Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/pm_qos.h>
29#include <linux/timer.h>
30#include <linux/bug.h>
31#include <linux/delay.h>
32#include <linux/atomic.h>
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
36#include <linux/percpu.h>
37#include <linux/rculist.h>
38#include <linux/dmaengine.h>
39#include <linux/workqueue.h>
40#include <linux/dynamic_queue_limits.h>
41
42#include <linux/ethtool.h>
43#include <net/net_namespace.h>
44#include <net/dsa.h>
45#ifdef CONFIG_DCB
46#include <net/dcbnl.h>
47#endif
48#include <net/netprio_cgroup.h>
49
50#include <linux/netdev_features.h>
51#include <linux/neighbour.h>
52#include <uapi/linux/netdevice.h>
53
54struct netpoll_info;
55struct device;
56struct phy_device;
57/* 802.11 specific */
58struct wireless_dev;
59 /* source back-compat hooks */
60#define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66/* hardware address assignment types */
67#define NET_ADDR_PERM 0 /* address is permanent (default) */
68#define NET_ADDR_RANDOM 1 /* address is generated randomly */
69#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70#define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73/* Backlog congestion levels */
74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75#define NET_RX_DROP 1 /* packet dropped */
76
77/*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94/* qdisc ->enqueue() return codes. */
95#define NET_XMIT_SUCCESS 0x00
96#define NET_XMIT_DROP 0x01 /* skb dropped */
97#define NET_XMIT_CN 0x02 /* congestion notification */
98#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107/* Driver transmit return codes */
108#define NETDEV_TX_MASK 0xf0
109
110enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115};
116typedef enum netdev_tx netdev_tx_t;
117
118/*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122static inline bool dev_xmit_complete(int rc)
123{
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134}
135
136/*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142# if defined(CONFIG_MAC80211_MESH)
143# define LL_MAX_HEADER 128
144# else
145# define LL_MAX_HEADER 96
146# endif
147#else
148# define LL_MAX_HEADER 32
149#endif
150
151#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153#define MAX_HEADER LL_MAX_HEADER
154#else
155#define MAX_HEADER (LL_MAX_HEADER + 48)
156#endif
157
158/*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187};
188
189
190#include <linux/cache.h>
191#include <linux/skbuff.h>
192
193#ifdef CONFIG_RPS
194#include <linux/static_key.h>
195extern struct static_key rps_needed;
196#endif
197
198struct neighbour;
199struct neigh_parms;
200struct sk_buff;
201
202struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206#define NETDEV_HW_ADDR_T_LAN 1
207#define NETDEV_HW_ADDR_T_SAN 2
208#define NETDEV_HW_ADDR_T_SLAVE 3
209#define NETDEV_HW_ADDR_T_UNICAST 4
210#define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216};
217
218struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221};
222
223#define netdev_hw_addr_list_count(l) ((l)->count)
224#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225#define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230#define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235#define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244#define HH_DATA_MOD 16
245#define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247#define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250};
251
252/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260#define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*rebuild)(struct sk_buff *skb);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275};
276
277/* These flag bits are private to the generic network queueing
278 * layer, they may not be explicitly referenced by any other
279 * code.
280 */
281
282enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288};
289
290
291/*
292 * This structure holds at boot time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298};
299#define NETDEV_BOOT_SETUP_MAX 8
300
301extern int __init netdev_boot_setup(char *str);
302
303/*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-cpu poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319#ifdef CONFIG_NETPOLL
320 spinlock_t poll_lock;
321 int poll_owner;
322#endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct list_head dev_list;
327};
328
329enum {
330 NAPI_STATE_SCHED, /* Poll is scheduled */
331 NAPI_STATE_DISABLE, /* Disable pending */
332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
333};
334
335enum gro_result {
336 GRO_MERGED,
337 GRO_MERGED_FREE,
338 GRO_HELD,
339 GRO_NORMAL,
340 GRO_DROP,
341};
342typedef enum gro_result gro_result_t;
343
344/*
345 * enum rx_handler_result - Possible return values for rx_handlers.
346 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347 * further.
348 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349 * case skb->dev was changed by rx_handler.
350 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352 *
353 * rx_handlers are functions called from inside __netif_receive_skb(), to do
354 * special processing of the skb, prior to delivery to protocol handlers.
355 *
356 * Currently, a net_device can only have a single rx_handler registered. Trying
357 * to register a second rx_handler will return -EBUSY.
358 *
359 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360 * To unregister a rx_handler on a net_device, use
361 * netdev_rx_handler_unregister().
362 *
363 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364 * do with the skb.
365 *
366 * If the rx_handler consumed to skb in some way, it should return
367 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368 * the skb to be delivered in some other ways.
369 *
370 * If the rx_handler changed skb->dev, to divert the skb to another
371 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372 * new device will be called if it exists.
373 *
374 * If the rx_handler consider the skb should be ignored, it should return
375 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376 * are registered on exact device (ptype->dev == skb->dev).
377 *
378 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379 * delivered, it should return RX_HANDLER_PASS.
380 *
381 * A device without a registered rx_handler will behave as if rx_handler
382 * returned RX_HANDLER_PASS.
383 */
384
385enum rx_handler_result {
386 RX_HANDLER_CONSUMED,
387 RX_HANDLER_ANOTHER,
388 RX_HANDLER_EXACT,
389 RX_HANDLER_PASS,
390};
391typedef enum rx_handler_result rx_handler_result_t;
392typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393
394extern void __napi_schedule(struct napi_struct *n);
395
396static inline bool napi_disable_pending(struct napi_struct *n)
397{
398 return test_bit(NAPI_STATE_DISABLE, &n->state);
399}
400
401/**
402 * napi_schedule_prep - check if napi can be scheduled
403 * @n: napi context
404 *
405 * Test if NAPI routine is already running, and if not mark
406 * it as running. This is used as a condition variable
407 * insure only one NAPI poll instance runs. We also make
408 * sure there is no pending NAPI disable.
409 */
410static inline bool napi_schedule_prep(struct napi_struct *n)
411{
412 return !napi_disable_pending(n) &&
413 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
414}
415
416/**
417 * napi_schedule - schedule NAPI poll
418 * @n: napi context
419 *
420 * Schedule NAPI poll routine to be called if it is not already
421 * running.
422 */
423static inline void napi_schedule(struct napi_struct *n)
424{
425 if (napi_schedule_prep(n))
426 __napi_schedule(n);
427}
428
429/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
430static inline bool napi_reschedule(struct napi_struct *napi)
431{
432 if (napi_schedule_prep(napi)) {
433 __napi_schedule(napi);
434 return true;
435 }
436 return false;
437}
438
439/**
440 * napi_complete - NAPI processing complete
441 * @n: napi context
442 *
443 * Mark NAPI processing as complete.
444 */
445extern void __napi_complete(struct napi_struct *n);
446extern void napi_complete(struct napi_struct *n);
447
448/**
449 * napi_disable - prevent NAPI from scheduling
450 * @n: napi context
451 *
452 * Stop NAPI from being scheduled on this context.
453 * Waits till any outstanding processing completes.
454 */
455static inline void napi_disable(struct napi_struct *n)
456{
457 set_bit(NAPI_STATE_DISABLE, &n->state);
458 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
459 msleep(1);
460 clear_bit(NAPI_STATE_DISABLE, &n->state);
461}
462
463/**
464 * napi_enable - enable NAPI scheduling
465 * @n: napi context
466 *
467 * Resume NAPI from being scheduled on this context.
468 * Must be paired with napi_disable.
469 */
470static inline void napi_enable(struct napi_struct *n)
471{
472 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
473 smp_mb__before_clear_bit();
474 clear_bit(NAPI_STATE_SCHED, &n->state);
475}
476
477#ifdef CONFIG_SMP
478/**
479 * napi_synchronize - wait until NAPI is not running
480 * @n: napi context
481 *
482 * Wait until NAPI is done being scheduled on this context.
483 * Waits till any outstanding processing completes but
484 * does not disable future activations.
485 */
486static inline void napi_synchronize(const struct napi_struct *n)
487{
488 while (test_bit(NAPI_STATE_SCHED, &n->state))
489 msleep(1);
490}
491#else
492# define napi_synchronize(n) barrier()
493#endif
494
495enum netdev_queue_state_t {
496 __QUEUE_STATE_DRV_XOFF,
497 __QUEUE_STATE_STACK_XOFF,
498 __QUEUE_STATE_FROZEN,
499#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
500 (1 << __QUEUE_STATE_STACK_XOFF))
501#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
502 (1 << __QUEUE_STATE_FROZEN))
503};
504/*
505 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
506 * netif_tx_* functions below are used to manipulate this flag. The
507 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
508 * queue independently. The netif_xmit_*stopped functions below are called
509 * to check if the queue has been stopped by the driver or stack (either
510 * of the XOFF bits are set in the state). Drivers should not need to call
511 * netif_xmit*stopped functions, they should only be using netif_tx_*.
512 */
513
514struct netdev_queue {
515/*
516 * read mostly part
517 */
518 struct net_device *dev;
519 struct Qdisc *qdisc;
520 struct Qdisc *qdisc_sleeping;
521#ifdef CONFIG_SYSFS
522 struct kobject kobj;
523#endif
524#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
525 int numa_node;
526#endif
527/*
528 * write mostly part
529 */
530 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
531 int xmit_lock_owner;
532 /*
533 * please use this field instead of dev->trans_start
534 */
535 unsigned long trans_start;
536
537 /*
538 * Number of TX timeouts for this queue
539 * (/sys/class/net/DEV/Q/trans_timeout)
540 */
541 unsigned long trans_timeout;
542
543 unsigned long state;
544
545#ifdef CONFIG_BQL
546 struct dql dql;
547#endif
548} ____cacheline_aligned_in_smp;
549
550static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
551{
552#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553 return q->numa_node;
554#else
555 return NUMA_NO_NODE;
556#endif
557}
558
559static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
560{
561#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 q->numa_node = node;
563#endif
564}
565
566#ifdef CONFIG_RPS
567/*
568 * This structure holds an RPS map which can be of variable length. The
569 * map is an array of CPUs.
570 */
571struct rps_map {
572 unsigned int len;
573 struct rcu_head rcu;
574 u16 cpus[0];
575};
576#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
577
578/*
579 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
580 * tail pointer for that CPU's input queue at the time of last enqueue, and
581 * a hardware filter index.
