at v3.10-rc2 2921 lines 82 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/dmaengine.h> 32#include <linux/hrtimer.h> 33#include <linux/dma-mapping.h> 34#include <linux/netdev_features.h> 35#include <net/flow_keys.h> 36 37/* Don't change this without changing skb_csum_unnecessary! */ 38#define CHECKSUM_NONE 0 39#define CHECKSUM_UNNECESSARY 1 40#define CHECKSUM_COMPLETE 2 41#define CHECKSUM_PARTIAL 3 42 43#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 44 ~(SMP_CACHE_BYTES - 1)) 45#define SKB_WITH_OVERHEAD(X) \ 46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 47#define SKB_MAX_ORDER(X, ORDER) \ 48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 49#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 50#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 51 52/* return minimum truesize of one skb containing X bytes of data */ 53#define SKB_TRUESIZE(X) ((X) + \ 54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 56 57/* A. Checksumming of received packets by device. 58 * 59 * NONE: device failed to checksum this packet. 60 * skb->csum is undefined. 61 * 62 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 63 * skb->csum is undefined. 64 * It is bad option, but, unfortunately, many of vendors do this. 65 * Apparently with secret goal to sell you new device, when you 66 * will add new protocol to your host. F.e. IPv6. 8) 67 * 68 * COMPLETE: the most generic way. Device supplied checksum of _all_ 69 * the packet as seen by netif_rx in skb->csum. 70 * NOTE: Even if device supports only some protocols, but 71 * is able to produce some skb->csum, it MUST use COMPLETE, 72 * not UNNECESSARY. 73 * 74 * PARTIAL: identical to the case for output below. This may occur 75 * on a packet received directly from another Linux OS, e.g., 76 * a virtualised Linux kernel on the same host. The packet can 77 * be treated in the same way as UNNECESSARY except that on 78 * output (i.e., forwarding) the checksum must be filled in 79 * by the OS or the hardware. 80 * 81 * B. Checksumming on output. 82 * 83 * NONE: skb is checksummed by protocol or csum is not required. 84 * 85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 86 * from skb->csum_start to the end and to record the checksum 87 * at skb->csum_start + skb->csum_offset. 88 * 89 * Device must show its capabilities in dev->features, set 90 * at device setup time. 91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 92 * everything. 93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 94 * TCP/UDP over IPv4. Sigh. Vendors like this 95 * way by an unknown reason. Though, see comment above 96 * about CHECKSUM_UNNECESSARY. 8) 97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 98 * 99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 100 * that do not want net to perform the checksum calculation should use 101 * this flag in their outgoing skbs. 102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 103 * offload. Correspondingly, the FCoE protocol driver 104 * stack should use CHECKSUM_UNNECESSARY. 105 * 106 * Any questions? No questions, good. --ANK 107 */ 108 109struct net_device; 110struct scatterlist; 111struct pipe_inode_info; 112 113#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 114struct nf_conntrack { 115 atomic_t use; 116}; 117#endif 118 119#ifdef CONFIG_BRIDGE_NETFILTER 120struct nf_bridge_info { 121 atomic_t use; 122 unsigned int mask; 123 struct net_device *physindev; 124 struct net_device *physoutdev; 125 unsigned long data[32 / sizeof(unsigned long)]; 126}; 127#endif 128 129struct sk_buff_head { 130 /* These two members must be first. */ 131 struct sk_buff *next; 132 struct sk_buff *prev; 133 134 __u32 qlen; 135 spinlock_t lock; 136}; 137 138struct sk_buff; 139 140/* To allow 64K frame to be packed as single skb without frag_list we 141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 142 * buffers which do not start on a page boundary. 143 * 144 * Since GRO uses frags we allocate at least 16 regardless of page 145 * size. 146 */ 147#if (65536/PAGE_SIZE + 1) < 16 148#define MAX_SKB_FRAGS 16UL 149#else 150#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 151#endif 152 153typedef struct skb_frag_struct skb_frag_t; 154 155struct skb_frag_struct { 156 struct { 157 struct page *p; 158 } page; 159#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 160 __u32 page_offset; 161 __u32 size; 162#else 163 __u16 page_offset; 164 __u16 size; 165#endif 166}; 167 168static inline unsigned int skb_frag_size(const skb_frag_t *frag) 169{ 170 return frag->size; 171} 172 173static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 174{ 175 frag->size = size; 176} 177 178static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 179{ 180 frag->size += delta; 181} 182 183static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 184{ 185 frag->size -= delta; 186} 187 188#define HAVE_HW_TIME_STAMP 189 190/** 191 * struct skb_shared_hwtstamps - hardware time stamps 192 * @hwtstamp: hardware time stamp transformed into duration 193 * since arbitrary point in time 194 * @syststamp: hwtstamp transformed to system time base 195 * 196 * Software time stamps generated by ktime_get_real() are stored in 197 * skb->tstamp. The relation between the different kinds of time 198 * stamps is as follows: 199 * 200 * syststamp and tstamp can be compared against each other in 201 * arbitrary combinations. The accuracy of a 202 * syststamp/tstamp/"syststamp from other device" comparison is 203 * limited by the accuracy of the transformation into system time 204 * base. This depends on the device driver and its underlying 205 * hardware. 206 * 207 * hwtstamps can only be compared against other hwtstamps from 208 * the same device. 209 * 210 * This structure is attached to packets as part of the 211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 212 */ 213struct skb_shared_hwtstamps { 214 ktime_t hwtstamp; 215 ktime_t syststamp; 216}; 217 218/* Definitions for tx_flags in struct skb_shared_info */ 219enum { 220 /* generate hardware time stamp */ 221 SKBTX_HW_TSTAMP = 1 << 0, 222 223 /* generate software time stamp */ 224 SKBTX_SW_TSTAMP = 1 << 1, 225 226 /* device driver is going to provide hardware time stamp */ 227 SKBTX_IN_PROGRESS = 1 << 2, 228 229 /* device driver supports TX zero-copy buffers */ 230 SKBTX_DEV_ZEROCOPY = 1 << 3, 231 232 /* generate wifi status information (where possible) */ 233 SKBTX_WIFI_STATUS = 1 << 4, 234 235 /* This indicates at least one fragment might be overwritten 236 * (as in vmsplice(), sendfile() ...) 237 * If we need to compute a TX checksum, we'll need to copy 238 * all frags to avoid possible bad checksum 239 */ 240 SKBTX_SHARED_FRAG = 1 << 5, 241}; 242 243/* 244 * The callback notifies userspace to release buffers when skb DMA is done in 245 * lower device, the skb last reference should be 0 when calling this. 246 * The zerocopy_success argument is true if zero copy transmit occurred, 247 * false on data copy or out of memory error caused by data copy attempt. 248 * The ctx field is used to track device context. 249 * The desc field is used to track userspace buffer index. 250 */ 251struct ubuf_info { 252 void (*callback)(struct ubuf_info *, bool zerocopy_success); 253 void *ctx; 254 unsigned long desc; 255}; 256 257/* This data is invariant across clones and lives at 258 * the end of the header data, ie. at skb->end. 259 */ 260struct skb_shared_info { 261 unsigned char nr_frags; 262 __u8 tx_flags; 263 unsigned short gso_size; 264 /* Warning: this field is not always filled in (UFO)! */ 265 unsigned short gso_segs; 266 unsigned short gso_type; 267 struct sk_buff *frag_list; 268 struct skb_shared_hwtstamps hwtstamps; 269 __be32 ip6_frag_id; 270 271 /* 272 * Warning : all fields before dataref are cleared in __alloc_skb() 273 */ 274 atomic_t dataref; 275 276 /* Intermediate layers must ensure that destructor_arg 277 * remains valid until skb destructor */ 278 void * destructor_arg; 279 280 /* must be last field, see pskb_expand_head() */ 281 skb_frag_t frags[MAX_SKB_FRAGS]; 282}; 283 284/* We divide dataref into two halves. The higher 16 bits hold references 285 * to the payload part of skb->data. The lower 16 bits hold references to 286 * the entire skb->data. A clone of a headerless skb holds the length of 287 * the header in skb->hdr_len. 288 * 289 * All users must obey the rule that the skb->data reference count must be 290 * greater than or equal to the payload reference count. 291 * 292 * Holding a reference to the payload part means that the user does not 293 * care about modifications to the header part of skb->data. 294 */ 295#define SKB_DATAREF_SHIFT 16 296#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 297 298 299enum { 300 SKB_FCLONE_UNAVAILABLE, 301 SKB_FCLONE_ORIG, 302 SKB_FCLONE_CLONE, 303}; 304 305enum { 306 SKB_GSO_TCPV4 = 1 << 0, 307 SKB_GSO_UDP = 1 << 1, 308 309 /* This indicates the skb is from an untrusted source. */ 310 SKB_GSO_DODGY = 1 << 2, 311 312 /* This indicates the tcp segment has CWR set. */ 313 SKB_GSO_TCP_ECN = 1 << 3, 314 315 SKB_GSO_TCPV6 = 1 << 4, 316 317 SKB_GSO_FCOE = 1 << 5, 318 319 SKB_GSO_GRE = 1 << 6, 320 321 SKB_GSO_UDP_TUNNEL = 1 << 7, 322}; 323 324#if BITS_PER_LONG > 32 325#define NET_SKBUFF_DATA_USES_OFFSET 1 326#endif 327 328#ifdef NET_SKBUFF_DATA_USES_OFFSET 329typedef unsigned int sk_buff_data_t; 330#else 331typedef unsigned char *sk_buff_data_t; 332#endif 333 334#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 335 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 336#define NET_SKBUFF_NF_DEFRAG_NEEDED 1 337#endif 338 339/** 340 * struct sk_buff - socket buffer 341 * @next: Next buffer in list 342 * @prev: Previous buffer in list 343 * @tstamp: Time we arrived 344 * @sk: Socket we are owned by 345 * @dev: Device we arrived on/are leaving by 346 * @cb: Control buffer. Free for use by every layer. Put private vars here 347 * @_skb_refdst: destination entry (with norefcount bit) 348 * @sp: the security path, used for xfrm 349 * @len: Length of actual data 350 * @data_len: Data length 351 * @mac_len: Length of link layer header 352 * @hdr_len: writable header length of cloned skb 353 * @csum: Checksum (must include start/offset pair) 354 * @csum_start: Offset from skb->head where checksumming should start 355 * @csum_offset: Offset from csum_start where checksum should be stored 356 * @priority: Packet queueing priority 357 * @local_df: allow local fragmentation 358 * @cloned: Head may be cloned (check refcnt to be sure) 359 * @ip_summed: Driver fed us an IP checksum 360 * @nohdr: Payload reference only, must not modify header 361 * @nfctinfo: Relationship of this skb to the connection 362 * @pkt_type: Packet class 363 * @fclone: skbuff clone status 364 * @ipvs_property: skbuff is owned by ipvs 365 * @peeked: this packet has been seen already, so stats have been 366 * done for it, don't do them again 367 * @nf_trace: netfilter packet trace flag 368 * @protocol: Packet protocol from driver 369 * @destructor: Destruct function 370 * @nfct: Associated connection, if any 371 * @nfct_reasm: netfilter conntrack re-assembly pointer 372 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 373 * @skb_iif: ifindex of device we arrived on 374 * @tc_index: Traffic control index 375 * @tc_verd: traffic control verdict 376 * @rxhash: the packet hash computed on receive 377 * @queue_mapping: Queue mapping for multiqueue devices 378 * @ndisc_nodetype: router type (from link layer) 379 * @ooo_okay: allow the mapping of a socket to a queue to be changed 380 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 381 * ports. 