at v3.1 86 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/if.h> 29#include <linux/if_ether.h> 30#include <linux/if_packet.h> 31#include <linux/if_link.h> 32 33#ifdef __KERNEL__ 34#include <linux/pm_qos_params.h> 35#include <linux/timer.h> 36#include <linux/delay.h> 37#include <linux/atomic.h> 38#include <asm/cache.h> 39#include <asm/byteorder.h> 40 41#include <linux/device.h> 42#include <linux/percpu.h> 43#include <linux/rculist.h> 44#include <linux/dmaengine.h> 45#include <linux/workqueue.h> 46 47#include <linux/ethtool.h> 48#include <net/net_namespace.h> 49#include <net/dsa.h> 50#ifdef CONFIG_DCB 51#include <net/dcbnl.h> 52#endif 53 54struct vlan_group; 55struct netpoll_info; 56struct phy_device; 57/* 802.11 specific */ 58struct wireless_dev; 59 /* source back-compat hooks */ 60#define SET_ETHTOOL_OPS(netdev,ops) \ 61 ( (netdev)->ethtool_ops = (ops) ) 62 63/* hardware address assignment types */ 64#define NET_ADDR_PERM 0 /* address is permanent (default) */ 65#define NET_ADDR_RANDOM 1 /* address is generated randomly */ 66#define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 67 68/* Backlog congestion levels */ 69#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 70#define NET_RX_DROP 1 /* packet dropped */ 71 72/* 73 * Transmit return codes: transmit return codes originate from three different 74 * namespaces: 75 * 76 * - qdisc return codes 77 * - driver transmit return codes 78 * - errno values 79 * 80 * Drivers are allowed to return any one of those in their hard_start_xmit() 81 * function. Real network devices commonly used with qdiscs should only return 82 * the driver transmit return codes though - when qdiscs are used, the actual 83 * transmission happens asynchronously, so the value is not propagated to 84 * higher layers. Virtual network devices transmit synchronously, in this case 85 * the driver transmit return codes are consumed by dev_queue_xmit(), all 86 * others are propagated to higher layers. 87 */ 88 89/* qdisc ->enqueue() return codes. */ 90#define NET_XMIT_SUCCESS 0x00 91#define NET_XMIT_DROP 0x01 /* skb dropped */ 92#define NET_XMIT_CN 0x02 /* congestion notification */ 93#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 94#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 95 96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 97 * indicates that the device will soon be dropping packets, or already drops 98 * some packets of the same priority; prompting us to send less aggressively. */ 99#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 100#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 101 102/* Driver transmit return codes */ 103#define NETDEV_TX_MASK 0xf0 104 105enum netdev_tx { 106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 107 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 110}; 111typedef enum netdev_tx netdev_tx_t; 112 113/* 114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 116 */ 117static inline bool dev_xmit_complete(int rc) 118{ 119 /* 120 * Positive cases with an skb consumed by a driver: 121 * - successful transmission (rc == NETDEV_TX_OK) 122 * - error while transmitting (rc < 0) 123 * - error while queueing to a different device (rc & NET_XMIT_MASK) 124 */ 125 if (likely(rc < NET_XMIT_MASK)) 126 return true; 127 128 return false; 129} 130 131#endif 132 133#define MAX_ADDR_LEN 32 /* Largest hardware address length */ 134 135/* Initial net device group. All devices belong to group 0 by default. */ 136#define INIT_NETDEV_GROUP 0 137 138#ifdef __KERNEL__ 139/* 140 * Compute the worst case header length according to the protocols 141 * used. 142 */ 143 144#if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) 145# if defined(CONFIG_MAC80211_MESH) 146# define LL_MAX_HEADER 128 147# else 148# define LL_MAX_HEADER 96 149# endif 150#elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) 151# define LL_MAX_HEADER 48 152#else 153# define LL_MAX_HEADER 32 154#endif 155 156#if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ 157 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ 158 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ 159 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) 160#define MAX_HEADER LL_MAX_HEADER 161#else 162#define MAX_HEADER (LL_MAX_HEADER + 48) 163#endif 164 165/* 166 * Old network device statistics. Fields are native words 167 * (unsigned long) so they can be read and written atomically. 168 */ 169 170struct net_device_stats { 171 unsigned long rx_packets; 172 unsigned long tx_packets; 173 unsigned long rx_bytes; 174 unsigned long tx_bytes; 175 unsigned long rx_errors; 176 unsigned long tx_errors; 177 unsigned long rx_dropped; 178 unsigned long tx_dropped; 179 unsigned long multicast; 180 unsigned long collisions; 181 unsigned long rx_length_errors; 182 unsigned long rx_over_errors; 183 unsigned long rx_crc_errors; 184 unsigned long rx_frame_errors; 185 unsigned long rx_fifo_errors; 186 unsigned long rx_missed_errors; 187 unsigned long tx_aborted_errors; 188 unsigned long tx_carrier_errors; 189 unsigned long tx_fifo_errors; 190 unsigned long tx_heartbeat_errors; 191 unsigned long tx_window_errors; 192 unsigned long rx_compressed; 193 unsigned long tx_compressed; 194}; 195 196#endif /* __KERNEL__ */ 197 198 199/* Media selection options. */ 200enum { 201 IF_PORT_UNKNOWN = 0, 202 IF_PORT_10BASE2, 203 IF_PORT_10BASET, 204 IF_PORT_AUI, 205 IF_PORT_100BASET, 206 IF_PORT_100BASETX, 207 IF_PORT_100BASEFX 208}; 209 210#ifdef __KERNEL__ 211 212#include <linux/cache.h> 213#include <linux/skbuff.h> 214 215struct neighbour; 216struct neigh_parms; 217struct sk_buff; 218 219struct netdev_hw_addr { 220 struct list_head list; 221 unsigned char addr[MAX_ADDR_LEN]; 222 unsigned char type; 223#define NETDEV_HW_ADDR_T_LAN 1 224#define NETDEV_HW_ADDR_T_SAN 2 225#define NETDEV_HW_ADDR_T_SLAVE 3 226#define NETDEV_HW_ADDR_T_UNICAST 4 227#define NETDEV_HW_ADDR_T_MULTICAST 5 228 bool synced; 229 bool global_use; 230 int refcount; 231 struct rcu_head rcu_head; 232}; 233 234struct netdev_hw_addr_list { 235 struct list_head list; 236 int count; 237}; 238 239#define netdev_hw_addr_list_count(l) ((l)->count) 240#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 241#define netdev_hw_addr_list_for_each(ha, l) \ 242 list_for_each_entry(ha, &(l)->list, list) 243 244#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 245#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 246#define netdev_for_each_uc_addr(ha, dev) \ 247 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 248 249#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 250#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 251#define netdev_for_each_mc_addr(ha, dev) \ 252 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 253 254struct hh_cache { 255 u16 hh_len; 256 u16 __pad; 257 seqlock_t hh_lock; 258 259 /* cached hardware header; allow for machine alignment needs. */ 260#define HH_DATA_MOD 16 261#define HH_DATA_OFF(__len) \ 262 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 263#define HH_DATA_ALIGN(__len) \ 264 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 265 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 266}; 267 268/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 269 * Alternative is: 270 * dev->hard_header_len ? (dev->hard_header_len + 271 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 272 * 273 * We could use other alignment values, but we must maintain the 274 * relationship HH alignment <= LL alignment. 275 * 276 * LL_ALLOCATED_SPACE also takes into account the tailroom the device 277 * may need. 278 */ 279#define LL_RESERVED_SPACE(dev) \ 280 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 281#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 282 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 283#define LL_ALLOCATED_SPACE(dev) \ 284 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 285 286struct header_ops { 287 int (*create) (struct sk_buff *skb, struct net_device *dev, 288 unsigned short type, const void *daddr, 289 const void *saddr, unsigned len); 290 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 291 int (*rebuild)(struct sk_buff *skb); 292 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 293 void (*cache_update)(struct hh_cache *hh, 294 const struct net_device *dev, 295 const unsigned char *haddr); 296}; 297 298/* These flag bits are private to the generic network queueing 299 * layer, they may not be explicitly referenced by any other 300 * code. 301 */ 302 303enum netdev_state_t { 304 __LINK_STATE_START, 305 __LINK_STATE_PRESENT, 306 __LINK_STATE_NOCARRIER, 307 __LINK_STATE_LINKWATCH_PENDING, 308 __LINK_STATE_DORMANT, 309}; 310 311 312/* 313 * This structure holds at boot time configured netdevice settings. They 314 * are then used in the device probing. 315 */ 316struct netdev_boot_setup { 317 char name[IFNAMSIZ]; 318 struct ifmap map; 319}; 320#define NETDEV_BOOT_SETUP_MAX 8 321 322extern int __init netdev_boot_setup(char *str); 323 324/* 325 * Structure for NAPI scheduling similar to tasklet but with weighting 326 */ 327struct napi_struct { 328 /* The poll_list must only be managed by the entity which 329 * changes the state of the NAPI_STATE_SCHED bit. This means 330 * whoever atomically sets that bit can add this napi_struct 331 * to the per-cpu poll_list, and whoever clears that bit 332 * can remove from the list right before clearing the bit. 333 */ 334 struct list_head poll_list; 335 336 unsigned long state; 337 int weight; 338 int (*poll)(struct napi_struct *, int); 339#ifdef CONFIG_NETPOLL 340 spinlock_t poll_lock; 341 int poll_owner; 342#endif 343 344 unsigned int gro_count; 345 346 struct net_device *dev; 347 struct list_head dev_list; 348 struct sk_buff *gro_list; 349 struct sk_buff *skb; 350}; 351 352enum { 353 NAPI_STATE_SCHED, /* Poll is scheduled */ 354 NAPI_STATE_DISABLE, /* Disable pending */ 355 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 356}; 357 358enum gro_result { 359 GRO_MERGED, 360 GRO_MERGED_FREE, 361 GRO_HELD, 362 GRO_NORMAL, 363 GRO_DROP, 364}; 365typedef enum gro_result gro_result_t; 366 367/* 368 * enum rx_handler_result - Possible return values for rx_handlers. 369 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 370 * further. 371 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 372 * case skb->dev was changed by rx_handler. 373 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 374 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 375 * 376 * rx_handlers are functions called from inside __netif_receive_skb(), to do 377 * special processing of the skb, prior to delivery to protocol handlers. 378 * 379 * Currently, a net_device can only have a single rx_handler registered. Trying 380 * to register a second rx_handler will return -EBUSY. 381 * 382 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 383 * To unregister a rx_handler on a net_device, use 384 * netdev_rx_handler_unregister(). 385 * 386 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 387 * do with the skb. 388 * 389 * If the rx_handler consumed to skb in some way, it should return 390 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 391 * the skb to be delivered in some other ways. 392 * 393 * If the rx_handler changed skb->dev, to divert the skb to another 394 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 395 * new device will be called if it exists. 