at v3.1 15 kB view raw
1/* 2 * Macros for manipulating and testing page->flags 3 */ 4 5#ifndef PAGE_FLAGS_H 6#define PAGE_FLAGS_H 7 8#include <linux/types.h> 9#ifndef __GENERATING_BOUNDS_H 10#include <linux/mm_types.h> 11#include <generated/bounds.h> 12#endif /* !__GENERATING_BOUNDS_H */ 13 14/* 15 * Various page->flags bits: 16 * 17 * PG_reserved is set for special pages, which can never be swapped out. Some 18 * of them might not even exist (eg empty_bad_page)... 19 * 20 * The PG_private bitflag is set on pagecache pages if they contain filesystem 21 * specific data (which is normally at page->private). It can be used by 22 * private allocations for its own usage. 23 * 24 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 25 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 26 * is set before writeback starts and cleared when it finishes. 27 * 28 * PG_locked also pins a page in pagecache, and blocks truncation of the file 29 * while it is held. 30 * 31 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 32 * to become unlocked. 33 * 34 * PG_uptodate tells whether the page's contents is valid. When a read 35 * completes, the page becomes uptodate, unless a disk I/O error happened. 36 * 37 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 38 * file-backed pagecache (see mm/vmscan.c). 39 * 40 * PG_error is set to indicate that an I/O error occurred on this page. 41 * 42 * PG_arch_1 is an architecture specific page state bit. The generic code 43 * guarantees that this bit is cleared for a page when it first is entered into 44 * the page cache. 45 * 46 * PG_highmem pages are not permanently mapped into the kernel virtual address 47 * space, they need to be kmapped separately for doing IO on the pages. The 48 * struct page (these bits with information) are always mapped into kernel 49 * address space... 50 * 51 * PG_hwpoison indicates that a page got corrupted in hardware and contains 52 * data with incorrect ECC bits that triggered a machine check. Accessing is 53 * not safe since it may cause another machine check. Don't touch! 54 */ 55 56/* 57 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 58 * locked- and dirty-page accounting. 59 * 60 * The page flags field is split into two parts, the main flags area 61 * which extends from the low bits upwards, and the fields area which 62 * extends from the high bits downwards. 63 * 64 * | FIELD | ... | FLAGS | 65 * N-1 ^ 0 66 * (NR_PAGEFLAGS) 67 * 68 * The fields area is reserved for fields mapping zone, node (for NUMA) and 69 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 70 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 71 */ 72enum pageflags { 73 PG_locked, /* Page is locked. Don't touch. */ 74 PG_error, 75 PG_referenced, 76 PG_uptodate, 77 PG_dirty, 78 PG_lru, 79 PG_active, 80 PG_slab, 81 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 82 PG_arch_1, 83 PG_reserved, 84 PG_private, /* If pagecache, has fs-private data */ 85 PG_private_2, /* If pagecache, has fs aux data */ 86 PG_writeback, /* Page is under writeback */ 87#ifdef CONFIG_PAGEFLAGS_EXTENDED 88 PG_head, /* A head page */ 89 PG_tail, /* A tail page */ 90#else 91 PG_compound, /* A compound page */ 92#endif 93 PG_swapcache, /* Swap page: swp_entry_t in private */ 94 PG_mappedtodisk, /* Has blocks allocated on-disk */ 95 PG_reclaim, /* To be reclaimed asap */ 96 PG_swapbacked, /* Page is backed by RAM/swap */ 97 PG_unevictable, /* Page is "unevictable" */ 98#ifdef CONFIG_MMU 99 PG_mlocked, /* Page is vma mlocked */ 100#endif 101#ifdef CONFIG_ARCH_USES_PG_UNCACHED 102 PG_uncached, /* Page has been mapped as uncached */ 103#endif 104#ifdef CONFIG_MEMORY_FAILURE 105 PG_hwpoison, /* hardware poisoned page. Don't touch */ 106#endif 107#ifdef CONFIG_TRANSPARENT_HUGEPAGE 108 PG_compound_lock, 109#endif 110 __NR_PAGEFLAGS, 111 112 /* Filesystems */ 113 PG_checked = PG_owner_priv_1, 114 115 /* Two page bits are conscripted by FS-Cache to maintain local caching 116 * state. These bits are set on pages belonging to the netfs's inodes 117 * when those inodes are being locally cached. 