382 * @wifi_acked_valid: wifi_acked was set 383 * @wifi_acked: whether frame was acked on wifi or not 384 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 385 * @dma_cookie: a cookie to one of several possible DMA operations 386 * done by skb DMA functions 387 * @secmark: security marking 388 * @mark: Generic packet mark 389 * @dropcount: total number of sk_receive_queue overflows 390 * @vlan_proto: vlan encapsulation protocol 391 * @vlan_tci: vlan tag control information 392 * @inner_transport_header: Inner transport layer header (encapsulation) 393 * @inner_network_header: Network layer header (encapsulation) 394 * @inner_mac_header: Link layer header (encapsulation) 395 * @transport_header: Transport layer header 396 * @network_header: Network layer header 397 * @mac_header: Link layer header 398 * @tail: Tail pointer 399 * @end: End pointer 400 * @head: Head of buffer 401 * @data: Data head pointer 402 * @truesize: Buffer size 403 * @users: User count - see {datagram,tcp}.c 404 */ 405 406struct sk_buff { 407 /* These two members must be first. */ 408 struct sk_buff *next; 409 struct sk_buff *prev; 410 411 ktime_t tstamp; 412 413 struct sock *sk; 414 struct net_device *dev; 415 416 /* 417 * This is the control buffer. It is free to use for every 418 * layer. Please put your private variables there. If you 419 * want to keep them across layers you have to do a skb_clone() 420 * first. This is owned by whoever has the skb queued ATM. 421 */ 422 char cb[48] __aligned(8); 423 424 unsigned long _skb_refdst; 425#ifdef CONFIG_XFRM 426 struct sec_path *sp; 427#endif 428 unsigned int len, 429 data_len; 430 __u16 mac_len, 431 hdr_len; 432 union { 433 __wsum csum; 434 struct { 435 __u16 csum_start; 436 __u16 csum_offset; 437 }; 438 }; 439 __u32 priority; 440 kmemcheck_bitfield_begin(flags1); 441 __u8 local_df:1, 442 cloned:1, 443 ip_summed:2, 444 nohdr:1, 445 nfctinfo:3; 446 __u8 pkt_type:3, 447 fclone:2, 448 ipvs_property:1, 449 peeked:1, 450 nf_trace:1; 451 kmemcheck_bitfield_end(flags1); 452 __be16 protocol; 453 454 void (*destructor)(struct sk_buff *skb); 455#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 456 struct nf_conntrack *nfct; 457#endif 458#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 459 struct sk_buff *nfct_reasm; 460#endif 461#ifdef CONFIG_BRIDGE_NETFILTER 462 struct nf_bridge_info *nf_bridge; 463#endif 464 465 int skb_iif; 466 467 __u32 rxhash; 468 469 __be16 vlan_proto; 470 __u16 vlan_tci; 471 472#ifdef CONFIG_NET_SCHED 473 __u16 tc_index; /* traffic control index */ 474#ifdef CONFIG_NET_CLS_ACT 475 __u16 tc_verd; /* traffic control verdict */ 476#endif 477#endif 478 479 __u16 queue_mapping; 480 kmemcheck_bitfield_begin(flags2); 481#ifdef CONFIG_IPV6_NDISC_NODETYPE 482 __u8 ndisc_nodetype:2; 483#endif 484 __u8 pfmemalloc:1; 485 __u8 ooo_okay:1; 486 __u8 l4_rxhash:1; 487 __u8 wifi_acked_valid:1; 488 __u8 wifi_acked:1; 489 __u8 no_fcs:1; 490 __u8 head_frag:1; 491 /* Encapsulation protocol and NIC drivers should use 492 * this flag to indicate to each other if the skb contains 493 * encapsulated packet or not and maybe use the inner packet 494 * headers if needed 495 */ 496 __u8 encapsulation:1; 497 /* 7/9 bit hole (depending on ndisc_nodetype presence) */ 498 kmemcheck_bitfield_end(flags2); 499 500#ifdef CONFIG_NET_DMA 501 dma_cookie_t dma_cookie; 502#endif 503#ifdef CONFIG_NETWORK_SECMARK 504 __u32 secmark; 505#endif 506 union { 507 __u32 mark; 508 __u32 dropcount; 509 __u32 reserved_tailroom; 510 }; 511 512 sk_buff_data_t inner_transport_header; 513 sk_buff_data_t inner_network_header; 514 sk_buff_data_t inner_mac_header; 515 sk_buff_data_t transport_header; 516 sk_buff_data_t network_header; 517 sk_buff_data_t mac_header; 518 /* These elements must be at the end, see alloc_skb() for details. */ 519 sk_buff_data_t tail; 520 sk_buff_data_t end; 521 unsigned char *head, 522 *data; 523 unsigned int truesize; 524 atomic_t users; 525}; 526 527#ifdef __KERNEL__ 528/* 529 * Handling routines are only of interest to the kernel 530 */ 531#include <linux/slab.h> 532 533 534#define SKB_ALLOC_FCLONE 0x01 535#define SKB_ALLOC_RX 0x02 536 537/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 538static inline bool skb_pfmemalloc(const struct sk_buff *skb) 539{ 540 return unlikely(skb->pfmemalloc); 541} 542 543/* 544 * skb might have a dst pointer attached, refcounted or not. 545 * _skb_refdst low order bit is set if refcount was _not_ taken 546 */ 547#define SKB_DST_NOREF 1UL 548#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 549 550/** 551 * skb_dst - returns skb dst_entry 552 * @skb: buffer 553 * 554 * Returns skb dst_entry, regardless of reference taken or not. 555 */ 556static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 557{ 558 /* If refdst was not refcounted, check we still are in a 559 * rcu_read_lock section 560 */ 561 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 562 !rcu_read_lock_held() && 563 !rcu_read_lock_bh_held()); 564 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 565} 566 567/** 568 * skb_dst_set - sets skb dst 569 * @skb: buffer 570 * @dst: dst entry 571 * 572 * Sets skb dst, assuming a reference was taken on dst and should 573 * be released by skb_dst_drop() 574 */ 575static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 576{ 577 skb->_skb_refdst = (unsigned long)dst; 578} 579 580extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 581 bool force); 582 583/** 584 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 585 * @skb: buffer 586 * @dst: dst entry 587 * 588 * Sets skb dst, assuming a reference was not taken on dst. 589 * If dst entry is cached, we do not take reference and dst_release 590 * will be avoided by refdst_drop. If dst entry is not cached, we take 591 * reference, so that last dst_release can destroy the dst immediately. 592 */ 593static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 594{ 595 __skb_dst_set_noref(skb, dst, false); 596} 597 598/** 599 * skb_dst_set_noref_force - sets skb dst, without taking reference 600 * @skb: buffer 601 * @dst: dst entry 602 * 603 * Sets skb dst, assuming a reference was not taken on dst. 604 * No reference is taken and no dst_release will be called. While for 605 * cached dsts deferred reclaim is a basic feature, for entries that are 606 * not cached it is caller's job to guarantee that last dst_release for 607 * provided dst happens when nobody uses it, eg. after a RCU grace period. 608 */ 609static inline void skb_dst_set_noref_force(struct sk_buff *skb, 610 struct dst_entry *dst) 611{ 612 __skb_dst_set_noref(skb, dst, true); 613} 614 615/** 616 * skb_dst_is_noref - Test if skb dst isn't refcounted 617 * @skb: buffer 618 */ 619static inline bool skb_dst_is_noref(const struct sk_buff *skb) 620{ 621 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 622} 623 624static inline struct rtable *skb_rtable(const struct sk_buff *skb) 625{ 626 return (struct rtable *)skb_dst(skb); 627} 628 629extern void kfree_skb(struct sk_buff *skb); 630extern void skb_tx_error(struct sk_buff *skb); 631extern void consume_skb(struct sk_buff *skb); 632extern void __kfree_skb(struct sk_buff *skb); 633extern struct kmem_cache *skbuff_head_cache; 634 635extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 636extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 637 bool *fragstolen, int *delta_truesize); 638 639extern struct sk_buff *__alloc_skb(unsigned int size, 640 gfp_t priority, int flags, int node); 641extern struct sk_buff *build_skb(void *data, unsigned int frag_size); 642static inline struct sk_buff *alloc_skb(unsigned int size, 643 gfp_t priority) 644{ 645 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 646} 647 648static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 649 gfp_t priority) 650{ 651 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 652} 653 654extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 655static inline struct sk_buff *alloc_skb_head(gfp_t priority) 656{ 657 return __alloc_skb_head(priority, -1); 658} 659 660extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 661extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 662extern struct sk_buff *skb_clone(struct sk_buff *skb, 663 gfp_t priority); 664extern struct sk_buff *skb_copy(const struct sk_buff *skb, 665 gfp_t priority); 666extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 667 int headroom, gfp_t gfp_mask); 668 669extern int pskb_expand_head(struct sk_buff *skb, 670 int nhead, int ntail, 671 gfp_t gfp_mask); 672extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 673 unsigned int headroom); 674extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 675 int newheadroom, int newtailroom, 676 gfp_t priority); 677extern int skb_to_sgvec(struct sk_buff *skb, 678 struct scatterlist *sg, int offset, 679 int len); 680extern int skb_cow_data(struct sk_buff *skb, int tailbits, 681 struct sk_buff **trailer); 682extern int skb_pad(struct sk_buff *skb, int pad); 683#define dev_kfree_skb(a) consume_skb(a) 684 685extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 686 int getfrag(void *from, char *to, int offset, 687 int len,int odd, struct sk_buff *skb), 688 void *from, int length); 689 690struct skb_seq_state { 691 __u32 lower_offset; 692 __u32 upper_offset; 693 __u32 frag_idx; 694 __u32 stepped_offset; 695 struct sk_buff *root_skb; 696 struct sk_buff *cur_skb; 697 __u8 *frag_data; 698}; 699 700extern void skb_prepare_seq_read(struct sk_buff *skb, 701 unsigned int from, unsigned int to, 702 struct skb_seq_state *st); 703extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 704 struct skb_seq_state *st); 705extern void skb_abort_seq_read(struct skb_seq_state *st); 706 707extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 708 unsigned int to, struct ts_config *config, 709 struct ts_state *state); 710 711extern void __skb_get_rxhash(struct sk_buff *skb); 712static inline __u32 skb_get_rxhash(struct sk_buff *skb) 713{ 714 if (!skb->l4_rxhash) 715 __skb_get_rxhash(skb); 716 717 return skb->rxhash; 718} 719 720#ifdef NET_SKBUFF_DATA_USES_OFFSET 721static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 722{ 723 return skb->head + skb->end; 724} 725 726static inline unsigned int skb_end_offset(const struct sk_buff *skb) 727{ 728 return skb->end; 729} 730#else 731static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 732{ 733 return skb->end; 734} 735 736static inline unsigned int skb_end_offset(const struct sk_buff *skb) 737{ 738 return skb->end - skb->head; 739} 740#endif 741 742/* Internal */ 743#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 744 745static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 746{ 747 return &skb_shinfo(skb)->hwtstamps; 748} 749 750/** 751 * skb_queue_empty - check if a queue is empty 752 * @list: queue head 753 * 754 * Returns true if the queue is empty, false otherwise. 