396 * 397 * If the rx_handler consider the skb should be ignored, it should return 398 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 399 * are registred on exact device (ptype->dev == skb->dev). 400 * 401 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 402 * delivered, it should return RX_HANDLER_PASS. 403 * 404 * A device without a registered rx_handler will behave as if rx_handler 405 * returned RX_HANDLER_PASS. 406 */ 407 408enum rx_handler_result { 409 RX_HANDLER_CONSUMED, 410 RX_HANDLER_ANOTHER, 411 RX_HANDLER_EXACT, 412 RX_HANDLER_PASS, 413}; 414typedef enum rx_handler_result rx_handler_result_t; 415typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 416 417extern void __napi_schedule(struct napi_struct *n); 418 419static inline int napi_disable_pending(struct napi_struct *n) 420{ 421 return test_bit(NAPI_STATE_DISABLE, &n->state); 422} 423 424/** 425 * napi_schedule_prep - check if napi can be scheduled 426 * @n: napi context 427 * 428 * Test if NAPI routine is already running, and if not mark 429 * it as running. This is used as a condition variable 430 * insure only one NAPI poll instance runs. We also make 431 * sure there is no pending NAPI disable. 432 */ 433static inline int napi_schedule_prep(struct napi_struct *n) 434{ 435 return !napi_disable_pending(n) && 436 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 437} 438 439/** 440 * napi_schedule - schedule NAPI poll 441 * @n: napi context 442 * 443 * Schedule NAPI poll routine to be called if it is not already 444 * running. 445 */ 446static inline void napi_schedule(struct napi_struct *n) 447{ 448 if (napi_schedule_prep(n)) 449 __napi_schedule(n); 450} 451 452/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 453static inline int napi_reschedule(struct napi_struct *napi) 454{ 455 if (napi_schedule_prep(napi)) { 456 __napi_schedule(napi); 457 return 1; 458 } 459 return 0; 460} 461 462/** 463 * napi_complete - NAPI processing complete 464 * @n: napi context 465 * 466 * Mark NAPI processing as complete. 467 */ 468extern void __napi_complete(struct napi_struct *n); 469extern void napi_complete(struct napi_struct *n); 470 471/** 472 * napi_disable - prevent NAPI from scheduling 473 * @n: napi context 474 * 475 * Stop NAPI from being scheduled on this context. 476 * Waits till any outstanding processing completes. 477 */ 478static inline void napi_disable(struct napi_struct *n) 479{ 480 set_bit(NAPI_STATE_DISABLE, &n->state); 481 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 482 msleep(1); 483 clear_bit(NAPI_STATE_DISABLE, &n->state); 484} 485 486/** 487 * napi_enable - enable NAPI scheduling 488 * @n: napi context 489 * 490 * Resume NAPI from being scheduled on this context. 491 * Must be paired with napi_disable. 492 */ 493static inline void napi_enable(struct napi_struct *n) 494{ 495 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 496 smp_mb__before_clear_bit(); 497 clear_bit(NAPI_STATE_SCHED, &n->state); 498} 499 500#ifdef CONFIG_SMP 501/** 502 * napi_synchronize - wait until NAPI is not running 503 * @n: napi context 504 * 505 * Wait until NAPI is done being scheduled on this context. 506 * Waits till any outstanding processing completes but 507 * does not disable future activations. 508 */ 509static inline void napi_synchronize(const struct napi_struct *n) 510{ 511 while (test_bit(NAPI_STATE_SCHED, &n->state)) 512 msleep(1); 513} 514#else 515# define napi_synchronize(n) barrier() 516#endif 517 518enum netdev_queue_state_t { 519 __QUEUE_STATE_XOFF, 520 __QUEUE_STATE_FROZEN, 521#define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \ 522 (1 << __QUEUE_STATE_FROZEN)) 523}; 524 525struct netdev_queue { 526/* 527 * read mostly part 528 */ 529 struct net_device *dev; 530 struct Qdisc *qdisc; 531 unsigned long state; 532 struct Qdisc *qdisc_sleeping; 533#if defined(CONFIG_RPS) || defined(CONFIG_XPS) 534 struct kobject kobj; 535#endif 536#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 537 int numa_node; 538#endif 539/* 540 * write mostly part 541 */ 542 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 543 int xmit_lock_owner; 544 /* 545 * please use this field instead of dev->trans_start 546 */ 547 unsigned long trans_start; 548} ____cacheline_aligned_in_smp; 549 550static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 551{ 552#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 553 return q->numa_node; 554#else 555 return NUMA_NO_NODE; 556#endif 557} 558 559static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 560{ 561#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 562 q->numa_node = node; 563#endif 564} 565 566#ifdef CONFIG_RPS 567/* 568 * This structure holds an RPS map which can be of variable length. The 569 * map is an array of CPUs. 570 */ 571struct rps_map { 572 unsigned int len; 573 struct rcu_head rcu; 574 u16 cpus[0]; 575}; 576#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16))) 577 578/* 579 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 580 * tail pointer for that CPU's input queue at the time of last enqueue, and 581 * a hardware filter index. 582 */ 583struct rps_dev_flow { 584 u16 cpu; 585 u16 filter; 586 unsigned int last_qtail; 587}; 588#define RPS_NO_FILTER 0xffff 589 590/* 591 * The rps_dev_flow_table structure contains a table of flow mappings. 592 */ 593struct rps_dev_flow_table { 594 unsigned int mask; 595 struct rcu_head rcu; 596 struct work_struct free_work; 597 struct rps_dev_flow flows[0]; 598}; 599#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 600 (_num * sizeof(struct rps_dev_flow))) 601 602/* 603 * The rps_sock_flow_table contains mappings of flows to the last CPU 604 * on which they were processed by the application (set in recvmsg). 605 */ 606struct rps_sock_flow_table { 607 unsigned int mask; 608 u16 ents[0]; 609}; 610#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 611 (_num * sizeof(u16))) 612 613#define RPS_NO_CPU 0xffff 614 615static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 616 u32 hash) 617{ 618 if (table && hash) { 619 unsigned int cpu, index = hash & table->mask; 620 621 /* We only give a hint, preemption can change cpu under us */ 622 cpu = raw_smp_processor_id(); 623 624 if (table->ents[index] != cpu) 625 table->ents[index] = cpu; 626 } 627} 628 629static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 630 u32 hash) 631{ 632 if (table && hash) 633 table->ents[hash & table->mask] = RPS_NO_CPU; 634} 635 636extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 637 638#ifdef CONFIG_RFS_ACCEL 639extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 640 u32 flow_id, u16 filter_id); 641#endif 642 643/* This structure contains an instance of an RX queue. */ 644struct netdev_rx_queue { 645 struct rps_map __rcu *rps_map; 646 struct rps_dev_flow_table __rcu *rps_flow_table; 647 struct kobject kobj; 648 struct net_device *dev; 649} ____cacheline_aligned_in_smp; 650#endif /* CONFIG_RPS */ 651 652#ifdef CONFIG_XPS 653/* 654 * This structure holds an XPS map which can be of variable length. The 655 * map is an array of queues. 656 */ 657struct xps_map { 658 unsigned int len; 659 unsigned int alloc_len; 660 struct rcu_head rcu; 661 u16 queues[0]; 662}; 663#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16))) 664#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 665 / sizeof(u16)) 666 667/* 668 * This structure holds all XPS maps for device. Maps are indexed by CPU. 669 */ 670struct xps_dev_maps { 671 struct rcu_head rcu; 672 struct xps_map __rcu *cpu_map[0]; 673}; 674#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 675 (nr_cpu_ids * sizeof(struct xps_map *))) 676#endif /* CONFIG_XPS */ 677 678#define TC_MAX_QUEUE 16 679#define TC_BITMASK 15 680/* HW offloaded queuing disciplines txq count and offset maps */ 681struct netdev_tc_txq { 682 u16 count; 683 u16 offset; 684}; 685 686/* 687 * This structure defines the management hooks for network devices. 688 * The following hooks can be defined; unless noted otherwise, they are 689 * optional and can be filled with a null pointer. 690 * 691 * int (*ndo_init)(struct net_device *dev); 692 * This function is called once when network device is registered. 693 * The network device can use this to any late stage initializaton 694 * or semantic validattion. It can fail with an error code which will 695 * be propogated back to register_netdev 696 * 697 * void (*ndo_uninit)(struct net_device *dev); 698 * This function is called when device is unregistered or when registration 699 * fails. It is not called if init fails. 700 * 701 * int (*ndo_open)(struct net_device *dev); 702 * This function is called when network device transistions to the up 703 * state. 704 * 705 * int (*ndo_stop)(struct net_device *dev); 706 * This function is called when network device transistions to the down 707 * state. 708 * 709 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 710 * struct net_device *dev); 711 * Called when a packet needs to be transmitted. 712 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 713 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 714 * Required can not be NULL. 715 * 716 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 717 * Called to decide which queue to when device supports multiple 718 * transmit queues. 719 * 720 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 721 * This function is called to allow device receiver to make 722 * changes to configuration when multicast or promiscious is enabled. 723 * 724 * void (*ndo_set_rx_mode)(struct net_device *dev); 725 * This function is called device changes address list filtering. 726 * 727 * void (*ndo_set_multicast_list)(struct net_device *dev); 728 * This function is called when the multicast address list changes. 729 * 730 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 731 * This function is called when the Media Access Control address 732 * needs to be changed. If this interface is not defined, the 733 * mac address can not be changed. 734 * 735 * int (*ndo_validate_addr)(struct net_device *dev); 736 * Test if Media Access Control address is valid for the device. 737 * 738 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 739 * Called when a user request an ioctl which can't be handled by 740 * the generic interface code. If not defined ioctl's return 741 * not supported error code. 742 * 743 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 744 * Used to set network devices bus interface parameters. This interface 745 * is retained for legacy reason, new devices should use the bus 746 * interface (PCI) for low level management. 747 * 748 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 749 * Called when a user wants to change the Maximum Transfer Unit 750 * of a device. If not defined, any request to change MTU will 751 * will return an error. 752 * 753 * void (*ndo_tx_timeout)(struct net_device *dev); 754 * Callback uses when the transmitter has not made any progress 755 * for dev->watchdog ticks. 