at v3.1 32 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 58 PERF_COUNT_HW_MAX, /* non-ABI */ 59}; 60 61/* 62 * Generalized hardware cache events: 63 * 64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 65 * { read, write, prefetch } x 66 * { accesses, misses } 67 */ 68enum perf_hw_cache_id { 69 PERF_COUNT_HW_CACHE_L1D = 0, 70 PERF_COUNT_HW_CACHE_L1I = 1, 71 PERF_COUNT_HW_CACHE_LL = 2, 72 PERF_COUNT_HW_CACHE_DTLB = 3, 73 PERF_COUNT_HW_CACHE_ITLB = 4, 74 PERF_COUNT_HW_CACHE_BPU = 5, 75 PERF_COUNT_HW_CACHE_NODE = 6, 76 77 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 78}; 79 80enum perf_hw_cache_op_id { 81 PERF_COUNT_HW_CACHE_OP_READ = 0, 82 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 83 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 84 85 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 86}; 87 88enum perf_hw_cache_op_result_id { 89 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 90 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 91 92 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 93}; 94 95/* 96 * Special "software" events provided by the kernel, even if the hardware 97 * does not support performance events. These events measure various 98 * physical and sw events of the kernel (and allow the profiling of them as 99 * well): 100 */ 101enum perf_sw_ids { 102 PERF_COUNT_SW_CPU_CLOCK = 0, 103 PERF_COUNT_SW_TASK_CLOCK = 1, 104 PERF_COUNT_SW_PAGE_FAULTS = 2, 105 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 106 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 107 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 108 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 109 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 110 PERF_COUNT_SW_EMULATION_FAULTS = 8, 111 112 PERF_COUNT_SW_MAX, /* non-ABI */ 113}; 114 115/* 116 * Bits that can be set in attr.sample_type to request information 117 * in the overflow packets. 118 */ 119enum perf_event_sample_format { 120 PERF_SAMPLE_IP = 1U << 0, 121 PERF_SAMPLE_TID = 1U << 1, 122 PERF_SAMPLE_TIME = 1U << 2, 123 PERF_SAMPLE_ADDR = 1U << 3, 124 PERF_SAMPLE_READ = 1U << 4, 125 PERF_SAMPLE_CALLCHAIN = 1U << 5, 126 PERF_SAMPLE_ID = 1U << 6, 127 PERF_SAMPLE_CPU = 1U << 7, 128 PERF_SAMPLE_PERIOD = 1U << 8, 129 PERF_SAMPLE_STREAM_ID = 1U << 9, 130 PERF_SAMPLE_RAW = 1U << 10, 131 132 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 133}; 134 135/* 136 * The format of the data returned by read() on a perf event fd, 137 * as specified by attr.read_format: 138 * 139 * struct read_format { 140 * { u64 value; 141 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 142 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 143 * { u64 id; } && PERF_FORMAT_ID 144 * } && !PERF_FORMAT_GROUP 145 * 146 * { u64 nr; 147 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 148 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 149 * { u64 value; 150 * { u64 id; } && PERF_FORMAT_ID 151 * } cntr[nr]; 152 * } && PERF_FORMAT_GROUP 153 * }; 154 */ 155enum perf_event_read_format { 156 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 157 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 158 PERF_FORMAT_ID = 1U << 2, 159 PERF_FORMAT_GROUP = 1U << 3, 160 161 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 162}; 163 164#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 165 166/* 167 * Hardware event_id to monitor via a performance monitoring event: 168 */ 169struct perf_event_attr { 170 171 /* 172 * Major type: hardware/software/tracepoint/etc. 173 */ 174 __u32 type; 175 176 /* 177 * Size of the attr structure, for fwd/bwd compat. 178 */ 179 __u32 size; 180 181 /* 182 * Type specific configuration information. 