755 */ 756static inline int skb_queue_empty(const struct sk_buff_head *list) 757{ 758 return list->next == (struct sk_buff *)list; 759} 760 761/** 762 * skb_queue_is_last - check if skb is the last entry in the queue 763 * @list: queue head 764 * @skb: buffer 765 * 766 * Returns true if @skb is the last buffer on the list. 767 */ 768static inline bool skb_queue_is_last(const struct sk_buff_head *list, 769 const struct sk_buff *skb) 770{ 771 return skb->next == (struct sk_buff *)list; 772} 773 774/** 775 * skb_queue_is_first - check if skb is the first entry in the queue 776 * @list: queue head 777 * @skb: buffer 778 * 779 * Returns true if @skb is the first buffer on the list. 780 */ 781static inline bool skb_queue_is_first(const struct sk_buff_head *list, 782 const struct sk_buff *skb) 783{ 784 return skb->prev == (struct sk_buff *)list; 785} 786 787/** 788 * skb_queue_next - return the next packet in the queue 789 * @list: queue head 790 * @skb: current buffer 791 * 792 * Return the next packet in @list after @skb. It is only valid to 793 * call this if skb_queue_is_last() evaluates to false. 794 */ 795static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 796 const struct sk_buff *skb) 797{ 798 /* This BUG_ON may seem severe, but if we just return then we 799 * are going to dereference garbage. 800 */ 801 BUG_ON(skb_queue_is_last(list, skb)); 802 return skb->next; 803} 804 805/** 806 * skb_queue_prev - return the prev packet in the queue 807 * @list: queue head 808 * @skb: current buffer 809 * 810 * Return the prev packet in @list before @skb. It is only valid to 811 * call this if skb_queue_is_first() evaluates to false. 812 */ 813static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 814 const struct sk_buff *skb) 815{ 816 /* This BUG_ON may seem severe, but if we just return then we 817 * are going to dereference garbage. 818 */ 819 BUG_ON(skb_queue_is_first(list, skb)); 820 return skb->prev; 821} 822 823/** 824 * skb_get - reference buffer 825 * @skb: buffer to reference 826 * 827 * Makes another reference to a socket buffer and returns a pointer 828 * to the buffer. 829 */ 830static inline struct sk_buff *skb_get(struct sk_buff *skb) 831{ 832 atomic_inc(&skb->users); 833 return skb; 834} 835 836/* 837 * If users == 1, we are the only owner and are can avoid redundant 838 * atomic change. 839 */ 840 841/** 842 * skb_cloned - is the buffer a clone 843 * @skb: buffer to check 844 * 845 * Returns true if the buffer was generated with skb_clone() and is 846 * one of multiple shared copies of the buffer. Cloned buffers are 847 * shared data so must not be written to under normal circumstances. 848 */ 849static inline int skb_cloned(const struct sk_buff *skb) 850{ 851 return skb->cloned && 852 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 853} 854 855static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 856{ 857 might_sleep_if(pri & __GFP_WAIT); 858 859 if (skb_cloned(skb)) 860 return pskb_expand_head(skb, 0, 0, pri); 861 862 return 0; 863} 864 865/** 866 * skb_header_cloned - is the header a clone 867 * @skb: buffer to check 868 * 869 * Returns true if modifying the header part of the buffer requires 870 * the data to be copied. 871 */ 872static inline int skb_header_cloned(const struct sk_buff *skb) 873{ 874 int dataref; 875 876 if (!skb->cloned) 877 return 0; 878 879 dataref = atomic_read(&skb_shinfo(skb)->dataref); 880 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 881 return dataref != 1; 882} 883 884/** 885 * skb_header_release - release reference to header 886 * @skb: buffer to operate on 887 * 888 * Drop a reference to the header part of the buffer. This is done 889 * by acquiring a payload reference. You must not read from the header 890 * part of skb->data after this. 891 */ 892static inline void skb_header_release(struct sk_buff *skb) 893{ 894 BUG_ON(skb->nohdr); 895 skb->nohdr = 1; 896 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 897} 898 899/** 900 * skb_shared - is the buffer shared 901 * @skb: buffer to check 902 * 903 * Returns true if more than one person has a reference to this 904 * buffer. 905 */ 906static inline int skb_shared(const struct sk_buff *skb) 907{ 908 return atomic_read(&skb->users) != 1; 909} 910 911/** 912 * skb_share_check - check if buffer is shared and if so clone it 913 * @skb: buffer to check 914 * @pri: priority for memory allocation 915 * 916 * If the buffer is shared the buffer is cloned and the old copy 917 * drops a reference. A new clone with a single reference is returned. 918 * If the buffer is not shared the original buffer is returned. When 919 * being called from interrupt status or with spinlocks held pri must 920 * be GFP_ATOMIC. 921 * 922 * NULL is returned on a memory allocation failure. 923 */ 924static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 925{ 926 might_sleep_if(pri & __GFP_WAIT); 927 if (skb_shared(skb)) { 928 struct sk_buff *nskb = skb_clone(skb, pri); 929 930 if (likely(nskb)) 931 consume_skb(skb); 932 else 933 kfree_skb(skb); 934 skb = nskb; 935 } 936 return skb; 937} 938 939/* 940 * Copy shared buffers into a new sk_buff. We effectively do COW on 941 * packets to handle cases where we have a local reader and forward 942 * and a couple of other messy ones. The normal one is tcpdumping 943 * a packet thats being forwarded. 944 */ 945 946/** 947 * skb_unshare - make a copy of a shared buffer 948 * @skb: buffer to check 949 * @pri: priority for memory allocation 950 * 951 * If the socket buffer is a clone then this function creates a new 952 * copy of the data, drops a reference count on the old copy and returns 953 * the new copy with the reference count at 1. If the buffer is not a clone 954 * the original buffer is returned. When called with a spinlock held or 955 * from interrupt state @pri must be %GFP_ATOMIC 956 * 957 * %NULL is returned on a memory allocation failure. 958 */ 959static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 960 gfp_t pri) 961{ 962 might_sleep_if(pri & __GFP_WAIT); 963 if (skb_cloned(skb)) { 964 struct sk_buff *nskb = skb_copy(skb, pri); 965 kfree_skb(skb); /* Free our shared copy */ 966 skb = nskb; 967 } 968 return skb; 969} 970 971/** 972 * skb_peek - peek at the head of an &sk_buff_head 973 * @list_: list to peek at 974 * 975 * Peek an &sk_buff. Unlike most other operations you _MUST_ 976 * be careful with this one. A peek leaves the buffer on the 977 * list and someone else may run off with it. You must hold 978 * the appropriate locks or have a private queue to do this. 979 * 980 * Returns %NULL for an empty list or a pointer to the head element. 981 * The reference count is not incremented and the reference is therefore 982 * volatile. Use with caution. 983 */ 984static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 985{ 986 struct sk_buff *skb = list_->next; 987 988 if (skb == (struct sk_buff *)list_) 989 skb = NULL; 990 return skb; 991} 992 993/** 994 * skb_peek_next - peek skb following the given one from a queue 995 * @skb: skb to start from 996 * @list_: list to peek at 997 * 998 * Returns %NULL when the end of the list is met or a pointer to the 999 * next element. The reference count is not incremented and the 1000 * reference is therefore volatile. Use with caution. 1001 */ 1002static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1003 const struct sk_buff_head *list_) 1004{ 1005 struct sk_buff *next = skb->next; 1006 1007 if (next == (struct sk_buff *)list_) 1008 next = NULL; 1009 return next; 1010} 1011 1012/** 1013 * skb_peek_tail - peek at the tail of an &sk_buff_head 1014 * @list_: list to peek at 1015 * 1016 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1017 * be careful with this one. A peek leaves the buffer on the 1018 * list and someone else may run off with it. You must hold 1019 * the appropriate locks or have a private queue to do this. 1020 * 1021 * Returns %NULL for an empty list or a pointer to the tail element. 1022 * The reference count is not incremented and the reference is therefore 1023 * volatile. Use with caution. 1024 */ 1025static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1026{ 1027 struct sk_buff *skb = list_->prev; 1028 1029 if (skb == (struct sk_buff *)list_) 1030 skb = NULL; 1031 return skb; 1032 1033} 1034 1035/** 1036 * skb_queue_len - get queue length 1037 * @list_: list to measure 1038 * 1039 * Return the length of an &sk_buff queue. 1040 */ 1041static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1042{ 1043 return list_->qlen; 1044} 1045 1046/** 1047 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1048 * @list: queue to initialize 1049 * 1050 * This initializes only the list and queue length aspects of 1051 * an sk_buff_head object. This allows to initialize the list 1052 * aspects of an sk_buff_head without reinitializing things like 1053 * the spinlock. It can also be used for on-stack sk_buff_head 1054 * objects where the spinlock is known to not be used. 1055 */ 1056static inline void __skb_queue_head_init(struct sk_buff_head *list) 1057{ 1058 list->prev = list->next = (struct sk_buff *)list; 1059 list->qlen = 0; 1060} 1061 1062/* 1063 * This function creates a split out lock class for each invocation; 1064 * this is needed for now since a whole lot of users of the skb-queue 1065 * infrastructure in drivers have different locking usage (in hardirq) 1066 * than the networking core (in softirq only). In the long run either the 1067 * network layer or drivers should need annotation to consolidate the 1068 * main types of usage into 3 classes. 1069 */ 1070static inline void skb_queue_head_init(struct sk_buff_head *list) 1071{ 1072 spin_lock_init(&list->lock); 1073 __skb_queue_head_init(list); 1074} 1075 1076static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1077 struct lock_class_key *class) 1078{ 1079 skb_queue_head_init(list); 1080 lockdep_set_class(&list->lock, class); 1081} 1082 1083/* 1084 * Insert an sk_buff on a list. 1085 * 1086 * The "__skb_xxxx()" functions are the non-atomic ones that 1087 * can only be called with interrupts disabled. 