756 * 757 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 758 * struct rtnl_link_stats64 *storage); 759 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 760 * Called when a user wants to get the network device usage 761 * statistics. Drivers must do one of the following: 762 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 763 * rtnl_link_stats64 structure passed by the caller. 764 * 2. Define @ndo_get_stats to update a net_device_stats structure 765 * (which should normally be dev->stats) and return a pointer to 766 * it. The structure may be changed asynchronously only if each 767 * field is written atomically. 768 * 3. Update dev->stats asynchronously and atomically, and define 769 * neither operation. 770 * 771 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 772 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 773 * this function is called when a VLAN id is registered. 774 * 775 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 776 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 777 * this function is called when a VLAN id is unregistered. 778 * 779 * void (*ndo_poll_controller)(struct net_device *dev); 780 * 781 * SR-IOV management functions. 782 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 783 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 784 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 785 * int (*ndo_get_vf_config)(struct net_device *dev, 786 * int vf, struct ifla_vf_info *ivf); 787 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 788 * struct nlattr *port[]); 789 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 790 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 791 * Called to setup 'tc' number of traffic classes in the net device. This 792 * is always called from the stack with the rtnl lock held and netif tx 793 * queues stopped. This allows the netdevice to perform queue management 794 * safely. 795 * 796 * Fiber Channel over Ethernet (FCoE) offload functions. 797 * int (*ndo_fcoe_enable)(struct net_device *dev); 798 * Called when the FCoE protocol stack wants to start using LLD for FCoE 799 * so the underlying device can perform whatever needed configuration or 800 * initialization to support acceleration of FCoE traffic. 801 * 802 * int (*ndo_fcoe_disable)(struct net_device *dev); 803 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 804 * so the underlying device can perform whatever needed clean-ups to 805 * stop supporting acceleration of FCoE traffic. 806 * 807 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 808 * struct scatterlist *sgl, unsigned int sgc); 809 * Called when the FCoE Initiator wants to initialize an I/O that 810 * is a possible candidate for Direct Data Placement (DDP). The LLD can 811 * perform necessary setup and returns 1 to indicate the device is set up 812 * successfully to perform DDP on this I/O, otherwise this returns 0. 813 * 814 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 815 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 816 * indicated by the FC exchange id 'xid', so the underlying device can 817 * clean up and reuse resources for later DDP requests. 818 * 819 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 820 * struct scatterlist *sgl, unsigned int sgc); 821 * Called when the FCoE Target wants to initialize an I/O that 822 * is a possible candidate for Direct Data Placement (DDP). The LLD can 823 * perform necessary setup and returns 1 to indicate the device is set up 824 * successfully to perform DDP on this I/O, otherwise this returns 0. 825 * 826 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 827 * Called when the underlying device wants to override default World Wide 828 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 829 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 830 * protocol stack to use. 831 * 832 * RFS acceleration. 833 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 834 * u16 rxq_index, u32 flow_id); 835 * Set hardware filter for RFS. rxq_index is the target queue index; 836 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 837 * Return the filter ID on success, or a negative error code. 838 * 839 * Slave management functions (for bridge, bonding, etc). User should 840 * call netdev_set_master() to set dev->master properly. 841 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 842 * Called to make another netdev an underling. 843 * 844 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 845 * Called to release previously enslaved netdev. 846 * 847 * Feature/offload setting functions. 848 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features); 849 * Adjusts the requested feature flags according to device-specific 850 * constraints, and returns the resulting flags. Must not modify 851 * the device state. 852 * 853 * int (*ndo_set_features)(struct net_device *dev, u32 features); 854 * Called to update device configuration to new features. Passed 855 * feature set might be less than what was returned by ndo_fix_features()). 856 * Must return >0 or -errno if it changed dev->features itself. 857 * 858 */ 859struct net_device_ops { 860 int (*ndo_init)(struct net_device *dev); 861 void (*ndo_uninit)(struct net_device *dev); 862 int (*ndo_open)(struct net_device *dev); 863 int (*ndo_stop)(struct net_device *dev); 864 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 865 struct net_device *dev); 866 u16 (*ndo_select_queue)(struct net_device *dev, 867 struct sk_buff *skb); 868 void (*ndo_change_rx_flags)(struct net_device *dev, 869 int flags); 870 void (*ndo_set_rx_mode)(struct net_device *dev); 871 void (*ndo_set_multicast_list)(struct net_device *dev); 872 int (*ndo_set_mac_address)(struct net_device *dev, 873 void *addr); 874 int (*ndo_validate_addr)(struct net_device *dev); 875 int (*ndo_do_ioctl)(struct net_device *dev, 876 struct ifreq *ifr, int cmd); 877 int (*ndo_set_config)(struct net_device *dev, 878 struct ifmap *map); 879 int (*ndo_change_mtu)(struct net_device *dev, 880 int new_mtu); 881 int (*ndo_neigh_setup)(struct net_device *dev, 882 struct neigh_parms *); 883 void (*ndo_tx_timeout) (struct net_device *dev); 884 885 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 886 struct rtnl_link_stats64 *storage); 887 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 888 889 void (*ndo_vlan_rx_add_vid)(struct net_device *dev, 890 unsigned short vid); 891 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 892 unsigned short vid); 893#ifdef CONFIG_NET_POLL_CONTROLLER 894 void (*ndo_poll_controller)(struct net_device *dev); 895 int (*ndo_netpoll_setup)(struct net_device *dev, 896 struct netpoll_info *info); 897 void (*ndo_netpoll_cleanup)(struct net_device *dev); 898#endif 899 int (*ndo_set_vf_mac)(struct net_device *dev, 900 int queue, u8 *mac); 901 int (*ndo_set_vf_vlan)(struct net_device *dev, 902 int queue, u16 vlan, u8 qos); 903 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 904 int vf, int rate); 905 int (*ndo_get_vf_config)(struct net_device *dev, 906 int vf, 907 struct ifla_vf_info *ivf); 908 int (*ndo_set_vf_port)(struct net_device *dev, 909 int vf, 910 struct nlattr *port[]); 911 int (*ndo_get_vf_port)(struct net_device *dev, 912 int vf, struct sk_buff *skb); 913 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 914#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 915 int (*ndo_fcoe_enable)(struct net_device *dev); 916 int (*ndo_fcoe_disable)(struct net_device *dev); 917 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 918 u16 xid, 919 struct scatterlist *sgl, 920 unsigned int sgc); 921 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 922 u16 xid); 923 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 924 u16 xid, 925 struct scatterlist *sgl, 926 unsigned int sgc); 927#define NETDEV_FCOE_WWNN 0 928#define NETDEV_FCOE_WWPN 1 929 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 930 u64 *wwn, int type); 931#endif 932#ifdef CONFIG_RFS_ACCEL 933 int (*ndo_rx_flow_steer)(struct net_device *dev, 934 const struct sk_buff *skb, 935 u16 rxq_index, 936 u32 flow_id); 937#endif 938 int (*ndo_add_slave)(struct net_device *dev, 939 struct net_device *slave_dev); 940 int (*ndo_del_slave)(struct net_device *dev, 941 struct net_device *slave_dev); 942 u32 (*ndo_fix_features)(struct net_device *dev, 943 u32 features); 944 int (*ndo_set_features)(struct net_device *dev, 945 u32 features); 946}; 947 948/* 949 * The DEVICE structure. 950 * Actually, this whole structure is a big mistake. It mixes I/O 951 * data with strictly "high-level" data, and it has to know about 952 * almost every data structure used in the INET module. 953 * 954 * FIXME: cleanup struct net_device such that network protocol info 955 * moves out. 956 */ 957 958struct net_device { 959 960 /* 961 * This is the first field of the "visible" part of this structure 962 * (i.e. as seen by users in the "Space.c" file). It is the name 963 * of the interface. 964 */ 965 char name[IFNAMSIZ]; 966 967 struct pm_qos_request_list pm_qos_req; 968 969 /* device name hash chain */ 970 struct hlist_node name_hlist; 971 /* snmp alias */ 972 char *ifalias; 973 974 /* 975 * I/O specific fields 976 * FIXME: Merge these and struct ifmap into one 977 */ 978 unsigned long mem_end; /* shared mem end */ 979 unsigned long mem_start; /* shared mem start */ 980 unsigned long base_addr; /* device I/O address */ 981 unsigned int irq; /* device IRQ number */ 982 983 /* 984 * Some hardware also needs these fields, but they are not 985 * part of the usual set specified in Space.c. 986 */ 987 988 unsigned long state; 989 990 struct list_head dev_list; 991 struct list_head napi_list; 992 struct list_head unreg_list; 993 994 /* currently active device features */ 995 u32 features; 996 /* user-changeable features */ 997 u32 hw_features; 998 /* user-requested features */ 999 u32 wanted_features; 1000 /* mask of features inheritable by VLAN devices */ 1001 u32 vlan_features; 1002 1003 /* Net device feature bits; if you change something, 1004 * also update netdev_features_strings[] in ethtool.c */ 1005 1006#define NETIF_F_SG 1 /* Scatter/gather IO. */ 1007#define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ 1008#define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ 1009#define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ 1010#define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ 1011#define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ 1012#define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ 1013#define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ 1014#define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ 1015#define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ 1016#define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ 1017#define NETIF_F_GSO 2048 /* Enable software GSO. */ 1018#define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ 1019 /* do not use LLTX in new drivers */ 1020#define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ 1021#define NETIF_F_GRO 16384 /* Generic receive offload */ 1022#define NETIF_F_LRO 32768 /* large receive offload */ 