582 */
583struct rps_dev_flow {
584 u16 cpu;
585 u16 filter;
586 unsigned int last_qtail;
587};
588#define RPS_NO_FILTER 0xffff
589
590/*
591 * The rps_dev_flow_table structure contains a table of flow mappings.
592 */
593struct rps_dev_flow_table {
594 unsigned int mask;
595 struct rcu_head rcu;
596 struct rps_dev_flow flows[0];
597};
598#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
599 ((_num) * sizeof(struct rps_dev_flow)))
600
601/*
602 * The rps_sock_flow_table contains mappings of flows to the last CPU
603 * on which they were processed by the application (set in recvmsg).
604 */
605struct rps_sock_flow_table {
606 unsigned int mask;
607 u16 ents[0];
608};
609#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
610 ((_num) * sizeof(u16)))
611
612#define RPS_NO_CPU 0xffff
613
614static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
615 u32 hash)
616{
617 if (table && hash) {
618 unsigned int cpu, index = hash & table->mask;
619
620 /* We only give a hint, preemption can change cpu under us */
621 cpu = raw_smp_processor_id();
622
623 if (table->ents[index] != cpu)
624 table->ents[index] = cpu;
625 }
626}
627
628static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
629 u32 hash)
630{
631 if (table && hash)
632 table->ents[hash & table->mask] = RPS_NO_CPU;
633}
634
635extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
636
637#ifdef CONFIG_RFS_ACCEL
638extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
639 u32 flow_id, u16 filter_id);
640#endif
641
642/* This structure contains an instance of an RX queue. */
643struct netdev_rx_queue {
644 struct rps_map __rcu *rps_map;
645 struct rps_dev_flow_table __rcu *rps_flow_table;
646 struct kobject kobj;
647 struct net_device *dev;
648} ____cacheline_aligned_in_smp;
649#endif /* CONFIG_RPS */
650
651#ifdef CONFIG_XPS
652/*
653 * This structure holds an XPS map which can be of variable length. The
654 * map is an array of queues.
655 */
656struct xps_map {
657 unsigned int len;
658 unsigned int alloc_len;
659 struct rcu_head rcu;
660 u16 queues[0];
661};
662#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
663#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
664 / sizeof(u16))
665
666/*
667 * This structure holds all XPS maps for device. Maps are indexed by CPU.
668 */
669struct xps_dev_maps {
670 struct rcu_head rcu;
671 struct xps_map __rcu *cpu_map[0];
672};
673#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
674 (nr_cpu_ids * sizeof(struct xps_map *)))
675#endif /* CONFIG_XPS */
676
677#define TC_MAX_QUEUE 16
678#define TC_BITMASK 15
679/* HW offloaded queuing disciplines txq count and offset maps */
680struct netdev_tc_txq {
681 u16 count;
682 u16 offset;
683};
684
685#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
686/*
687 * This structure is to hold information about the device
688 * configured to run FCoE protocol stack.
689 */
690struct netdev_fcoe_hbainfo {
691 char manufacturer[64];
692 char serial_number[64];
693 char hardware_version[64];
694 char driver_version[64];
695 char optionrom_version[64];
696 char firmware_version[64];
697 char model[256];
698 char model_description[256];
699};
700#endif
701
702/*
703 * This structure defines the management hooks for network devices.
704 * The following hooks can be defined; unless noted otherwise, they are
705 * optional and can be filled with a null pointer.
706 *
707 * int (*ndo_init)(struct net_device *dev);
708 * This function is called once when network device is registered.
709 * The network device can use this to any late stage initializaton
710 * or semantic validattion. It can fail with an error code which will
711 * be propogated back to register_netdev
712 *
713 * void (*ndo_uninit)(struct net_device *dev);
714 * This function is called when device is unregistered or when registration
715 * fails. It is not called if init fails.
716 *
717 * int (*ndo_open)(struct net_device *dev);
718 * This function is called when network device transistions to the up
719 * state.
720 *
721 * int (*ndo_stop)(struct net_device *dev);
722 * This function is called when network device transistions to the down
723 * state.
724 *
725 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
726 * struct net_device *dev);
727 * Called when a packet needs to be transmitted.
728 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
729 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
730 * Required can not be NULL.
731 *
732 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
733 * Called to decide which queue to when device supports multiple
734 * transmit queues.
735 *
736 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
737 * This function is called to allow device receiver to make
738 * changes to configuration when multicast or promiscious is enabled.
739 *
740 * void (*ndo_set_rx_mode)(struct net_device *dev);
741 * This function is called device changes address list filtering.
742 * If driver handles unicast address filtering, it should set
743 * IFF_UNICAST_FLT to its priv_flags.
744 *
745 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
746 * This function is called when the Media Access Control address
747 * needs to be changed. If this interface is not defined, the
748 * mac address can not be changed.
749 *
750 * int (*ndo_validate_addr)(struct net_device *dev);
751 * Test if Media Access Control address is valid for the device.
752 *
753 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
754 * Called when a user request an ioctl which can't be handled by
755 * the generic interface code. If not defined ioctl's return
756 * not supported error code.
757 *
758 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
759 * Used to set network devices bus interface parameters. This interface
760 * is retained for legacy reason, new devices should use the bus
761 * interface (PCI) for low level management.
762 *
763 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
764 * Called when a user wants to change the Maximum Transfer Unit
765 * of a device. If not defined, any request to change MTU will
766 * will return an error.
767 *
768 * void (*ndo_tx_timeout)(struct net_device *dev);
769 * Callback uses when the transmitter has not made any progress
770 * for dev->watchdog ticks.
771 *
772 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
773 * struct rtnl_link_stats64 *storage);
774 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
775 * Called when a user wants to get the network device usage
776 * statistics. Drivers must do one of the following:
777 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
778 * rtnl_link_stats64 structure passed by the caller.
779 * 2. Define @ndo_get_stats to update a net_device_stats structure
780 * (which should normally be dev->stats) and return a pointer to
781 * it. The structure may be changed asynchronously only if each
782 * field is written atomically.
783 * 3. Update dev->stats asynchronously and atomically, and define
784 * neither operation.
785 *
786 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
787 * If device support VLAN filtering this function is called when a
788 * VLAN id is registered.
789 *
790 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
791 * If device support VLAN filtering this function is called when a
792 * VLAN id is unregistered.
793 *
794 * void (*ndo_poll_controller)(struct net_device *dev);
795 *
796 * SR-IOV management functions.
797 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
798 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
799 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
800 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
801 * int (*ndo_get_vf_config)(struct net_device *dev,
802 * int vf, struct ifla_vf_info *ivf);
803 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
804 * struct nlattr *port[]);
805 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
806 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
807 * Called to setup 'tc' number of traffic classes in the net device. This
808 * is always called from the stack with the rtnl lock held and netif tx
809 * queues stopped. This allows the netdevice to perform queue management
810 * safely.
811 *
812 * Fiber Channel over Ethernet (FCoE) offload functions.
813 * int (*ndo_fcoe_enable)(struct net_device *dev);
814 * Called when the FCoE protocol stack wants to start using LLD for FCoE
815 * so the underlying device can perform whatever needed configuration or
816 * initialization to support acceleration of FCoE traffic.
817 *
818 * int (*ndo_fcoe_disable)(struct net_device *dev);
819 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
820 * so the underlying device can perform whatever needed clean-ups to
821 * stop supporting acceleration of FCoE traffic.
822 *
823 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
824 * struct scatterlist *sgl, unsigned int sgc);
825 * Called when the FCoE Initiator wants to initialize an I/O that
826 * is a possible candidate for Direct Data Placement (DDP). The LLD can
827 * perform necessary setup and returns 1 to indicate the device is set up
828 * successfully to perform DDP on this I/O, otherwise this returns 0.
829 *
830 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
831 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
832 * indicated by the FC exchange id 'xid', so the underlying device can
833 * clean up and reuse resources for later DDP requests.
834 *
835 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
836 * struct scatterlist *sgl, unsigned int sgc);
837 * Called when the FCoE Target wants to initialize an I/O that
838 * is a possible candidate for Direct Data Placement (DDP). The LLD can
839 * perform necessary setup and returns 1 to indicate the device is set up
840 * successfully to perform DDP on this I/O, otherwise this returns 0.
841 *
842 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
843 * struct netdev_fcoe_hbainfo *hbainfo);
844 * Called when the FCoE Protocol stack wants information on the underlying
845 * device. This information is utilized by the FCoE protocol stack to
846 * register attributes with Fiber Channel management service as per the
847 * FC-GS Fabric Device Management Information(FDMI) specification.
848 *
849 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
850 * Called when the underlying device wants to override default World Wide
851 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
852 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
853 * protocol stack to use.
854 *
855 * RFS acceleration.
856 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
857 * u16 rxq_index, u32 flow_id);
858 * Set hardware filter for RFS. rxq_index is the target queue index;
859 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
860 * Return the filter ID on success, or a negative error code.
861 *
862 * Slave management functions (for bridge, bonding, etc).
863 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
864 * Called to make another netdev an underling.
865 *
866 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
867 * Called to release previously enslaved netdev.
868 *
869 * Feature/offload setting functions.
870 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
871 * netdev_features_t features);
872 * Adjusts the requested feature flags according to device-specific
873 * constraints, and returns the resulting flags. Must not modify
874 * the device state.
875 *
876 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
877 * Called to update device configuration to new features. Passed
878 * feature set might be less than what was returned by ndo_fix_features()).
879 * Must return >0 or -errno if it changed dev->features itself.
880 *
881 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
882 * struct net_device *dev,
883 * const unsigned char *addr, u16 flags)
884 * Adds an FDB entry to dev for addr.
885 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
886 * struct net_device *dev,
887 * const unsigned char *addr)
888 * Deletes the FDB entry from dev coresponding to addr.
889 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
890 * struct net_device *dev, int idx)
891 * Used to add FDB entries to dump requests. Implementers should add
892 * entries to skb and update idx with the number of entries.