1088 */ 1089extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 1090static inline void __skb_insert(struct sk_buff *newsk, 1091 struct sk_buff *prev, struct sk_buff *next, 1092 struct sk_buff_head *list) 1093{ 1094 newsk->next = next; 1095 newsk->prev = prev; 1096 next->prev = prev->next = newsk; 1097 list->qlen++; 1098} 1099 1100static inline void __skb_queue_splice(const struct sk_buff_head *list, 1101 struct sk_buff *prev, 1102 struct sk_buff *next) 1103{ 1104 struct sk_buff *first = list->next; 1105 struct sk_buff *last = list->prev; 1106 1107 first->prev = prev; 1108 prev->next = first; 1109 1110 last->next = next; 1111 next->prev = last; 1112} 1113 1114/** 1115 * skb_queue_splice - join two skb lists, this is designed for stacks 1116 * @list: the new list to add 1117 * @head: the place to add it in the first list 1118 */ 1119static inline void skb_queue_splice(const struct sk_buff_head *list, 1120 struct sk_buff_head *head) 1121{ 1122 if (!skb_queue_empty(list)) { 1123 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1124 head->qlen += list->qlen; 1125 } 1126} 1127 1128/** 1129 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1130 * @list: the new list to add 1131 * @head: the place to add it in the first list 1132 * 1133 * The list at @list is reinitialised 1134 */ 1135static inline void skb_queue_splice_init(struct sk_buff_head *list, 1136 struct sk_buff_head *head) 1137{ 1138 if (!skb_queue_empty(list)) { 1139 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1140 head->qlen += list->qlen; 1141 __skb_queue_head_init(list); 1142 } 1143} 1144 1145/** 1146 * skb_queue_splice_tail - join two skb lists, each list being a queue 1147 * @list: the new list to add 1148 * @head: the place to add it in the first list 1149 */ 1150static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1151 struct sk_buff_head *head) 1152{ 1153 if (!skb_queue_empty(list)) { 1154 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1155 head->qlen += list->qlen; 1156 } 1157} 1158 1159/** 1160 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1161 * @list: the new list to add 1162 * @head: the place to add it in the first list 1163 * 1164 * Each of the lists is a queue. 1165 * The list at @list is reinitialised 1166 */ 1167static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1168 struct sk_buff_head *head) 1169{ 1170 if (!skb_queue_empty(list)) { 1171 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1172 head->qlen += list->qlen; 1173 __skb_queue_head_init(list); 1174 } 1175} 1176 1177/** 1178 * __skb_queue_after - queue a buffer at the list head 1179 * @list: list to use 1180 * @prev: place after this buffer 1181 * @newsk: buffer to queue 1182 * 1183 * Queue a buffer int the middle of a list. This function takes no locks 1184 * and you must therefore hold required locks before calling it. 1185 * 1186 * A buffer cannot be placed on two lists at the same time. 1187 */ 1188static inline void __skb_queue_after(struct sk_buff_head *list, 1189 struct sk_buff *prev, 1190 struct sk_buff *newsk) 1191{ 1192 __skb_insert(newsk, prev, prev->next, list); 1193} 1194 1195extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1196 struct sk_buff_head *list); 1197 1198static inline void __skb_queue_before(struct sk_buff_head *list, 1199 struct sk_buff *next, 1200 struct sk_buff *newsk) 1201{ 1202 __skb_insert(newsk, next->prev, next, list); 1203} 1204 1205/** 1206 * __skb_queue_head - queue a buffer at the list head 1207 * @list: list to use 1208 * @newsk: buffer to queue 1209 * 1210 * Queue a buffer at the start of a list. This function takes no locks 1211 * and you must therefore hold required locks before calling it. 1212 * 1213 * A buffer cannot be placed on two lists at the same time. 1214 */ 1215extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1216static inline void __skb_queue_head(struct sk_buff_head *list, 1217 struct sk_buff *newsk) 1218{ 1219 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1220} 1221 1222/** 1223 * __skb_queue_tail - queue a buffer at the list tail 1224 * @list: list to use 1225 * @newsk: buffer to queue 1226 * 1227 * Queue a buffer at the end of a list. This function takes no locks 1228 * and you must therefore hold required locks before calling it. 1229 * 1230 * A buffer cannot be placed on two lists at the same time. 1231 */ 1232extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1233static inline void __skb_queue_tail(struct sk_buff_head *list, 1234 struct sk_buff *newsk) 1235{ 1236 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1237} 1238 1239/* 1240 * remove sk_buff from list. _Must_ be called atomically, and with 1241 * the list known.. 1242 */ 1243extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1244static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1245{ 1246 struct sk_buff *next, *prev; 1247 1248 list->qlen--; 1249 next = skb->next; 1250 prev = skb->prev; 1251 skb->next = skb->prev = NULL; 1252 next->prev = prev; 1253 prev->next = next; 1254} 1255 1256/** 1257 * __skb_dequeue - remove from the head of the queue 1258 * @list: list to dequeue from 1259 * 1260 * Remove the head of the list. This function does not take any locks 1261 * so must be used with appropriate locks held only. The head item is 1262 * returned or %NULL if the list is empty. 1263 */ 1264extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1265static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1266{ 1267 struct sk_buff *skb = skb_peek(list); 1268 if (skb) 1269 __skb_unlink(skb, list); 1270 return skb; 1271} 1272 1273/** 1274 * __skb_dequeue_tail - remove from the tail of the queue 1275 * @list: list to dequeue from 1276 * 1277 * Remove the tail of the list. This function does not take any locks 1278 * so must be used with appropriate locks held only. The tail item is 1279 * returned or %NULL if the list is empty. 1280 */ 1281extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1282static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1283{ 1284 struct sk_buff *skb = skb_peek_tail(list); 1285 if (skb) 1286 __skb_unlink(skb, list); 1287 return skb; 1288} 1289 1290 1291static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1292{ 1293 return skb->data_len; 1294} 1295 1296static inline unsigned int skb_headlen(const struct sk_buff *skb) 1297{ 1298 return skb->len - skb->data_len; 1299} 1300 1301static inline int skb_pagelen(const struct sk_buff *skb) 1302{ 1303 int i, len = 0; 1304 1305 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1306 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1307 return len + skb_headlen(skb); 1308} 1309 1310/** 1311 * __skb_fill_page_desc - initialise a paged fragment in an skb 1312 * @skb: buffer containing fragment to be initialised 1313 * @i: paged fragment index to initialise 1314 * @page: the page to use for this fragment 1315 * @off: the offset to the data with @page 1316 * @size: the length of the data 1317 * 1318 * Initialises the @i'th fragment of @skb to point to &size bytes at 1319 * offset @off within @page. 1320 * 1321 * Does not take any additional reference on the fragment. 1322 */ 1323static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1324 struct page *page, int off, int size) 1325{ 1326 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1327 1328 /* 1329 * Propagate page->pfmemalloc to the skb if we can. The problem is 1330 * that not all callers have unique ownership of the page. If 1331 * pfmemalloc is set, we check the mapping as a mapping implies 1332 * page->index is set (index and pfmemalloc share space). 1333 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1334 * do not lose pfmemalloc information as the pages would not be 1335 * allocated using __GFP_MEMALLOC. 1336 */ 1337 frag->page.p = page; 1338 frag->page_offset = off; 1339 skb_frag_size_set(frag, size); 1340 1341 page = compound_head(page); 1342 if (page->pfmemalloc && !page->mapping) 1343 skb->pfmemalloc = true; 1344} 1345 1346/** 1347 * skb_fill_page_desc - initialise a paged fragment in an skb 1348 * @skb: buffer containing fragment to be initialised 1349 * @i: paged fragment index to initialise 1350 * @page: the page to use for this fragment 1351 * @off: the offset to the data with @page 1352 * @size: the length of the data 1353 * 1354 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1355 * @skb to point to &size bytes at offset @off within @page. In 1356 * addition updates @skb such that @i is the last fragment. 1357 * 1358 * Does not take any additional reference on the fragment. 1359 */ 1360static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1361 struct page *page, int off, int size) 1362{ 1363 __skb_fill_page_desc(skb, i, page, off, size); 1364 skb_shinfo(skb)->nr_frags = i + 1; 1365} 1366 1367extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1368 int off, int size, unsigned int truesize); 1369 1370#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1371#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1372#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1373 1374#ifdef NET_SKBUFF_DATA_USES_OFFSET 1375static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1376{ 1377 return skb->head + skb->tail; 1378} 1379 1380static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1381{ 1382 skb->tail = skb->data - skb->head; 1383} 1384 1385static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1386{ 1387 skb_reset_tail_pointer(skb); 1388 skb->tail += offset; 1389} 1390#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1391static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1392{ 1393 return skb->tail; 1394} 1395 1396static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1397{ 1398 skb->tail = skb->data; 1399} 1400 1401static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1402{ 1403 skb->tail = skb->data + offset; 1404} 1405 1406#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1407 1408/* 1409 * Add data to an sk_buff 1410 */ 1411extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1412static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1413{ 1414 unsigned char *tmp = skb_tail_pointer(skb); 1415 SKB_LINEAR_ASSERT(skb); 1416 skb->tail += len; 1417 skb->len += len; 1418 return tmp; 1419} 1420 1421extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1422static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1423{ 1424 skb->data -= len; 1425 skb->len += len; 1426 return skb->data; 1427} 1428 1429extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1430static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1431{ 1432 skb->len -= len; 1433 BUG_ON(skb->len < skb->data_len); 1434 return skb->data += len; 1435} 1436 1437static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1438{ 1439 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1440} 1441 1442extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1443 1444static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1445{ 1446 if (len > skb_headlen(skb) && 1447 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1448 return NULL; 1449 skb->len -= len; 1450 return skb->data += len; 1451} 1452 1453static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1454{ 1455 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1456} 1457 1458static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1459{ 1460 if (likely(len <= skb_headlen(skb))) 1461 return 1; 1462 if (unlikely(len > skb->len)) 1463 return 0; 1464 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1465} 1466 1467/** 1468 * skb_headroom - bytes at buffer head 1469 * @skb: buffer to check 1470 * 1471 * Return the number of bytes of free space at the head of an &sk_buff. 1472 */ 1473static inline unsigned int skb_headroom(const struct sk_buff *skb) 1474{ 1475 return skb->data - skb->head; 1476} 1477 1478/** 1479 * skb_tailroom - bytes at buffer end 1480 * @skb: buffer to check 1481 * 1482 * Return the number of bytes of free space at the tail of an sk_buff 1483 */ 1484static inline int skb_tailroom(const struct sk_buff *skb) 1485{ 1486 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1487} 1488 1489/** 1490 * skb_availroom - bytes at buffer end 1491 * @skb: buffer to check 1492 * 1493 * Return the number of bytes of free space at the tail of an sk_buff 1494 * allocated by sk_stream_alloc() 1495 */ 1496static inline int skb_availroom(const struct sk_buff *skb) 1497{ 1498 if (skb_is_nonlinear(skb)) 1499 return 0; 1500 1501 return skb->end - skb->tail - skb->reserved_tailroom; 1502} 1503 1504/** 1505 * skb_reserve - adjust headroom 1506 * @skb: buffer to alter 1507 * @len: bytes to move 1508 * 1509 * Increase the headroom of an empty &sk_buff by reducing the tail 1510 * room. This is only allowed for an empty buffer. 