1023 1024/* the GSO_MASK reserves bits 16 through 23 */ 1025#define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ 1026#define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ 1027#define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ 1028#define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */ 1029#define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */ 1030#define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */ 1031#define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */ 1032#define NETIF_F_LOOPBACK (1 << 31) /* Enable loopback */ 1033 1034 /* Segmentation offload features */ 1035#define NETIF_F_GSO_SHIFT 16 1036#define NETIF_F_GSO_MASK 0x00ff0000 1037#define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) 1038#define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) 1039#define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) 1040#define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) 1041#define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) 1042#define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) 1043 1044 /* Features valid for ethtool to change */ 1045 /* = all defined minus driver/device-class-related */ 1046#define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \ 1047 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL) 1048#define NETIF_F_ETHTOOL_BITS (0xff3fffff & ~NETIF_F_NEVER_CHANGE) 1049 1050 /* List of features with software fallbacks. */ 1051#define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \ 1052 NETIF_F_TSO6 | NETIF_F_UFO) 1053 1054 1055#define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) 1056#define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) 1057#define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) 1058#define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) 1059 1060#define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1061 1062#define NETIF_F_ALL_FCOE (NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \ 1063 NETIF_F_FSO) 1064 1065 /* 1066 * If one device supports one of these features, then enable them 1067 * for all in netdev_increment_features. 1068 */ 1069#define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ 1070 NETIF_F_SG | NETIF_F_HIGHDMA | \ 1071 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED) 1072 /* 1073 * If one device doesn't support one of these features, then disable it 1074 * for all in netdev_increment_features. 1075 */ 1076#define NETIF_F_ALL_FOR_ALL (NETIF_F_NOCACHE_COPY | NETIF_F_FSO) 1077 1078 /* changeable features with no special hardware requirements */ 1079#define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO) 1080 1081 /* Interface index. Unique device identifier */ 1082 int ifindex; 1083 int iflink; 1084 1085 struct net_device_stats stats; 1086 atomic_long_t rx_dropped; /* dropped packets by core network 1087 * Do not use this in drivers. 1088 */ 1089 1090#ifdef CONFIG_WIRELESS_EXT 1091 /* List of functions to handle Wireless Extensions (instead of ioctl). 1092 * See <net/iw_handler.h> for details. Jean II */ 1093 const struct iw_handler_def * wireless_handlers; 1094 /* Instance data managed by the core of Wireless Extensions. */ 1095 struct iw_public_data * wireless_data; 1096#endif 1097 /* Management operations */ 1098 const struct net_device_ops *netdev_ops; 1099 const struct ethtool_ops *ethtool_ops; 1100 1101 /* Hardware header description */ 1102 const struct header_ops *header_ops; 1103 1104 unsigned int flags; /* interface flags (a la BSD) */ 1105 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 1106 unsigned short gflags; 1107 unsigned short padded; /* How much padding added by alloc_netdev() */ 1108 1109 unsigned char operstate; /* RFC2863 operstate */ 1110 unsigned char link_mode; /* mapping policy to operstate */ 1111 1112 unsigned char if_port; /* Selectable AUI, TP,..*/ 1113 unsigned char dma; /* DMA channel */ 1114 1115 unsigned int mtu; /* interface MTU value */ 1116 unsigned short type; /* interface hardware type */ 1117 unsigned short hard_header_len; /* hardware hdr length */ 1118 1119 /* extra head- and tailroom the hardware may need, but not in all cases 1120 * can this be guaranteed, especially tailroom. Some cases also use 1121 * LL_MAX_HEADER instead to allocate the skb. 1122 */ 1123 unsigned short needed_headroom; 1124 unsigned short needed_tailroom; 1125 1126 /* Interface address info. */ 1127 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1128 unsigned char addr_assign_type; /* hw address assignment type */ 1129 unsigned char addr_len; /* hardware address length */ 1130 unsigned short dev_id; /* for shared network cards */ 1131 1132 spinlock_t addr_list_lock; 1133 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1134 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1135 bool uc_promisc; 1136 unsigned int promiscuity; 1137 unsigned int allmulti; 1138 1139 1140 /* Protocol specific pointers */ 1141 1142#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1143 struct vlan_group __rcu *vlgrp; /* VLAN group */ 1144#endif 1145#ifdef CONFIG_NET_DSA 1146 void *dsa_ptr; /* dsa specific data */ 1147#endif 1148 void *atalk_ptr; /* AppleTalk link */ 1149 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1150 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1151 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1152 void *ec_ptr; /* Econet specific data */ 1153 void *ax25_ptr; /* AX.25 specific data */ 1154 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1155 assign before registering */ 1156 1157/* 1158 * Cache lines mostly used on receive path (including eth_type_trans()) 1159 */ 1160 unsigned long last_rx; /* Time of last Rx 1161 * This should not be set in 1162 * drivers, unless really needed, 1163 * because network stack (bonding) 1164 * use it if/when necessary, to 1165 * avoid dirtying this cache line. 1166 */ 1167 1168 struct net_device *master; /* Pointer to master device of a group, 1169 * which this device is member of. 1170 */ 1171 1172 /* Interface address info used in eth_type_trans() */ 1173 unsigned char *dev_addr; /* hw address, (before bcast 1174 because most packets are 1175 unicast) */ 1176 1177 struct netdev_hw_addr_list dev_addrs; /* list of device 1178 hw addresses */ 1179 1180 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1181 1182#if defined(CONFIG_RPS) || defined(CONFIG_XPS) 1183 struct kset *queues_kset; 1184 1185 struct netdev_rx_queue *_rx; 1186 1187 /* Number of RX queues allocated at register_netdev() time */ 1188 unsigned int num_rx_queues; 1189 1190 /* Number of RX queues currently active in device */ 1191 unsigned int real_num_rx_queues; 1192 1193#ifdef CONFIG_RFS_ACCEL 1194 /* CPU reverse-mapping for RX completion interrupts, indexed 1195 * by RX queue number. Assigned by driver. This must only be 1196 * set if the ndo_rx_flow_steer operation is defined. */ 1197 struct cpu_rmap *rx_cpu_rmap; 1198#endif 1199#endif 1200 1201 rx_handler_func_t __rcu *rx_handler; 1202 void __rcu *rx_handler_data; 1203 1204 struct netdev_queue __rcu *ingress_queue; 1205 1206/* 1207 * Cache lines mostly used on transmit path 1208 */ 1209 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1210 1211 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1212 unsigned int num_tx_queues; 1213 1214 /* Number of TX queues currently active in device */ 1215 unsigned int real_num_tx_queues; 1216 1217 /* root qdisc from userspace point of view */ 1218 struct Qdisc *qdisc; 1219 1220 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1221 spinlock_t tx_global_lock; 1222 1223#ifdef CONFIG_XPS 1224 struct xps_dev_maps __rcu *xps_maps; 1225#endif 1226 1227 /* These may be needed for future network-power-down code. */ 1228 1229 /* 1230 * trans_start here is expensive for high speed devices on SMP, 1231 * please use netdev_queue->trans_start instead. 1232 */ 1233 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1234 1235 int watchdog_timeo; /* used by dev_watchdog() */ 1236 struct timer_list watchdog_timer; 1237 1238 /* Number of references to this device */ 1239 int __percpu *pcpu_refcnt; 1240 1241 /* delayed register/unregister */ 1242 struct list_head todo_list; 1243 /* device index hash chain */ 1244 struct hlist_node index_hlist; 1245 1246 struct list_head link_watch_list; 1247 1248 /* register/unregister state machine */ 1249 enum { NETREG_UNINITIALIZED=0, 1250 NETREG_REGISTERED, /* completed register_netdevice */ 1251 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1252 NETREG_UNREGISTERED, /* completed unregister todo */ 1253 NETREG_RELEASED, /* called free_netdev */ 1254 NETREG_DUMMY, /* dummy device for NAPI poll */ 1255 } reg_state:8; 1256 1257 bool dismantle; /* device is going do be freed */ 1258 1259 enum { 1260 RTNL_LINK_INITIALIZED, 1261 RTNL_LINK_INITIALIZING, 1262 } rtnl_link_state:16; 1263 1264 /* Called from unregister, can be used to call free_netdev */ 1265 void (*destructor)(struct net_device *dev); 1266 1267#ifdef CONFIG_NETPOLL 1268 struct netpoll_info *npinfo; 1269#endif 1270 1271#ifdef CONFIG_NET_NS 1272 /* Network namespace this network device is inside */ 1273 struct net *nd_net; 1274#endif 1275 1276 /* mid-layer private */ 1277 union { 1278 void *ml_priv; 1279 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1280 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1281 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1282 }; 1283 /* GARP */ 1284 struct garp_port __rcu *garp_port; 1285 1286 /* class/net/name entry */ 1287 struct device dev; 1288 /* space for optional device, statistics, and wireless sysfs groups */ 1289 const struct attribute_group *sysfs_groups[4]; 1290 1291 /* rtnetlink link ops */ 1292 const struct rtnl_link_ops *rtnl_link_ops; 1293 1294 /* for setting kernel sock attribute on TCP connection setup */ 1295#define GSO_MAX_SIZE 65536 1296 unsigned int gso_max_size; 1297 1298#ifdef CONFIG_DCB 1299 /* Data Center Bridging netlink ops */ 1300 const struct dcbnl_rtnl_ops *dcbnl_ops; 1301#endif 1302 u8 num_tc; 1303 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1304 u8 prio_tc_map[TC_BITMASK + 1]; 1305 1306#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 1307 /* max exchange id for FCoE LRO by ddp */ 1308 unsigned int fcoe_ddp_xid; 1309#endif 1310 /* phy device may attach itself for hardware timestamping */ 1311 struct phy_device *phydev; 1312 1313 /* group the device belongs to */ 1314 int group; 1315}; 1316#define to_net_dev(d) container_of(d, struct net_device, dev) 1317 1318#define NETDEV_ALIGN 32 1319 1320static inline 1321int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1322{ 1323 return dev->prio_tc_map[prio & TC_BITMASK]; 1324} 1325 1326static inline 1327int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1328{ 1329 if (tc >= dev->num_tc) 1330 return -EINVAL; 1331 1332 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1333 return 0; 1334} 1335 1336static inline 1337void netdev_reset_tc(struct net_device *dev) 1338{ 1339 dev->num_tc = 0; 1340 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1341 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1342} 1343 1344static inline 