893 *
894 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
895 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
896 * struct net_device *dev, u32 filter_mask)
897 *
898 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
899 * Called to change device carrier. Soft-devices (like dummy, team, etc)
900 * which do not represent real hardware may define this to allow their
901 * userspace components to manage their virtual carrier state. Devices
902 * that determine carrier state from physical hardware properties (eg
903 * network cables) or protocol-dependent mechanisms (eg
904 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
905 */
906struct net_device_ops {
907 int (*ndo_init)(struct net_device *dev);
908 void (*ndo_uninit)(struct net_device *dev);
909 int (*ndo_open)(struct net_device *dev);
910 int (*ndo_stop)(struct net_device *dev);
911 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
912 struct net_device *dev);
913 u16 (*ndo_select_queue)(struct net_device *dev,
914 struct sk_buff *skb);
915 void (*ndo_change_rx_flags)(struct net_device *dev,
916 int flags);
917 void (*ndo_set_rx_mode)(struct net_device *dev);
918 int (*ndo_set_mac_address)(struct net_device *dev,
919 void *addr);
920 int (*ndo_validate_addr)(struct net_device *dev);
921 int (*ndo_do_ioctl)(struct net_device *dev,
922 struct ifreq *ifr, int cmd);
923 int (*ndo_set_config)(struct net_device *dev,
924 struct ifmap *map);
925 int (*ndo_change_mtu)(struct net_device *dev,
926 int new_mtu);
927 int (*ndo_neigh_setup)(struct net_device *dev,
928 struct neigh_parms *);
929 void (*ndo_tx_timeout) (struct net_device *dev);
930
931 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
932 struct rtnl_link_stats64 *storage);
933 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
934
935 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
936 __be16 proto, u16 vid);
937 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
938 __be16 proto, u16 vid);
939#ifdef CONFIG_NET_POLL_CONTROLLER
940 void (*ndo_poll_controller)(struct net_device *dev);
941 int (*ndo_netpoll_setup)(struct net_device *dev,
942 struct netpoll_info *info,
943 gfp_t gfp);
944 void (*ndo_netpoll_cleanup)(struct net_device *dev);
945#endif
946 int (*ndo_set_vf_mac)(struct net_device *dev,
947 int queue, u8 *mac);
948 int (*ndo_set_vf_vlan)(struct net_device *dev,
949 int queue, u16 vlan, u8 qos);
950 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
951 int vf, int rate);
952 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
953 int vf, bool setting);
954 int (*ndo_get_vf_config)(struct net_device *dev,
955 int vf,
956 struct ifla_vf_info *ivf);
957 int (*ndo_set_vf_port)(struct net_device *dev,
958 int vf,
959 struct nlattr *port[]);
960 int (*ndo_get_vf_port)(struct net_device *dev,
961 int vf, struct sk_buff *skb);
962 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
963#if IS_ENABLED(CONFIG_FCOE)
964 int (*ndo_fcoe_enable)(struct net_device *dev);
965 int (*ndo_fcoe_disable)(struct net_device *dev);
966 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
967 u16 xid,
968 struct scatterlist *sgl,
969 unsigned int sgc);
970 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
971 u16 xid);
972 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
973 u16 xid,
974 struct scatterlist *sgl,
975 unsigned int sgc);
976 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
977 struct netdev_fcoe_hbainfo *hbainfo);
978#endif
979
980#if IS_ENABLED(CONFIG_LIBFCOE)
981#define NETDEV_FCOE_WWNN 0
982#define NETDEV_FCOE_WWPN 1
983 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
984 u64 *wwn, int type);
985#endif
986
987#ifdef CONFIG_RFS_ACCEL
988 int (*ndo_rx_flow_steer)(struct net_device *dev,
989 const struct sk_buff *skb,
990 u16 rxq_index,
991 u32 flow_id);
992#endif
993 int (*ndo_add_slave)(struct net_device *dev,
994 struct net_device *slave_dev);
995 int (*ndo_del_slave)(struct net_device *dev,
996 struct net_device *slave_dev);
997 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
998 netdev_features_t features);
999 int (*ndo_set_features)(struct net_device *dev,
1000 netdev_features_t features);
1001 int (*ndo_neigh_construct)(struct neighbour *n);
1002 void (*ndo_neigh_destroy)(struct neighbour *n);
1003
1004 int (*ndo_fdb_add)(struct ndmsg *ndm,
1005 struct nlattr *tb[],
1006 struct net_device *dev,
1007 const unsigned char *addr,
1008 u16 flags);
1009 int (*ndo_fdb_del)(struct ndmsg *ndm,
1010 struct nlattr *tb[],
1011 struct net_device *dev,
1012 const unsigned char *addr);
1013 int (*ndo_fdb_dump)(struct sk_buff *skb,
1014 struct netlink_callback *cb,
1015 struct net_device *dev,
1016 int idx);
1017
1018 int (*ndo_bridge_setlink)(struct net_device *dev,
1019 struct nlmsghdr *nlh);
1020 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1021 u32 pid, u32 seq,
1022 struct net_device *dev,
1023 u32 filter_mask);
1024 int (*ndo_bridge_dellink)(struct net_device *dev,
1025 struct nlmsghdr *nlh);
1026 int (*ndo_change_carrier)(struct net_device *dev,
1027 bool new_carrier);
1028};
1029
1030/*
1031 * The DEVICE structure.
1032 * Actually, this whole structure is a big mistake. It mixes I/O
1033 * data with strictly "high-level" data, and it has to know about
1034 * almost every data structure used in the INET module.
1035 *
1036 * FIXME: cleanup struct net_device such that network protocol info
1037 * moves out.
1038 */
1039
1040struct net_device {
1041
1042 /*
1043 * This is the first field of the "visible" part of this structure
1044 * (i.e. as seen by users in the "Space.c" file). It is the name
1045 * of the interface.
1046 */
1047 char name[IFNAMSIZ];
1048
1049 /* device name hash chain, please keep it close to name[] */
1050 struct hlist_node name_hlist;
1051
1052 /* snmp alias */
1053 char *ifalias;
1054
1055 /*
1056 * I/O specific fields
1057 * FIXME: Merge these and struct ifmap into one
1058 */
1059 unsigned long mem_end; /* shared mem end */
1060 unsigned long mem_start; /* shared mem start */
1061 unsigned long base_addr; /* device I/O address */
1062 unsigned int irq; /* device IRQ number */
1063
1064 /*
1065 * Some hardware also needs these fields, but they are not
1066 * part of the usual set specified in Space.c.
1067 */
1068
1069 unsigned long state;
1070
1071 struct list_head dev_list;
1072 struct list_head napi_list;
1073 struct list_head unreg_list;
1074 struct list_head upper_dev_list; /* List of upper devices */
1075
1076
1077 /* currently active device features */
1078 netdev_features_t features;
1079 /* user-changeable features */
1080 netdev_features_t hw_features;
1081 /* user-requested features */
1082 netdev_features_t wanted_features;
1083 /* mask of features inheritable by VLAN devices */
1084 netdev_features_t vlan_features;
1085 /* mask of features inherited by encapsulating devices
1086 * This field indicates what encapsulation offloads
1087 * the hardware is capable of doing, and drivers will
1088 * need to set them appropriately.
1089 */
1090 netdev_features_t hw_enc_features;
1091
1092 /* Interface index. Unique device identifier */
1093 int ifindex;
1094 int iflink;
1095
1096 struct net_device_stats stats;
1097 atomic_long_t rx_dropped; /* dropped packets by core network
1098 * Do not use this in drivers.
1099 */
1100
1101#ifdef CONFIG_WIRELESS_EXT
1102 /* List of functions to handle Wireless Extensions (instead of ioctl).
1103 * See <net/iw_handler.h> for details. Jean II */
1104 const struct iw_handler_def * wireless_handlers;
1105 /* Instance data managed by the core of Wireless Extensions. */
1106 struct iw_public_data * wireless_data;
1107#endif
1108 /* Management operations */
1109 const struct net_device_ops *netdev_ops;
1110 const struct ethtool_ops *ethtool_ops;
1111
1112 /* Hardware header description */
1113 const struct header_ops *header_ops;
1114
1115 unsigned int flags; /* interface flags (a la BSD) */
1116 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1117 * See if.h for definitions. */
1118 unsigned short gflags;
1119 unsigned short padded; /* How much padding added by alloc_netdev() */
1120
1121 unsigned char operstate; /* RFC2863 operstate */
1122 unsigned char link_mode; /* mapping policy to operstate */
1123
1124 unsigned char if_port; /* Selectable AUI, TP,..*/
1125 unsigned char dma; /* DMA channel */
1126
1127 unsigned int mtu; /* interface MTU value */
1128 unsigned short type; /* interface hardware type */
1129 unsigned short hard_header_len; /* hardware hdr length */
1130
1131 /* extra head- and tailroom the hardware may need, but not in all cases
1132 * can this be guaranteed, especially tailroom. Some cases also use
1133 * LL_MAX_HEADER instead to allocate the skb.
1134 */
1135 unsigned short needed_headroom;
1136 unsigned short needed_tailroom;
1137
1138 /* Interface address info. */
1139 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1140 unsigned char addr_assign_type; /* hw address assignment type */
1141 unsigned char addr_len; /* hardware address length */
1142 unsigned char neigh_priv_len;
1143 unsigned short dev_id; /* for shared network cards */
1144
1145 spinlock_t addr_list_lock;
1146 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1147 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1148 struct netdev_hw_addr_list dev_addrs; /* list of device
1149 * hw addresses
1150 */
1151#ifdef CONFIG_SYSFS
1152 struct kset *queues_kset;
1153#endif
1154
1155 bool uc_promisc;
1156 unsigned int promiscuity;
1157 unsigned int allmulti;
1158
1159
1160 /* Protocol specific pointers */
1161
1162#if IS_ENABLED(CONFIG_VLAN_8021Q)
1163 struct vlan_info __rcu *vlan_info; /* VLAN info */
1164#endif
1165#if IS_ENABLED(CONFIG_NET_DSA)
1166 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1167#endif
1168 void *atalk_ptr; /* AppleTalk link */
1169 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1170 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1171 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1172 void *ax25_ptr; /* AX.25 specific data */
1173 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1174 assign before registering */
1175
1176/*
1177 * Cache lines mostly used on receive path (including eth_type_trans())
1178 */
1179 unsigned long last_rx; /* Time of last Rx
1180 * This should not be set in
1181 * drivers, unless really needed,
1182 * because network stack (bonding)
1183 * use it if/when necessary, to
1184 * avoid dirtying this cache line.