1511 */ 1512static inline void skb_reserve(struct sk_buff *skb, int len) 1513{ 1514 skb->data += len; 1515 skb->tail += len; 1516} 1517 1518static inline void skb_reset_inner_headers(struct sk_buff *skb) 1519{ 1520 skb->inner_mac_header = skb->mac_header; 1521 skb->inner_network_header = skb->network_header; 1522 skb->inner_transport_header = skb->transport_header; 1523} 1524 1525static inline void skb_reset_mac_len(struct sk_buff *skb) 1526{ 1527 skb->mac_len = skb->network_header - skb->mac_header; 1528} 1529 1530#ifdef NET_SKBUFF_DATA_USES_OFFSET 1531static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1532 *skb) 1533{ 1534 return skb->head + skb->inner_transport_header; 1535} 1536 1537static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1538{ 1539 skb->inner_transport_header = skb->data - skb->head; 1540} 1541 1542static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1543 const int offset) 1544{ 1545 skb_reset_inner_transport_header(skb); 1546 skb->inner_transport_header += offset; 1547} 1548 1549static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1550{ 1551 return skb->head + skb->inner_network_header; 1552} 1553 1554static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1555{ 1556 skb->inner_network_header = skb->data - skb->head; 1557} 1558 1559static inline void skb_set_inner_network_header(struct sk_buff *skb, 1560 const int offset) 1561{ 1562 skb_reset_inner_network_header(skb); 1563 skb->inner_network_header += offset; 1564} 1565 1566static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1567{ 1568 return skb->head + skb->inner_mac_header; 1569} 1570 1571static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1572{ 1573 skb->inner_mac_header = skb->data - skb->head; 1574} 1575 1576static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1577 const int offset) 1578{ 1579 skb_reset_inner_mac_header(skb); 1580 skb->inner_mac_header += offset; 1581} 1582static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1583{ 1584 return skb->transport_header != ~0U; 1585} 1586 1587static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1588{ 1589 return skb->head + skb->transport_header; 1590} 1591 1592static inline void skb_reset_transport_header(struct sk_buff *skb) 1593{ 1594 skb->transport_header = skb->data - skb->head; 1595} 1596 1597static inline void skb_set_transport_header(struct sk_buff *skb, 1598 const int offset) 1599{ 1600 skb_reset_transport_header(skb); 1601 skb->transport_header += offset; 1602} 1603 1604static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1605{ 1606 return skb->head + skb->network_header; 1607} 1608 1609static inline void skb_reset_network_header(struct sk_buff *skb) 1610{ 1611 skb->network_header = skb->data - skb->head; 1612} 1613 1614static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1615{ 1616 skb_reset_network_header(skb); 1617 skb->network_header += offset; 1618} 1619 1620static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1621{ 1622 return skb->head + skb->mac_header; 1623} 1624 1625static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1626{ 1627 return skb->mac_header != ~0U; 1628} 1629 1630static inline void skb_reset_mac_header(struct sk_buff *skb) 1631{ 1632 skb->mac_header = skb->data - skb->head; 1633} 1634 1635static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1636{ 1637 skb_reset_mac_header(skb); 1638 skb->mac_header += offset; 1639} 1640 1641#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1642static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1643 *skb) 1644{ 1645 return skb->inner_transport_header; 1646} 1647 1648static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1649{ 1650 skb->inner_transport_header = skb->data; 1651} 1652 1653static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1654 const int offset) 1655{ 1656 skb->inner_transport_header = skb->data + offset; 1657} 1658 1659static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1660{ 1661 return skb->inner_network_header; 1662} 1663 1664static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1665{ 1666 skb->inner_network_header = skb->data; 1667} 1668 1669static inline void skb_set_inner_network_header(struct sk_buff *skb, 1670 const int offset) 1671{ 1672 skb->inner_network_header = skb->data + offset; 1673} 1674 1675static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1676{ 1677 return skb->inner_mac_header; 1678} 1679 1680static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1681{ 1682 skb->inner_mac_header = skb->data; 1683} 1684 1685static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1686 const int offset) 1687{ 1688 skb->inner_mac_header = skb->data + offset; 1689} 1690static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1691{ 1692 return skb->transport_header != NULL; 1693} 1694 1695static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1696{ 1697 return skb->transport_header; 1698} 1699 1700static inline void skb_reset_transport_header(struct sk_buff *skb) 1701{ 1702 skb->transport_header = skb->data; 1703} 1704 1705static inline void skb_set_transport_header(struct sk_buff *skb, 1706 const int offset) 1707{ 1708 skb->transport_header = skb->data + offset; 1709} 1710 1711static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1712{ 1713 return skb->network_header; 1714} 1715 1716static inline void skb_reset_network_header(struct sk_buff *skb) 1717{ 1718 skb->network_header = skb->data; 1719} 1720 1721static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1722{ 1723 skb->network_header = skb->data + offset; 1724} 1725 1726static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1727{ 1728 return skb->mac_header; 1729} 1730 1731static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1732{ 1733 return skb->mac_header != NULL; 1734} 1735 1736static inline void skb_reset_mac_header(struct sk_buff *skb) 1737{ 1738 skb->mac_header = skb->data; 1739} 1740 1741static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1742{ 1743 skb->mac_header = skb->data + offset; 1744} 1745#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1746 1747static inline void skb_probe_transport_header(struct sk_buff *skb, 1748 const int offset_hint) 1749{ 1750 struct flow_keys keys; 1751 1752 if (skb_transport_header_was_set(skb)) 1753 return; 1754 else if (skb_flow_dissect(skb, &keys)) 1755 skb_set_transport_header(skb, keys.thoff); 1756 else 1757 skb_set_transport_header(skb, offset_hint); 1758} 1759 1760static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1761{ 1762 if (skb_mac_header_was_set(skb)) { 1763 const unsigned char *old_mac = skb_mac_header(skb); 1764 1765 skb_set_mac_header(skb, -skb->mac_len); 1766 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1767 } 1768} 1769 1770static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1771{ 1772 return skb->csum_start - skb_headroom(skb); 1773} 1774 1775static inline int skb_transport_offset(const struct sk_buff *skb) 1776{ 1777 return skb_transport_header(skb) - skb->data; 1778} 1779 1780static inline u32 skb_network_header_len(const struct sk_buff *skb) 1781{ 1782 return skb->transport_header - skb->network_header; 1783} 1784 1785static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1786{ 1787 return skb->inner_transport_header - skb->inner_network_header; 1788} 1789 1790static inline int skb_network_offset(const struct sk_buff *skb) 1791{ 1792 return skb_network_header(skb) - skb->data; 1793} 1794 1795static inline int skb_inner_network_offset(const struct sk_buff *skb) 1796{ 1797 return skb_inner_network_header(skb) - skb->data; 1798} 1799 1800static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1801{ 1802 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1803} 1804 1805/* 1806 * CPUs often take a performance hit when accessing unaligned memory 1807 * locations. The actual performance hit varies, it can be small if the 1808 * hardware handles it or large if we have to take an exception and fix it 1809 * in software. 1810 * 1811 * Since an ethernet header is 14 bytes network drivers often end up with 1812 * the IP header at an unaligned offset. The IP header can be aligned by 1813 * shifting the start of the packet by 2 bytes. Drivers should do this 1814 * with: 1815 * 1816 * skb_reserve(skb, NET_IP_ALIGN); 1817 * 1818 * The downside to this alignment of the IP header is that the DMA is now 1819 * unaligned. On some architectures the cost of an unaligned DMA is high 1820 * and this cost outweighs the gains made by aligning the IP header. 1821 * 1822 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1823 * to be overridden. 1824 */ 1825#ifndef NET_IP_ALIGN 1826#define NET_IP_ALIGN 2 1827#endif 1828 1829/* 1830 * The networking layer reserves some headroom in skb data (via 1831 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1832 * the header has to grow. In the default case, if the header has to grow 1833 * 32 bytes or less we avoid the reallocation. 1834 * 1835 * Unfortunately this headroom changes the DMA alignment of the resulting 1836 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1837 * on some architectures. An architecture can override this value, 1838 * perhaps setting it to a cacheline in size (since that will maintain 1839 * cacheline alignment of the DMA). It must be a power of 2. 