1345int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1346{ 1347 if (tc >= dev->num_tc) 1348 return -EINVAL; 1349 1350 dev->tc_to_txq[tc].count = count; 1351 dev->tc_to_txq[tc].offset = offset; 1352 return 0; 1353} 1354 1355static inline 1356int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1357{ 1358 if (num_tc > TC_MAX_QUEUE) 1359 return -EINVAL; 1360 1361 dev->num_tc = num_tc; 1362 return 0; 1363} 1364 1365static inline 1366int netdev_get_num_tc(struct net_device *dev) 1367{ 1368 return dev->num_tc; 1369} 1370 1371static inline 1372struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1373 unsigned int index) 1374{ 1375 return &dev->_tx[index]; 1376} 1377 1378static inline void netdev_for_each_tx_queue(struct net_device *dev, 1379 void (*f)(struct net_device *, 1380 struct netdev_queue *, 1381 void *), 1382 void *arg) 1383{ 1384 unsigned int i; 1385 1386 for (i = 0; i < dev->num_tx_queues; i++) 1387 f(dev, &dev->_tx[i], arg); 1388} 1389 1390/* 1391 * Net namespace inlines 1392 */ 1393static inline 1394struct net *dev_net(const struct net_device *dev) 1395{ 1396 return read_pnet(&dev->nd_net); 1397} 1398 1399static inline 1400void dev_net_set(struct net_device *dev, struct net *net) 1401{ 1402#ifdef CONFIG_NET_NS 1403 release_net(dev->nd_net); 1404 dev->nd_net = hold_net(net); 1405#endif 1406} 1407 1408static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1409{ 1410#ifdef CONFIG_NET_DSA_TAG_DSA 1411 if (dev->dsa_ptr != NULL) 1412 return dsa_uses_dsa_tags(dev->dsa_ptr); 1413#endif 1414 1415 return 0; 1416} 1417 1418#ifndef CONFIG_NET_NS 1419static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1420{ 1421 skb->dev = dev; 1422} 1423#else /* CONFIG_NET_NS */ 1424void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1425#endif 1426 1427static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1428{ 1429#ifdef CONFIG_NET_DSA_TAG_TRAILER 1430 if (dev->dsa_ptr != NULL) 1431 return dsa_uses_trailer_tags(dev->dsa_ptr); 1432#endif 1433 1434 return 0; 1435} 1436 1437/** 1438 * netdev_priv - access network device private data 1439 * @dev: network device 1440 * 1441 * Get network device private data 1442 */ 1443static inline void *netdev_priv(const struct net_device *dev) 1444{ 1445 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1446} 1447 1448/* Set the sysfs physical device reference for the network logical device 1449 * if set prior to registration will cause a symlink during initialization. 1450 */ 1451#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1452 1453/* Set the sysfs device type for the network logical device to allow 1454 * fin grained indentification of different network device types. For 1455 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1456 */ 1457#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1458 1459/** 1460 * netif_napi_add - initialize a napi context 1461 * @dev: network device 1462 * @napi: napi context 1463 * @poll: polling function 1464 * @weight: default weight 1465 * 1466 * netif_napi_add() must be used to initialize a napi context prior to calling 1467 * *any* of the other napi related functions. 1468 */ 1469void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1470 int (*poll)(struct napi_struct *, int), int weight); 1471 1472/** 1473 * netif_napi_del - remove a napi context 1474 * @napi: napi context 1475 * 1476 * netif_napi_del() removes a napi context from the network device napi list 1477 */ 1478void netif_napi_del(struct napi_struct *napi); 1479 1480struct napi_gro_cb { 1481 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1482 void *frag0; 1483 1484 /* Length of frag0. */ 1485 unsigned int frag0_len; 1486 1487 /* This indicates where we are processing relative to skb->data. */ 1488 int data_offset; 1489 1490 /* This is non-zero if the packet may be of the same flow. */ 1491 int same_flow; 1492 1493 /* This is non-zero if the packet cannot be merged with the new skb. */ 1494 int flush; 1495 1496 /* Number of segments aggregated. */ 1497 int count; 1498 1499 /* Free the skb? */ 1500 int free; 1501}; 1502 1503#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1504 1505struct packet_type { 1506 __be16 type; /* This is really htons(ether_type). */ 1507 struct net_device *dev; /* NULL is wildcarded here */ 1508 int (*func) (struct sk_buff *, 1509 struct net_device *, 1510 struct packet_type *, 1511 struct net_device *); 1512 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1513 u32 features); 1514 int (*gso_send_check)(struct sk_buff *skb); 1515 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1516 struct sk_buff *skb); 1517 int (*gro_complete)(struct sk_buff *skb); 1518 void *af_packet_priv; 1519 struct list_head list; 1520}; 1521 1522#include <linux/notifier.h> 1523 1524/* netdevice notifier chain. Please remember to update the rtnetlink 1525 * notification exclusion list in rtnetlink_event() when adding new 1526 * types. 1527 */ 1528#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1529#define NETDEV_DOWN 0x0002 1530#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1531 detected a hardware crash and restarted 1532 - we can use this eg to kick tcp sessions 1533 once done */ 1534#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1535#define NETDEV_REGISTER 0x0005 1536#define NETDEV_UNREGISTER 0x0006 1537#define NETDEV_CHANGEMTU 0x0007 1538#define NETDEV_CHANGEADDR 0x0008 1539#define NETDEV_GOING_DOWN 0x0009 1540#define NETDEV_CHANGENAME 0x000A 1541#define NETDEV_FEAT_CHANGE 0x000B 1542#define NETDEV_BONDING_FAILOVER 0x000C 1543#define NETDEV_PRE_UP 0x000D 1544#define NETDEV_PRE_TYPE_CHANGE 0x000E 1545#define NETDEV_POST_TYPE_CHANGE 0x000F 1546#define NETDEV_POST_INIT 0x0010 1547#define NETDEV_UNREGISTER_BATCH 0x0011 1548#define NETDEV_RELEASE 0x0012 1549#define NETDEV_NOTIFY_PEERS 0x0013 1550#define NETDEV_JOIN 0x0014 1551 1552extern int register_netdevice_notifier(struct notifier_block *nb); 1553extern int unregister_netdevice_notifier(struct notifier_block *nb); 1554extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1555 1556 1557extern rwlock_t dev_base_lock; /* Device list lock */ 1558 1559 1560#define for_each_netdev(net, d) \ 1561 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1562#define for_each_netdev_reverse(net, d) \ 1563 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1564#define for_each_netdev_rcu(net, d) \ 1565 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1566#define for_each_netdev_safe(net, d, n) \ 1567 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1568#define for_each_netdev_continue(net, d) \ 1569 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1570#define for_each_netdev_continue_rcu(net, d) \ 1571 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1572#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1573 1574static inline struct net_device *next_net_device(struct net_device *dev) 1575{ 1576 struct list_head *lh; 1577 struct net *net; 1578 1579 net = dev_net(dev); 1580 lh = dev->dev_list.next; 1581 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1582} 1583 1584static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1585{ 1586 struct list_head *lh; 1587 struct net *net; 1588 1589 net = dev_net(dev); 1590 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1591 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1592} 1593 1594static inline struct net_device *first_net_device(struct net *net) 1595{ 1596 return list_empty(&net->dev_base_head) ? NULL : 1597 net_device_entry(net->dev_base_head.next); 1598} 1599 1600static inline struct net_device *first_net_device_rcu(struct net *net) 1601{ 1602 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1603 1604 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1605} 1606 1607extern int netdev_boot_setup_check(struct net_device *dev); 1608extern unsigned long netdev_boot_base(const char *prefix, int unit); 1609extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1610 const char *hwaddr); 1611extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1612extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1613extern void dev_add_pack(struct packet_type *pt); 1614extern void dev_remove_pack(struct packet_type *pt); 1615extern void __dev_remove_pack(struct packet_type *pt); 1616 1617extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1618 unsigned short mask); 1619extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1620extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1621extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1622extern int dev_alloc_name(struct net_device *dev, const char *name); 1623extern int dev_open(struct net_device *dev); 1624extern int dev_close(struct net_device *dev); 1625extern void dev_disable_lro(struct net_device *dev); 1626extern int dev_queue_xmit(struct sk_buff *skb); 1627extern int register_netdevice(struct net_device *dev); 1628extern void unregister_netdevice_queue(struct net_device *dev, 1629 struct list_head *head); 1630extern void unregister_netdevice_many(struct list_head *head); 1631static inline void unregister_netdevice(struct net_device *dev) 1632{ 1633 unregister_netdevice_queue(dev, NULL); 1634} 1635 1636extern int netdev_refcnt_read(const struct net_device *dev); 1637extern void free_netdev(struct net_device *dev); 1638extern void synchronize_net(void); 1639extern int init_dummy_netdev(struct net_device *dev); 1640extern void netdev_resync_ops(struct net_device *dev); 1641 1642extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1643extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1644extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1645extern int dev_restart(struct net_device *dev); 1646#ifdef CONFIG_NETPOLL_TRAP 1647extern int netpoll_trap(void); 1648#endif 1649extern int skb_gro_receive(struct sk_buff **head, 1650 struct sk_buff *skb); 1651extern void skb_gro_reset_offset(struct sk_buff *skb); 1652 1653static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1654{ 1655 return NAPI_GRO_CB(skb)->data_offset; 1656} 1657 1658static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1659{ 1660 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1661} 1662 1663static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1664{ 1665 NAPI_GRO_CB(skb)->data_offset += len; 1666} 1667 1668static inline void *skb_gro_header_fast(struct sk_buff *skb, 1669 unsigned int offset) 1670{ 1671 return NAPI_GRO_CB(skb)->frag0 + offset; 1672} 1673 1674static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1675{ 1676 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1677} 1678 1679static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1680 unsigned int offset) 1681{ 1682 if (!pskb_may_pull(skb, hlen)) 1683 return NULL; 1684 1685 NAPI_GRO_CB(skb)->frag0 = NULL; 1686 NAPI_GRO_CB(skb)->frag0_len = 0; 1687 return skb->data + offset; 1688} 1689 1690static inline void *skb_gro_mac_header(struct sk_buff *skb) 1691{ 1692 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1693} 1694 1695static inline void *skb_gro_network_header(struct sk_buff *skb) 1696{ 1697 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1698 skb_network_offset(skb); 1699} 1700 