at v3.1 6387 lines 180 kB view raw
1/******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2011 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31#include <linux/module.h> 32#include <linux/types.h> 33#include <linux/init.h> 34#include <linux/pci.h> 35#include <linux/vmalloc.h> 36#include <linux/pagemap.h> 37#include <linux/delay.h> 38#include <linux/netdevice.h> 39#include <linux/interrupt.h> 40#include <linux/tcp.h> 41#include <linux/ipv6.h> 42#include <linux/slab.h> 43#include <net/checksum.h> 44#include <net/ip6_checksum.h> 45#include <linux/mii.h> 46#include <linux/ethtool.h> 47#include <linux/if_vlan.h> 48#include <linux/cpu.h> 49#include <linux/smp.h> 50#include <linux/pm_qos_params.h> 51#include <linux/pm_runtime.h> 52#include <linux/aer.h> 53#include <linux/prefetch.h> 54 55#include "e1000.h" 56 57#define DRV_EXTRAVERSION "-k" 58 59#define DRV_VERSION "1.4.4" DRV_EXTRAVERSION 60char e1000e_driver_name[] = "e1000e"; 61const char e1000e_driver_version[] = DRV_VERSION; 62 63static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state); 64 65static const struct e1000_info *e1000_info_tbl[] = { 66 [board_82571] = &e1000_82571_info, 67 [board_82572] = &e1000_82572_info, 68 [board_82573] = &e1000_82573_info, 69 [board_82574] = &e1000_82574_info, 70 [board_82583] = &e1000_82583_info, 71 [board_80003es2lan] = &e1000_es2_info, 72 [board_ich8lan] = &e1000_ich8_info, 73 [board_ich9lan] = &e1000_ich9_info, 74 [board_ich10lan] = &e1000_ich10_info, 75 [board_pchlan] = &e1000_pch_info, 76 [board_pch2lan] = &e1000_pch2_info, 77}; 78 79struct e1000_reg_info { 80 u32 ofs; 81 char *name; 82}; 83 84#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ 85#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ 86#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ 87#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ 88#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ 89 90#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ 91#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ 92#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ 93#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ 94#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ 95 96static const struct e1000_reg_info e1000_reg_info_tbl[] = { 97 98 /* General Registers */ 99 {E1000_CTRL, "CTRL"}, 100 {E1000_STATUS, "STATUS"}, 101 {E1000_CTRL_EXT, "CTRL_EXT"}, 102 103 /* Interrupt Registers */ 104 {E1000_ICR, "ICR"}, 105 106 /* Rx Registers */ 107 {E1000_RCTL, "RCTL"}, 108 {E1000_RDLEN, "RDLEN"}, 109 {E1000_RDH, "RDH"}, 110 {E1000_RDT, "RDT"}, 111 {E1000_RDTR, "RDTR"}, 112 {E1000_RXDCTL(0), "RXDCTL"}, 113 {E1000_ERT, "ERT"}, 114 {E1000_RDBAL, "RDBAL"}, 115 {E1000_RDBAH, "RDBAH"}, 116 {E1000_RDFH, "RDFH"}, 117 {E1000_RDFT, "RDFT"}, 118 {E1000_RDFHS, "RDFHS"}, 119 {E1000_RDFTS, "RDFTS"}, 120 {E1000_RDFPC, "RDFPC"}, 121 122 /* Tx Registers */ 123 {E1000_TCTL, "TCTL"}, 124 {E1000_TDBAL, "TDBAL"}, 125 {E1000_TDBAH, "TDBAH"}, 126 {E1000_TDLEN, "TDLEN"}, 127 {E1000_TDH, "TDH"}, 128 {E1000_TDT, "TDT"}, 129 {E1000_TIDV, "TIDV"}, 130 {E1000_TXDCTL(0), "TXDCTL"}, 131 {E1000_TADV, "TADV"}, 132 {E1000_TARC(0), "TARC"}, 133 {E1000_TDFH, "TDFH"}, 134 {E1000_TDFT, "TDFT"}, 135 {E1000_TDFHS, "TDFHS"}, 136 {E1000_TDFTS, "TDFTS"}, 137 {E1000_TDFPC, "TDFPC"}, 138 139 /* List Terminator */ 140 {} 141}; 142 143/* 144 * e1000_regdump - register printout routine 145 */ 146static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) 147{ 148 int n = 0; 149 char rname[16]; 150 u32 regs[8]; 151 152 switch (reginfo->ofs) { 153 case E1000_RXDCTL(0): 154 for (n = 0; n < 2; n++) 155 