1840 * 1841 * Various parts of the networking layer expect at least 32 bytes of 1842 * headroom, you should not reduce this. 1843 * 1844 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1845 * to reduce average number of cache lines per packet. 1846 * get_rps_cpus() for example only access one 64 bytes aligned block : 1847 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1848 */ 1849#ifndef NET_SKB_PAD 1850#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1851#endif 1852 1853extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1854 1855static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1856{ 1857 if (unlikely(skb_is_nonlinear(skb))) { 1858 WARN_ON(1); 1859 return; 1860 } 1861 skb->len = len; 1862 skb_set_tail_pointer(skb, len); 1863} 1864 1865extern void skb_trim(struct sk_buff *skb, unsigned int len); 1866 1867static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1868{ 1869 if (skb->data_len) 1870 return ___pskb_trim(skb, len); 1871 __skb_trim(skb, len); 1872 return 0; 1873} 1874 1875static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1876{ 1877 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1878} 1879 1880/** 1881 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1882 * @skb: buffer to alter 1883 * @len: new length 1884 * 1885 * This is identical to pskb_trim except that the caller knows that 1886 * the skb is not cloned so we should never get an error due to out- 1887 * of-memory. 1888 */ 1889static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1890{ 1891 int err = pskb_trim(skb, len); 1892 BUG_ON(err); 1893} 1894 1895/** 1896 * skb_orphan - orphan a buffer 1897 * @skb: buffer to orphan 1898 * 1899 * If a buffer currently has an owner then we call the owner's 1900 * destructor function and make the @skb unowned. The buffer continues 1901 * to exist but is no longer charged to its former owner. 1902 */ 1903static inline void skb_orphan(struct sk_buff *skb) 1904{ 1905 if (skb->destructor) 1906 skb->destructor(skb); 1907 skb->destructor = NULL; 1908 skb->sk = NULL; 1909} 1910 1911/** 1912 * skb_orphan_frags - orphan the frags contained in a buffer 1913 * @skb: buffer to orphan frags from 1914 * @gfp_mask: allocation mask for replacement pages 1915 * 1916 * For each frag in the SKB which needs a destructor (i.e. has an 1917 * owner) create a copy of that frag and release the original 1918 * page by calling the destructor. 1919 */ 1920static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1921{ 1922 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1923 return 0; 1924 return skb_copy_ubufs(skb, gfp_mask); 1925} 1926 1927/** 1928 * __skb_queue_purge - empty a list 1929 * @list: list to empty 1930 * 1931 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1932 * the list and one reference dropped. This function does not take the 1933 * list lock and the caller must hold the relevant locks to use it. 1934 */ 1935extern void skb_queue_purge(struct sk_buff_head *list); 1936static inline void __skb_queue_purge(struct sk_buff_head *list) 1937{ 1938 struct sk_buff *skb; 1939 while ((skb = __skb_dequeue(list)) != NULL) 1940 kfree_skb(skb); 1941} 1942 1943#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 1944#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 1945#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 1946 1947extern void *netdev_alloc_frag(unsigned int fragsz); 1948 1949extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1950 unsigned int length, 1951 gfp_t gfp_mask); 1952 1953/** 1954 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1955 * @dev: network device to receive on 1956 * @length: length to allocate 1957 * 1958 * Allocate a new &sk_buff and assign it a usage count of one. The 1959 * buffer has unspecified headroom built in. Users should allocate 1960 * the headroom they think they need without accounting for the 1961 * built in space. The built in space is used for optimisations. 1962 * 1963 * %NULL is returned if there is no free memory. Although this function 1964 * allocates memory it can be called from an interrupt. 1965 */ 1966static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1967 unsigned int length) 1968{ 1969 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1970} 1971 1972/* legacy helper around __netdev_alloc_skb() */ 1973static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1974 gfp_t gfp_mask) 1975{ 1976 return __netdev_alloc_skb(NULL, length, gfp_mask); 1977} 1978 1979/* legacy helper around netdev_alloc_skb() */ 1980static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1981{ 1982 return netdev_alloc_skb(NULL, length); 1983} 1984 1985 1986static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1987 unsigned int length, gfp_t gfp) 1988{ 1989 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1990 1991 if (NET_IP_ALIGN && skb) 1992 skb_reserve(skb, NET_IP_ALIGN); 1993 return skb; 1994} 1995 1996static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1997 unsigned int length) 1998{ 1999 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2000} 2001 2002/* 2003 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data 2004 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2005 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2006 * @order: size of the allocation 2007 * 2008 * Allocate a new page. 2009 * 2010 * %NULL is returned if there is no free memory. 2011*/ 2012static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 2013 struct sk_buff *skb, 2014 unsigned int order) 2015{ 2016 struct page *page; 2017 2018 gfp_mask |= __GFP_COLD; 2019 2020 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2021 gfp_mask |= __GFP_MEMALLOC; 2022 2023 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2024 if (skb && page && page->pfmemalloc) 2025 skb->pfmemalloc = true; 2026 2027 return page; 2028} 2029 2030/** 2031 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 2032 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2033 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2034 * 2035 * Allocate a new page. 2036 * 2037 * %NULL is returned if there is no free memory. 2038 */ 2039static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 2040 struct sk_buff *skb) 2041{ 2042 return __skb_alloc_pages(gfp_mask, skb, 0); 2043} 2044 2045/** 2046 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2047 * @page: The page that was allocated from skb_alloc_page 2048 * @skb: The skb that may need pfmemalloc set 2049 */ 2050static inline void skb_propagate_pfmemalloc(struct page *page, 2051 struct sk_buff *skb) 2052{ 2053 if (page && page->pfmemalloc) 2054 skb->pfmemalloc = true; 2055} 2056 2057/** 2058 * skb_frag_page - retrieve the page refered to by a paged fragment 2059 * @frag: the paged fragment 2060 * 2061 * Returns the &struct page associated with @frag. 2062 */ 2063static inline struct page *skb_frag_page(const skb_frag_t *frag) 2064{ 2065 return frag->page.p; 2066} 2067 2068/** 2069 * __skb_frag_ref - take an addition reference on a paged fragment. 2070 * @frag: the paged fragment 2071 * 2072 * Takes an additional reference on the paged fragment @frag. 2073 */ 2074static inline void __skb_frag_ref(skb_frag_t *frag) 2075{ 2076 get_page(skb_frag_page(frag)); 2077} 2078 2079/** 2080 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2081 * @skb: the buffer 2082 * @f: the fragment offset. 2083 * 2084 * Takes an additional reference on the @f'th paged fragment of @skb. 2085 */ 2086static inline void skb_frag_ref(struct sk_buff *skb, int f) 2087{ 2088 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2089} 2090 2091/** 2092 * __skb_frag_unref - release a reference on a paged fragment. 2093 * @frag: the paged fragment 2094 * 2095 * Releases a reference on the paged fragment @frag. 2096 */ 2097static inline void __skb_frag_unref(skb_frag_t *frag) 2098{ 2099 put_page(skb_frag_page(frag)); 2100} 2101 2102/** 2103 * skb_frag_unref - release a reference on a paged fragment of an skb. 2104 * @skb: the buffer 2105 * @f: the fragment offset 2106 * 2107 * Releases a reference on the @f'th paged fragment of @skb. 2108 */ 2109static inline void skb_frag_unref(struct sk_buff *skb, int f) 2110{ 2111 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2112} 2113 2114/** 2115 * skb_frag_address - gets the address of the data contained in a paged fragment 2116 * @frag: the paged fragment buffer 2117 * 2118 * Returns the address of the data within @frag. The page must already 2119 * be mapped. 2120 */ 2121static inline void *skb_frag_address(const skb_frag_t *frag) 2122{ 2123 return page_address(skb_frag_page(frag)) + frag->page_offset; 2124} 2125 2126/** 2127 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2128 * @frag: the paged fragment buffer 2129 * 2130 * Returns the address of the data within @frag. Checks that the page 2131 * is mapped and returns %NULL otherwise. 2132 */ 2133static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2134{ 2135 void *ptr = page_address(skb_frag_page(frag)); 2136 if (unlikely(!ptr)) 2137 return NULL; 2138 2139 return ptr + frag->page_offset; 2140} 2141 2142/** 2143 * __skb_frag_set_page - sets the page contained in a paged fragment 2144 * @frag: the paged fragment 2145 * @page: the page to set 2146 * 2147 * Sets the fragment @frag to contain @page. 2148 */ 2149static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2150{ 2151 frag->page.p = page; 2152} 2153 2154/** 2155 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2156 * @skb: the buffer 2157 * @f: the fragment offset 2158 * @page: the page to set 2159 * 2160 * Sets the @f'th fragment of @skb to contain @page. 2161 */ 2162static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2163 struct page *page) 2164{ 2165 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2166} 2167 2168/** 2169 * skb_frag_dma_map - maps a paged fragment via the DMA API 2170 * @dev: the device to map the fragment to 2171 * @frag: the paged fragment to map 2172 * @offset: the offset within the fragment (starting at the 2173 * fragment's own offset) 2174 * @size: the number of bytes to map 2175 * @dir: the direction of the mapping (%PCI_DMA_*) 2176 * 2177 * Maps the page associated with @frag to @device. 2178 */ 2179static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2180 const skb_frag_t *frag, 2181 size_t offset, size_t size, 2182 enum dma_data_direction dir) 2183{ 2184 return dma_map_page(dev, skb_frag_page(frag), 2185 frag->page_offset + offset, size, dir); 2186} 2187 2188static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2189 gfp_t gfp_mask) 2190{ 2191 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2192} 2193 2194/** 2195 * skb_clone_writable - is the header of a clone writable 2196 * @skb: buffer to check 2197 * @len: length up to which to write 2198 * 2199 * Returns true if modifying the header part of the cloned buffer 2200 * does not requires the data to be copied. 