183 */ 184 __u64 config; 185 186 union { 187 __u64 sample_period; 188 __u64 sample_freq; 189 }; 190 191 __u64 sample_type; 192 __u64 read_format; 193 194 __u64 disabled : 1, /* off by default */ 195 inherit : 1, /* children inherit it */ 196 pinned : 1, /* must always be on PMU */ 197 exclusive : 1, /* only group on PMU */ 198 exclude_user : 1, /* don't count user */ 199 exclude_kernel : 1, /* ditto kernel */ 200 exclude_hv : 1, /* ditto hypervisor */ 201 exclude_idle : 1, /* don't count when idle */ 202 mmap : 1, /* include mmap data */ 203 comm : 1, /* include comm data */ 204 freq : 1, /* use freq, not period */ 205 inherit_stat : 1, /* per task counts */ 206 enable_on_exec : 1, /* next exec enables */ 207 task : 1, /* trace fork/exit */ 208 watermark : 1, /* wakeup_watermark */ 209 /* 210 * precise_ip: 211 * 212 * 0 - SAMPLE_IP can have arbitrary skid 213 * 1 - SAMPLE_IP must have constant skid 214 * 2 - SAMPLE_IP requested to have 0 skid 215 * 3 - SAMPLE_IP must have 0 skid 216 * 217 * See also PERF_RECORD_MISC_EXACT_IP 218 */ 219 precise_ip : 2, /* skid constraint */ 220 mmap_data : 1, /* non-exec mmap data */ 221 sample_id_all : 1, /* sample_type all events */ 222 223 __reserved_1 : 45; 224 225 union { 226 __u32 wakeup_events; /* wakeup every n events */ 227 __u32 wakeup_watermark; /* bytes before wakeup */ 228 }; 229 230 __u32 bp_type; 231 union { 232 __u64 bp_addr; 233 __u64 config1; /* extension of config */ 234 }; 235 union { 236 __u64 bp_len; 237 __u64 config2; /* extension of config1 */ 238 }; 239}; 240 241/* 242 * Ioctls that can be done on a perf event fd: 243 */ 244#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 245#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 246#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 247#define PERF_EVENT_IOC_RESET _IO ('$', 3) 248#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 249#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 250#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 251 252enum perf_event_ioc_flags { 253 PERF_IOC_FLAG_GROUP = 1U << 0, 254}; 255 256/* 257 * Structure of the page that can be mapped via mmap 258 */ 259struct perf_event_mmap_page { 260 __u32 version; /* version number of this structure */ 261 __u32 compat_version; /* lowest version this is compat with */ 262 263 /* 264 * Bits needed to read the hw events in user-space. 265 * 266 * u32 seq; 267 * s64 count; 268 * 269 * do { 270 * seq = pc->lock; 271 * 272 * barrier() 273 * if (pc->index) { 274 * count = pmc_read(pc->index - 1); 275 * count += pc->offset; 276 * } else 277 * goto regular_read; 278 * 279 * barrier(); 280 * } while (pc->lock != seq); 281 * 282 * NOTE: for obvious reason this only works on self-monitoring 283 * processes. 284 */ 285 __u32 lock; /* seqlock for synchronization */ 286 __u32 index; /* hardware event identifier */ 287 __s64 offset; /* add to hardware event value */ 288 __u64 time_enabled; /* time event active */ 289 __u64 time_running; /* time event on cpu */ 290 291 /* 292 * Hole for extension of the self monitor capabilities 293 */ 294 295 __u64 __reserved[123]; /* align to 1k */ 296 297 /* 298 * Control data for the mmap() data buffer. 299 * 300 * User-space reading the @data_head value should issue an rmb(), on 301 * SMP capable platforms, after reading this value -- see 302 * perf_event_wakeup(). 303 * 304 * When the mapping is PROT_WRITE the @data_tail value should be 305 * written by userspace to reflect the last read data. In this case 306 * the kernel will not over-write unread data. 307 */ 308 __u64 data_head; /* head in the data section */ 309 __u64 data_tail; /* user-space written tail */ 310}; 311 312#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 313#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 314#define PERF_RECORD_MISC_KERNEL (1 << 0) 315#define PERF_RECORD_MISC_USER (2 << 0) 316#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 317#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 318#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 319 320/* 321 * Indicates that the content of PERF_SAMPLE_IP points to 322 * the actual instruction that triggered the event. See also 323 * perf_event_attr::precise_ip. 324 */ 325#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 326/* 327 * Reserve the last bit to indicate some extended misc field 328 */ 329#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 330 331struct perf_event_header { 332 __u32 type; 333 __u16 misc; 334 __u16 size; 335}; 336 337enum perf_event_type { 338 339 /* 340 * If perf_event_attr.sample_id_all is set then all event types will 341 * have the sample_type selected fields related to where/when 342 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 343 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 344 * the perf_event_header and the fields already present for the existing 345 * fields, i.e. at the end of the payload. That way a newer perf.data 346 * file will be supported by older perf tools, with these new optional 347 * fields being ignored. 