at v3.1 37 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42#define MIGRATE_RESERVE 3 43#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44#define MIGRATE_TYPES 5 45 46#define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50extern int page_group_by_mobility_disabled; 51 52static inline int get_pageblock_migratetype(struct page *page) 53{ 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55} 56 57struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60}; 61 62struct pglist_data; 63 64/* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70#if defined(CONFIG_SMP) 71struct zone_padding { 72 char x[0]; 73} ____cacheline_internodealigned_in_smp; 74#define ZONE_PADDING(name) struct zone_padding name; 75#else 76#define ZONE_PADDING(name) 77#endif 78 79enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 107 NR_DIRTIED, /* page dirtyings since bootup */ 108 NR_WRITTEN, /* page writings since bootup */ 109#ifdef CONFIG_NUMA 110 NUMA_HIT, /* allocated in intended node */ 111 NUMA_MISS, /* allocated in non intended node */ 112 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 113 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 114 NUMA_LOCAL, /* allocation from local node */ 115 NUMA_OTHER, /* allocation from other node */ 116#endif 117 NR_ANON_TRANSPARENT_HUGEPAGES, 118 NR_VM_ZONE_STAT_ITEMS }; 119 120/* 121 * We do arithmetic on the LRU lists in various places in the code, 122 * so it is important to keep the active lists LRU_ACTIVE higher in 123 * the array than the corresponding inactive lists, and to keep 124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 125 * 126 * This has to be kept in sync with the statistics in zone_stat_item 127 * above and the descriptions in vmstat_text in mm/vmstat.c 128 */ 129#define LRU_BASE 0 130#define LRU_ACTIVE 1 131#define LRU_FILE 2 132 133enum lru_list { 134 LRU_INACTIVE_ANON = LRU_BASE, 135 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 136 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 137 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 138 LRU_UNEVICTABLE, 139 NR_LRU_LISTS 140}; 141 142#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 143 144#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 145 146static inline int is_file_lru(enum lru_list l) 147{ 148 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 149} 150 151static inline int is_active_lru(enum lru_list l) 152{ 153 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 154} 155 156static inline int is_unevictable_lru(enum lru_list l) 157{ 158 return (l == LRU_UNEVICTABLE); 159} 160 161/* Mask used at gathering information at once (see memcontrol.c) */ 162#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 163#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 164#define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON) 165#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 166 167enum zone_watermarks { 168 WMARK_MIN, 169 WMARK_LOW, 170 WMARK_HIGH, 171 NR_WMARK 172}; 173 174#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 175#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 176#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 177 178struct per_cpu_pages { 179 int count; /* number of pages in the list */ 180 int high; /* high watermark, emptying needed */ 181 int batch; /* chunk size for buddy add/remove */ 182 183 /* Lists of pages, one per migrate type stored on the pcp-lists */ 184 struct list_head lists[MIGRATE_PCPTYPES]; 185}; 186 187struct per_cpu_pageset { 188 struct per_cpu_pages pcp; 189#ifdef CONFIG_NUMA 190 s8 expire; 191#endif 192#ifdef CONFIG_SMP 193 s8 stat_threshold; 194 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 195#endif 196}; 197 198#endif /* !__GENERATING_BOUNDS.H */ 199 200enum zone_type { 201#ifdef CONFIG_ZONE_DMA 202 /* 203 * ZONE_DMA is used when there are devices that are not able 204 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 205 * carve out the portion of memory that is needed for these devices. 206 * The range is arch specific. 207 * 208 * Some examples 209 * 210 * Architecture Limit 211 * --------------------------- 212 * parisc, ia64, sparc <4G 213 * s390 <2G 214 * arm Various 215 * alpha Unlimited or 0-16MB. 216 * 217 * i386, x86_64 and multiple other arches 218 * <16M. 219 */ 220 ZONE_DMA, 221#endif 222#ifdef CONFIG_ZONE_DMA32 223 /* 224 * x86_64 needs two ZONE_DMAs because it supports devices that are 225 * only able to do DMA to the lower 16M but also 32 bit devices that 226 * can only do DMA areas below 4G. 227 */ 228 ZONE_DMA32, 229#endif 230 /* 231 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 232 * performed on pages in ZONE_NORMAL if the DMA devices support 233 * transfers to all addressable memory. 