2201 */ 2202static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2203{ 2204 return !skb_header_cloned(skb) && 2205 skb_headroom(skb) + len <= skb->hdr_len; 2206} 2207 2208static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2209 int cloned) 2210{ 2211 int delta = 0; 2212 2213 if (headroom > skb_headroom(skb)) 2214 delta = headroom - skb_headroom(skb); 2215 2216 if (delta || cloned) 2217 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2218 GFP_ATOMIC); 2219 return 0; 2220} 2221 2222/** 2223 * skb_cow - copy header of skb when it is required 2224 * @skb: buffer to cow 2225 * @headroom: needed headroom 2226 * 2227 * If the skb passed lacks sufficient headroom or its data part 2228 * is shared, data is reallocated. If reallocation fails, an error 2229 * is returned and original skb is not changed. 2230 * 2231 * The result is skb with writable area skb->head...skb->tail 2232 * and at least @headroom of space at head. 2233 */ 2234static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2235{ 2236 return __skb_cow(skb, headroom, skb_cloned(skb)); 2237} 2238 2239/** 2240 * skb_cow_head - skb_cow but only making the head writable 2241 * @skb: buffer to cow 2242 * @headroom: needed headroom 2243 * 2244 * This function is identical to skb_cow except that we replace the 2245 * skb_cloned check by skb_header_cloned. It should be used when 2246 * you only need to push on some header and do not need to modify 2247 * the data. 2248 */ 2249static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2250{ 2251 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2252} 2253 2254/** 2255 * skb_padto - pad an skbuff up to a minimal size 2256 * @skb: buffer to pad 2257 * @len: minimal length 2258 * 2259 * Pads up a buffer to ensure the trailing bytes exist and are 2260 * blanked. If the buffer already contains sufficient data it 2261 * is untouched. Otherwise it is extended. Returns zero on 2262 * success. The skb is freed on error. 2263 */ 2264 2265static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2266{ 2267 unsigned int size = skb->len; 2268 if (likely(size >= len)) 2269 return 0; 2270 return skb_pad(skb, len - size); 2271} 2272 2273static inline int skb_add_data(struct sk_buff *skb, 2274 char __user *from, int copy) 2275{ 2276 const int off = skb->len; 2277 2278 if (skb->ip_summed == CHECKSUM_NONE) { 2279 int err = 0; 2280 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2281 copy, 0, &err); 2282 if (!err) { 2283 skb->csum = csum_block_add(skb->csum, csum, off); 2284 return 0; 2285 } 2286 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2287 return 0; 2288 2289 __skb_trim(skb, off); 2290 return -EFAULT; 2291} 2292 2293static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2294 const struct page *page, int off) 2295{ 2296 if (i) { 2297 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2298 2299 return page == skb_frag_page(frag) && 2300 off == frag->page_offset + skb_frag_size(frag); 2301 } 2302 return false; 2303} 2304 2305static inline int __skb_linearize(struct sk_buff *skb) 2306{ 2307 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2308} 2309 2310/** 2311 * skb_linearize - convert paged skb to linear one 2312 * @skb: buffer to linarize 2313 * 2314 * If there is no free memory -ENOMEM is returned, otherwise zero 2315 * is returned and the old skb data released. 2316 */ 2317static inline int skb_linearize(struct sk_buff *skb) 2318{ 2319 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2320} 2321 2322/** 2323 * skb_has_shared_frag - can any frag be overwritten 2324 * @skb: buffer to test 2325 * 2326 * Return true if the skb has at least one frag that might be modified 2327 * by an external entity (as in vmsplice()/sendfile()) 2328 */ 2329static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2330{ 2331 return skb_is_nonlinear(skb) && 2332 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2333} 2334 2335/** 2336 * skb_linearize_cow - make sure skb is linear and writable 2337 * @skb: buffer to process 2338 * 2339 * If there is no free memory -ENOMEM is returned, otherwise zero 2340 * is returned and the old skb data released. 2341 */ 2342static inline int skb_linearize_cow(struct sk_buff *skb) 2343{ 2344 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2345 __skb_linearize(skb) : 0; 2346} 2347 2348/** 2349 * skb_postpull_rcsum - update checksum for received skb after pull 2350 * @skb: buffer to update 2351 * @start: start of data before pull 2352 * @len: length of data pulled 2353 * 2354 * After doing a pull on a received packet, you need to call this to 2355 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2356 * CHECKSUM_NONE so that it can be recomputed from scratch. 2357 */ 2358 2359static inline void skb_postpull_rcsum(struct sk_buff *skb, 2360 const void *start, unsigned int len) 2361{ 2362 if (skb->ip_summed == CHECKSUM_COMPLETE) 2363 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2364} 2365 2366unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2367 2368/** 2369 * pskb_trim_rcsum - trim received skb and update checksum 2370 * @skb: buffer to trim 2371 * @len: new length 2372 * 2373 * This is exactly the same as pskb_trim except that it ensures the 2374 * checksum of received packets are still valid after the operation. 2375 */ 2376 2377static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2378{ 2379 if (likely(len >= skb->len)) 2380 return 0; 2381 if (skb->ip_summed == CHECKSUM_COMPLETE) 2382 skb->ip_summed = CHECKSUM_NONE; 2383 return __pskb_trim(skb, len); 2384} 2385 2386#define skb_queue_walk(queue, skb) \ 2387 for (skb = (queue)->next; \ 2388 skb != (struct sk_buff *)(queue); \ 2389 skb = skb->next) 2390 2391#define skb_queue_walk_safe(queue, skb, tmp) \ 2392 for (skb = (queue)->next, tmp = skb->next; \ 2393 skb != (struct sk_buff *)(queue); \ 2394 skb = tmp, tmp = skb->next) 2395 2396#define skb_queue_walk_from(queue, skb) \ 2397 for (; skb != (struct sk_buff *)(queue); \ 2398 skb = skb->next) 2399 2400#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2401 for (tmp = skb->next; \ 2402 skb != (struct sk_buff *)(queue); \ 2403 skb = tmp, tmp = skb->next) 2404 2405#define skb_queue_reverse_walk(queue, skb) \ 2406 for (skb = (queue)->prev; \ 2407 skb != (struct sk_buff *)(queue); \ 2408 skb = skb->prev) 2409 2410#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2411 for (skb = (queue)->prev, tmp = skb->prev; \ 2412 skb != (struct sk_buff *)(queue); \ 2413 skb = tmp, tmp = skb->prev) 2414 2415#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2416 for (tmp = skb->prev; \ 2417 skb != (struct sk_buff *)(queue); \ 2418 skb = tmp, tmp = skb->prev) 2419 2420static inline bool skb_has_frag_list(const struct sk_buff *skb) 2421{ 2422 return skb_shinfo(skb)->frag_list != NULL; 2423} 2424 2425static inline void skb_frag_list_init(struct sk_buff *skb) 2426{ 2427 skb_shinfo(skb)->frag_list = NULL; 2428} 2429 2430static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2431{ 2432 frag->next = skb_shinfo(skb)->frag_list; 2433 skb_shinfo(skb)->frag_list = frag; 2434} 2435 2436#define skb_walk_frags(skb, iter) \ 2437 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2438 2439extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2440 int *peeked, int *off, int *err); 2441extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2442 int noblock, int *err); 2443extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2444 struct poll_table_struct *wait); 2445extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2446 int offset, struct iovec *to, 2447 int size); 2448extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2449 int hlen, 2450 struct iovec *iov); 2451extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2452 int offset, 2453 const struct iovec *from, 2454 int from_offset, 2455 int len); 2456extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2457 int offset, 2458 const struct iovec *to, 2459 int to_offset, 2460 int size); 2461extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2462extern void skb_free_datagram_locked(struct sock *sk, 2463 struct sk_buff *skb); 2464extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2465 unsigned int flags); 2466extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2467 int len, __wsum csum); 2468extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2469 void *to, int len); 2470extern int skb_store_bits(struct sk_buff *skb, int offset, 2471 const void *from, int len); 2472extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2473 int offset, u8 *to, int len, 2474 __wsum csum); 2475extern int skb_splice_bits(struct sk_buff *skb, 2476 unsigned int offset, 2477 struct pipe_inode_info *pipe, 2478 unsigned int len, 2479 unsigned int flags); 2480extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2481extern void skb_split(struct sk_buff *skb, 2482 struct sk_buff *skb1, const u32 len); 2483extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2484 int shiftlen); 2485 2486extern struct sk_buff *skb_segment(struct sk_buff *skb, 2487 netdev_features_t features); 2488 2489static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2490 int len, void *buffer) 2491{ 2492 int hlen = skb_headlen(skb); 2493 2494 if (hlen - offset >= len) 2495 return skb->data + offset; 2496 2497 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2498 return NULL; 2499 2500 return buffer; 2501} 2502 2503static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2504 void *to, 2505 const unsigned int len) 2506{ 2507 memcpy(to, skb->data, len); 2508} 2509 2510static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2511 const int offset, void *to, 2512 const unsigned int len) 2513{ 2514 memcpy(to, skb->data + offset, len); 2515} 2516 2517static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2518 const void *from, 2519 const unsigned int len) 2520{ 2521 memcpy(skb->data, from, len); 2522} 2523 2524static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2525 const int offset, 2526 const void *from, 2527 const unsigned int len) 2528{ 2529 memcpy(skb->data + offset, from, len); 2530} 2531 2532extern void skb_init(void); 2533 2534static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2535{ 2536 return skb->tstamp; 2537} 2538 2539/** 2540 * skb_get_timestamp - get timestamp from a skb 2541 * @skb: skb to get stamp from 2542 * @stamp: pointer to struct timeval to store stamp in 2543 * 2544 * Timestamps are stored in the skb as offsets to a base timestamp. 2545 * This function converts the offset back to a struct timeval and stores 2546 * it in stamp. 