1701static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1702 unsigned short type, 1703 const void *daddr, const void *saddr, 1704 unsigned len) 1705{ 1706 if (!dev->header_ops || !dev->header_ops->create) 1707 return 0; 1708 1709 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1710} 1711 1712static inline int dev_parse_header(const struct sk_buff *skb, 1713 unsigned char *haddr) 1714{ 1715 const struct net_device *dev = skb->dev; 1716 1717 if (!dev->header_ops || !dev->header_ops->parse) 1718 return 0; 1719 return dev->header_ops->parse(skb, haddr); 1720} 1721 1722typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1723extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1724static inline int unregister_gifconf(unsigned int family) 1725{ 1726 return register_gifconf(family, NULL); 1727} 1728 1729/* 1730 * Incoming packets are placed on per-cpu queues 1731 */ 1732struct softnet_data { 1733 struct Qdisc *output_queue; 1734 struct Qdisc **output_queue_tailp; 1735 struct list_head poll_list; 1736 struct sk_buff *completion_queue; 1737 struct sk_buff_head process_queue; 1738 1739 /* stats */ 1740 unsigned int processed; 1741 unsigned int time_squeeze; 1742 unsigned int cpu_collision; 1743 unsigned int received_rps; 1744 1745#ifdef CONFIG_RPS 1746 struct softnet_data *rps_ipi_list; 1747 1748 /* Elements below can be accessed between CPUs for RPS */ 1749 struct call_single_data csd ____cacheline_aligned_in_smp; 1750 struct softnet_data *rps_ipi_next; 1751 unsigned int cpu; 1752 unsigned int input_queue_head; 1753 unsigned int input_queue_tail; 1754#endif 1755 unsigned dropped; 1756 struct sk_buff_head input_pkt_queue; 1757 struct napi_struct backlog; 1758}; 1759 1760static inline void input_queue_head_incr(struct softnet_data *sd) 1761{ 1762#ifdef CONFIG_RPS 1763 sd->input_queue_head++; 1764#endif 1765} 1766 1767static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1768 unsigned int *qtail) 1769{ 1770#ifdef CONFIG_RPS 1771 *qtail = ++sd->input_queue_tail; 1772#endif 1773} 1774 1775DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1776 1777extern void __netif_schedule(struct Qdisc *q); 1778 1779static inline void netif_schedule_queue(struct netdev_queue *txq) 1780{ 1781 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) 1782 __netif_schedule(txq->qdisc); 1783} 1784 1785static inline void netif_tx_schedule_all(struct net_device *dev) 1786{ 1787 unsigned int i; 1788 1789 for (i = 0; i < dev->num_tx_queues; i++) 1790 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1791} 1792 1793static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1794{ 1795 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1796} 1797 1798/** 1799 * netif_start_queue - allow transmit 1800 * @dev: network device 1801 * 1802 * Allow upper layers to call the device hard_start_xmit routine. 1803 */ 1804static inline void netif_start_queue(struct net_device *dev) 1805{ 1806 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1807} 1808 1809static inline void netif_tx_start_all_queues(struct net_device *dev) 1810{ 1811 unsigned int i; 1812 1813 for (i = 0; i < dev->num_tx_queues; i++) { 1814 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1815 netif_tx_start_queue(txq); 1816 } 1817} 1818 1819static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1820{ 1821#ifdef CONFIG_NETPOLL_TRAP 1822 if (netpoll_trap()) { 1823 netif_tx_start_queue(dev_queue); 1824 return; 1825 } 1826#endif 1827 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) 1828 __netif_schedule(dev_queue->qdisc); 1829} 1830 1831/** 1832 * netif_wake_queue - restart transmit 1833 * @dev: network device 1834 * 1835 * Allow upper layers to call the device hard_start_xmit routine. 1836 * Used for flow control when transmit resources are available. 1837 */ 1838static inline void netif_wake_queue(struct net_device *dev) 1839{ 1840 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1841} 1842 1843static inline void netif_tx_wake_all_queues(struct net_device *dev) 1844{ 1845 unsigned int i; 1846 1847 for (i = 0; i < dev->num_tx_queues; i++) { 1848 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1849 netif_tx_wake_queue(txq); 1850 } 1851} 1852 1853static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1854{ 1855 if (WARN_ON(!dev_queue)) { 1856 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1857 return; 1858 } 1859 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1860} 1861 1862/** 1863 * netif_stop_queue - stop transmitted packets 1864 * @dev: network device 1865 * 1866 * Stop upper layers calling the device hard_start_xmit routine. 1867 * Used for flow control when transmit resources are unavailable. 1868 */ 1869static inline void netif_stop_queue(struct net_device *dev) 1870{ 1871 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1872} 1873 1874static inline void netif_tx_stop_all_queues(struct net_device *dev) 1875{ 1876 unsigned int i; 1877 1878 for (i = 0; i < dev->num_tx_queues; i++) { 1879 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1880 netif_tx_stop_queue(txq); 1881 } 1882} 1883 1884static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1885{ 1886 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1887} 1888 1889/** 1890 * netif_queue_stopped - test if transmit queue is flowblocked 1891 * @dev: network device 1892 * 1893 * Test if transmit queue on device is currently unable to send. 1894 */ 1895static inline int netif_queue_stopped(const struct net_device *dev) 1896{ 1897 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1898} 1899 1900static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue) 1901{ 1902 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN; 1903} 1904 1905/** 1906 * netif_running - test if up 1907 * @dev: network device 1908 * 1909 * Test if the device has been brought up. 1910 */ 1911static inline int netif_running(const struct net_device *dev) 1912{ 1913 return test_bit(__LINK_STATE_START, &dev->state); 1914} 1915 1916/* 1917 * Routines to manage the subqueues on a device. We only need start 1918 * stop, and a check if it's stopped. All other device management is 1919 * done at the overall netdevice level. 1920 * Also test the device if we're multiqueue. 1921 */ 1922 1923/** 1924 * netif_start_subqueue - allow sending packets on subqueue 1925 * @dev: network device 1926 * @queue_index: sub queue index 1927 * 1928 * Start individual transmit queue of a device with multiple transmit queues. 1929 */ 1930static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1931{ 1932 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1933 1934 netif_tx_start_queue(txq); 1935} 1936 1937/** 1938 * netif_stop_subqueue - stop sending packets on subqueue 1939 * @dev: network device 1940 * @queue_index: sub queue index 1941 * 1942 * Stop individual transmit queue of a device with multiple transmit queues. 1943 */ 1944static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1945{ 1946 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1947#ifdef CONFIG_NETPOLL_TRAP 1948 if (netpoll_trap()) 1949 return; 1950#endif 1951 netif_tx_stop_queue(txq); 1952} 1953 1954/** 1955 * netif_subqueue_stopped - test status of subqueue 1956 * @dev: network device 1957 * @queue_index: sub queue index 1958 * 1959 * Check individual transmit queue of a device with multiple transmit queues. 1960 */ 1961static inline int __netif_subqueue_stopped(const struct net_device *dev, 1962 u16 queue_index) 1963{ 1964 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1965 1966 return netif_tx_queue_stopped(txq); 1967} 1968 1969static inline int netif_subqueue_stopped(const struct net_device *dev, 1970 struct sk_buff *skb) 1971{ 1972 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1973} 1974 1975/** 1976 * netif_wake_subqueue - allow sending packets on subqueue 1977 * @dev: network device 1978 * @queue_index: sub queue index 1979 * 1980 * Resume individual transmit queue of a device with multiple transmit queues. 1981 */ 1982static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 1983{ 1984 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1985#ifdef CONFIG_NETPOLL_TRAP 1986 if (netpoll_trap()) 1987 return; 1988#endif 1989 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) 1990 __netif_schedule(txq->qdisc); 1991} 1992 1993/* 1994 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 1995 * as a distribution range limit for the returned value. 1996 */ 1997static inline u16 skb_tx_hash(const struct net_device *dev, 1998 const struct sk_buff *skb) 1999{ 2000 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2001} 2002 2003/** 2004 * netif_is_multiqueue - test if device has multiple transmit queues 2005 * @dev: network device 2006 * 2007 * Check if device has multiple transmit queues 2008 */ 2009static inline int netif_is_multiqueue(const struct net_device *dev) 2010{ 2011 return dev->num_tx_queues > 1; 2012} 2013 2014extern int netif_set_real_num_tx_queues(struct net_device *dev, 2015 unsigned int txq); 2016 2017#ifdef CONFIG_RPS 2018extern int netif_set_real_num_rx_queues(struct net_device *dev, 2019 unsigned int rxq); 2020#else 2021static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2022 unsigned int rxq) 2023{ 2024 return 0; 2025} 2026#endif 2027 2028static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2029 const struct net_device *from_dev) 2030{ 2031 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2032#ifdef CONFIG_RPS 2033 return netif_set_real_num_rx_queues(to_dev, 2034 from_dev->real_num_rx_queues); 2035#else 2036 return 0; 2037#endif 2038} 2039 2040/* Use this variant when it is known for sure that it 2041 * is executing from hardware interrupt context or with hardware interrupts 2042 * disabled. 2043 */ 2044extern void dev_kfree_skb_irq(struct sk_buff *skb); 2045 2046/* Use this variant in places where it could be invoked 2047 * from either hardware interrupt or other context, with hardware interrupts 2048 * either disabled or enabled. 