234 */ 235 ZONE_NORMAL, 236#ifdef CONFIG_HIGHMEM 237 /* 238 * A memory area that is only addressable by the kernel through 239 * mapping portions into its own address space. This is for example 240 * used by i386 to allow the kernel to address the memory beyond 241 * 900MB. The kernel will set up special mappings (page 242 * table entries on i386) for each page that the kernel needs to 243 * access. 244 */ 245 ZONE_HIGHMEM, 246#endif 247 ZONE_MOVABLE, 248 __MAX_NR_ZONES 249}; 250 251#ifndef __GENERATING_BOUNDS_H 252 253/* 254 * When a memory allocation must conform to specific limitations (such 255 * as being suitable for DMA) the caller will pass in hints to the 256 * allocator in the gfp_mask, in the zone modifier bits. These bits 257 * are used to select a priority ordered list of memory zones which 258 * match the requested limits. See gfp_zone() in include/linux/gfp.h 259 */ 260 261#if MAX_NR_ZONES < 2 262#define ZONES_SHIFT 0 263#elif MAX_NR_ZONES <= 2 264#define ZONES_SHIFT 1 265#elif MAX_NR_ZONES <= 4 266#define ZONES_SHIFT 2 267#else 268#error ZONES_SHIFT -- too many zones configured adjust calculation 269#endif 270 271struct zone_reclaim_stat { 272 /* 273 * The pageout code in vmscan.c keeps track of how many of the 274 * mem/swap backed and file backed pages are refeferenced. 275 * The higher the rotated/scanned ratio, the more valuable 276 * that cache is. 277 * 278 * The anon LRU stats live in [0], file LRU stats in [1] 279 */ 280 unsigned long recent_rotated[2]; 281 unsigned long recent_scanned[2]; 282}; 283 284struct zone { 285 /* Fields commonly accessed by the page allocator */ 286 287 /* zone watermarks, access with *_wmark_pages(zone) macros */ 288 unsigned long watermark[NR_WMARK]; 289 290 /* 291 * When free pages are below this point, additional steps are taken 292 * when reading the number of free pages to avoid per-cpu counter 293 * drift allowing watermarks to be breached 294 */ 295 unsigned long percpu_drift_mark; 296 297 /* 298 * We don't know if the memory that we're going to allocate will be freeable 299 * or/and it will be released eventually, so to avoid totally wasting several 300 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 301 * to run OOM on the lower zones despite there's tons of freeable ram 302 * on the higher zones). This array is recalculated at runtime if the 303 * sysctl_lowmem_reserve_ratio sysctl changes. 304 */ 305 unsigned long lowmem_reserve[MAX_NR_ZONES]; 306 307#ifdef CONFIG_NUMA 308 int node; 309 /* 310 * zone reclaim becomes active if more unmapped pages exist. 311 */ 312 unsigned long min_unmapped_pages; 313 unsigned long min_slab_pages; 314#endif 315 struct per_cpu_pageset __percpu *pageset; 316 /* 317 * free areas of different sizes 318 */ 319 spinlock_t lock; 320 int all_unreclaimable; /* All pages pinned */ 321#ifdef CONFIG_MEMORY_HOTPLUG 322 /* see spanned/present_pages for more description */ 323 seqlock_t span_seqlock; 324#endif 325 struct free_area free_area[MAX_ORDER]; 326 327#ifndef CONFIG_SPARSEMEM 328 /* 329 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 330 * In SPARSEMEM, this map is stored in struct mem_section 331 */ 332 unsigned long *pageblock_flags; 333#endif /* CONFIG_SPARSEMEM */ 334 335#ifdef CONFIG_COMPACTION 336 /* 337 * On compaction failure, 1<<compact_defer_shift compactions 338 * are skipped before trying again. The number attempted since 339 * last failure is tracked with compact_considered. 340 */ 341 unsigned int compact_considered; 342 unsigned int compact_defer_shift; 343#endif 344 345 ZONE_PADDING(_pad1_) 346 347 /* Fields commonly accessed by the page reclaim scanner */ 348 spinlock_t lru_lock; 349 struct zone_lru { 350 struct list_head list; 351 } lru[NR_LRU_LISTS]; 352 353 struct zone_reclaim_stat reclaim_stat; 354 355 unsigned long pages_scanned; /* since last reclaim */ 356 unsigned long flags; /* zone flags, see below */ 357 358 /* Zone statistics */ 359 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 360 361 /* 362 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 363 * this zone's LRU. Maintained by the pageout code. 364 */ 365 unsigned int inactive_ratio; 366 367 368 ZONE_PADDING(_pad2_) 369 /* Rarely used or read-mostly fields */ 370 371 /* 372 * wait_table -- the array holding the hash table 373 * wait_table_hash_nr_entries -- the size of the hash table array 374 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 375 * 376 * The purpose of all these is to keep track of the people 377 * waiting for a page to become available and make them 378 * runnable again when possible. The trouble is that this 379 * consumes a lot of space, especially when so few things 380 * wait on pages at a given time. So instead of using 381 * per-page waitqueues, we use a waitqueue hash table. 