348 * 349 * The MMAP events record the PROT_EXEC mappings so that we can 350 * correlate userspace IPs to code. They have the following structure: 351 * 352 * struct { 353 * struct perf_event_header header; 354 * 355 * u32 pid, tid; 356 * u64 addr; 357 * u64 len; 358 * u64 pgoff; 359 * char filename[]; 360 * }; 361 */ 362 PERF_RECORD_MMAP = 1, 363 364 /* 365 * struct { 366 * struct perf_event_header header; 367 * u64 id; 368 * u64 lost; 369 * }; 370 */ 371 PERF_RECORD_LOST = 2, 372 373 /* 374 * struct { 375 * struct perf_event_header header; 376 * 377 * u32 pid, tid; 378 * char comm[]; 379 * }; 380 */ 381 PERF_RECORD_COMM = 3, 382 383 /* 384 * struct { 385 * struct perf_event_header header; 386 * u32 pid, ppid; 387 * u32 tid, ptid; 388 * u64 time; 389 * }; 390 */ 391 PERF_RECORD_EXIT = 4, 392 393 /* 394 * struct { 395 * struct perf_event_header header; 396 * u64 time; 397 * u64 id; 398 * u64 stream_id; 399 * }; 400 */ 401 PERF_RECORD_THROTTLE = 5, 402 PERF_RECORD_UNTHROTTLE = 6, 403 404 /* 405 * struct { 406 * struct perf_event_header header; 407 * u32 pid, ppid; 408 * u32 tid, ptid; 409 * u64 time; 410 * }; 411 */ 412 PERF_RECORD_FORK = 7, 413 414 /* 415 * struct { 416 * struct perf_event_header header; 417 * u32 pid, tid; 418 * 419 * struct read_format values; 420 * }; 421 */ 422 PERF_RECORD_READ = 8, 423 424 /* 425 * struct { 426 * struct perf_event_header header; 427 * 428 * { u64 ip; } && PERF_SAMPLE_IP 429 * { u32 pid, tid; } && PERF_SAMPLE_TID 430 * { u64 time; } && PERF_SAMPLE_TIME 431 * { u64 addr; } && PERF_SAMPLE_ADDR 432 * { u64 id; } && PERF_SAMPLE_ID 433 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 434 * { u32 cpu, res; } && PERF_SAMPLE_CPU 435 * { u64 period; } && PERF_SAMPLE_PERIOD 436 * 437 * { struct read_format values; } && PERF_SAMPLE_READ 438 * 439 * { u64 nr, 440 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 441 * 442 * # 443 * # The RAW record below is opaque data wrt the ABI 444 * # 445 * # That is, the ABI doesn't make any promises wrt to 446 * # the stability of its content, it may vary depending 447 * # on event, hardware, kernel version and phase of 448 * # the moon. 449 * # 450 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 451 * # 452 * 453 * { u32 size; 454 * char data[size];}&& PERF_SAMPLE_RAW 455 * }; 456 */ 457 PERF_RECORD_SAMPLE = 9, 458 459 PERF_RECORD_MAX, /* non-ABI */ 460}; 461 462enum perf_callchain_context { 463 PERF_CONTEXT_HV = (__u64)-32, 464 PERF_CONTEXT_KERNEL = (__u64)-128, 465 PERF_CONTEXT_USER = (__u64)-512, 466 467 PERF_CONTEXT_GUEST = (__u64)-2048, 468 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 469 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 470 471 PERF_CONTEXT_MAX = (__u64)-4095, 472}; 473 474#define PERF_FLAG_FD_NO_GROUP (1U << 0) 475#define PERF_FLAG_FD_OUTPUT (1U << 1) 476#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ 477 478#ifdef __KERNEL__ 479/* 480 * Kernel-internal data types and definitions: 481 */ 482 483#ifdef CONFIG_PERF_EVENTS 484# include <linux/cgroup.h> 485# include <asm/perf_event.h> 486# include <asm/local64.h> 487#endif 488 489struct perf_guest_info_callbacks { 490 int (*is_in_guest)(void); 491 int (*is_user_mode)(void); 492 unsigned long (*get_guest_ip)(void); 493}; 494 495#ifdef CONFIG_HAVE_HW_BREAKPOINT 496#include <asm/hw_breakpoint.h> 497#endif 498 499#include <linux/list.h> 500#include <linux/mutex.h> 501#include <linux/rculist.h> 502#include <linux/rcupdate.h> 503#include <linux/spinlock.h> 504#include <linux/hrtimer.h> 505#include <linux/fs.h> 506#include <linux/pid_namespace.h> 507#include <linux/workqueue.h> 508#include <linux/ftrace.h> 509#include <linux/cpu.h> 510#include <linux/irq_work.h> 511#include <linux/jump_label.h> 512#include <linux/atomic.h> 513#include <asm/local.h> 514 515#define PERF_MAX_STACK_DEPTH 255 516 517struct perf_callchain_entry { 518 __u64 nr; 519 __u64 ip[PERF_MAX_STACK_DEPTH]; 520}; 521 522struct perf_raw_record { 523 u32 size; 524 void *data; 525}; 526 527struct perf_branch_entry { 528 __u64 from; 529 __u64 to; 530 __u64 flags; 531}; 532 533struct perf_branch_stack { 534 __u64 nr; 535 struct perf_branch_entry entries[0]; 536}; 537 538struct task_struct; 539 540/* 541 * extra PMU register associated with an event 542 */ 543struct hw_perf_event_extra { 544 u64 config; /* register value */ 545 unsigned int reg; /* register address or index */ 546 int alloc; /* extra register already allocated */ 547 int idx; /* index in shared_regs->regs[] */ 548}; 549 550/** 551 * struct hw_perf_event - performance event hardware details: 552 */ 553struct hw_perf_event { 554#ifdef CONFIG_PERF_EVENTS 555 union { 556 struct { /* hardware */ 557 u64 config; 558 u64 last_tag; 559 unsigned long config_base; 560 unsigned long event_base; 561 int idx; 562 int last_cpu; 563 struct hw_perf_event_extra extra_reg; 564 }; 565 struct { /* software */ 566 struct hrtimer hrtimer; 567 }; 568#ifdef CONFIG_HAVE_HW_BREAKPOINT 569 struct { /* breakpoint */ 570 struct arch_hw_breakpoint info; 571 struct list_head bp_list; 572 /* 573 * Crufty hack to avoid the chicken and egg 574 * problem hw_breakpoint has with context 575 * creation and event initalization. 576 */ 577 struct task_struct *bp_target; 578 }; 579#endif 580 }; 581 int state; 582 local64_t prev_count; 583 u64 sample_period; 584 u64 last_period; 585 local64_t period_left; 586 u64 interrupts; 587 588 u64 freq_time_stamp; 589 u64 freq_count_stamp; 590#endif 591}; 592 593/* 594 * hw_perf_event::state flags 595 */ 596#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 597#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 598#define PERF_HES_ARCH 0x04 599 600struct perf_event; 601 602/* 603 * Common implementation detail of pmu::{start,commit,cancel}_txn 604 */ 605#define PERF_EVENT_TXN 0x1 606 607/** 608 * struct pmu - generic performance monitoring unit 609 */ 610struct pmu { 611 struct list_head entry; 612 613 struct device *dev; 614 char *name; 615 int type; 616 617 int * __percpu pmu_disable_count; 618 struct perf_cpu_context * __percpu pmu_cpu_context; 619 int task_ctx_nr; 620 621 /* 622 * Fully disable/enable this PMU, can be used to protect from the PMI 623 * as well as for lazy/batch writing of the MSRs. 624 */ 625 void (*pmu_enable) (struct pmu *pmu); /* optional */ 626 void (*pmu_disable) (struct pmu *pmu); /* optional */ 627 628 /* 629 * Try and initialize the event for this PMU. 630 * Should return -ENOENT when the @event doesn't match this PMU. 631 */ 632 int (*event_init) (struct perf_event *event); 633 634#define PERF_EF_START 0x01 /* start the counter when adding */ 635#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 636#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 637 638 /* 639 * Adds/Removes a counter to/from the PMU, can be done inside 640 * a transaction, see the ->*_txn() methods. 641 */ 642 int (*add) (struct perf_event *event, int flags); 643 void (*del) (struct perf_event *event, int flags); 644 645 /* 646 * Starts/Stops a counter present on the PMU. The PMI handler 647 * should stop the counter when perf_event_overflow() returns 648 * !0. ->start() will be used to continue. 649 */ 650 void (*start) (struct perf_event *event, int flags); 651 void (*stop) (struct perf_event *event, int flags); 652 653 /* 654 * Updates the counter value of the event. 655 */ 656 void (*read) (struct perf_event *event); 657 658 /* 659 * Group events scheduling is treated as a transaction, add 660 * group events as a whole and perform one schedulability test. 661 * If the test fails, roll back the whole group 662 * 663 * Start the transaction, after this ->add() doesn't need to 664 * do schedulability tests. 