2287 return 0;
2288
2289 __skb_trim(skb, off);
2290 return -EFAULT;
2291}
2292
2293static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2294 const struct page *page, int off)
2295{
2296 if (i) {
2297 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2298
2299 return page == skb_frag_page(frag) &&
2300 off == frag->page_offset + skb_frag_size(frag);
2301 }
2302 return false;
2303}
2304
2305static inline int __skb_linearize(struct sk_buff *skb)
2306{
2307 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2308}
2309
2310/**
2311 * skb_linearize - convert paged skb to linear one
2312 * @skb: buffer to linarize
2313 *
2314 * If there is no free memory -ENOMEM is returned, otherwise zero
2315 * is returned and the old skb data released.
2316 */
2317static inline int skb_linearize(struct sk_buff *skb)
2318{
2319 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2320}
2321
2322/**
2323 * skb_has_shared_frag - can any frag be overwritten
2324 * @skb: buffer to test
2325 *
2326 * Return true if the skb has at least one frag that might be modified
2327 * by an external entity (as in vmsplice()/sendfile())
2328 */
2329static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2330{
2331 return skb_is_nonlinear(skb) &&
2332 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2333}
2334
2335/**
2336 * skb_linearize_cow - make sure skb is linear and writable
2337 * @skb: buffer to process
2338 *
2339 * If there is no free memory -ENOMEM is returned, otherwise zero
2340 * is returned and the old skb data released.
2341 */
2342static inline int skb_linearize_cow(struct sk_buff *skb)
2343{
2344 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2345 __skb_linearize(skb) : 0;
2346}
2347
2348/**
2349 * skb_postpull_rcsum - update checksum for received skb after pull
2350 * @skb: buffer to update
2351 * @start: start of data before pull
2352 * @len: length of data pulled
2353 *
2354 * After doing a pull on a received packet, you need to call this to
2355 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2356 * CHECKSUM_NONE so that it can be recomputed from scratch.
2357 */
2358
2359static inline void skb_postpull_rcsum(struct sk_buff *skb,
2360 const void *start, unsigned int len)
2361{
2362 if (skb->ip_summed == CHECKSUM_COMPLETE)
2363 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2364}
2365
2366unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2367
2368/**
2369 * pskb_trim_rcsum - trim received skb and update checksum
2370 * @skb: buffer to trim
2371 * @len: new length
2372 *
2373 * This is exactly the same as pskb_trim except that it ensures the
2374 * checksum of received packets are still valid after the operation.
2375 */
2376
2377static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2378{
2379 if (likely(len >= skb->len))
2380 return 0;
2381 if (skb->ip_summed == CHECKSUM_COMPLETE)
2382 skb->ip_summed = CHECKSUM_NONE;
2383 return __pskb_trim(skb, len);
2384}
2385
2386#define skb_queue_walk(queue, skb) \
2387 for (skb = (queue)->next; \
2388 skb != (struct sk_buff *)(queue); \
2389 skb = skb->next)
2390
2391#define skb_queue_walk_safe(queue, skb, tmp) \
2392 for (skb = (queue)->next, tmp = skb->next; \
2393 skb != (struct sk_buff *)(queue); \
2394 skb = tmp, tmp = skb->next)
2395
2396#define skb_queue_walk_from(queue, skb) \
2397 for (; skb != (struct sk_buff *)(queue); \
2398 skb = skb->next)
2399
2400#define skb_queue_walk_from_safe(queue, skb, tmp) \
2401 for (tmp = skb->next; \
2402 skb != (struct sk_buff *)(queue); \
2403 skb = tmp, tmp = skb->next)
2404
2405#define skb_queue_reverse_walk(queue, skb) \
2406 for (skb = (queue)->prev; \
2407 skb != (struct sk_buff *)(queue); \
2408 skb = skb->prev)
2409
2410#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2411 for (skb = (queue)->prev, tmp = skb->prev; \
2412 skb != (struct sk_buff *)(queue); \
2413 skb = tmp, tmp = skb->prev)
2414
2415#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2416 for (tmp = skb->prev; \
2417 skb != (struct sk_buff *)(queue); \
2418 skb = tmp, tmp = skb->prev)
2419
2420static inline bool skb_has_frag_list(const struct sk_buff *skb)
2421{
2422 return skb_shinfo(skb)->frag_list != NULL;
2423}
2424
2425static inline void skb_frag_list_init(struct sk_buff *skb)
2426{
2427 skb_shinfo(skb)->frag_list = NULL;
2428}
2429
2430static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2431{
2432 frag->next = skb_shinfo(skb)->frag_list;
2433 skb_shinfo(skb)->frag_list = frag;
2434}
2435
2436#define skb_walk_frags(skb, iter) \
2437 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2438
2439extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2440 int *peeked, int *off, int *err);
2441extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2442 int noblock, int *err);