382 * 383 * The bucket discipline is to sleep on the same queue when 384 * colliding and wake all in that wait queue when removing. 385 * When something wakes, it must check to be sure its page is 386 * truly available, a la thundering herd. The cost of a 387 * collision is great, but given the expected load of the 388 * table, they should be so rare as to be outweighed by the 389 * benefits from the saved space. 390 * 391 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 392 * primary users of these fields, and in mm/page_alloc.c 393 * free_area_init_core() performs the initialization of them. 394 */ 395 wait_queue_head_t * wait_table; 396 unsigned long wait_table_hash_nr_entries; 397 unsigned long wait_table_bits; 398 399 /* 400 * Discontig memory support fields. 401 */ 402 struct pglist_data *zone_pgdat; 403 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 404 unsigned long zone_start_pfn; 405 406 /* 407 * zone_start_pfn, spanned_pages and present_pages are all 408 * protected by span_seqlock. It is a seqlock because it has 409 * to be read outside of zone->lock, and it is done in the main 410 * allocator path. But, it is written quite infrequently. 411 * 412 * The lock is declared along with zone->lock because it is 413 * frequently read in proximity to zone->lock. It's good to 414 * give them a chance of being in the same cacheline. 415 */ 416 unsigned long spanned_pages; /* total size, including holes */ 417 unsigned long present_pages; /* amount of memory (excluding holes) */ 418 419 /* 420 * rarely used fields: 421 */ 422 const char *name; 423} ____cacheline_internodealigned_in_smp; 424 425typedef enum { 426 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 427 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 428 ZONE_CONGESTED, /* zone has many dirty pages backed by 429 * a congested BDI 430 */ 431} zone_flags_t; 432 433static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 434{ 435 set_bit(flag, &zone->flags); 436} 437 438static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 439{ 440 return test_and_set_bit(flag, &zone->flags); 441} 442 443static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 444{ 445 clear_bit(flag, &zone->flags); 446} 447 448static inline int zone_is_reclaim_congested(const struct zone *zone) 449{ 450 return test_bit(ZONE_CONGESTED, &zone->flags); 451} 452 453static inline int zone_is_reclaim_locked(const struct zone *zone) 454{ 455 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 456} 457 458static inline int zone_is_oom_locked(const struct zone *zone) 459{ 460 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 461} 462 463/* 464 * The "priority" of VM scanning is how much of the queues we will scan in one 465 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 466 * queues ("queue_length >> 12") during an aging round. 467 */ 468#define DEF_PRIORITY 12 469 470/* Maximum number of zones on a zonelist */ 471#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 472 473#ifdef CONFIG_NUMA 474 475/* 476 * The NUMA zonelists are doubled because we need zonelists that restrict the 477 * allocations to a single node for GFP_THISNODE. 478 * 479 * [0] : Zonelist with fallback 480 * [1] : No fallback (GFP_THISNODE) 481 */ 482#define MAX_ZONELISTS 2 483 484 485/* 486 * We cache key information from each zonelist for smaller cache 487 * footprint when scanning for free pages in get_page_from_freelist(). 488 * 489 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 490 * up short of free memory since the last time (last_fullzone_zap) 491 * we zero'd fullzones. 492 * 2) The array z_to_n[] maps each zone in the zonelist to its node 493 * id, so that we can efficiently evaluate whether that node is 494 * set in the current tasks mems_allowed. 495 * 496 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 497 * indexed by a zones offset in the zonelist zones[] array. 