118 */ 119 PG_fscache = PG_private_2, /* page backed by cache */ 120 121 /* XEN */ 122 PG_pinned = PG_owner_priv_1, 123 PG_savepinned = PG_dirty, 124 125 /* SLOB */ 126 PG_slob_free = PG_private, 127}; 128 129#ifndef __GENERATING_BOUNDS_H 130 131/* 132 * Macros to create function definitions for page flags 133 */ 134#define TESTPAGEFLAG(uname, lname) \ 135static inline int Page##uname(const struct page *page) \ 136 { return test_bit(PG_##lname, &page->flags); } 137 138#define SETPAGEFLAG(uname, lname) \ 139static inline void SetPage##uname(struct page *page) \ 140 { set_bit(PG_##lname, &page->flags); } 141 142#define CLEARPAGEFLAG(uname, lname) \ 143static inline void ClearPage##uname(struct page *page) \ 144 { clear_bit(PG_##lname, &page->flags); } 145 146#define __SETPAGEFLAG(uname, lname) \ 147static inline void __SetPage##uname(struct page *page) \ 148 { __set_bit(PG_##lname, &page->flags); } 149 150#define __CLEARPAGEFLAG(uname, lname) \ 151static inline void __ClearPage##uname(struct page *page) \ 152 { __clear_bit(PG_##lname, &page->flags); } 153 154#define TESTSETFLAG(uname, lname) \ 155static inline int TestSetPage##uname(struct page *page) \ 156 { return test_and_set_bit(PG_##lname, &page->flags); } 157 158#define TESTCLEARFLAG(uname, lname) \ 159static inline int TestClearPage##uname(struct page *page) \ 160 { return test_and_clear_bit(PG_##lname, &page->flags); } 161 162#define __TESTCLEARFLAG(uname, lname) \ 163static inline int __TestClearPage##uname(struct page *page) \ 164 { return __test_and_clear_bit(PG_##lname, &page->flags); } 165 166#define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ 167 SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname) 168 169#define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ 170 __SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname) 171 172#define PAGEFLAG_FALSE(uname) \ 173static inline int Page##uname(const struct page *page) \ 174 { return 0; } 175 176#define TESTSCFLAG(uname, lname) \ 177 TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname) 178 179#define SETPAGEFLAG_NOOP(uname) \ 180static inline void SetPage##uname(struct page *page) { } 181 182#define CLEARPAGEFLAG_NOOP(uname) \ 183static inline void ClearPage##uname(struct page *page) { } 184 185#define __CLEARPAGEFLAG_NOOP(uname) \ 186static inline void __ClearPage##uname(struct page *page) { } 187 188#define TESTCLEARFLAG_FALSE(uname) \ 189static inline int TestClearPage##uname(struct page *page) { return 0; } 190 191#define __TESTCLEARFLAG_FALSE(uname) \ 192static inline int __TestClearPage##uname(struct page *page) { return 0; } 193 194struct page; /* forward declaration */ 195 196TESTPAGEFLAG(Locked, locked) 197PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error) 198PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced) 199PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty) 200PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru) 201PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active) 202 TESTCLEARFLAG(Active, active) 203__PAGEFLAG(Slab, slab) 204PAGEFLAG(Checked, checked) /* Used by some filesystems */ 205PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */ 206PAGEFLAG(SavePinned, savepinned); /* Xen */ 207PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved) 208PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked) 209 210__PAGEFLAG(SlobFree, slob_free) 211 212/* 213 * Private page markings that may be used by the filesystem that owns the page 214 * for its own purposes. 