2443extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2444 struct poll_table_struct *wait);
2445extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2446 int offset, struct iovec *to,
2447 int size);
2448extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2449 int hlen,
2450 struct iovec *iov);
2451extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2452 int offset,
2453 const struct iovec *from,
2454 int from_offset,
2455 int len);
2456extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2457 int offset,
2458 const struct iovec *to,
2459 int to_offset,
2460 int size);
2461extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2462extern void skb_free_datagram_locked(struct sock *sk,
2463 struct sk_buff *skb);
2464extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2465 unsigned int flags);
2466extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2467 int len, __wsum csum);
2468extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2469 void *to, int len);
2470extern int skb_store_bits(struct sk_buff *skb, int offset,
2471 const void *from, int len);
2472extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2473 int offset, u8 *to, int len,
2474 __wsum csum);
2475extern int skb_splice_bits(struct sk_buff *skb,
2476 unsigned int offset,
2477 struct pipe_inode_info *pipe,
2478 unsigned int len,
2479 unsigned int flags);
2480extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2481extern void skb_split(struct sk_buff *skb,
2482 struct sk_buff *skb1, const u32 len);
2483extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2484 int shiftlen);
2485
2486extern struct sk_buff *skb_segment(struct sk_buff *skb,
2487 netdev_features_t features);
2488
2489static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2490 int len, void *buffer)
2491{
2492 int hlen = skb_headlen(skb);
2493
2494 if (hlen - offset >= len)
2495 return skb->data + offset;
2496
2497 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2498 return NULL;
2499
2500 return buffer;
2501}
2502
2503static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2504 void *to,
2505 const unsigned int len)
2506{
2507 memcpy(to, skb->data, len);
2508}
2509
2510static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2511 const int offset, void *to,
2512 const unsigned int len)
2513{
2514 memcpy(to, skb->data + offset, len);
2515}
2516
2517static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2518 const void *from,
2519 const unsigned int len)
2520{
2521 memcpy(skb->data, from, len);
2522}
2523
2524static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2525 const int offset,
2526 const void *from,
2527 const unsigned int len)
2528{
2529 memcpy(skb->data + offset, from, len);
2530}
2531
2532extern void skb_init(void);
2533
2534static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2535{
2536 return skb->tstamp;
2537}
2538
2539/**
2540 * skb_get_timestamp - get timestamp from a skb
2541 * @skb: skb to get stamp from
2542 * @stamp: pointer to struct timeval to store stamp in
2543 *
2544 * Timestamps are stored in the skb as offsets to a base timestamp.
2545 * This function converts the offset back to a struct timeval and stores
2546 * it in stamp.
2547 */
2548static inline void skb_get_timestamp(const struct sk_buff *skb,
2549 struct timeval *stamp)
2550{
2551 *stamp = ktime_to_timeval(skb->tstamp);
2552}
2553
2554static inline void skb_get_timestampns(const struct sk_buff *skb,
2555 struct timespec *stamp)
2556{
2557 *stamp = ktime_to_timespec(skb->tstamp);
2558}
2559
2560static inline void __net_timestamp(struct sk_buff *skb)
2561{
2562 skb->tstamp = ktime_get_real();
2563}
2564
2565static inline ktime_t net_timedelta(ktime_t t)
2566{
2567 return ktime_sub(ktime_get_real(), t);
2568}
2569
2570static inline ktime_t net_invalid_timestamp(void)
2571{
2572 return ktime_set(0, 0);
2573}
2574
2575extern void skb_timestamping_init(void);
2576
2577#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2578
2579extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2580extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2581
2582#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2583
2584static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2585{
2586}
2587
2588static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2589{
2590 return false;
2591}
2592
2593#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2594
2595/**
2596 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2597 *
2598 * PHY drivers may accept clones of transmitted packets for
2599 * timestamping via their phy_driver.txtstamp method. These drivers
2600 * must call this function to return the skb back to the stack, with
2601 * or without a timestamp.