1185 */
1186
1187 /* Interface address info used in eth_type_trans() */
1188 unsigned char *dev_addr; /* hw address, (before bcast
1189 because most packets are
1190 unicast) */
1191
1192
1193#ifdef CONFIG_RPS
1194 struct netdev_rx_queue *_rx;
1195
1196 /* Number of RX queues allocated at register_netdev() time */
1197 unsigned int num_rx_queues;
1198
1199 /* Number of RX queues currently active in device */
1200 unsigned int real_num_rx_queues;
1201
1202#endif
1203
1204 rx_handler_func_t __rcu *rx_handler;
1205 void __rcu *rx_handler_data;
1206
1207 struct netdev_queue __rcu *ingress_queue;
1208 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1209
1210
1211/*
1212 * Cache lines mostly used on transmit path
1213 */
1214 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1215
1216 /* Number of TX queues allocated at alloc_netdev_mq() time */
1217 unsigned int num_tx_queues;
1218
1219 /* Number of TX queues currently active in device */
1220 unsigned int real_num_tx_queues;
1221
1222 /* root qdisc from userspace point of view */
1223 struct Qdisc *qdisc;
1224
1225 unsigned long tx_queue_len; /* Max frames per queue allowed */
1226 spinlock_t tx_global_lock;
1227
1228#ifdef CONFIG_XPS
1229 struct xps_dev_maps __rcu *xps_maps;
1230#endif
1231#ifdef CONFIG_RFS_ACCEL
1232 /* CPU reverse-mapping for RX completion interrupts, indexed
1233 * by RX queue number. Assigned by driver. This must only be
1234 * set if the ndo_rx_flow_steer operation is defined. */
1235 struct cpu_rmap *rx_cpu_rmap;
1236#endif
1237
1238 /* These may be needed for future network-power-down code. */
1239
1240 /*
1241 * trans_start here is expensive for high speed devices on SMP,
1242 * please use netdev_queue->trans_start instead.
1243 */
1244 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1245
1246 int watchdog_timeo; /* used by dev_watchdog() */
1247 struct timer_list watchdog_timer;
1248
1249 /* Number of references to this device */
1250 int __percpu *pcpu_refcnt;
1251
1252 /* delayed register/unregister */
1253 struct list_head todo_list;
1254 /* device index hash chain */
1255 struct hlist_node index_hlist;
1256
1257 struct list_head link_watch_list;
1258
1259 /* register/unregister state machine */
1260 enum { NETREG_UNINITIALIZED=0,
1261 NETREG_REGISTERED, /* completed register_netdevice */
1262 NETREG_UNREGISTERING, /* called unregister_netdevice */
1263 NETREG_UNREGISTERED, /* completed unregister todo */
1264 NETREG_RELEASED, /* called free_netdev */
1265 NETREG_DUMMY, /* dummy device for NAPI poll */
1266 } reg_state:8;
1267
1268 bool dismantle; /* device is going do be freed */
1269
1270 enum {
1271 RTNL_LINK_INITIALIZED,
1272 RTNL_LINK_INITIALIZING,
1273 } rtnl_link_state:16;
1274
1275 /* Called from unregister, can be used to call free_netdev */
1276 void (*destructor)(struct net_device *dev);
1277
1278#ifdef CONFIG_NETPOLL
1279 struct netpoll_info __rcu *npinfo;
1280#endif
1281
1282#ifdef CONFIG_NET_NS
1283 /* Network namespace this network device is inside */
1284 struct net *nd_net;
1285#endif
1286
1287 /* mid-layer private */
1288 union {
1289 void *ml_priv;
1290 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1291 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1292 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1293 struct pcpu_vstats __percpu *vstats; /* veth stats */
1294 };
1295 /* GARP */
1296 struct garp_port __rcu *garp_port;
1297 /* MRP */
1298 struct mrp_port __rcu *mrp_port;
1299
1300 /* class/net/name entry */
1301 struct device dev;
1302 /* space for optional device, statistics, and wireless sysfs groups */
1303 const struct attribute_group *sysfs_groups[4];
1304
1305 /* rtnetlink link ops */
1306 const struct rtnl_link_ops *rtnl_link_ops;
1307
1308 /* for setting kernel sock attribute on TCP connection setup */
1309#define GSO_MAX_SIZE 65536
1310 unsigned int gso_max_size;
1311#define GSO_MAX_SEGS 65535
1312 u16 gso_max_segs;
1313
1314#ifdef CONFIG_DCB
1315 /* Data Center Bridging netlink ops */
1316 const struct dcbnl_rtnl_ops *dcbnl_ops;
1317#endif
1318 u8 num_tc;
1319 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1320 u8 prio_tc_map[TC_BITMASK + 1];
1321
1322#if IS_ENABLED(CONFIG_FCOE)
1323 /* max exchange id for FCoE LRO by ddp */
1324 unsigned int fcoe_ddp_xid;
1325#endif
1326#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1327 struct netprio_map __rcu *priomap;
1328#endif
1329 /* phy device may attach itself for hardware timestamping */
1330 struct phy_device *phydev;
1331
1332 struct lock_class_key *qdisc_tx_busylock;
1333
1334 /* group the device belongs to */
1335 int group;
1336
1337 struct pm_qos_request pm_qos_req;
1338};
1339#define to_net_dev(d) container_of(d, struct net_device, dev)
1340
1341#define NETDEV_ALIGN 32
1342
1343static inline
1344int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1345{
1346 return dev->prio_tc_map[prio & TC_BITMASK];
1347}
1348
1349static inline
1350int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1351{
1352 if (tc >= dev->num_tc)
1353 return -EINVAL;
1354
1355 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1356 return 0;
1357}
1358
1359static inline
1360void netdev_reset_tc(struct net_device *dev)
1361{
1362 dev->num_tc = 0;
1363 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1364 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1365}
1366
1367static inline
1368int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1369{
1370 if (tc >= dev->num_tc)
1371 return -EINVAL;
1372
1373 dev->tc_to_txq[tc].count = count;
1374 dev->tc_to_txq[tc].offset = offset;
1375 return 0;
1376}
1377
1378static inline
1379int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1380{
1381 if (num_tc > TC_MAX_QUEUE)
1382 return -EINVAL;
1383
1384 dev->num_tc = num_tc;
1385 return 0;
1386}
1387
1388static inline
1389int netdev_get_num_tc(struct net_device *dev)
1390{
1391 return dev->num_tc;
1392}
1393
1394static inline
1395struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1396 unsigned int index)
1397{
1398 return &dev->_tx[index];
1399}
1400
1401static inline void netdev_for_each_tx_queue(struct net_device *dev,
1402 void (*f)(struct net_device *,
1403 struct netdev_queue *,
1404 void *),
1405 void *arg)
1406{
1407 unsigned int i;
1408
1409 for (i = 0; i < dev->num_tx_queues; i++)
1410 f(dev, &dev->_tx[i], arg);
1411}
1412
1413extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1414 struct sk_buff *skb);
1415extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1416
1417/*
1418 * Net namespace inlines
1419 */
1420static inline
1421struct net *dev_net(const struct net_device *dev)
1422{
1423 return read_pnet(&dev->nd_net);
1424}
1425
1426static inline
1427void dev_net_set(struct net_device *dev, struct net *net)
1428{
1429#ifdef CONFIG_NET_NS
1430 release_net(dev->nd_net);
1431 dev->nd_net = hold_net(net);
1432#endif
1433}
1434
1435static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1436{
1437#ifdef CONFIG_NET_DSA_TAG_DSA
1438 if (dev->dsa_ptr != NULL)
1439 return dsa_uses_dsa_tags(dev->dsa_ptr);
1440#endif
1441
1442 return 0;
1443}
1444
1445static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1446{
1447#ifdef CONFIG_NET_DSA_TAG_TRAILER
1448 if (dev->dsa_ptr != NULL)
1449 return dsa_uses_trailer_tags(dev->dsa_ptr);
1450#endif
1451
1452 return 0;
1453}
1454
1455/**
1456 * netdev_priv - access network device private data
1457 * @dev: network device
1458 *
1459 * Get network device private data
1460 */
1461static inline void *netdev_priv(const struct net_device *dev)
1462{
1463 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1464}
1465
1466/* Set the sysfs physical device reference for the network logical device
1467 * if set prior to registration will cause a symlink during initialization.
1468 */
1469#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1470
1471/* Set the sysfs device type for the network logical device to allow
1472 * fin grained indentification of different network device types. For
1473 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1474 */
1475#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1476
1477/* Default NAPI poll() weight
1478 * Device drivers are strongly advised to not use bigger value
1479 */
1480#define NAPI_POLL_WEIGHT 64
1481
1482/**
1483 * netif_napi_add - initialize a napi context
1484 * @dev: network device
1485 * @napi: napi context
1486 * @poll: polling function
1487 * @weight: default weight
1488 *
1489 * netif_napi_add() must be used to initialize a napi context prior to calling
1490 * *any* of the other napi related functions.
1491 */
1492void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1493 int (*poll)(struct napi_struct *, int), int weight);
1494
1495/**
1496 * netif_napi_del - remove a napi context
1497 * @napi: napi context
1498 *
1499 * netif_napi_del() removes a napi context from the network device napi list
1500 */
1501void netif_napi_del(struct napi_struct *napi);
1502
1503struct napi_gro_cb {
1504 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1505 void *frag0;
1506
1507 /* Length of frag0. */
1508 unsigned int frag0_len;
1509
1510 /* This indicates where we are processing relative to skb->data. */
1511 int data_offset;
1512
1513 /* This is non-zero if the packet cannot be merged with the new skb. */
1514 int flush;
1515
1516 /* Number of segments aggregated. */
1517 u16 count;
1518
1519 /* This is non-zero if the packet may be of the same flow. */
1520 u8 same_flow;
1521
1522 /* Free the skb? */
1523 u8 free;
1524#define NAPI_GRO_FREE 1
1525#define NAPI_GRO_FREE_STOLEN_HEAD 2
1526
1527 /* jiffies when first packet was created/queued */
1528 unsigned long age;
1529
1530 /* Used in ipv6_gro_receive() */
1531 int proto;
1532
1533 /* used in skb_gro_receive() slow path */
1534 struct sk_buff *last;
1535};
1536
1537#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1538
1539struct packet_type {
1540 __be16 type; /* This is really htons(ether_type). */
1541 struct net_device *dev; /* NULL is wildcarded here */
1542 int (*func) (struct sk_buff *,
1543 struct net_device *,
1544 struct packet_type *,
1545 struct net_device *);
1546 bool (*id_match)(struct packet_type *ptype,
1547 struct sock *sk);
1548 void *af_packet_priv;
1549 struct list_head list;
1550};
1551
1552struct offload_callbacks {
1553 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1554 netdev_features_t features);
1555 int (*gso_send_check)(struct sk_buff *skb);
1556 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1557 struct sk_buff *skb);
1558 int (*gro_complete)(struct sk_buff *skb);
1559};
1560
1561struct packet_offload {
1562 __be16 type; /* This is really htons(ether_type). */
1563 struct offload_callbacks callbacks;
1564 struct list_head list;
1565};
1566
1567#include <linux/notifier.h>
1568
1569/* netdevice notifier chain. Please remember to update the rtnetlink
1570 * notification exclusion list in rtnetlink_event() when adding new
1571 * types.