498 * 499 * The get_page_from_freelist() routine does two scans. During the 500 * first scan, we skip zones whose corresponding bit in 'fullzones' 501 * is set or whose corresponding node in current->mems_allowed (which 502 * comes from cpusets) is not set. During the second scan, we bypass 503 * this zonelist_cache, to ensure we look methodically at each zone. 504 * 505 * Once per second, we zero out (zap) fullzones, forcing us to 506 * reconsider nodes that might have regained more free memory. 507 * The field last_full_zap is the time we last zapped fullzones. 508 * 509 * This mechanism reduces the amount of time we waste repeatedly 510 * reexaming zones for free memory when they just came up low on 511 * memory momentarilly ago. 512 * 513 * The zonelist_cache struct members logically belong in struct 514 * zonelist. However, the mempolicy zonelists constructed for 515 * MPOL_BIND are intentionally variable length (and usually much 516 * shorter). A general purpose mechanism for handling structs with 517 * multiple variable length members is more mechanism than we want 518 * here. We resort to some special case hackery instead. 519 * 520 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 521 * part because they are shorter), so we put the fixed length stuff 522 * at the front of the zonelist struct, ending in a variable length 523 * zones[], as is needed by MPOL_BIND. 524 * 525 * Then we put the optional zonelist cache on the end of the zonelist 526 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 527 * the fixed length portion at the front of the struct. This pointer 528 * both enables us to find the zonelist cache, and in the case of 529 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 530 * to know that the zonelist cache is not there. 531 * 532 * The end result is that struct zonelists come in two flavors: 533 * 1) The full, fixed length version, shown below, and 534 * 2) The custom zonelists for MPOL_BIND. 535 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 536 * 537 * Even though there may be multiple CPU cores on a node modifying 538 * fullzones or last_full_zap in the same zonelist_cache at the same 539 * time, we don't lock it. This is just hint data - if it is wrong now 540 * and then, the allocator will still function, perhaps a bit slower. 541 */ 542 543 544struct zonelist_cache { 545 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 546 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 547 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 548}; 549#else 550#define MAX_ZONELISTS 1 551struct zonelist_cache; 552#endif 553 554/* 555 * This struct contains information about a zone in a zonelist. It is stored 556 * here to avoid dereferences into large structures and lookups of tables 557 */ 558struct zoneref { 559 struct zone *zone; /* Pointer to actual zone */ 560 int zone_idx; /* zone_idx(zoneref->zone) */ 561}; 562 563/* 564 * One allocation request operates on a zonelist. A zonelist 565 * is a list of zones, the first one is the 'goal' of the 566 * allocation, the other zones are fallback zones, in decreasing 567 * priority. 568 * 569 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 570 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 571 * * 572 * To speed the reading of the zonelist, the zonerefs contain the zone index 573 * of the entry being read. Helper functions to access information given 574 * a struct zoneref are 575 * 576 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 577 * zonelist_zone_idx() - Return the index of the zone for an entry 578 * zonelist_node_idx() - Return the index of the node for an entry 579 */ 580struct zonelist { 581 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 582 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 583#ifdef CONFIG_NUMA 584 struct zonelist_cache zlcache; // optional ... 585#endif 586}; 587 588#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 589struct node_active_region { 590 unsigned long start_pfn; 591 unsigned long end_pfn; 592 int nid; 593}; 594#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 595 596#ifndef CONFIG_DISCONTIGMEM 597/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 598extern struct page *mem_map; 599#endif 600 601/* 602 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 603 * (mostly NUMA machines?) to denote a higher-level memory zone than the 604 * zone denotes. 