at v3.1 9.0 kB view raw
1#ifndef _LINUX_SLUB_DEF_H 2#define _LINUX_SLUB_DEF_H 3 4/* 5 * SLUB : A Slab allocator without object queues. 6 * 7 * (C) 2007 SGI, Christoph Lameter 8 */ 9#include <linux/types.h> 10#include <linux/gfp.h> 11#include <linux/workqueue.h> 12#include <linux/kobject.h> 13 14#include <linux/kmemleak.h> 15 16enum stat_item { 17 ALLOC_FASTPATH, /* Allocation from cpu slab */ 18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 19 FREE_FASTPATH, /* Free to cpu slub */ 20 FREE_SLOWPATH, /* Freeing not to cpu slab */ 21 FREE_FROZEN, /* Freeing to frozen slab */ 22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */ 25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 27 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 28 FREE_SLAB, /* Slab freed to the page allocator */ 29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 35 DEACTIVATE_BYPASS, /* Implicit deactivation */ 36 ORDER_FALLBACK, /* Number of times fallback was necessary */ 37 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ 38 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */ 39 NR_SLUB_STAT_ITEMS }; 40 41struct kmem_cache_cpu { 42 void **freelist; /* Pointer to next available object */ 43 unsigned long tid; /* Globally unique transaction id */ 44 struct page *page; /* The slab from which we are allocating */ 45 int node; /* The node of the page (or -1 for debug) */ 46#ifdef CONFIG_SLUB_STATS 47 unsigned stat[NR_SLUB_STAT_ITEMS]; 48#endif 49}; 50 51struct kmem_cache_node { 52 spinlock_t list_lock; /* Protect partial list and nr_partial */ 53 unsigned long nr_partial; 54 struct list_head partial; 55#ifdef CONFIG_SLUB_DEBUG 56 atomic_long_t nr_slabs; 57 atomic_long_t total_objects; 58 struct list_head full; 59#endif 60}; 61 62/* 63 * Word size structure that can be atomically updated or read and that 64 * contains both the order and the number of objects that a slab of the 65 * given order would contain. 66 */ 67struct kmem_cache_order_objects { 68 unsigned long x; 69}; 70 71/* 72 * Slab cache management. 73 */ 74struct kmem_cache { 75 struct kmem_cache_cpu __percpu *cpu_slab; 76 /* Used for retriving partial slabs etc */ 77 unsigned long flags; 78 unsigned long min_partial; 79 int size; /* The size of an object including meta data */ 80 int objsize; /* The size of an object without meta data */ 81 int offset; /* Free pointer offset. */ 82 struct kmem_cache_order_objects oo; 83 84 /* Allocation and freeing of slabs */ 85 struct kmem_cache_order_objects max; 86 struct kmem_cache_order_objects min; 87 gfp_t allocflags; /* gfp flags to use on each alloc */ 88 int refcount; /* Refcount for slab cache destroy */ 89 void (*ctor)(void *); 90 int inuse; /* Offset to metadata */ 91 int align; /* Alignment */ 92 int reserved; /* Reserved bytes at the end of slabs */ 93 const char *name; /* Name (only for display!) */ 94 struct list_head list; /* List of slab caches */ 95#ifdef CONFIG_SYSFS 96 struct kobject kobj; /* For sysfs */ 97#endif 98 99#ifdef CONFIG_NUMA 100 /* 101 * Defragmentation by allocating from a remote node. 102 */ 103 int remote_node_defrag_ratio; 104#endif 105 struct kmem_cache_node *node[MAX_NUMNODES]; 106}; 107 108/* 109 * Kmalloc subsystem. 110 */ 111#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 112#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 113#else 114#define KMALLOC_MIN_SIZE 8 115#endif 116 117#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 118 119/* 120 * Maximum kmalloc object size handled by SLUB. Larger object allocations 121 * are passed through to the page allocator. The page allocator "fastpath" 122 * is relatively slow so we need this value sufficiently high so that 123 * performance critical objects are allocated through the SLUB fastpath. 124 * 125 * This should be dropped to PAGE_SIZE / 2 once the page allocator 126 * "fastpath" becomes competitive with the slab allocator fastpaths. 127 */ 128#define SLUB_MAX_SIZE (2 * PAGE_SIZE) 129 130#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2) 131 132#ifdef CONFIG_ZONE_DMA 133#define SLUB_DMA __GFP_DMA 134#else 135/* Disable DMA functionality */ 136#define SLUB_DMA (__force gfp_t)0 137#endif 138 139/* 140 * We keep the general caches in an array of slab caches that are used for 141 * 2^x bytes of allocations. 142 */ 143extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 144 145/* 146 * Sorry that the following has to be that ugly but some versions of GCC 147 * have trouble with constant propagation and loops. 