2049 */ 2050extern void dev_kfree_skb_any(struct sk_buff *skb); 2051 2052extern int netif_rx(struct sk_buff *skb); 2053extern int netif_rx_ni(struct sk_buff *skb); 2054extern int netif_receive_skb(struct sk_buff *skb); 2055extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2056 struct sk_buff *skb); 2057extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2058extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2059 struct sk_buff *skb); 2060extern void napi_gro_flush(struct napi_struct *napi); 2061extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2062extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2063 struct sk_buff *skb, 2064 gro_result_t ret); 2065extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 2066extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2067 2068static inline void napi_free_frags(struct napi_struct *napi) 2069{ 2070 kfree_skb(napi->skb); 2071 napi->skb = NULL; 2072} 2073 2074extern int netdev_rx_handler_register(struct net_device *dev, 2075 rx_handler_func_t *rx_handler, 2076 void *rx_handler_data); 2077extern void netdev_rx_handler_unregister(struct net_device *dev); 2078 2079extern int dev_valid_name(const char *name); 2080extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2081extern int dev_ethtool(struct net *net, struct ifreq *); 2082extern unsigned dev_get_flags(const struct net_device *); 2083extern int __dev_change_flags(struct net_device *, unsigned int flags); 2084extern int dev_change_flags(struct net_device *, unsigned); 2085extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2086extern int dev_change_name(struct net_device *, const char *); 2087extern int dev_set_alias(struct net_device *, const char *, size_t); 2088extern int dev_change_net_namespace(struct net_device *, 2089 struct net *, const char *); 2090extern int dev_set_mtu(struct net_device *, int); 2091extern void dev_set_group(struct net_device *, int); 2092extern int dev_set_mac_address(struct net_device *, 2093 struct sockaddr *); 2094extern int dev_hard_start_xmit(struct sk_buff *skb, 2095 struct net_device *dev, 2096 struct netdev_queue *txq); 2097extern int dev_forward_skb(struct net_device *dev, 2098 struct sk_buff *skb); 2099 2100extern int netdev_budget; 2101 2102/* Called by rtnetlink.c:rtnl_unlock() */ 2103extern void netdev_run_todo(void); 2104 2105/** 2106 * dev_put - release reference to device 2107 * @dev: network device 2108 * 2109 * Release reference to device to allow it to be freed. 2110 */ 2111static inline void dev_put(struct net_device *dev) 2112{ 2113 irqsafe_cpu_dec(*dev->pcpu_refcnt); 2114} 2115 2116/** 2117 * dev_hold - get reference to device 2118 * @dev: network device 2119 * 2120 * Hold reference to device to keep it from being freed. 2121 */ 2122static inline void dev_hold(struct net_device *dev) 2123{ 2124 irqsafe_cpu_inc(*dev->pcpu_refcnt); 2125} 2126 2127/* Carrier loss detection, dial on demand. The functions netif_carrier_on 2128 * and _off may be called from IRQ context, but it is caller 2129 * who is responsible for serialization of these calls. 2130 * 2131 * The name carrier is inappropriate, these functions should really be 2132 * called netif_lowerlayer_*() because they represent the state of any 2133 * kind of lower layer not just hardware media. 2134 */ 2135 2136extern void linkwatch_fire_event(struct net_device *dev); 2137extern void linkwatch_forget_dev(struct net_device *dev); 2138 2139/** 2140 * netif_carrier_ok - test if carrier present 2141 * @dev: network device 2142 * 2143 * Check if carrier is present on device 2144 */ 2145static inline int netif_carrier_ok(const struct net_device *dev) 2146{ 2147 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2148} 2149 2150extern unsigned long dev_trans_start(struct net_device *dev); 2151 2152extern void __netdev_watchdog_up(struct net_device *dev); 2153 2154extern void netif_carrier_on(struct net_device *dev); 2155 2156extern void netif_carrier_off(struct net_device *dev); 2157 2158extern void netif_notify_peers(struct net_device *dev); 2159 2160/** 2161 * netif_dormant_on - mark device as dormant. 2162 * @dev: network device 2163 * 2164 * Mark device as dormant (as per RFC2863). 2165 * 2166 * The dormant state indicates that the relevant interface is not 2167 * actually in a condition to pass packets (i.e., it is not 'up') but is 2168 * in a "pending" state, waiting for some external event. For "on- 2169 * demand" interfaces, this new state identifies the situation where the 2170 * interface is waiting for events to place it in the up state. 2171 * 2172 */ 2173static inline void netif_dormant_on(struct net_device *dev) 2174{ 2175 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2176 linkwatch_fire_event(dev); 2177} 2178 2179/** 2180 * netif_dormant_off - set device as not dormant. 2181 * @dev: network device 2182 * 2183 * Device is not in dormant state. 2184 */ 2185static inline void netif_dormant_off(struct net_device *dev) 2186{ 2187 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2188 linkwatch_fire_event(dev); 2189} 2190 2191/** 2192 * netif_dormant - test if carrier present 2193 * @dev: network device 2194 * 2195 * Check if carrier is present on device 2196 */ 2197static inline int netif_dormant(const struct net_device *dev) 2198{ 2199 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2200} 2201 2202 2203/** 2204 * netif_oper_up - test if device is operational 2205 * @dev: network device 2206 * 2207 * Check if carrier is operational 2208 */ 2209static inline int netif_oper_up(const struct net_device *dev) 2210{ 2211 return (dev->operstate == IF_OPER_UP || 2212 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2213} 2214 2215/** 2216 * netif_device_present - is device available or removed 2217 * @dev: network device 2218 * 2219 * Check if device has not been removed from system. 2220 */ 2221static inline int netif_device_present(struct net_device *dev) 2222{ 2223 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2224} 2225 2226extern void netif_device_detach(struct net_device *dev); 2227 2228extern void netif_device_attach(struct net_device *dev); 2229 2230/* 2231 * Network interface message level settings 2232 */ 2233 2234enum { 2235 NETIF_MSG_DRV = 0x0001, 2236 NETIF_MSG_PROBE = 0x0002, 2237 NETIF_MSG_LINK = 0x0004, 2238 NETIF_MSG_TIMER = 0x0008, 2239 NETIF_MSG_IFDOWN = 0x0010, 2240 NETIF_MSG_IFUP = 0x0020, 2241 NETIF_MSG_RX_ERR = 0x0040, 2242 NETIF_MSG_TX_ERR = 0x0080, 2243 NETIF_MSG_TX_QUEUED = 0x0100, 2244 NETIF_MSG_INTR = 0x0200, 2245 NETIF_MSG_TX_DONE = 0x0400, 2246 NETIF_MSG_RX_STATUS = 0x0800, 2247 NETIF_MSG_PKTDATA = 0x1000, 2248 NETIF_MSG_HW = 0x2000, 2249 NETIF_MSG_WOL = 0x4000, 2250}; 2251 2252#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2253#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2254#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2255#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2256#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2257#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2258#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2259#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2260#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2261#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2262#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2263#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2264#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2265#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2266#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2267 2268static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2269{ 2270 /* use default */ 2271 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2272 return default_msg_enable_bits; 2273 if (debug_value == 0) /* no output */ 2274 return 0; 2275 /* set low N bits */ 2276 return (1 << debug_value) - 1; 2277} 2278 2279static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2280{ 2281 spin_lock(&txq->_xmit_lock); 2282 txq->xmit_lock_owner = cpu; 2283} 2284 2285static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2286{ 2287 spin_lock_bh(&txq->_xmit_lock); 2288 txq->xmit_lock_owner = smp_processor_id(); 2289} 2290 2291static inline int __netif_tx_trylock(struct netdev_queue *txq) 2292{ 2293 int ok = spin_trylock(&txq->_xmit_lock); 2294 if (likely(ok)) 2295 txq->xmit_lock_owner = smp_processor_id(); 2296 return ok; 2297} 2298 2299static inline void __netif_tx_unlock(struct netdev_queue *txq) 2300{ 2301 txq->xmit_lock_owner = -1; 2302 spin_unlock(&txq->_xmit_lock); 2303} 2304 2305static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2306{ 2307 txq->xmit_lock_owner = -1; 2308 spin_unlock_bh(&txq->_xmit_lock); 2309} 2310 2311static inline void txq_trans_update(struct netdev_queue *txq) 2312{ 2313 if (txq->xmit_lock_owner != -1) 2314 txq->trans_start = jiffies; 2315} 2316 2317/** 2318 * netif_tx_lock - grab network device transmit lock 2319 * @dev: network device 2320 * 2321 * Get network device transmit lock 2322 */ 2323static inline void netif_tx_lock(struct net_device *dev) 2324{ 2325 unsigned int i; 2326 int cpu; 2327 2328 spin_lock(&dev->tx_global_lock); 2329 cpu = smp_processor_id(); 2330 for (i = 0; i < dev->num_tx_queues; i++) { 2331 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2332 2333 /* We are the only thread of execution doing a 2334 * freeze, but we have to grab the _xmit_lock in 2335 * order to synchronize with threads which are in 2336 * the ->hard_start_xmit() handler and already 2337 * checked the frozen bit. 2338 */ 2339 __netif_tx_lock(txq, cpu); 2340 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2341 __netif_tx_unlock(txq); 2342 } 2343} 2344 2345static inline void netif_tx_lock_bh(struct net_device *dev) 2346{ 2347 local_bh_disable(); 2348 netif_tx_lock(dev); 2349} 2350 2351static inline void netif_tx_unlock(struct net_device *dev) 2352{ 2353 unsigned int i; 2354 2355 for (i = 0; i < dev->num_tx_queues; i++) { 2356 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2357 2358 /* No need to grab the _xmit_lock here. If the 2359 * queue is not stopped for another reason, we 2360 * force a schedule. 2361 */ 2362 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2363 netif_schedule_queue(txq); 2364 } 2365 spin_unlock(&dev->tx_global_lock); 2366} 2367 2368static inline void netif_tx_unlock_bh(struct net_device *dev) 2369{ 2370 netif_tx_unlock(dev); 2371 local_bh_enable(); 2372} 2373 2374#define HARD_TX_LOCK(dev, txq, cpu) { \ 2375 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2376 __netif_tx_lock(txq, cpu); \ 2377 } \ 2378} 2379 2380#define HARD_TX_UNLOCK(dev, txq) { \ 2381 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2382 __netif_tx_unlock(txq); \ 2383 } \ 2384} 2385 2386static inline void netif_tx_disable(struct net_device *dev) 2387{ 2388 unsigned int i; 2389 int cpu; 2390 2391 local_bh_disable(); 2392 cpu = smp_processor_id(); 2393 for (i = 0; i < dev->num_tx_queues; i++) { 2394 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2395 2396 __netif_tx_lock(txq, cpu); 2397 netif_tx_stop_queue(txq); 2398 __netif_tx_unlock(txq); 2399 } 2400 local_bh_enable(); 2401} 2402 2403static inline void netif_addr_lock(struct net_device *dev) 2404{ 2405 spin_lock(&dev->addr_list_lock); 2406} 2407 2408static inline void netif_addr_lock_bh(struct net_device *dev) 2409{ 2410 spin_lock_bh(&dev->addr_list_lock); 2411} 2412 2413static inline void netif_addr_unlock(struct net_device *dev) 2414{ 2415 spin_unlock(&dev->addr_list_lock); 2416} 2417 2418static inline void netif_addr_unlock_bh(struct net_device *dev) 2419{ 2420 spin_unlock_bh(&dev->addr_list_lock); 2421} 2422 2423/* 2424 * dev_addrs walker. Should be used only for read access. Call with 2425 * rcu_read_lock held. 2426 */ 2427#define for_each_dev_addr(dev, ha) \ 2428 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2429 2430/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2431 2432extern void ether_setup(struct net_device *dev); 2433 2434/* Support for loadable net-drivers */ 2435extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2436 void (*setup)(struct net_device *), 2437 unsigned int txqs, unsigned int rxqs); 2438#define alloc_netdev(sizeof_priv, name, setup) \ 2439 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2440 2441#define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2442 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2443 