605 * 606 * On NUMA machines, each NUMA node would have a pg_data_t to describe 607 * it's memory layout. 608 * 609 * Memory statistics and page replacement data structures are maintained on a 610 * per-zone basis. 611 */ 612struct bootmem_data; 613typedef struct pglist_data { 614 struct zone node_zones[MAX_NR_ZONES]; 615 struct zonelist node_zonelists[MAX_ZONELISTS]; 616 int nr_zones; 617#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 618 struct page *node_mem_map; 619#ifdef CONFIG_CGROUP_MEM_RES_CTLR 620 struct page_cgroup *node_page_cgroup; 621#endif 622#endif 623#ifndef CONFIG_NO_BOOTMEM 624 struct bootmem_data *bdata; 625#endif 626#ifdef CONFIG_MEMORY_HOTPLUG 627 /* 628 * Must be held any time you expect node_start_pfn, node_present_pages 629 * or node_spanned_pages stay constant. Holding this will also 630 * guarantee that any pfn_valid() stays that way. 631 * 632 * Nests above zone->lock and zone->size_seqlock. 633 */ 634 spinlock_t node_size_lock; 635#endif 636 unsigned long node_start_pfn; 637 unsigned long node_present_pages; /* total number of physical pages */ 638 unsigned long node_spanned_pages; /* total size of physical page 639 range, including holes */ 640 int node_id; 641 wait_queue_head_t kswapd_wait; 642 struct task_struct *kswapd; 643 int kswapd_max_order; 644 enum zone_type classzone_idx; 645} pg_data_t; 646 647#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 648#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 649#ifdef CONFIG_FLAT_NODE_MEM_MAP 650#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 651#else 652#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 653#endif 654#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 655 656#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 657 658#define node_end_pfn(nid) ({\ 659 pg_data_t *__pgdat = NODE_DATA(nid);\ 660 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\ 661}) 662 663#include <linux/memory_hotplug.h> 664 665extern struct mutex zonelists_mutex; 666void build_all_zonelists(void *data); 667void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 668bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 669 int classzone_idx, int alloc_flags); 670bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 671 int classzone_idx, int alloc_flags); 672enum memmap_context { 673 MEMMAP_EARLY, 674 MEMMAP_HOTPLUG, 675}; 676extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 677 unsigned long size, 678 enum memmap_context context); 679 680#ifdef CONFIG_HAVE_MEMORY_PRESENT 681void memory_present(int nid, unsigned long start, unsigned long end); 682#else 683static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 684#endif 685 686#ifdef CONFIG_HAVE_MEMORYLESS_NODES 687int local_memory_node(int node_id); 688#else 689static inline int local_memory_node(int node_id) { return node_id; }; 690#endif 691 692#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 693unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 694#endif 695 696/* 697 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 698 */ 699#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 700 701static inline int populated_zone(struct zone *zone) 702{ 703 return (!!zone->present_pages); 704} 705 706extern int movable_zone; 707 708static inline int zone_movable_is_highmem(void) 709{ 710#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 711 return movable_zone == ZONE_HIGHMEM; 712#else 713 return 0; 714#endif 715} 716 717static inline int is_highmem_idx(enum zone_type idx) 718{ 719#ifdef CONFIG_HIGHMEM 720 return (idx == ZONE_HIGHMEM || 721 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 722#else 723 return 0; 724#endif 725} 726 727static inline int is_normal_idx(enum zone_type idx) 728{ 729 return (idx == ZONE_NORMAL); 730} 731 732/** 733 * is_highmem - helper function to quickly check if a struct zone is a 734 * highmem zone or not. This is an attempt to keep references 735 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 736 * @zone - pointer to struct zone variable 737 */ 738static inline int is_highmem(struct zone *zone) 739{ 740#ifdef CONFIG_HIGHMEM 741 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 742 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 743 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 744 zone_movable_is_highmem()); 745#else 746 return 0; 747#endif 748} 749 750static inline int is_normal(struct zone *zone) 751{ 752 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 753} 754 755static inline int is_dma32(struct