215 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 216 */ 217PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private) 218 __CLEARPAGEFLAG(Private, private) 219PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2) 220PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1) 221 222/* 223 * Only test-and-set exist for PG_writeback. The unconditional operators are 224 * risky: they bypass page accounting. 225 */ 226TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback) 227PAGEFLAG(MappedToDisk, mappedtodisk) 228 229/* PG_readahead is only used for file reads; PG_reclaim is only for writes */ 230PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim) 231PAGEFLAG(Readahead, reclaim) /* Reminder to do async read-ahead */ 232 233#ifdef CONFIG_HIGHMEM 234/* 235 * Must use a macro here due to header dependency issues. page_zone() is not 236 * available at this point. 237 */ 238#define PageHighMem(__p) is_highmem(page_zone(__p)) 239#else 240PAGEFLAG_FALSE(HighMem) 241#endif 242 243#ifdef CONFIG_SWAP 244PAGEFLAG(SwapCache, swapcache) 245#else 246PAGEFLAG_FALSE(SwapCache) 247 SETPAGEFLAG_NOOP(SwapCache) CLEARPAGEFLAG_NOOP(SwapCache) 248#endif 249 250PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable) 251 TESTCLEARFLAG(Unevictable, unevictable) 252 253#ifdef CONFIG_MMU 254PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked) 255 TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked) 256#else 257PAGEFLAG_FALSE(Mlocked) SETPAGEFLAG_NOOP(Mlocked) 258 TESTCLEARFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked) 259#endif 260 261#ifdef CONFIG_ARCH_USES_PG_UNCACHED 262PAGEFLAG(Uncached, uncached) 263#else 264PAGEFLAG_FALSE(Uncached) 265#endif 266 267#ifdef CONFIG_MEMORY_FAILURE 268PAGEFLAG(HWPoison, hwpoison) 269TESTSCFLAG(HWPoison, hwpoison) 270#define __PG_HWPOISON (1UL << PG_hwpoison) 271#else 272PAGEFLAG_FALSE(HWPoison) 273#define __PG_HWPOISON 0 274#endif 275 276u64 stable_page_flags(struct page *page); 277 278static inline int PageUptodate(struct page *page) 279{ 280 int ret = test_bit(PG_uptodate, &(page)->flags); 281 282 /* 283 * Must ensure that the data we read out of the page is loaded 284 * _after_ we've loaded page->flags to check for PageUptodate. 285 * We can skip the barrier if the page is not uptodate, because 286 * we wouldn't be reading anything from it. 287 * 288 * See SetPageUptodate() for the other side of the story. 289 */ 290 if (ret) 291 smp_rmb(); 292 293 return ret; 294} 295 296static inline void __SetPageUptodate(struct page *page) 297{ 298 smp_wmb(); 299 __set_bit(PG_uptodate, &(page)->flags); 300} 301 302static inline void SetPageUptodate(struct page *page) 303{ 304#ifdef CONFIG_S390 305 if (!test_and_set_bit(PG_uptodate, &page->flags)) 306 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY, 0); 307#else 308 /* 309 * Memory barrier must be issued before setting the PG_uptodate bit, 310 * so that all previous stores issued in order to bring the page 311 * uptodate are actually visible before PageUptodate becomes true. 312 * 313 * s390 doesn't need an explicit smp_wmb here because the test and 314 * set bit already provides full barriers. 315 */ 316 smp_wmb(); 317 set_bit(PG_uptodate, &(page)->flags); 318#endif 319} 320 321CLEARPAGEFLAG(Uptodate, uptodate) 322 323extern void cancel_dirty_page(struct page *page, unsigned int account_size); 324 325int test_clear_page_writeback(struct page *page); 326int test_set_page_writeback(struct page *page); 327 328static inline void set_page_writeback(struct page *page) 329{ 330 test_set_page_writeback(page); 331} 332 333#ifdef CONFIG_PAGEFLAGS_EXTENDED 334/* 335 * System with lots of page flags available. This allows separate 336 * flags for PageHead() and PageTail() checks of compound pages so that bit 337 * tests can be used in performance sensitive paths. PageCompound is 338 * generally not used in hot code paths. 