1572 */
1573#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1574#define NETDEV_DOWN 0x0002
1575#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1576 detected a hardware crash and restarted
1577 - we can use this eg to kick tcp sessions
1578 once done */
1579#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1580#define NETDEV_REGISTER 0x0005
1581#define NETDEV_UNREGISTER 0x0006
1582#define NETDEV_CHANGEMTU 0x0007
1583#define NETDEV_CHANGEADDR 0x0008
1584#define NETDEV_GOING_DOWN 0x0009
1585#define NETDEV_CHANGENAME 0x000A
1586#define NETDEV_FEAT_CHANGE 0x000B
1587#define NETDEV_BONDING_FAILOVER 0x000C
1588#define NETDEV_PRE_UP 0x000D
1589#define NETDEV_PRE_TYPE_CHANGE 0x000E
1590#define NETDEV_POST_TYPE_CHANGE 0x000F
1591#define NETDEV_POST_INIT 0x0010
1592#define NETDEV_UNREGISTER_FINAL 0x0011
1593#define NETDEV_RELEASE 0x0012
1594#define NETDEV_NOTIFY_PEERS 0x0013
1595#define NETDEV_JOIN 0x0014
1596
1597extern int register_netdevice_notifier(struct notifier_block *nb);
1598extern int unregister_netdevice_notifier(struct notifier_block *nb);
1599extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1600
1601
1602extern rwlock_t dev_base_lock; /* Device list lock */
1603
1604extern seqcount_t devnet_rename_seq; /* Device rename seq */
1605
1606
1607#define for_each_netdev(net, d) \
1608 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1609#define for_each_netdev_reverse(net, d) \
1610 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1611#define for_each_netdev_rcu(net, d) \
1612 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1613#define for_each_netdev_safe(net, d, n) \
1614 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1615#define for_each_netdev_continue(net, d) \
1616 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1617#define for_each_netdev_continue_rcu(net, d) \
1618 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1619#define for_each_netdev_in_bond_rcu(bond, slave) \
1620 for_each_netdev_rcu(&init_net, slave) \
1621 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1622#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1623
1624static inline struct net_device *next_net_device(struct net_device *dev)
1625{
1626 struct list_head *lh;
1627 struct net *net;
1628
1629 net = dev_net(dev);
1630 lh = dev->dev_list.next;
1631 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1632}
1633
1634static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1635{
1636 struct list_head *lh;
1637 struct net *net;
1638
1639 net = dev_net(dev);
1640 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1641 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1642}
1643
1644static inline struct net_device *first_net_device(struct net *net)
1645{
1646 return list_empty(&net->dev_base_head) ? NULL :
1647 net_device_entry(net->dev_base_head.next);
1648}
1649
1650static inline struct net_device *first_net_device_rcu(struct net *net)
1651{
1652 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1653
1654 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1655}
1656
1657extern int netdev_boot_setup_check(struct net_device *dev);
1658extern unsigned long netdev_boot_base(const char *prefix, int unit);
1659extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1660 const char *hwaddr);
1661extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1662extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1663extern void dev_add_pack(struct packet_type *pt);
1664extern void dev_remove_pack(struct packet_type *pt);
1665extern void __dev_remove_pack(struct packet_type *pt);
1666extern void dev_add_offload(struct packet_offload *po);
1667extern void dev_remove_offload(struct packet_offload *po);
1668extern void __dev_remove_offload(struct packet_offload *po);
1669
1670extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1671 unsigned short mask);
1672extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1673extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1674extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1675extern int dev_alloc_name(struct net_device *dev, const char *name);
1676extern int dev_open(struct net_device *dev);
1677extern int dev_close(struct net_device *dev);
1678extern void dev_disable_lro(struct net_device *dev);
1679extern int dev_loopback_xmit(struct sk_buff *newskb);
1680extern int dev_queue_xmit(struct sk_buff *skb);
1681extern int register_netdevice(struct net_device *dev);
1682extern void unregister_netdevice_queue(struct net_device *dev,
1683 struct list_head *head);
1684extern void unregister_netdevice_many(struct list_head *head);
1685static inline void unregister_netdevice(struct net_device *dev)
1686{
1687 unregister_netdevice_queue(dev, NULL);
1688}
1689
1690extern int netdev_refcnt_read(const struct net_device *dev);
1691extern void free_netdev(struct net_device *dev);
1692extern void synchronize_net(void);
1693extern int init_dummy_netdev(struct net_device *dev);
1694
1695extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1696extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1697extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1698extern int dev_restart(struct net_device *dev);
1699#ifdef CONFIG_NETPOLL_TRAP
1700extern int netpoll_trap(void);
1701#endif
1702extern int skb_gro_receive(struct sk_buff **head,
1703 struct sk_buff *skb);
1704
1705static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1706{
1707 return NAPI_GRO_CB(skb)->data_offset;
1708}
1709
1710static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1711{
1712 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1713}
1714
1715static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1716{
1717 NAPI_GRO_CB(skb)->data_offset += len;
1718}
1719
1720static inline void *skb_gro_header_fast(struct sk_buff *skb,
1721 unsigned int offset)
1722{
1723 return NAPI_GRO_CB(skb)->frag0 + offset;
1724}
1725
1726static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1727{
1728 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1729}
1730
1731static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1732 unsigned int offset)
1733{
1734 if (!pskb_may_pull(skb, hlen))
1735 return NULL;
1736
1737 NAPI_GRO_CB(skb)->frag0 = NULL;
1738 NAPI_GRO_CB(skb)->frag0_len = 0;
1739 return skb->data + offset;
1740}
1741
1742static inline void *skb_gro_mac_header(struct sk_buff *skb)
1743{
1744 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1745}
1746
1747static inline void *skb_gro_network_header(struct sk_buff *skb)
1748{
1749 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1750 skb_network_offset(skb);
1751}
1752
1753static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1754 unsigned short type,
1755 const void *daddr, const void *saddr,
1756 unsigned int len)
1757{
1758 if (!dev->header_ops || !dev->header_ops->create)
1759 return 0;
1760
1761 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1762}
1763
1764static inline int dev_parse_header(const struct sk_buff *skb,
1765 unsigned char *haddr)
1766{
1767 const struct net_device *dev = skb->dev;
1768
1769 if (!dev->header_ops || !dev->header_ops->parse)
1770 return 0;
1771 return dev->header_ops->parse(skb, haddr);
1772}
1773
1774typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1775extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1776static inline int unregister_gifconf(unsigned int family)
1777{
1778 return register_gifconf(family, NULL);
1779}
1780
1781/*
1782 * Incoming packets are placed on per-cpu queues
1783 */
1784struct softnet_data {
1785 struct Qdisc *output_queue;
1786 struct Qdisc **output_queue_tailp;
1787 struct list_head poll_list;
1788 struct sk_buff *completion_queue;
1789 struct sk_buff_head process_queue;
1790
1791 /* stats */
1792 unsigned int processed;
1793 unsigned int time_squeeze;
1794 unsigned int cpu_collision;
1795 unsigned int received_rps;
1796
1797#ifdef CONFIG_RPS
1798 struct softnet_data *rps_ipi_list;
1799
1800 /* Elements below can be accessed between CPUs for RPS */
1801 struct call_single_data csd ____cacheline_aligned_in_smp;
1802 struct softnet_data *rps_ipi_next;
1803 unsigned int cpu;
1804 unsigned int input_queue_head;
1805 unsigned int input_queue_tail;
1806#endif
1807 unsigned int dropped;
1808 struct sk_buff_head input_pkt_queue;
1809 struct napi_struct backlog;
1810};
1811
1812static inline void input_queue_head_incr(struct softnet_data *sd)
1813{
1814#ifdef CONFIG_RPS
1815 sd->input_queue_head++;
1816#endif
1817}
1818
1819static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1820 unsigned int *qtail)
1821{
1822#ifdef CONFIG_RPS
1823 *qtail = ++sd->input_queue_tail;
1824#endif
1825}
1826
1827DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1828
1829extern void __netif_schedule(struct Qdisc *q);
1830
1831static inline void netif_schedule_queue(struct netdev_queue *txq)
1832{
1833 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1834 __netif_schedule(txq->qdisc);
1835}
1836
1837static inline void netif_tx_schedule_all(struct net_device *dev)
1838{
1839 unsigned int i;
1840
1841 for (i = 0; i < dev->num_tx_queues; i++)
1842 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1843}
1844
1845static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1846{
1847 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1848}
1849
1850/**
1851 * netif_start_queue - allow transmit
1852 * @dev: network device
1853 *
1854 * Allow upper layers to call the device hard_start_xmit routine.
1855 */
1856static inline void netif_start_queue(struct net_device *dev)
1857{
1858 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1859}
1860
1861static inline void netif_tx_start_all_queues(struct net_device *dev)
1862{
1863 unsigned int i;
1864
1865 for (i = 0; i < dev->num_tx_queues; i++) {
1866 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1867 netif_tx_start_queue(txq);
1868 }
1869}
1870
1871static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1872{
1873#ifdef CONFIG_NETPOLL_TRAP
1874 if (netpoll_trap()) {
1875 netif_tx_start_queue(dev_queue);
1876 return;
1877 }
1878#endif
1879 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1880 __netif_schedule(dev_queue->qdisc);
1881}
1882
1883/**
1884 * netif_wake_queue - restart transmit
1885 * @dev: network device
1886 *
1887 * Allow upper layers to call the device hard_start_xmit routine.
1888 * Used for flow control when transmit resources are available.
1889 */
1890static inline void netif_wake_queue(struct net_device *dev)
1891{
1892 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1893}
1894
1895static inline void netif_tx_wake_all_queues(struct net_device *dev)
1896{
1897 unsigned int i;
1898
1899 for (i = 0; i < dev->num_tx_queues; i++) {
1900 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1901 netif_tx_wake_queue(txq);
1902 }
1903}
1904
1905static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1906{
1907 if (WARN_ON(!dev_queue)) {
1908 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1909 return;
1910 }
1911 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1912}
1913
1914/**
1915 * netif_stop_queue - stop transmitted packets
1916 * @dev: network device
1917 *
1918 * Stop upper layers calling the device hard_start_xmit routine.