zone *zone) 756{ 757#ifdef CONFIG_ZONE_DMA32 758 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 759#else 760 return 0; 761#endif 762} 763 764static inline int is_dma(struct zone *zone) 765{ 766#ifdef CONFIG_ZONE_DMA 767 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 768#else 769 return 0; 770#endif 771} 772 773/* These two functions are used to setup the per zone pages min values */ 774struct ctl_table; 775int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 776 void __user *, size_t *, loff_t *); 777extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 778int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 779 void __user *, size_t *, loff_t *); 780int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 781 void __user *, size_t *, loff_t *); 782int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 783 void __user *, size_t *, loff_t *); 784int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 785 void __user *, size_t *, loff_t *); 786 787extern int numa_zonelist_order_handler(struct ctl_table *, int, 788 void __user *, size_t *, loff_t *); 789extern char numa_zonelist_order[]; 790#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 791 792#ifndef CONFIG_NEED_MULTIPLE_NODES 793 794extern struct pglist_data contig_page_data; 795#define NODE_DATA(nid) (&contig_page_data) 796#define NODE_MEM_MAP(nid) mem_map 797 798#else /* CONFIG_NEED_MULTIPLE_NODES */ 799 800#include <asm/mmzone.h> 801 802#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 803 804extern struct pglist_data *first_online_pgdat(void); 805extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 806extern struct zone *next_zone(struct zone *zone); 807 808/** 809 * for_each_online_pgdat - helper macro to iterate over all online nodes 810 * @pgdat - pointer to a pg_data_t variable 811 */ 812#define for_each_online_pgdat(pgdat) \ 813 for (pgdat = first_online_pgdat(); \ 814 pgdat; \ 815 pgdat = next_online_pgdat(pgdat)) 816/** 817 * for_each_zone - helper macro to iterate over all memory zones 818 * @zone - pointer to struct zone variable 819 * 820 * The user only needs to declare the zone variable, for_each_zone 821 * fills it in. 822 */ 823#define for_each_zone(zone) \ 824 for (zone = (first_online_pgdat())->node_zones; \ 825 zone; \ 826 zone = next_zone(zone)) 827 828#define for_each_populated_zone(zone) \ 829 for (zone = (first_online_pgdat())->node_zones; \ 830 zone; \ 831 zone = next_zone(zone)) \ 832 if (!populated_zone(zone)) \ 833 ; /* do nothing */ \ 834 else 835 836static inline struct zone *zonelist_zone(struct zoneref *zoneref) 837{ 838 return zoneref->zone; 839} 840 841static inline int zonelist_zone_idx(struct zoneref *zoneref) 842{ 843 return zoneref->zone_idx; 844} 845 846static inline int zonelist_node_idx(struct zoneref *zoneref) 847{ 848#ifdef CONFIG_NUMA 849 /* zone_to_nid not available in this context */ 850 return zoneref->zone->node; 851#else 852 return 0; 853#endif /* CONFIG_NUMA */ 854} 855 856/** 857 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 858 * @z - The cursor used as a starting point for the search 859 * @highest_zoneidx - The zone index of the highest zone to return 860 * @nodes - An optional nodemask to filter the zonelist with 861 * @zone - The first suitable zone found is returned via this parameter 862 * 863 * This function returns the next zone at or below a given zone index that is 864 * within the allowed nodemask using a cursor as the starting point for the 865 * search. The zoneref returned is a cursor that represents the current zone 866 * being examined. It should be advanced by one before calling 867 * next_zones_zonelist again. 868 */ 869struct zoneref *next_zones_zonelist(struct zoneref *z, 870 enum zone_type highest_zoneidx, 871 nodemask_t *nodes, 872 struct zone **zone); 873 874/** 875 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 876 * @zonelist - The zonelist to search for a suitable zone 877 * @highest_zoneidx - The zone index of the highest zone to return 878 * @nodes - An optional nodemask to filter the zonelist with 879 * @zone - The first suitable zone found is returned via this parameter 880 * 881 * This function returns the first zone at or below a given zone index that is 882 * within the allowed nodemask. The zoneref returned is a cursor that can be 883 * used to iterate the zonelist with next_zones_zonelist by advancing it by 884 * one before calling. 