665 */ 666 void (*start_txn) (struct pmu *pmu); /* optional */ 667 /* 668 * If ->start_txn() disabled the ->add() schedulability test 669 * then ->commit_txn() is required to perform one. On success 670 * the transaction is closed. On error the transaction is kept 671 * open until ->cancel_txn() is called. 672 */ 673 int (*commit_txn) (struct pmu *pmu); /* optional */ 674 /* 675 * Will cancel the transaction, assumes ->del() is called 676 * for each successful ->add() during the transaction. 677 */ 678 void (*cancel_txn) (struct pmu *pmu); /* optional */ 679}; 680 681/** 682 * enum perf_event_active_state - the states of a event 683 */ 684enum perf_event_active_state { 685 PERF_EVENT_STATE_ERROR = -2, 686 PERF_EVENT_STATE_OFF = -1, 687 PERF_EVENT_STATE_INACTIVE = 0, 688 PERF_EVENT_STATE_ACTIVE = 1, 689}; 690 691struct file; 692struct perf_sample_data; 693 694typedef void (*perf_overflow_handler_t)(struct perf_event *, 695 struct perf_sample_data *, 696 struct pt_regs *regs); 697 698enum perf_group_flag { 699 PERF_GROUP_SOFTWARE = 0x1, 700}; 701 702#define SWEVENT_HLIST_BITS 8 703#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 704 705struct swevent_hlist { 706 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 707 struct rcu_head rcu_head; 708}; 709 710#define PERF_ATTACH_CONTEXT 0x01 711#define PERF_ATTACH_GROUP 0x02 712#define PERF_ATTACH_TASK 0x04 713 714#ifdef CONFIG_CGROUP_PERF 715/* 716 * perf_cgroup_info keeps track of time_enabled for a cgroup. 717 * This is a per-cpu dynamically allocated data structure. 718 */ 719struct perf_cgroup_info { 720 u64 time; 721 u64 timestamp; 722}; 723 724struct perf_cgroup { 725 struct cgroup_subsys_state css; 726 struct perf_cgroup_info *info; /* timing info, one per cpu */ 727}; 728#endif 729 730struct ring_buffer; 731 732/** 733 * struct perf_event - performance event kernel representation: 734 */ 735struct perf_event { 736#ifdef CONFIG_PERF_EVENTS 737 struct list_head group_entry; 738 struct list_head event_entry; 739 struct list_head sibling_list; 740 struct hlist_node hlist_entry; 741 int nr_siblings; 742 int group_flags; 743 struct perf_event *group_leader; 744 struct pmu *pmu; 745 746 enum perf_event_active_state state; 747 unsigned int attach_state; 748 local64_t count; 749 atomic64_t child_count; 750 751 /* 752 * These are the total time in nanoseconds that the event 753 * has been enabled (i.e. eligible to run, and the task has 754 * been scheduled in, if this is a per-task event) 755 * and running (scheduled onto the CPU), respectively. 756 * 757 * They are computed from tstamp_enabled, tstamp_running and 758 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 759 */ 760 u64 total_time_enabled; 761 u64 total_time_running; 762 763 /* 764 * These are timestamps used for computing total_time_enabled 765 * and total_time_running when the event is in INACTIVE or 766 * ACTIVE state, measured in nanoseconds from an arbitrary point 767 * in time. 768 * tstamp_enabled: the notional time when the event was enabled 769 * tstamp_running: the notional time when the event was scheduled on 770 * tstamp_stopped: in INACTIVE state, the notional time when the 771 * event was scheduled off. 772 */ 773 u64 tstamp_enabled; 774 u64 tstamp_running; 775 u64 tstamp_stopped; 776 777 /* 778 * timestamp shadows the actual context timing but it can 779 * be safely used in NMI interrupt context. It reflects the 780 * context time as it was when the event was last scheduled in. 781 * 782 * ctx_time already accounts for ctx->timestamp. Therefore to 783 * compute ctx_time for a sample, simply add perf_clock(). 784 */ 785 u64 shadow_ctx_time; 786 787 struct perf_event_attr attr; 788 u16 header_size; 789 u16 id_header_size; 790 u16 read_size; 791 struct hw_perf_event hw; 792 793 struct perf_event_context *ctx; 794 struct file *filp; 795 796 /* 797 * These accumulate total time (in nanoseconds) that children 798 * events have been enabled and running, respectively. 