1919 * Used for flow control when transmit resources are unavailable.
1920 */
1921static inline void netif_stop_queue(struct net_device *dev)
1922{
1923 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1924}
1925
1926static inline void netif_tx_stop_all_queues(struct net_device *dev)
1927{
1928 unsigned int i;
1929
1930 for (i = 0; i < dev->num_tx_queues; i++) {
1931 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1932 netif_tx_stop_queue(txq);
1933 }
1934}
1935
1936static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1937{
1938 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1939}
1940
1941/**
1942 * netif_queue_stopped - test if transmit queue is flowblocked
1943 * @dev: network device
1944 *
1945 * Test if transmit queue on device is currently unable to send.
1946 */
1947static inline bool netif_queue_stopped(const struct net_device *dev)
1948{
1949 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1950}
1951
1952static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1953{
1954 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1955}
1956
1957static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1958{
1959 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1960}
1961
1962static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1963 unsigned int bytes)
1964{
1965#ifdef CONFIG_BQL
1966 dql_queued(&dev_queue->dql, bytes);
1967
1968 if (likely(dql_avail(&dev_queue->dql) >= 0))
1969 return;
1970
1971 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1972
1973 /*
1974 * The XOFF flag must be set before checking the dql_avail below,
1975 * because in netdev_tx_completed_queue we update the dql_completed
1976 * before checking the XOFF flag.
1977 */
1978 smp_mb();
1979
1980 /* check again in case another CPU has just made room avail */
1981 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1982 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1983#endif
1984}
1985
1986static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1987{
1988 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1989}
1990
1991static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1992 unsigned int pkts, unsigned int bytes)
1993{
1994#ifdef CONFIG_BQL
1995 if (unlikely(!bytes))
1996 return;
1997
1998 dql_completed(&dev_queue->dql, bytes);
1999
2000 /*
2001 * Without the memory barrier there is a small possiblity that
2002 * netdev_tx_sent_queue will miss the update and cause the queue to
2003 * be stopped forever
2004 */
2005 smp_mb();
2006
2007 if (dql_avail(&dev_queue->dql) < 0)
2008 return;
2009
2010 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2011 netif_schedule_queue(dev_queue);
2012#endif
2013}
2014
2015static inline void netdev_completed_queue(struct net_device *dev,
2016 unsigned int pkts, unsigned int bytes)
2017{
2018 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2019}
2020
2021static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2022{
2023#ifdef CONFIG_BQL
2024 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2025 dql_reset(&q->dql);
2026#endif
2027}
2028
2029static inline void netdev_reset_queue(struct net_device *dev_queue)
2030{
2031 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2032}
2033
2034/**
2035 * netif_running - test if up
2036 * @dev: network device
2037 *
2038 * Test if the device has been brought up.
2039 */
2040static inline bool netif_running(const struct net_device *dev)
2041{
2042 return test_bit(__LINK_STATE_START, &dev->state);
2043}
2044
2045/*
2046 * Routines to manage the subqueues on a device. We only need start
2047 * stop, and a check if it's stopped. All other device management is
2048 * done at the overall netdevice level.
2049 * Also test the device if we're multiqueue.
2050 */
2051
2052/**
2053 * netif_start_subqueue - allow sending packets on subqueue
2054 * @dev: network device
2055 * @queue_index: sub queue index
2056 *
2057 * Start individual transmit queue of a device with multiple transmit queues.
2058 */
2059static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2060{
2061 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2062
2063 netif_tx_start_queue(txq);
2064}
2065
2066/**
2067 * netif_stop_subqueue - stop sending packets on subqueue
2068 * @dev: network device
2069 * @queue_index: sub queue index
2070 *
2071 * Stop individual transmit queue of a device with multiple transmit queues.
2072 */
2073static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2074{
2075 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2076#ifdef CONFIG_NETPOLL_TRAP
2077 if (netpoll_trap())
2078 return;
2079#endif
2080 netif_tx_stop_queue(txq);
2081}
2082
2083/**
2084 * netif_subqueue_stopped - test status of subqueue
2085 * @dev: network device
2086 * @queue_index: sub queue index
2087 *
2088 * Check individual transmit queue of a device with multiple transmit queues.
2089 */
2090static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2091 u16 queue_index)
2092{
2093 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2094
2095 return netif_tx_queue_stopped(txq);
2096}
2097
2098static inline bool netif_subqueue_stopped(const struct net_device *dev,
2099 struct sk_buff *skb)
2100{
2101 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2102}
2103
2104/**
2105 * netif_wake_subqueue - allow sending packets on subqueue
2106 * @dev: network device
2107 * @queue_index: sub queue index
2108 *
2109 * Resume individual transmit queue of a device with multiple transmit queues.
2110 */
2111static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2112{
2113 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2114#ifdef CONFIG_NETPOLL_TRAP
2115 if (netpoll_trap())
2116 return;
2117#endif
2118 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2119 __netif_schedule(txq->qdisc);
2120}
2121
2122#ifdef CONFIG_XPS
2123extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2124 u16 index);
2125#else
2126static inline int netif_set_xps_queue(struct net_device *dev,
2127 struct cpumask *mask,
2128 u16 index)
2129{
2130 return 0;
2131}
2132#endif
2133
2134/*
2135 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2136 * as a distribution range limit for the returned value.
2137 */
2138static inline u16 skb_tx_hash(const struct net_device *dev,
2139 const struct sk_buff *skb)
2140{
2141 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2142}
2143
2144/**
2145 * netif_is_multiqueue - test if device has multiple transmit queues
2146 * @dev: network device
2147 *
2148 * Check if device has multiple transmit queues
2149 */
2150static inline bool netif_is_multiqueue(const struct net_device *dev)
2151{
2152 return dev->num_tx_queues > 1;
2153}
2154
2155extern int netif_set_real_num_tx_queues(struct net_device *dev,
2156 unsigned int txq);
2157
2158#ifdef CONFIG_RPS
2159extern int netif_set_real_num_rx_queues(struct net_device *dev,
2160 unsigned int rxq);
2161#else
2162static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2163 unsigned int rxq)
2164{
2165 return 0;
2166}
2167#endif
2168
2169static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2170 const struct net_device *from_dev)
2171{
2172 int err;
2173
2174 err = netif_set_real_num_tx_queues(to_dev,
2175 from_dev->real_num_tx_queues);
2176 if (err)
2177 return err;
2178#ifdef CONFIG_RPS
2179 return netif_set_real_num_rx_queues(to_dev,
2180 from_dev->real_num_rx_queues);
2181#else
2182 return 0;
2183#endif
2184}
2185
2186#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2187extern int netif_get_num_default_rss_queues(void);
2188
2189/* Use this variant when it is known for sure that it
2190 * is executing from hardware interrupt context or with hardware interrupts
2191 * disabled.
2192 */
2193extern void dev_kfree_skb_irq(struct sk_buff *skb);
2194
2195/* Use this variant in places where it could be invoked
2196 * from either hardware interrupt or other context, with hardware interrupts
2197 * either disabled or enabled.
2198 */
2199extern void dev_kfree_skb_any(struct sk_buff *skb);
2200
2201extern int netif_rx(struct sk_buff *skb);
2202extern int netif_rx_ni(struct sk_buff *skb);
2203extern int netif_receive_skb(struct sk_buff *skb);
2204extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2205 struct sk_buff *skb);
2206extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2207extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2208extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2209
2210static inline void napi_free_frags(struct napi_struct *napi)
2211{
2212 kfree_skb(napi->skb);
2213 napi->skb = NULL;
2214}
2215
2216extern int netdev_rx_handler_register(struct net_device *dev,
2217 rx_handler_func_t *rx_handler,
2218 void *rx_handler_data);
2219extern void netdev_rx_handler_unregister(struct net_device *dev);
2220
2221extern bool dev_valid_name(const char *name);
2222extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2223extern int dev_ethtool(struct net *net, struct ifreq *);
2224extern unsigned int dev_get_flags(const struct net_device *);
2225extern int __dev_change_flags(struct net_device *, unsigned int flags);
2226extern int dev_change_flags(struct net_device *, unsigned int);
2227extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2228extern int dev_change_name(struct net_device *, const char *);
2229extern int dev_set_alias(struct net_device *, const char *, size_t);
2230extern int dev_change_net_namespace(struct net_device *,
2231 struct net *, const char *);
2232extern int dev_set_mtu(struct net_device *, int);
2233extern void dev_set_group(struct net_device *, int);
2234extern int dev_set_mac_address(struct net_device *,
2235 struct sockaddr *);
2236extern int dev_change_carrier(struct net_device *,
2237 bool new_carrier);
2238extern int dev_hard_start_xmit(struct sk_buff *skb,
2239 struct net_device *dev,
2240 struct netdev_queue *txq);
2241extern int dev_forward_skb(struct net_device *dev,
2242 struct sk_buff *skb);
2243
2244extern int netdev_budget;
2245
2246/* Called by rtnetlink.c:rtnl_unlock() */
2247extern void netdev_run_todo(void);
2248
2249/**
2250 * dev_put - release reference to device
2251 * @dev: network device
2252 *
2253 * Release reference to device to allow it to be freed.
2254 */
2255static inline void dev_put(struct net_device *dev)
2256{
2257 this_cpu_dec(*dev->pcpu_refcnt);
2258}
2259
2260/**
2261 * dev_hold - get reference to device
2262 * @dev: network device
2263 *
2264 * Hold reference to device to keep it from being freed.
2265 */
2266static inline void dev_hold(struct net_device *dev)
2267{
2268 this_cpu_inc(*dev->pcpu_refcnt);
2269}
2270
2271/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2272 * and _off may be called from IRQ context, but it is caller
2273 * who is responsible for serialization of these calls.
2274 *
2275 * The name carrier is inappropriate, these functions should really be
2276 * called netif_lowerlayer_*() because they represent the state of any
2277 * kind of lower layer not just hardware media.