2602 *
2603 * @skb: clone of the the original outgoing packet
2604 * @hwtstamps: hardware time stamps, may be NULL if not available
2605 *
2606 */
2607void skb_complete_tx_timestamp(struct sk_buff *skb,
2608 struct skb_shared_hwtstamps *hwtstamps);
2609
2610/**
2611 * skb_tstamp_tx - queue clone of skb with send time stamps
2612 * @orig_skb: the original outgoing packet
2613 * @hwtstamps: hardware time stamps, may be NULL if not available
2614 *
2615 * If the skb has a socket associated, then this function clones the
2616 * skb (thus sharing the actual data and optional structures), stores
2617 * the optional hardware time stamping information (if non NULL) or
2618 * generates a software time stamp (otherwise), then queues the clone
2619 * to the error queue of the socket. Errors are silently ignored.
2620 */
2621extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2622 struct skb_shared_hwtstamps *hwtstamps);
2623
2624static inline void sw_tx_timestamp(struct sk_buff *skb)
2625{
2626 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2627 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2628 skb_tstamp_tx(skb, NULL);
2629}
2630
2631/**
2632 * skb_tx_timestamp() - Driver hook for transmit timestamping
2633 *
2634 * Ethernet MAC Drivers should call this function in their hard_xmit()
2635 * function immediately before giving the sk_buff to the MAC hardware.
2636 *
2637 * @skb: A socket buffer.
2638 */
2639static inline void skb_tx_timestamp(struct sk_buff *skb)
2640{
2641 skb_clone_tx_timestamp(skb);
2642 sw_tx_timestamp(skb);
2643}
2644
2645/**
2646 * skb_complete_wifi_ack - deliver skb with wifi status
2647 *
2648 * @skb: the original outgoing packet
2649 * @acked: ack status
2650 *
2651 */
2652void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2653
2654extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2655extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2656
2657static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2658{
2659 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2660}
2661
2662/**
2663 * skb_checksum_complete - Calculate checksum of an entire packet
2664 * @skb: packet to process
2665 *
2666 * This function calculates the checksum over the entire packet plus
2667 * the value of skb->csum. The latter can be used to supply the
2668 * checksum of a pseudo header as used by TCP/UDP. It returns the
2669 * checksum.
2670 *
2671 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2672 * this function can be used to verify that checksum on received
2673 * packets. In that case the function should return zero if the
2674 * checksum is correct. In particular, this function will return zero
2675 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2676 * hardware has already verified the correctness of the checksum.
2677 */
2678static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2679{
2680 return skb_csum_unnecessary(skb) ?
2681 0 : __skb_checksum_complete(skb);
2682}
2683
2684#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2685extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2686static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2687{
2688 if (nfct && atomic_dec_and_test(&nfct->use))
2689 nf_conntrack_destroy(nfct);
2690}
2691static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2692{
2693 if (nfct)
2694 atomic_inc(&nfct->use);
2695}
2696#endif
2697#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2698static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2699{
2700 if (skb)
2701 atomic_inc(&skb->users);
2702}
2703static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2704{
2705 if (skb)
2706 kfree_skb(skb);
2707}
2708#endif
2709#ifdef CONFIG_BRIDGE_NETFILTER
2710static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2711{
2712 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2713 kfree(nf_bridge);
2714}
2715static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2716{
2717 if (nf_bridge)
2718 atomic_inc(&nf_bridge->use);
2719}
2720#endif /* CONFIG_BRIDGE_NETFILTER */
2721static inline void nf_reset(struct sk_buff *skb)
2722{
2723#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2724 nf_conntrack_put(skb->nfct);
2725 skb->nfct = NULL;
2726#endif
2727#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2728 nf_conntrack_put_reasm(skb->nfct_reasm);
2729 skb->nfct_reasm = NULL;
2730#endif
2731#ifdef CONFIG_BRIDGE_NETFILTER
2732 nf_bridge_put(skb->nf_bridge);
2733 skb->nf_bridge = NULL;
2734#endif
2735}
2736
2737static inline void nf_reset_trace(struct sk_buff *skb)
2738{
2739#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2740 skb->nf_trace = 0;
2741#endif
2742}
2743
2744/* Note: This doesn't put any conntrack and bridge info in dst. */
2745static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2746{
2747#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2748 dst->nfct = src->nfct;
2749 nf_conntrack_get(src->nfct);