2547 */ 2548static inline void skb_get_timestamp(const struct sk_buff *skb, 2549 struct timeval *stamp) 2550{ 2551 *stamp = ktime_to_timeval(skb->tstamp); 2552} 2553 2554static inline void skb_get_timestampns(const struct sk_buff *skb, 2555 struct timespec *stamp) 2556{ 2557 *stamp = ktime_to_timespec(skb->tstamp); 2558} 2559 2560static inline void __net_timestamp(struct sk_buff *skb) 2561{ 2562 skb->tstamp = ktime_get_real(); 2563} 2564 2565static inline ktime_t net_timedelta(ktime_t t) 2566{ 2567 return ktime_sub(ktime_get_real(), t); 2568} 2569 2570static inline ktime_t net_invalid_timestamp(void) 2571{ 2572 return ktime_set(0, 0); 2573} 2574 2575extern void skb_timestamping_init(void); 2576 2577#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2578 2579extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2580extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2581 2582#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2583 2584static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2585{ 2586} 2587 2588static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2589{ 2590 return false; 2591} 2592 2593#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2594 2595/** 2596 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2597 * 2598 * PHY drivers may accept clones of transmitted packets for 2599 * timestamping via their phy_driver.txtstamp method. These drivers 2600 * must call this function to return the skb back to the stack, with 2601 * or without a timestamp. 2602 * 2603 * @skb: clone of the the original outgoing packet 2604 * @hwtstamps: hardware time stamps, may be NULL if not available 2605 * 2606 */ 2607void skb_complete_tx_timestamp(struct sk_buff *skb, 2608 struct skb_shared_hwtstamps *hwtstamps); 2609 2610/** 2611 * skb_tstamp_tx - queue clone of skb with send time stamps 2612 * @orig_skb: the original outgoing packet 2613 * @hwtstamps: hardware time stamps, may be NULL if not available 2614 * 2615 * If the skb has a socket associated, then this function clones the 2616 * skb (thus sharing the actual data and optional structures), stores 2617 * the optional hardware time stamping information (if non NULL) or 2618 * generates a software time stamp (otherwise), then queues the clone 2619 * to the error queue of the socket. Errors are silently ignored. 2620 */ 2621extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2622 struct skb_shared_hwtstamps *hwtstamps); 2623 2624static inline void sw_tx_timestamp(struct sk_buff *skb) 2625{ 2626 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2627 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2628 skb_tstamp_tx(skb, NULL); 2629} 2630 2631/** 2632 * skb_tx_timestamp() - Driver hook for transmit timestamping 2633 * 2634 * Ethernet MAC Drivers should call this function in their hard_xmit() 2635 * function immediately before giving the sk_buff to the MAC hardware. 2636 * 2637 * @skb: A socket buffer. 2638 */ 2639static inline void skb_tx_timestamp(struct sk_buff *skb) 2640{ 2641 skb_clone_tx_timestamp(skb); 2642 sw_tx_timestamp(skb); 2643} 2644 2645/** 2646 * skb_complete_wifi_ack - deliver skb with wifi status 2647 * 2648 * @skb: the original outgoing packet 2649 * @acked: ack status 2650 * 2651 */ 2652void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2653 2654extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2655extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2656 2657static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2658{ 2659 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2660} 2661 2662/** 2663 * skb_checksum_complete - Calculate checksum of an entire packet 2664 * @skb: packet to process 2665 * 2666 * This function calculates the checksum over the entire packet plus 2667 * the value of skb->csum. The latter can be used to supply the 2668 * checksum of a pseudo header as used by TCP/UDP. It returns the 2669 * checksum. 2670 * 2671 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2672 * this function can be used to verify that checksum on received 2673 * packets. In that case the function should return zero if the 2674 * checksum is correct. In particular, this function will return zero 2675 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2676 * hardware has already verified the correctness of the checksum. 2677 */ 2678static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2679{ 2680 return skb_csum_unnecessary(skb) ? 2681 0 : __skb_checksum_complete(skb); 2682} 2683 2684#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2685extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2686static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2687{ 2688 if (nfct && atomic_dec_and_test(&nfct->use)) 2689 nf_conntrack_destroy(nfct); 2690} 2691static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2692{ 2693 if (nfct) 2694 atomic_inc(&nfct->use); 2695} 2696#endif 2697#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2698static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2699{ 2700 if (skb) 2701 atomic_inc(&skb->users); 2702} 2703static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2704{ 2705 if (skb) 2706 kfree_skb(skb); 2707} 2708#endif 2709#ifdef CONFIG_BRIDGE_NETFILTER 2710static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2711{ 2712 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2713 kfree(nf_bridge); 2714} 2715static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2716{ 2717 if (nf_bridge) 2718 atomic_inc(&nf_bridge->use); 2719} 2720#endif /* CONFIG_BRIDGE_NETFILTER */ 2721static inline void nf_reset(struct sk_buff *skb) 2722{ 2723#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2724 nf_conntrack_put(skb->nfct); 2725 skb->nfct = NULL; 2726#endif 2727#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2728 nf_conntrack_put_reasm(skb->nfct_reasm); 2729 skb->nfct_reasm = NULL; 2730#endif 2731#ifdef CONFIG_BRIDGE_NETFILTER 2732 nf_bridge_put(skb->nf_bridge); 2733 skb->nf_bridge = NULL; 2734#endif 2735} 2736 2737static inline void nf_reset_trace(struct sk_buff *skb) 2738{ 2739#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 2740 skb->nf_trace = 0; 2741#endif 2742} 2743 2744/* Note: This doesn't put any conntrack and bridge info in dst. */ 2745static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2746{ 2747#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2748 dst->nfct = src->nfct; 2749 nf_conntrack_get(src->nfct); 2750 dst->nfctinfo = src->nfctinfo; 2751#endif 2752#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2753 dst->nfct_reasm = src->nfct_reasm; 2754 nf_conntrack_get_reasm(src->nfct_reasm); 2755#endif 2756#ifdef CONFIG_BRIDGE_NETFILTER 2757 dst->nf_bridge = src->nf_bridge; 2758 nf_bridge_get(src->nf_bridge); 2759#endif 2760} 2761 2762static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2763{ 2764#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2765 nf_conntrack_put(dst->nfct); 2766#endif 2767#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2768 nf_conntrack_put_reasm(dst->nfct_reasm); 2769#endif 2770#ifdef CONFIG_BRIDGE_NETFILTER 2771 nf_bridge_put(dst->nf_bridge); 2772#endif 2773 __nf_copy(dst, src); 2774} 2775 2776#ifdef CONFIG_NETWORK_SECMARK 2777static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2778{ 2779 to->secmark = from->secmark; 2780} 2781 2782static inline void skb_init_secmark(struct sk_buff *skb) 2783{ 2784 skb->secmark = 0; 2785} 2786#else 2787static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2788{ } 2789 2790static inline void skb_init_secmark(struct sk_buff *skb) 2791{ } 2792#endif 2793 2794static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2795{ 2796 skb->queue_mapping = queue_mapping; 2797} 2798 2799static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2800{ 2801 return skb->queue_mapping; 2802} 2803 2804static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2805{ 2806 to->queue_mapping = from->queue_mapping; 2807} 2808 2809static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2810{ 2811 skb->queue_mapping = rx_queue + 1; 2812} 2813 2814static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2815{ 2816 return skb->queue_mapping - 1; 2817} 2818 2819static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2820{ 2821 return skb->queue_mapping != 0; 2822} 2823 2824extern u16 __skb_tx_hash(const struct net_device *dev, 2825 const struct sk_buff *skb, 2826 unsigned int num_tx_queues); 2827 2828#ifdef CONFIG_XFRM 2829static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2830{ 2831 return skb->sp; 2832} 2833#else 2834static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2835{ 2836 return NULL; 2837} 2838#endif 2839 2840/* Keeps track of mac header offset relative to skb->head. 2841 * It is useful for TSO of Tunneling protocol. e.g. GRE. 2842 * For non-tunnel skb it points to skb_mac_header() and for 2843 * tunnel skb it points to outer mac header. */ 2844struct skb_gso_cb { 2845 int mac_offset; 2846}; 2847#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 2848 2849static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 2850{ 2851 return (skb_mac_header(inner_skb) - inner_skb->head) - 2852 SKB_GSO_CB(inner_skb)->mac_offset; 2853} 2854 2855static inline bool skb_is_gso(const struct sk_buff *skb) 2856{ 2857 return skb_shinfo(skb)->gso_size; 2858} 2859 2860static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2861{ 2862 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2863} 2864 2865extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2866 2867static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2868{ 2869 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2870 * wanted then gso_type will be set. */ 2871 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2872 2873 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2874 unlikely(shinfo->gso_type == 0)) { 2875 __skb_warn_lro_forwarding(skb); 2876 return true; 2877 } 2878 return false; 2879} 2880 2881static inline void skb_forward_csum(struct sk_buff *skb) 2882{ 2883 /* Unfortunately we don't support this one. Any brave souls? */ 2884 if (skb->ip_summed == CHECKSUM_COMPLETE) 2885 skb->ip_summed = CHECKSUM_NONE; 2886} 2887 2888/** 2889 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2890 * @skb: skb to check 2891 * 2892 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2893 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2894 * use this helper, to document places where we make this assertion. 2895 */ 2896static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2897{ 2898#ifdef DEBUG 2899 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2900#endif 2901} 2902 2903bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2904 2905u32 __skb_get_poff(const struct sk_buff *skb); 2906 2907/** 2908 * skb_head_is_locked - Determine if the skb->head is locked down 2909 * @skb: skb to check 2910 * 2911 * The head on skbs build around a head frag can be removed if they are 2912 * not cloned. This function returns true if the skb head is locked down 2913 * due to either being allocated via kmalloc, or by being a clone with 2914 * multiple references to the head. 2915 */ 2916static inline bool skb_head_is_locked(const struct sk_buff *skb) 2917{ 2918 return !skb->head_frag || skb_cloned(skb); 2919} 2920#endif /* __KERNEL__ */ 2921#endif /* _LINUX_SKBUFF_H */