2278 */
2279
2280extern void linkwatch_init_dev(struct net_device *dev);
2281extern void linkwatch_fire_event(struct net_device *dev);
2282extern void linkwatch_forget_dev(struct net_device *dev);
2283
2284/**
2285 * netif_carrier_ok - test if carrier present
2286 * @dev: network device
2287 *
2288 * Check if carrier is present on device
2289 */
2290static inline bool netif_carrier_ok(const struct net_device *dev)
2291{
2292 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2293}
2294
2295extern unsigned long dev_trans_start(struct net_device *dev);
2296
2297extern void __netdev_watchdog_up(struct net_device *dev);
2298
2299extern void netif_carrier_on(struct net_device *dev);
2300
2301extern void netif_carrier_off(struct net_device *dev);
2302
2303/**
2304 * netif_dormant_on - mark device as dormant.
2305 * @dev: network device
2306 *
2307 * Mark device as dormant (as per RFC2863).
2308 *
2309 * The dormant state indicates that the relevant interface is not
2310 * actually in a condition to pass packets (i.e., it is not 'up') but is
2311 * in a "pending" state, waiting for some external event. For "on-
2312 * demand" interfaces, this new state identifies the situation where the
2313 * interface is waiting for events to place it in the up state.
2314 *
2315 */
2316static inline void netif_dormant_on(struct net_device *dev)
2317{
2318 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2319 linkwatch_fire_event(dev);
2320}
2321
2322/**
2323 * netif_dormant_off - set device as not dormant.
2324 * @dev: network device
2325 *
2326 * Device is not in dormant state.
2327 */
2328static inline void netif_dormant_off(struct net_device *dev)
2329{
2330 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2331 linkwatch_fire_event(dev);
2332}
2333
2334/**
2335 * netif_dormant - test if carrier present
2336 * @dev: network device
2337 *
2338 * Check if carrier is present on device
2339 */
2340static inline bool netif_dormant(const struct net_device *dev)
2341{
2342 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2343}
2344
2345
2346/**
2347 * netif_oper_up - test if device is operational
2348 * @dev: network device
2349 *
2350 * Check if carrier is operational
2351 */
2352static inline bool netif_oper_up(const struct net_device *dev)
2353{
2354 return (dev->operstate == IF_OPER_UP ||
2355 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2356}
2357
2358/**
2359 * netif_device_present - is device available or removed
2360 * @dev: network device
2361 *
2362 * Check if device has not been removed from system.
2363 */
2364static inline bool netif_device_present(struct net_device *dev)
2365{
2366 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2367}
2368
2369extern void netif_device_detach(struct net_device *dev);
2370
2371extern void netif_device_attach(struct net_device *dev);
2372
2373/*
2374 * Network interface message level settings
2375 */
2376
2377enum {
2378 NETIF_MSG_DRV = 0x0001,
2379 NETIF_MSG_PROBE = 0x0002,
2380 NETIF_MSG_LINK = 0x0004,
2381 NETIF_MSG_TIMER = 0x0008,
2382 NETIF_MSG_IFDOWN = 0x0010,
2383 NETIF_MSG_IFUP = 0x0020,
2384 NETIF_MSG_RX_ERR = 0x0040,
2385 NETIF_MSG_TX_ERR = 0x0080,
2386 NETIF_MSG_TX_QUEUED = 0x0100,
2387 NETIF_MSG_INTR = 0x0200,
2388 NETIF_MSG_TX_DONE = 0x0400,
2389 NETIF_MSG_RX_STATUS = 0x0800,
2390 NETIF_MSG_PKTDATA = 0x1000,
2391 NETIF_MSG_HW = 0x2000,
2392 NETIF_MSG_WOL = 0x4000,
2393};
2394
2395#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2396#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2397#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2398#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2399#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2400#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2401#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2402#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2403#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2404#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2405#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2406#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2407#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2408#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2409#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2410
2411static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2412{
2413 /* use default */
2414 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2415 return default_msg_enable_bits;
2416 if (debug_value == 0) /* no output */
2417 return 0;
2418 /* set low N bits */
2419 return (1 << debug_value) - 1;
2420}
2421
2422static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2423{
2424 spin_lock(&txq->_xmit_lock);
2425 txq->xmit_lock_owner = cpu;
2426}
2427
2428static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2429{
2430 spin_lock_bh(&txq->_xmit_lock);
2431 txq->xmit_lock_owner = smp_processor_id();
2432}
2433
2434static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2435{
2436 bool ok = spin_trylock(&txq->_xmit_lock);
2437 if (likely(ok))
2438 txq->xmit_lock_owner = smp_processor_id();
2439 return ok;
2440}
2441
2442static inline void __netif_tx_unlock(struct netdev_queue *txq)
2443{
2444 txq->xmit_lock_owner = -1;
2445 spin_unlock(&txq->_xmit_lock);
2446}
2447
2448static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2449{
2450 txq->xmit_lock_owner = -1;
2451 spin_unlock_bh(&txq->_xmit_lock);
2452}
2453
2454static inline void txq_trans_update(struct netdev_queue *txq)
2455{
2456 if (txq->xmit_lock_owner != -1)
2457 txq->trans_start = jiffies;
2458}
2459
2460/**
2461 * netif_tx_lock - grab network device transmit lock
2462 * @dev: network device
2463 *
2464 * Get network device transmit lock
2465 */
2466static inline void netif_tx_lock(struct net_device *dev)
2467{
2468 unsigned int i;
2469 int cpu;
2470
2471 spin_lock(&dev->tx_global_lock);
2472 cpu = smp_processor_id();
2473 for (i = 0; i < dev->num_tx_queues; i++) {
2474 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2475
2476 /* We are the only thread of execution doing a
2477 * freeze, but we have to grab the _xmit_lock in
2478 * order to synchronize with threads which are in
2479 * the ->hard_start_xmit() handler and already
2480 * checked the frozen bit.
2481 */
2482 __netif_tx_lock(txq, cpu);
2483 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2484 __netif_tx_unlock(txq);
2485 }
2486}
2487
2488static inline void netif_tx_lock_bh(struct net_device *dev)
2489{
2490 local_bh_disable();
2491 netif_tx_lock(dev);
2492}
2493
2494static inline void netif_tx_unlock(struct net_device *dev)
2495{
2496 unsigned int i;
2497
2498 for (i = 0; i < dev->num_tx_queues; i++) {
2499 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2500
2501 /* No need to grab the _xmit_lock here. If the
2502 * queue is not stopped for another reason, we
2503 * force a schedule.
2504 */
2505 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2506 netif_schedule_queue(txq);
2507 }
2508 spin_unlock(&dev->tx_global_lock);
2509}
2510
2511static inline void netif_tx_unlock_bh(struct net_device *dev)
2512{
2513 netif_tx_unlock(dev);
2514 local_bh_enable();
2515}
2516
2517#define HARD_TX_LOCK(dev, txq, cpu) { \
2518 if ((dev->features & NETIF_F_LLTX) == 0) { \
2519 __netif_tx_lock(txq, cpu); \
2520 } \
2521}
2522
2523#define HARD_TX_UNLOCK(dev, txq) { \
2524 if ((dev->features & NETIF_F_LLTX) == 0) { \
2525 __netif_tx_unlock(txq); \
2526 } \
2527}
2528
2529static inline void netif_tx_disable(struct net_device *dev)
2530{
2531 unsigned int i;
2532 int cpu;
2533
2534 local_bh_disable();
2535 cpu = smp_processor_id();
2536 for (i = 0; i < dev->num_tx_queues; i++) {
2537 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2538
2539 __netif_tx_lock(txq, cpu);
2540 netif_tx_stop_queue(txq);
2541 __netif_tx_unlock(txq);
2542 }
2543 local_bh_enable();
2544}
2545
2546static inline void netif_addr_lock(struct net_device *dev)
2547{
2548 spin_lock(&dev->addr_list_lock);
2549}
2550
2551static inline void netif_addr_lock_nested(struct net_device *dev)
2552{
2553 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2554}
2555
2556static inline void netif_addr_lock_bh(struct net_device *dev)
2557{
2558 spin_lock_bh(&dev->addr_list_lock);
2559}
2560
2561static inline void netif_addr_unlock(struct net_device *dev)
2562{
2563 spin_unlock(&dev->addr_list_lock);
2564}
2565
2566static inline void netif_addr_unlock_bh(struct net_device *dev)
2567{
2568 spin_unlock_bh(&dev->addr_list_lock);
2569}
2570
2571/*
2572 * dev_addrs walker. Should be used only for read access. Call with
2573 * rcu_read_lock held.