339 */ 340__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head) 341__PAGEFLAG(Tail, tail) 342 343static inline int PageCompound(struct page *page) 344{ 345 return page->flags & ((1L << PG_head) | (1L << PG_tail)); 346 347} 348#ifdef CONFIG_TRANSPARENT_HUGEPAGE 349static inline void ClearPageCompound(struct page *page) 350{ 351 BUG_ON(!PageHead(page)); 352 ClearPageHead(page); 353} 354#endif 355#else 356/* 357 * Reduce page flag use as much as possible by overlapping 358 * compound page flags with the flags used for page cache pages. Possible 359 * because PageCompound is always set for compound pages and not for 360 * pages on the LRU and/or pagecache. 361 */ 362TESTPAGEFLAG(Compound, compound) 363__PAGEFLAG(Head, compound) 364 365/* 366 * PG_reclaim is used in combination with PG_compound to mark the 367 * head and tail of a compound page. This saves one page flag 368 * but makes it impossible to use compound pages for the page cache. 369 * The PG_reclaim bit would have to be used for reclaim or readahead 370 * if compound pages enter the page cache. 371 * 372 * PG_compound & PG_reclaim => Tail page 373 * PG_compound & ~PG_reclaim => Head page 374 */ 375#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim)) 376 377static inline int PageTail(struct page *page) 378{ 379 return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask); 380} 381 382static inline void __SetPageTail(struct page *page) 383{ 384 page->flags |= PG_head_tail_mask; 385} 386 387static inline void __ClearPageTail(struct page *page) 388{ 389 page->flags &= ~PG_head_tail_mask; 390} 391 392#ifdef CONFIG_TRANSPARENT_HUGEPAGE 393static inline void ClearPageCompound(struct page *page) 394{ 395 BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound)); 396 clear_bit(PG_compound, &page->flags); 397} 398#endif 399 400#endif /* !PAGEFLAGS_EXTENDED */ 401 402#ifdef CONFIG_TRANSPARENT_HUGEPAGE 403/* 404 * PageHuge() only returns true for hugetlbfs pages, but not for 405 * normal or transparent huge pages. 406 * 407 * PageTransHuge() returns true for both transparent huge and 408 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 409 * called only in the core VM paths where hugetlbfs pages can't exist. 410 */ 411static inline int PageTransHuge(struct page *page) 412{ 413 VM_BUG_ON(PageTail(page)); 414 return PageHead(page); 415} 416 417static inline int PageTransCompound(struct page *page) 418{ 419 return PageCompound(page); 420} 421 422#else 423 424static inline int PageTransHuge(struct page *page) 425{ 426 return 0; 427} 428 429static inline int PageTransCompound(struct page *page) 430{ 431 return 0; 432} 433#endif 434 435#ifdef CONFIG_MMU 436#define __PG_MLOCKED (1 << PG_mlocked) 437#else 438#define __PG_MLOCKED 0 439#endif 440 441#ifdef CONFIG_TRANSPARENT_HUGEPAGE 442#define __PG_COMPOUND_LOCK (1 << PG_compound_lock) 443#else 444#define __PG_COMPOUND_LOCK 0 445#endif 446 447/* 448 * Flags checked when a page is freed. Pages being freed should not have 449 * these flags set. It they are, there is a problem. 450 */ 451#define PAGE_FLAGS_CHECK_AT_FREE \ 452 (1 << PG_lru | 1 << PG_locked | \ 453 1 << PG_private | 1 << PG_private_2 | \ 454 1 << PG_writeback | 1 << PG_reserved | \ 455 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \ 456 1 << PG_unevictable | __PG_MLOCKED | __PG_HWPOISON | \ 457 __PG_COMPOUND_LOCK) 458 459/* 460 * Flags checked when a page is prepped for return by the page allocator. 461 * Pages being prepped should not have any flags set. It they are set, 462 * there has been a kernel bug or struct page corruption. 463 */ 464#define PAGE_FLAGS_CHECK_AT_PREP ((1 << NR_PAGEFLAGS) - 1) 465 466#define PAGE_FLAGS_PRIVATE \ 467 (1 << PG_private | 1 << PG_private_2) 468/** 469 * page_has_private - Determine if page has private stuff 470 * @page: The page to be checked 471 * 472 * Determine if a page has private stuff, indicating that release routines 473 * should be invoked upon it. 474 */ 475static inline int page_has_private(struct page *page) 476{ 477 return !!(page->flags & PAGE_FLAGS_PRIVATE); 478} 479 480#endif /* !__GENERATING_BOUNDS_H */ 481 482#endif /* PAGE_FLAGS_H */