799 */ 800 atomic64_t child_total_time_enabled; 801 atomic64_t child_total_time_running; 802 803 /* 804 * Protect attach/detach and child_list: 805 */ 806 struct mutex child_mutex; 807 struct list_head child_list; 808 struct perf_event *parent; 809 810 int oncpu; 811 int cpu; 812 813 struct list_head owner_entry; 814 struct task_struct *owner; 815 816 /* mmap bits */ 817 struct mutex mmap_mutex; 818 atomic_t mmap_count; 819 int mmap_locked; 820 struct user_struct *mmap_user; 821 struct ring_buffer *rb; 822 823 /* poll related */ 824 wait_queue_head_t waitq; 825 struct fasync_struct *fasync; 826 827 /* delayed work for NMIs and such */ 828 int pending_wakeup; 829 int pending_kill; 830 int pending_disable; 831 struct irq_work pending; 832 833 atomic_t event_limit; 834 835 void (*destroy)(struct perf_event *); 836 struct rcu_head rcu_head; 837 838 struct pid_namespace *ns; 839 u64 id; 840 841 perf_overflow_handler_t overflow_handler; 842 void *overflow_handler_context; 843 844#ifdef CONFIG_EVENT_TRACING 845 struct ftrace_event_call *tp_event; 846 struct event_filter *filter; 847#endif 848 849#ifdef CONFIG_CGROUP_PERF 850 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 851 int cgrp_defer_enabled; 852#endif 853 854#endif /* CONFIG_PERF_EVENTS */ 855}; 856 857enum perf_event_context_type { 858 task_context, 859 cpu_context, 860}; 861 862/** 863 * struct perf_event_context - event context structure 864 * 865 * Used as a container for task events and CPU events as well: 866 */ 867struct perf_event_context { 868 struct pmu *pmu; 869 enum perf_event_context_type type; 870 /* 871 * Protect the states of the events in the list, 872 * nr_active, and the list: 873 */ 874 raw_spinlock_t lock; 875 /* 876 * Protect the list of events. Locking either mutex or lock 877 * is sufficient to ensure the list doesn't change; to change 878 * the list you need to lock both the mutex and the spinlock. 879 */ 880 struct mutex mutex; 881 882 struct list_head pinned_groups; 883 struct list_head flexible_groups; 884 struct list_head event_list; 885 int nr_events; 886 int nr_active; 887 int is_active; 888 int nr_stat; 889 int rotate_disable; 890 atomic_t refcount; 891 struct task_struct *task; 892 893 /* 894 * Context clock, runs when context enabled. 895 */ 896 u64 time; 897 u64 timestamp; 898 899 /* 900 * These fields let us detect when two contexts have both 901 * been cloned (inherited) from a common ancestor. 902 */ 903 struct perf_event_context *parent_ctx; 904 u64 parent_gen; 905 u64 generation; 906 int pin_count; 907 int nr_cgroups; /* cgroup events present */ 908 struct rcu_head rcu_head; 909}; 910 911/* 912 * Number of contexts where an event can trigger: 913 * task, softirq, hardirq, nmi. 914 */ 915#define PERF_NR_CONTEXTS 4 916 917/** 918 * struct perf_event_cpu_context - per cpu event context structure 919 */ 920struct perf_cpu_context { 921 struct perf_event_context ctx; 922 struct perf_event_context *task_ctx; 923 int active_oncpu; 924 int exclusive; 925 struct list_head rotation_list; 926 int jiffies_interval; 927 struct pmu *active_pmu; 928 struct perf_cgroup *cgrp; 929}; 930 931struct perf_output_handle { 932 struct perf_event *event; 933 struct ring_buffer *rb; 934 unsigned long wakeup; 935 unsigned long size; 936 void *addr; 937 int page; 938}; 939 940#ifdef CONFIG_PERF_EVENTS 941 942extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 943extern void perf_pmu_unregister(struct pmu *pmu); 944 945extern int perf_num_counters(void); 946extern const char *perf_pmu_name(void); 947extern void __perf_event_task_sched_in(struct task_struct *prev, 948 struct task_struct *task); 949extern void __perf_event_task_sched_out(struct task_struct *prev, 950 struct task_struct *next); 951extern int perf_event_init_task(struct task_struct *child); 952extern void perf_event_exit_task(struct task_struct *child); 953extern void perf_event_free_task(struct task_struct *task); 954extern void perf_event_delayed_put(struct task_struct *task); 955extern void perf_event_print_debug(void); 956extern void perf_pmu_disable(struct pmu *pmu); 957extern void perf_pmu_enable(struct pmu *pmu); 958extern int perf_event_task_disable(void); 959extern int perf_event_task_enable(void); 960extern int perf_event_refresh(struct perf_event *event, int refresh); 961extern void perf_event_update_userpage(struct perf_event *event); 962extern int perf_event_release_kernel(struct