2750 dst->nfctinfo = src->nfctinfo;
2751#endif
2752#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2753 dst->nfct_reasm = src->nfct_reasm;
2754 nf_conntrack_get_reasm(src->nfct_reasm);
2755#endif
2756#ifdef CONFIG_BRIDGE_NETFILTER
2757 dst->nf_bridge = src->nf_bridge;
2758 nf_bridge_get(src->nf_bridge);
2759#endif
2760}
2761
2762static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2763{
2764#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2765 nf_conntrack_put(dst->nfct);
2766#endif
2767#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2768 nf_conntrack_put_reasm(dst->nfct_reasm);
2769#endif
2770#ifdef CONFIG_BRIDGE_NETFILTER
2771 nf_bridge_put(dst->nf_bridge);
2772#endif
2773 __nf_copy(dst, src);
2774}
2775
2776#ifdef CONFIG_NETWORK_SECMARK
2777static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2778{
2779 to->secmark = from->secmark;
2780}
2781
2782static inline void skb_init_secmark(struct sk_buff *skb)
2783{
2784 skb->secmark = 0;
2785}
2786#else
2787static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2788{ }
2789
2790static inline void skb_init_secmark(struct sk_buff *skb)
2791{ }
2792#endif
2793
2794static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2795{
2796 skb->queue_mapping = queue_mapping;
2797}
2798
2799static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2800{
2801 return skb->queue_mapping;
2802}
2803
2804static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2805{
2806 to->queue_mapping = from->queue_mapping;
2807}
2808
2809static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2810{
2811 skb->queue_mapping = rx_queue + 1;
2812}
2813
2814static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2815{
2816 return skb->queue_mapping - 1;
2817}
2818
2819static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2820{
2821 return skb->queue_mapping != 0;
2822}
2823
2824extern u16 __skb_tx_hash(const struct net_device *dev,
2825 const struct sk_buff *skb,
2826 unsigned int num_tx_queues);
2827
2828#ifdef CONFIG_XFRM
2829static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2830{
2831 return skb->sp;
2832}
2833#else
2834static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2835{
2836 return NULL;
2837}
2838#endif
2839
2840/* Keeps track of mac header offset relative to skb->head.
2841 * It is useful for TSO of Tunneling protocol. e.g. GRE.
2842 * For non-tunnel skb it points to skb_mac_header() and for
2843 * tunnel skb it points to outer mac header. */
2844struct skb_gso_cb {
2845 int mac_offset;
2846};
2847#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2848
2849static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
2850{
2851 return (skb_mac_header(inner_skb) - inner_skb->head) -
2852 SKB_GSO_CB(inner_skb)->mac_offset;
2853}
2854
2855static inline bool skb_is_gso(const struct sk_buff *skb)
2856{
2857 return skb_shinfo(skb)->gso_size;
2858}
2859
2860static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2861{
2862 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2863}
2864
2865extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2866
2867static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2868{
2869 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2870 * wanted then gso_type will be set. */
2871 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2872
2873 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2874 unlikely(shinfo->gso_type == 0)) {
2875 __skb_warn_lro_forwarding(skb);
2876 return true;
2877 }
2878 return false;
2879}
2880
2881static inline void skb_forward_csum(struct sk_buff *skb)
2882{
2883 /* Unfortunately we don't support this one. Any brave souls? */
2884 if (skb->ip_summed == CHECKSUM_COMPLETE)
2885 skb->ip_summed = CHECKSUM_NONE;
2886}
2887
2888/**
2889 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2890 * @skb: skb to check
2891 *
2892 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2893 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2894 * use this helper, to document places where we make this assertion.
2895 */
2896static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2897{
2898#ifdef DEBUG
2899 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2900#endif
2901}
2902
2903bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2904
2905u32 __skb_get_poff(const struct sk_buff *skb);
2906
2907/**
2908 * skb_head_is_locked - Determine if the skb->head is locked down
2909 * @skb: skb to check
2910 *
2911 * The head on skbs build around a head frag can be removed if they are
2912 * not cloned. This function returns true if the skb head is locked down
2913 * due to either being allocated via kmalloc, or by being a clone with
2914 * multiple references to the head.
2915 */
2916static inline bool skb_head_is_locked(const struct sk_buff *skb)
2917{
2918 return !skb->head_frag || skb_cloned(skb);
2919}
2920#endif /* __KERNEL__ */
2921#endif /* _LINUX_SKBUFF_H */