2574 */
2575#define for_each_dev_addr(dev, ha) \
2576 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2577
2578/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2579
2580extern void ether_setup(struct net_device *dev);
2581
2582/* Support for loadable net-drivers */
2583extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2584 void (*setup)(struct net_device *),
2585 unsigned int txqs, unsigned int rxqs);
2586#define alloc_netdev(sizeof_priv, name, setup) \
2587 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2588
2589#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2590 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2591
2592extern int register_netdev(struct net_device *dev);
2593extern void unregister_netdev(struct net_device *dev);
2594
2595/* General hardware address lists handling functions */
2596extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2597 struct netdev_hw_addr_list *from_list,
2598 int addr_len, unsigned char addr_type);
2599extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2600 struct netdev_hw_addr_list *from_list,
2601 int addr_len, unsigned char addr_type);
2602extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2603 struct netdev_hw_addr_list *from_list,
2604 int addr_len);
2605extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2606 struct netdev_hw_addr_list *from_list,
2607 int addr_len);
2608extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2609extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2610
2611/* Functions used for device addresses handling */
2612extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2613 unsigned char addr_type);
2614extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2615 unsigned char addr_type);
2616extern int dev_addr_add_multiple(struct net_device *to_dev,
2617 struct net_device *from_dev,
2618 unsigned char addr_type);
2619extern int dev_addr_del_multiple(struct net_device *to_dev,
2620 struct net_device *from_dev,
2621 unsigned char addr_type);
2622extern void dev_addr_flush(struct net_device *dev);
2623extern int dev_addr_init(struct net_device *dev);
2624
2625/* Functions used for unicast addresses handling */
2626extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2627extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2628extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2629extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2630extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2631extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2632extern void dev_uc_flush(struct net_device *dev);
2633extern void dev_uc_init(struct net_device *dev);
2634
2635/* Functions used for multicast addresses handling */
2636extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2637extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2638extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2639extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2640extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2641extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2642extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2643extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2644extern void dev_mc_flush(struct net_device *dev);
2645extern void dev_mc_init(struct net_device *dev);
2646
2647/* Functions used for secondary unicast and multicast support */
2648extern void dev_set_rx_mode(struct net_device *dev);
2649extern void __dev_set_rx_mode(struct net_device *dev);
2650extern int dev_set_promiscuity(struct net_device *dev, int inc);
2651extern int dev_set_allmulti(struct net_device *dev, int inc);
2652extern void netdev_state_change(struct net_device *dev);
2653extern void netdev_notify_peers(struct net_device *dev);
2654extern void netdev_features_change(struct net_device *dev);
2655/* Load a device via the kmod */
2656extern void dev_load(struct net *net, const char *name);
2657extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2658 struct rtnl_link_stats64 *storage);
2659extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2660 const struct net_device_stats *netdev_stats);
2661
2662extern int netdev_max_backlog;
2663extern int netdev_tstamp_prequeue;
2664extern int weight_p;
2665extern int bpf_jit_enable;
2666
2667extern bool netdev_has_upper_dev(struct net_device *dev,
2668 struct net_device *upper_dev);
2669extern bool netdev_has_any_upper_dev(struct net_device *dev);
2670extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2671extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2672extern int netdev_upper_dev_link(struct net_device *dev,
2673 struct net_device *upper_dev);
2674extern int netdev_master_upper_dev_link(struct net_device *dev,
2675 struct net_device *upper_dev);
2676extern void netdev_upper_dev_unlink(struct net_device *dev,
2677 struct net_device *upper_dev);
2678extern int skb_checksum_help(struct sk_buff *skb);
2679extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2680 netdev_features_t features, bool tx_path);
2681extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2682 netdev_features_t features);
2683
2684static inline
2685struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2686{
2687 return __skb_gso_segment(skb, features, true);
2688}
2689__be16 skb_network_protocol(struct sk_buff *skb);
2690
2691static inline bool can_checksum_protocol(netdev_features_t features,
2692 __be16 protocol)
2693{
2694 return ((features & NETIF_F_GEN_CSUM) ||
2695 ((features & NETIF_F_V4_CSUM) &&
2696 protocol == htons(ETH_P_IP)) ||
2697 ((features & NETIF_F_V6_CSUM) &&
2698 protocol == htons(ETH_P_IPV6)) ||
2699 ((features & NETIF_F_FCOE_CRC) &&
2700 protocol == htons(ETH_P_FCOE)));
2701}
2702
2703#ifdef CONFIG_BUG
2704extern void netdev_rx_csum_fault(struct net_device *dev);
2705#else
2706static inline void netdev_rx_csum_fault(struct net_device *dev)
2707{
2708}
2709#endif
2710/* rx skb timestamps */
2711extern void net_enable_timestamp(void);
2712extern void net_disable_timestamp(void);
2713
2714#ifdef CONFIG_PROC_FS
2715extern int __init dev_proc_init(void);
2716#else
2717#define dev_proc_init() 0
2718#endif
2719
2720extern int netdev_class_create_file(struct class_attribute *class_attr);
2721extern void netdev_class_remove_file(struct class_attribute *class_attr);
2722
2723extern struct kobj_ns_type_operations net_ns_type_operations;
2724
2725extern const char *netdev_drivername(const struct net_device *dev);
2726
2727extern void linkwatch_run_queue(void);
2728
2729static inline netdev_features_t netdev_get_wanted_features(
2730 struct net_device *dev)
2731{
2732 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2733}
2734netdev_features_t netdev_increment_features(netdev_features_t all,
2735 netdev_features_t one, netdev_features_t mask);
2736int __netdev_update_features(struct net_device *dev);
2737void netdev_update_features(struct net_device *dev);
2738void netdev_change_features(struct net_device *dev);
2739
2740void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2741 struct net_device *dev);
2742
2743netdev_features_t netif_skb_features(struct sk_buff *skb);
2744
2745static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2746{
2747 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2748
2749 /* check flags correspondence */
2750 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2751 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2752 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2753 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2754 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2755 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2756
2757 return (features & feature) == feature;
2758}
2759
2760static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2761{
2762 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2763 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2764}
2765
2766static inline bool netif_needs_gso(struct sk_buff *skb,
2767 netdev_features_t features)
2768{
2769 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2770 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2771 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2772}
2773
2774static inline void netif_set_gso_max_size(struct net_device *dev,
2775 unsigned int size)
2776{
2777 dev->gso_max_size = size;
2778}
2779
2780static inline bool netif_is_bond_master(struct net_device *dev)
2781{
2782 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
2783}
2784
2785static inline bool netif_is_bond_slave(struct net_device *dev)
2786{
2787 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2788}
2789
2790static inline bool netif_supports_nofcs(struct net_device *dev)
2791{
2792 return dev->priv_flags & IFF_SUPP_NOFCS;
2793}
2794
2795extern struct pernet_operations __net_initdata loopback_net_ops;
2796
2797/* Logging, debugging and troubleshooting/diagnostic helpers. */
2798
2799/* netdev_printk helpers, similar to dev_printk */
2800
2801static inline const char *netdev_name(const struct net_device *dev)
2802{
2803 if (dev->reg_state != NETREG_REGISTERED)
2804 return "(unregistered net_device)";
2805 return dev->name;
2806}
2807
2808extern __printf(3, 4)
2809int netdev_printk(const char *level, const struct net_device *dev,
2810 const char *format, ...);
2811extern __printf(2, 3)
2812int netdev_emerg(const struct net_device *dev, const char *format, ...);
2813extern __printf(2, 3)
2814int netdev_alert(const struct net_device *dev, const char *format, ...);
2815extern __printf(2, 3)
2816int netdev_crit(const struct net_device *dev, const char *format, ...);
2817extern __printf(2, 3)
2818int netdev_err(const struct net_device *dev, const char *format, ...);
2819extern __printf(2, 3)
2820int netdev_warn(const struct net_device *dev, const char *format, ...);
2821extern __printf(2, 3)
2822int netdev_notice(const struct net_device *dev, const char *format, ...);
2823extern __printf(2, 3)
2824int netdev_info(const struct net_device *dev, const char *format, ...);
2825
2826#define MODULE_ALIAS_NETDEV(device) \
2827 MODULE_ALIAS("netdev-" device)
2828
2829#if defined(CONFIG_DYNAMIC_DEBUG)
2830#define netdev_dbg(__dev, format, args...) \
2831do { \
2832 dynamic_netdev_dbg(__dev, format, ##args); \
2833} while (0)
2834#elif defined(DEBUG)
2835#define netdev_dbg(__dev, format, args...) \
2836 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2837#else
2838#define netdev_dbg(__dev, format, args...) \
2839({ \
2840 if (0) \
2841 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2842 0; \
2843})
2844#endif
2845
2846#if defined(VERBOSE_DEBUG)
2847#define netdev_vdbg netdev_dbg
2848#else
2849
2850#define netdev_vdbg(dev, format, args...) \
2851({ \
2852 if (0) \
2853 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2854 0; \
2855})
2856#endif
2857
2858/*
2859 * netdev_WARN() acts like dev_printk(), but with the key difference
2860 * of using a WARN/WARN_ON to get the message out, including the
2861 * file/line information and a backtrace.
2862 */
2863#define netdev_WARN(dev, format, args...) \
2864 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2865
2866/* netif printk helpers, similar to netdev_printk */
2867
2868#define netif_printk(priv, type, level, dev, fmt, args...) \
2869do { \
2870 if (netif_msg_##type(priv)) \
2871 netdev_printk(level, (dev), fmt, ##args); \
2872} while (0)
2873
2874#define netif_level(level, priv, type, dev, fmt, args...) \
2875do { \
2876 if (netif_msg_##type(priv)) \
2877 netdev_##level(dev, fmt, ##args); \
2878} while (0)
2879
2880#define netif_emerg(priv, type, dev, fmt, args...) \
2881 netif_level(emerg, priv, type, dev, fmt, ##args)
2882#define netif_alert(priv, type, dev, fmt, args...) \
2883 netif_level(alert, priv, type, dev, fmt, ##args)
2884#define netif_crit(priv, type, dev, fmt, args...) \
2885 netif_level(crit, priv, type, dev, fmt, ##args)
2886#define netif_err(priv, type, dev, fmt, args...) \
2887 netif_level(err, priv, type, dev, fmt, ##args)
2888#define netif_warn(priv, type, dev, fmt, args...) \
2889 netif_level(warn, priv, type, dev, fmt, ##args)
2890#define netif_notice(priv, type, dev, fmt, args...) \
2891 netif_level(notice, priv, type, dev, fmt, ##args)
2892#define netif_info(priv, type, dev, fmt, args...) \
2893 netif_level(info, priv, type, dev, fmt, ##args)
2894
2895#if defined(CONFIG_DYNAMIC_DEBUG)
2896#define netif_dbg(priv, type, netdev, format, args...) \
2897do { \
2898 if (netif_msg_##type(priv)) \
2899 dynamic_netdev_dbg(netdev, format, ##args); \
2900} while (0)
2901#elif defined(DEBUG)
2902#define netif_dbg(priv, type, dev, format, args...) \
2903 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2904#else
2905#define netif_dbg(priv, type, dev, format, args...) \
2906({ \
2907 if (0) \
2908 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2909 0; \
2910})
2911#endif
2912
2913#if defined(VERBOSE_DEBUG)
2914#define netif_vdbg netif_dbg
2915#else
2916#define netif_vdbg(priv, type, dev, format, args...) \
2917({ \
2918 if (0) \
2919 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2920 0; \
2921})
2922#endif
2923
2924/*
2925 * The list of packet types we will receive (as opposed to discard)
2926 * and the routines to invoke.
2927 *
2928 * Why 16. Because with 16 the only overlap we get on a hash of the
2929 * low nibble of the protocol value is RARP/SNAP/X.25.
2930 *
2931 * NOTE: That is no longer true with the addition of VLAN tags. Not
2932 * sure which should go first, but I bet it won't make much
2933 * difference if we are running VLANs. The good news is that
2934 * this protocol won't be in the list unless compiled in, so
2935 * the average user (w/out VLANs) will not be adversely affected.
2936 * --BLG
2937 *
2938 * 0800 IP
2939 * 8100 802.1Q VLAN
2940 * 0001 802.3
2941 * 0002 AX.25
2942 * 0004 802.2
2943 * 8035 RARP
2944 * 0005 SNAP
2945 * 0805 X.25
2946 * 0806 ARP
2947 * 8137 IPX
2948 * 0009 Localtalk
2949 * 86DD IPv6
2950 */
2951#define PTYPE_HASH_SIZE (16)
2952#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
2953
2954#endif /* _LINUX_NETDEVICE_H */