148 */ 149static __always_inline int kmalloc_index(size_t size) 150{ 151 if (!size) 152 return 0; 153 154 if (size <= KMALLOC_MIN_SIZE) 155 return KMALLOC_SHIFT_LOW; 156 157 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 158 return 1; 159 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 160 return 2; 161 if (size <= 8) return 3; 162 if (size <= 16) return 4; 163 if (size <= 32) return 5; 164 if (size <= 64) return 6; 165 if (size <= 128) return 7; 166 if (size <= 256) return 8; 167 if (size <= 512) return 9; 168 if (size <= 1024) return 10; 169 if (size <= 2 * 1024) return 11; 170 if (size <= 4 * 1024) return 12; 171/* 172 * The following is only needed to support architectures with a larger page 173 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page 174 * size we would have to go up to 128k. 175 */ 176 if (size <= 8 * 1024) return 13; 177 if (size <= 16 * 1024) return 14; 178 if (size <= 32 * 1024) return 15; 179 if (size <= 64 * 1024) return 16; 180 if (size <= 128 * 1024) return 17; 181 if (size <= 256 * 1024) return 18; 182 if (size <= 512 * 1024) return 19; 183 if (size <= 1024 * 1024) return 20; 184 if (size <= 2 * 1024 * 1024) return 21; 185 BUG(); 186 return -1; /* Will never be reached */ 187 188/* 189 * What we really wanted to do and cannot do because of compiler issues is: 190 * int i; 191 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) 192 * if (size <= (1 << i)) 193 * return i; 194 */ 195} 196 197/* 198 * Find the slab cache for a given combination of allocation flags and size. 199 * 200 * This ought to end up with a global pointer to the right cache 201 * in kmalloc_caches. 202 */ 203static __always_inline struct kmem_cache *kmalloc_slab(size_t size) 204{ 205 int index = kmalloc_index(size); 206 207 if (index == 0) 208 return NULL; 209 210 return kmalloc_caches[index]; 211} 212 213void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 214void *__kmalloc(size_t size, gfp_t flags); 215 216static __always_inline void * 217kmalloc_order(size_t size, gfp_t flags, unsigned int order) 218{ 219 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order); 220 kmemleak_alloc(ret, size, 1, flags); 221 return ret; 222} 223 224/** 225 * Calling this on allocated memory will check that the memory 226 * is expected to be in use, and print warnings if not. 227 */ 228#ifdef CONFIG_SLUB_DEBUG 229extern bool verify_mem_not_deleted(const void *x); 230#else 231static inline bool verify_mem_not_deleted(const void *x) 232{ 233 return true; 234} 235#endif 236 237#ifdef CONFIG_TRACING 238extern void * 239kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size); 240extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 241#else 242static __always_inline void * 243kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 244{ 245 return kmem_cache_alloc(s, gfpflags); 246} 247 248static __always_inline void * 249kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 250{ 251 return kmalloc_order(size, flags, order); 252} 253#endif 254 255static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 256{ 257 unsigned int order = get_order(size); 258 return kmalloc_order_trace(size, flags, order); 259} 260 261static __always_inline void *kmalloc(size_t size, gfp_t flags) 262{ 263 if (__builtin_constant_p(size)) { 264 if (size > SLUB_MAX_SIZE) 265 return kmalloc_large(size, flags); 266 267 if (!(flags & SLUB_DMA)) { 268 struct kmem_cache *s = kmalloc_slab(size); 269 270 if (!s) 271 return ZERO_SIZE_PTR; 272 273 return kmem_cache_alloc_trace(s, flags, size); 274 } 275 } 276 return __kmalloc(size, flags); 277} 278 279#ifdef CONFIG_NUMA 280void *__kmalloc_node(size_t size, gfp_t flags, int node); 281void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 282 283#ifdef CONFIG_TRACING 284extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 285 gfp_t gfpflags, 286 int node, size_t size); 287#else 288static __always_inline void * 289kmem_cache_alloc_node_trace(struct kmem_cache *s, 290 gfp_t gfpflags, 291 int node, size_t size) 292{ 293 return kmem_cache_alloc_node(s, gfpflags, node); 294} 295#endif 296 297static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 298{ 299 if (__builtin_constant_p(size) && 300 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) { 301 struct kmem_cache *s = kmalloc_slab(size); 302 303 if (!s) 304 return ZERO_SIZE_PTR; 305 306 return kmem_cache_alloc_node_trace(s, flags, node, size); 307 } 308 return __kmalloc_node(size, flags, node); 309} 310#endif 311 312#endif /* _LINUX_SLUB_DEF_H */