2444extern int register_netdev(struct net_device *dev); 2445extern void unregister_netdev(struct net_device *dev); 2446 2447/* General hardware address lists handling functions */ 2448extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2449 struct netdev_hw_addr_list *from_list, 2450 int addr_len, unsigned char addr_type); 2451extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2452 struct netdev_hw_addr_list *from_list, 2453 int addr_len, unsigned char addr_type); 2454extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2455 struct netdev_hw_addr_list *from_list, 2456 int addr_len); 2457extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2458 struct netdev_hw_addr_list *from_list, 2459 int addr_len); 2460extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2461extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2462 2463/* Functions used for device addresses handling */ 2464extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2465 unsigned char addr_type); 2466extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2467 unsigned char addr_type); 2468extern int dev_addr_add_multiple(struct net_device *to_dev, 2469 struct net_device *from_dev, 2470 unsigned char addr_type); 2471extern int dev_addr_del_multiple(struct net_device *to_dev, 2472 struct net_device *from_dev, 2473 unsigned char addr_type); 2474extern void dev_addr_flush(struct net_device *dev); 2475extern int dev_addr_init(struct net_device *dev); 2476 2477/* Functions used for unicast addresses handling */ 2478extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2479extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2480extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2481extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2482extern void dev_uc_flush(struct net_device *dev); 2483extern void dev_uc_init(struct net_device *dev); 2484 2485/* Functions used for multicast addresses handling */ 2486extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2487extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2488extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2489extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2490extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2491extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2492extern void dev_mc_flush(struct net_device *dev); 2493extern void dev_mc_init(struct net_device *dev); 2494 2495/* Functions used for secondary unicast and multicast support */ 2496extern void dev_set_rx_mode(struct net_device *dev); 2497extern void __dev_set_rx_mode(struct net_device *dev); 2498extern int dev_set_promiscuity(struct net_device *dev, int inc); 2499extern int dev_set_allmulti(struct net_device *dev, int inc); 2500extern void netdev_state_change(struct net_device *dev); 2501extern int netdev_bonding_change(struct net_device *dev, 2502 unsigned long event); 2503extern void netdev_features_change(struct net_device *dev); 2504/* Load a device via the kmod */ 2505extern void dev_load(struct net *net, const char *name); 2506extern void dev_mcast_init(void); 2507extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2508 struct rtnl_link_stats64 *storage); 2509 2510extern int netdev_max_backlog; 2511extern int netdev_tstamp_prequeue; 2512extern int weight_p; 2513extern int bpf_jit_enable; 2514extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2515extern int netdev_set_bond_master(struct net_device *dev, 2516 struct net_device *master); 2517extern int skb_checksum_help(struct sk_buff *skb); 2518extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features); 2519#ifdef CONFIG_BUG 2520extern void netdev_rx_csum_fault(struct net_device *dev); 2521#else 2522static inline void netdev_rx_csum_fault(struct net_device *dev) 2523{ 2524} 2525#endif 2526/* rx skb timestamps */ 2527extern void net_enable_timestamp(void); 2528extern void net_disable_timestamp(void); 2529 2530#ifdef CONFIG_PROC_FS 2531extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2532extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2533extern void dev_seq_stop(struct seq_file *seq, void *v); 2534#endif 2535 2536extern int netdev_class_create_file(struct class_attribute *class_attr); 2537extern void netdev_class_remove_file(struct class_attribute *class_attr); 2538 2539extern struct kobj_ns_type_operations net_ns_type_operations; 2540 2541extern const char *netdev_drivername(const struct net_device *dev); 2542 2543extern void linkwatch_run_queue(void); 2544 2545static inline u32 netdev_get_wanted_features(struct net_device *dev) 2546{ 2547 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2548} 2549u32 netdev_increment_features(u32 all, u32 one, u32 mask); 2550int __netdev_update_features(struct net_device *dev); 2551void netdev_update_features(struct net_device *dev); 2552void netdev_change_features(struct net_device *dev); 2553 2554void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2555 struct net_device *dev); 2556 2557u32 netif_skb_features(struct sk_buff *skb); 2558 2559static inline int net_gso_ok(u32 features, int gso_type) 2560{ 2561 int feature = gso_type << NETIF_F_GSO_SHIFT; 2562 return (features & feature) == feature; 2563} 2564 2565static inline int skb_gso_ok(struct sk_buff *skb, u32 features) 2566{ 2567 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2568 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2569} 2570 2571static inline int netif_needs_gso(struct sk_buff *skb, int features) 2572{ 2573 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2574 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2575} 2576 2577static inline void netif_set_gso_max_size(struct net_device *dev, 2578 unsigned int size) 2579{ 2580 dev->gso_max_size = size; 2581} 2582 2583static inline int netif_is_bond_slave(struct net_device *dev) 2584{ 2585 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2586} 2587 2588extern struct pernet_operations __net_initdata loopback_net_ops; 2589 2590int dev_ethtool_get_settings(struct net_device *dev, 2591 struct ethtool_cmd *cmd); 2592 2593static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) 2594{ 2595 if (dev->features & NETIF_F_RXCSUM) 2596 return 1; 2597 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) 2598 return 0; 2599 return dev->ethtool_ops->get_rx_csum(dev); 2600} 2601 2602static inline u32 dev_ethtool_get_flags(struct net_device *dev) 2603{ 2604 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) 2605 return 0; 2606 return dev->ethtool_ops->get_flags(dev); 2607} 2608 2609/* Logging, debugging and troubleshooting/diagnostic helpers. */ 2610 2611/* netdev_printk helpers, similar to dev_printk */ 2612 2613static inline const char *netdev_name(const struct net_device *dev) 2614{ 2615 if (dev->reg_state != NETREG_REGISTERED) 2616 return "(unregistered net_device)"; 2617 return dev->name; 2618} 2619 2620extern int netdev_printk(const char *level, const struct net_device *dev, 2621 const char *format, ...) 2622 __attribute__ ((format (printf, 3, 4))); 2623extern int netdev_emerg(const struct net_device *dev, const char *format, ...) 2624 __attribute__ ((format (printf, 2, 3))); 2625extern int netdev_alert(const struct net_device *dev, const char *format, ...) 2626 __attribute__ ((format (printf, 2, 3))); 2627extern int netdev_crit(const struct net_device *dev, const char *format, ...) 2628 __attribute__ ((format (printf, 2, 3))); 2629extern int netdev_err(const struct net_device *dev, const char *format, ...) 2630 __attribute__ ((format (printf, 2, 3))); 2631extern int netdev_warn(const struct net_device *dev, const char *format, ...) 2632 __attribute__ ((format (printf, 2, 3))); 2633extern int netdev_notice(const struct net_device *dev, const char *format, ...) 2634 __attribute__ ((format (printf, 2, 3))); 2635extern int netdev_info(const struct net_device *dev, const char *format, ...) 2636 __attribute__ ((format (printf, 2, 3))); 2637 2638#define MODULE_ALIAS_NETDEV(device) \ 2639 MODULE_ALIAS("netdev-" device) 2640 2641#if defined(DEBUG) 2642#define netdev_dbg(__dev, format, args...) \ 2643 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2644#elif defined(CONFIG_DYNAMIC_DEBUG) 2645#define netdev_dbg(__dev, format, args...) \ 2646do { \ 2647 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ 2648 netdev_name(__dev), ##args); \ 2649} while (0) 2650#else 2651#define netdev_dbg(__dev, format, args...) \ 2652({ \ 2653 if (0) \ 2654 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2655 0; \ 2656}) 2657#endif 2658 2659#if defined(VERBOSE_DEBUG) 2660#define netdev_vdbg netdev_dbg 2661#else 2662 2663#define netdev_vdbg(dev, format, args...) \ 2664({ \ 2665 if (0) \ 2666 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2667 0; \ 2668}) 2669#endif 2670 2671/* 2672 * netdev_WARN() acts like dev_printk(), but with the key difference 2673 * of using a WARN/WARN_ON to get the message out, including the 2674 * file/line information and a backtrace. 2675 */ 2676#define netdev_WARN(dev, format, args...) \ 2677 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2678 2679/* netif printk helpers, similar to netdev_printk */ 2680 2681#define netif_printk(priv, type, level, dev, fmt, args...) \ 2682do { \ 2683 if (netif_msg_##type(priv)) \ 2684 netdev_printk(level, (dev), fmt, ##args); \ 2685} while (0) 2686 2687#define netif_level(level, priv, type, dev, fmt, args...) \ 2688do { \ 2689 if (netif_msg_##type(priv)) \ 2690 netdev_##level(dev, fmt, ##args); \ 2691} while (0) 2692 2693#define netif_emerg(priv, type, dev, fmt, args...) \ 2694 netif_level(emerg, priv, type, dev, fmt, ##args) 2695#define netif_alert(priv, type, dev, fmt, args...) \ 2696 netif_level(alert, priv, type, dev, fmt, ##args) 2697#define netif_crit(priv, type, dev, fmt, args...) \ 2698 netif_level(crit, priv, type, dev, fmt, ##args) 2699#define netif_err(priv, type, dev, fmt, args...) \ 2700 netif_level(err, priv, type, dev, fmt, ##args) 2701#define netif_warn(priv, type, dev, fmt, args...) \ 2702 netif_level(warn, priv, type, dev, fmt, ##args) 2703#define netif_notice(priv, type, dev, fmt, args...) \ 2704 netif_level(notice, priv, type, dev, fmt, ##args) 2705#define netif_info(priv, type, dev, fmt, args...) \ 2706 netif_level(info, priv, type, dev, fmt, ##args) 2707 2708#if defined(DEBUG) 2709#define netif_dbg(priv, type, dev, format, args...) \ 2710 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2711#elif defined(CONFIG_DYNAMIC_DEBUG) 2712#define netif_dbg(priv, type, netdev, format, args...) \ 2713do { \ 2714 if (netif_msg_##type(priv)) \ 2715 dynamic_dev_dbg((netdev)->dev.parent, \ 2716 "%s: " format, \ 2717 netdev_name(netdev), ##args); \ 2718} while (0) 2719#else 2720#define netif_dbg(priv, type, dev, format, args...) \ 2721({ \ 2722 if (0) \ 2723 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2724 0; \ 2725}) 2726#endif 2727 2728#if defined(VERBOSE_DEBUG) 2729#define netif_vdbg netif_dbg 2730#else 2731#define netif_vdbg(priv, type, dev, format, args...) \ 2732({ \ 2733 if (0) \ 2734 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2735 0; \ 2736}) 2737#endif 2738 2739#endif /* __KERNEL__ */ 2740 2741#endif /* _LINUX_NETDEVICE_H */