885 */ 886static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 887 enum zone_type highest_zoneidx, 888 nodemask_t *nodes, 889 struct zone **zone) 890{ 891 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 892 zone); 893} 894 895/** 896 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 897 * @zone - The current zone in the iterator 898 * @z - The current pointer within zonelist->zones being iterated 899 * @zlist - The zonelist being iterated 900 * @highidx - The zone index of the highest zone to return 901 * @nodemask - Nodemask allowed by the allocator 902 * 903 * This iterator iterates though all zones at or below a given zone index and 904 * within a given nodemask 905 */ 906#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 907 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 908 zone; \ 909 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 910 911/** 912 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 913 * @zone - The current zone in the iterator 914 * @z - The current pointer within zonelist->zones being iterated 915 * @zlist - The zonelist being iterated 916 * @highidx - The zone index of the highest zone to return 917 * 918 * This iterator iterates though all zones at or below a given zone index. 919 */ 920#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 921 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 922 923#ifdef CONFIG_SPARSEMEM 924#include <asm/sparsemem.h> 925#endif 926 927#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 928 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 929static inline unsigned long early_pfn_to_nid(unsigned long pfn) 930{ 931 return 0; 932} 933#endif 934 935#ifdef CONFIG_FLATMEM 936#define pfn_to_nid(pfn) (0) 937#endif 938 939#ifdef CONFIG_SPARSEMEM 940 941/* 942 * SECTION_SHIFT #bits space required to store a section # 943 * 944 * PA_SECTION_SHIFT physical address to/from section number 945 * PFN_SECTION_SHIFT pfn to/from section number 946 */ 947#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 948 949#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 950#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 951 952#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 953 954#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 955#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 956 957#define SECTION_BLOCKFLAGS_BITS \ 958 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 959 960#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 961#error Allocator MAX_ORDER exceeds SECTION_SIZE 962#endif 963 964#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 965#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 966 967#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 968#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 969 970struct page; 971struct page_cgroup; 972struct mem_section { 973 /* 974 * This is, logically, a pointer to an array of struct 975 * pages. However, it is stored with some other magic. 976 * (see sparse.c::sparse_init_one_section()) 977 * 978 * Additionally during early boot we encode node id of 979 * the location of the section here to guide allocation. 980 * (see sparse.c::memory_present()) 981 * 982 * Making it a UL at least makes someone do a cast 983 * before using it wrong. 984 */ 985 unsigned long section_mem_map; 986 987 /* See declaration of similar field in struct zone */ 988 unsigned long *pageblock_flags; 989#ifdef CONFIG_CGROUP_MEM_RES_CTLR 990 /* 991 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 992 * section. (see memcontrol.h/page_cgroup.h about this.) 993 */ 994 struct page_cgroup *page_cgroup; 995 unsigned long pad; 996#endif 997}; 998 999#ifdef CONFIG_SPARSEMEM_EXTREME 1000#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1001#else 1002#define SECTIONS_PER_ROOT 1 1003#endif 1004 1005#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1006#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1007#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1008 1009#ifdef CONFIG_SPARSEMEM_EXTREME 1010extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1011#else 1012extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1013#endif 1014 1015static inline struct mem_section *__nr_to_section(unsigned long nr) 1016{ 1017 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1018 return NULL; 1019 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1020} 1021extern int __section_nr(struct mem_section* ms); 1022extern unsigned long usemap_size(void); 1023 1024/* 1025 * We use the lower bits of the mem_map pointer to store 1026 * a little bit of information. There should be at least 1027 * 3 bits here due to 32-bit alignment. 