perf_event *event); 963extern struct perf_event * 964perf_event_create_kernel_counter(struct perf_event_attr *attr, 965 int cpu, 966 struct task_struct *task, 967 perf_overflow_handler_t callback, 968 void *context); 969extern u64 perf_event_read_value(struct perf_event *event, 970 u64 *enabled, u64 *running); 971 972struct perf_sample_data { 973 u64 type; 974 975 u64 ip; 976 struct { 977 u32 pid; 978 u32 tid; 979 } tid_entry; 980 u64 time; 981 u64 addr; 982 u64 id; 983 u64 stream_id; 984 struct { 985 u32 cpu; 986 u32 reserved; 987 } cpu_entry; 988 u64 period; 989 struct perf_callchain_entry *callchain; 990 struct perf_raw_record *raw; 991}; 992 993static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 994{ 995 data->addr = addr; 996 data->raw = NULL; 997} 998 999extern void perf_output_sample(struct perf_output_handle *handle, 1000 struct perf_event_header *header, 1001 struct perf_sample_data *data, 1002 struct perf_event *event); 1003extern void perf_prepare_sample(struct perf_event_header *header, 1004 struct perf_sample_data *data, 1005 struct perf_event *event, 1006 struct pt_regs *regs); 1007 1008extern int perf_event_overflow(struct perf_event *event, 1009 struct perf_sample_data *data, 1010 struct pt_regs *regs); 1011 1012static inline bool is_sampling_event(struct perf_event *event) 1013{ 1014 return event->attr.sample_period != 0; 1015} 1016 1017/* 1018 * Return 1 for a software event, 0 for a hardware event 1019 */ 1020static inline int is_software_event(struct perf_event *event) 1021{ 1022 return event->pmu->task_ctx_nr == perf_sw_context; 1023} 1024 1025extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1026 1027extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1028 1029#ifndef perf_arch_fetch_caller_regs 1030static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1031#endif 1032 1033/* 1034 * Take a snapshot of the regs. Skip ip and frame pointer to 1035 * the nth caller. We only need a few of the regs: 1036 * - ip for PERF_SAMPLE_IP 1037 * - cs for user_mode() tests 1038 * - bp for callchains 1039 * - eflags, for future purposes, just in case 1040 */ 1041static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1042{ 1043 memset(regs, 0, sizeof(*regs)); 1044 1045 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1046} 1047 1048static __always_inline void 1049perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1050{ 1051 struct pt_regs hot_regs; 1052 1053 if (static_branch(&perf_swevent_enabled[event_id])) { 1054 if (!regs) { 1055 perf_fetch_caller_regs(&hot_regs); 1056 regs = &hot_regs; 1057 } 1058 __perf_sw_event(event_id, nr, regs, addr); 1059 } 1060} 1061 1062extern struct jump_label_key perf_sched_events; 1063 1064static inline void perf_event_task_sched_in(struct task_struct *prev, 1065 struct task_struct *task) 1066{ 1067 if (static_branch(&perf_sched_events)) 1068 __perf_event_task_sched_in(prev, task); 1069} 1070 1071static inline void perf_event_task_sched_out(struct task_struct *prev, 1072 struct task_struct *next) 1073{ 1074 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 1075 1076 if (static_branch(&perf_sched_events)) 1077 __perf_event_task_sched_out(prev, next); 1078} 1079 1080extern void perf_event_mmap(struct vm_area_struct *vma); 1081extern struct perf_guest_info_callbacks *perf_guest_cbs; 1082extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1083extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1084 1085extern void perf_event_comm(struct task_struct *tsk); 1086extern void perf_event_fork(struct task_struct *tsk); 1087 1088/* Callchains */ 1089DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1090 1091extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 1092extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 1093 1094static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1095{ 1096 if (entry->nr < PERF_MAX_STACK_DEPTH) 1097 entry->ip[entry->nr++] = ip; 1098} 1099 1100extern int sysctl_perf_event_paranoid; 1101extern int sysctl_perf_event_mlock; 1102extern int sysctl_perf_event_sample_rate; 1103 1104extern int perf_proc_update_handler(struct ctl_table *table, int write, 1105 void __user *buffer, size_t *lenp, 1106 loff_t *ppos); 1107 1108static inline bool perf_paranoid_tracepoint_raw(void) 1109{ 1110 return sysctl_perf_event_paranoid > -1; 1111} 1112 1113static inline bool perf_paranoid_cpu(void) 1114{ 1115 return sysctl_perf_event_paranoid > 0; 1116} 1117 1118static inline bool perf_paranoid_kernel(void) 1119{ 1120 return sysctl_perf_event_paranoid > 1; 1121} 1122 1123extern void perf_event_init(void); 1124extern void perf_tp_event(u64 addr, u64 count, void *record, 1125 int entry_size, struct pt_regs *regs, 1126 struct hlist_head *head, int rctx); 1127extern void perf_bp_event(struct perf_event *event, void *data); 1128 1129#ifndef perf_misc_flags 1130# define perf_misc_flags(regs) \ 1131 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1132# define perf_instruction_pointer(regs) instruction_pointer(regs) 1133#endif 1134 1135extern int perf_output_begin(struct perf_output_handle *handle, 1136 struct perf_event *event, unsigned int size); 1137extern void perf_output_end(struct perf_output_handle *handle); 1138extern void perf_output_copy(struct perf_output_handle *handle, 1139 const void *buf, unsigned int len); 1140extern int perf_swevent_get_recursion_context(void); 1141extern void perf_swevent_put_recursion_context(int rctx); 1142extern void perf_event_enable(struct perf_event *event); 1143extern void perf_event_disable(struct perf_event *event); 1144extern void perf_event_task_tick(void); 1145#else 1146static inline void 1147perf_event_task_sched_in(struct task_struct *prev, 1148 struct task_struct *task) { } 1149static inline void 1150perf_event_task_sched_out(struct task_struct *prev, 1151 struct task_struct *next) { } 1152static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1153static inline void perf_event_exit_task(struct task_struct *child) { } 1154static inline void perf_event_free_task(struct task_struct *task) { } 1155static inline void perf_event_delayed_put(struct task_struct *task) { } 1156static inline void perf_event_print_debug(void) { } 1157static inline int perf_event_task_disable(void) { return -EINVAL; } 1158static inline int perf_event_task_enable(void) { return -EINVAL; } 1159static inline int perf_event_refresh(struct perf_event *event, int refresh) 1160{ 1161 return -EINVAL; 1162} 1163 1164static inline void 1165perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1166static inline void 1167perf_bp_event(struct perf_event *event, void *data) { } 1168 1169static inline int perf_register_guest_info_callbacks 1170(struct perf_guest_info_callbacks *callbacks) { return 0; } 1171static inline int perf_unregister_guest_info_callbacks 1172(struct perf_guest_info_callbacks *callbacks) { return 0; } 1173 1174static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1175static inline void perf_event_comm(struct task_struct *tsk) { } 1176static inline void perf_event_fork(struct task_struct *tsk) { } 1177static inline void perf_event_init(void) { } 1178static inline int perf_swevent_get_recursion_context(void) { return -1; } 1179static inline void perf_swevent_put_recursion_context(int rctx) { } 1180static inline void perf_event_enable(struct perf_event *event) { } 1181static inline void perf_event_disable(struct perf_event *event) { } 1182static inline void perf_event_task_tick(void) { } 1183#endif 1184 1185#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1186 1187/* 1188 * This has to have a higher priority than migration_notifier in sched.c. 1189 */ 1190#define perf_cpu_notifier(fn) \ 1191do { \ 1192 static struct notifier_block fn##_nb __cpuinitdata = \ 1193 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1194 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1195 (void *)(unsigned long)smp_processor_id()); \ 1196 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1197 (void *)(unsigned long)smp_processor_id()); \ 1198 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1199 (void *)(unsigned long)smp_processor_id()); \ 1200 register_cpu_notifier(&fn##_nb); \ 1201} while (0) 1202 1203#endif /* __KERNEL__ */ 1204#endif /* _LINUX_PERF_EVENT_H */