1028 */ 1029#define SECTION_MARKED_PRESENT (1UL<<0) 1030#define SECTION_HAS_MEM_MAP (1UL<<1) 1031#define SECTION_MAP_LAST_BIT (1UL<<2) 1032#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1033#define SECTION_NID_SHIFT 2 1034 1035static inline struct page *__section_mem_map_addr(struct mem_section *section) 1036{ 1037 unsigned long map = section->section_mem_map; 1038 map &= SECTION_MAP_MASK; 1039 return (struct page *)map; 1040} 1041 1042static inline int present_section(struct mem_section *section) 1043{ 1044 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1045} 1046 1047static inline int present_section_nr(unsigned long nr) 1048{ 1049 return present_section(__nr_to_section(nr)); 1050} 1051 1052static inline int valid_section(struct mem_section *section) 1053{ 1054 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1055} 1056 1057static inline int valid_section_nr(unsigned long nr) 1058{ 1059 return valid_section(__nr_to_section(nr)); 1060} 1061 1062static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1063{ 1064 return __nr_to_section(pfn_to_section_nr(pfn)); 1065} 1066 1067#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1068static inline int pfn_valid(unsigned long pfn) 1069{ 1070 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1071 return 0; 1072 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1073} 1074#endif 1075 1076static inline int pfn_present(unsigned long pfn) 1077{ 1078 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1079 return 0; 1080 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1081} 1082 1083/* 1084 * These are _only_ used during initialisation, therefore they 1085 * can use __initdata ... They could have names to indicate 1086 * this restriction. 1087 */ 1088#ifdef CONFIG_NUMA 1089#define pfn_to_nid(pfn) \ 1090({ \ 1091 unsigned long __pfn_to_nid_pfn = (pfn); \ 1092 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1093}) 1094#else 1095#define pfn_to_nid(pfn) (0) 1096#endif 1097 1098#define early_pfn_valid(pfn) pfn_valid(pfn) 1099void sparse_init(void); 1100#else 1101#define sparse_init() do {} while (0) 1102#define sparse_index_init(_sec, _nid) do {} while (0) 1103#endif /* CONFIG_SPARSEMEM */ 1104 1105#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1106bool early_pfn_in_nid(unsigned long pfn, int nid); 1107#else 1108#define early_pfn_in_nid(pfn, nid) (1) 1109#endif 1110 1111#ifndef early_pfn_valid 1112#define early_pfn_valid(pfn) (1) 1113#endif 1114 1115void memory_present(int nid, unsigned long start, unsigned long end); 1116unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1117 1118/* 1119 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1120 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1121 * pfn_valid_within() should be used in this case; we optimise this away 1122 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1123 */ 1124#ifdef CONFIG_HOLES_IN_ZONE 1125#define pfn_valid_within(pfn) pfn_valid(pfn) 1126#else 1127#define pfn_valid_within(pfn) (1) 1128#endif 1129 1130#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1131/* 1132 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1133 * associated with it or not. In FLATMEM, it is expected that holes always 1134 * have valid memmap as long as there is valid PFNs either side of the hole. 1135 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1136 * entire section. 1137 * 1138 * However, an ARM, and maybe other embedded architectures in the future 1139 * free memmap backing holes to save memory on the assumption the memmap is 1140 * never used. The page_zone linkages are then broken even though pfn_valid() 1141 * returns true. A walker of the full memmap must then do this additional 1142 * check to ensure the memmap they are looking at is sane by making sure 1143 * the zone and PFN linkages are still valid. This is expensive, but walkers 1144 * of the full memmap are extremely rare. 1145 */ 1146int memmap_valid_within(unsigned long pfn, 1147 struct page *page, struct zone *zone); 1148#else 1149static inline int memmap_valid_within(unsigned long pfn, 1150 struct page *page, struct zone *zone) 1151{ 1152 return 1; 1153} 1154#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1155 1156#endif /* !__GENERATING_BOUNDS.H */ 1157#endif /* !__ASSEMBLY__ */ 1158#endif /* _LINUX_MMZONE_H */