regs[n] = __er32(hw, E1000_RXDCTL(n)); 156 break; 157 case E1000_TXDCTL(0): 158 for (n = 0; n < 2; n++) 159 regs[n] = __er32(hw, E1000_TXDCTL(n)); 160 break; 161 case E1000_TARC(0): 162 for (n = 0; n < 2; n++) 163 regs[n] = __er32(hw, E1000_TARC(n)); 164 break; 165 default: 166 printk(KERN_INFO "%-15s %08x\n", 167 reginfo->name, __er32(hw, reginfo->ofs)); 168 return; 169 } 170 171 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); 172 printk(KERN_INFO "%-15s ", rname); 173 for (n = 0; n < 2; n++) 174 printk(KERN_CONT "%08x ", regs[n]); 175 printk(KERN_CONT "\n"); 176} 177 178/* 179 * e1000e_dump - Print registers, Tx-ring and Rx-ring 180 */ 181static void e1000e_dump(struct e1000_adapter *adapter) 182{ 183 struct net_device *netdev = adapter->netdev; 184 struct e1000_hw *hw = &adapter->hw; 185 struct e1000_reg_info *reginfo; 186 struct e1000_ring *tx_ring = adapter->tx_ring; 187 struct e1000_tx_desc *tx_desc; 188 struct my_u0 { 189 u64 a; 190 u64 b; 191 } *u0; 192 struct e1000_buffer *buffer_info; 193 struct e1000_ring *rx_ring = adapter->rx_ring; 194 union e1000_rx_desc_packet_split *rx_desc_ps; 195 struct e1000_rx_desc *rx_desc; 196 struct my_u1 { 197 u64 a; 198 u64 b; 199 u64 c; 200 u64 d; 201 } *u1; 202 u32 staterr; 203 int i = 0; 204 205 if (!netif_msg_hw(adapter)) 206 return; 207 208 /* Print netdevice Info */ 209 if (netdev) { 210 dev_info(&adapter->pdev->dev, "Net device Info\n"); 211 printk(KERN_INFO "Device Name state " 212 "trans_start last_rx\n"); 213 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", 214 netdev->name, netdev->state, netdev->trans_start, 215 netdev->last_rx); 216 } 217 218 /* Print Registers */ 219 dev_info(&adapter->pdev->dev, "Register Dump\n"); 220 printk(KERN_INFO " Register Name Value\n"); 221 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; 222 reginfo->name; reginfo++) { 223 e1000_regdump(hw, reginfo); 224 } 225 226 /* Print Tx Ring Summary */ 227 if (!netdev || !netif_running(netdev)) 228 goto exit; 229 230 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); 231 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]" 232 " leng ntw timestamp\n"); 233 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; 234 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", 235 0, tx_ring->next_to_use, tx_ring->next_to_clean, 236 (unsigned long long)buffer_info->dma, 237 buffer_info->length, 238 buffer_info->next_to_watch, 239 (unsigned long long)buffer_info->time_stamp); 240 241 /* Print Tx Ring */ 242 if (!netif_msg_tx_done(adapter)) 243 goto rx_ring_summary; 244 245 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); 246 247 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 248 * 249 * Legacy Transmit Descriptor 250 * +--------------------------------------------------------------+ 251 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 252 * +--------------------------------------------------------------+ 253 * 8 | Special | CSS | Status | CMD | CSO | Length | 254 * +--------------------------------------------------------------+ 255 * 63 48 47 36 35 32 31 24 23 16 15 0 256 * 257 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 258 * 63 48 47 40 39 32 31 16 15 8 7 0 259 * +----------------------------------------------------------------+ 260 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 261 * +----------------------------------------------------------------+ 262 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 263 * +----------------------------------------------------------------+ 264 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 265 * 266 * Extended Data Descriptor (DTYP=0x1) 267 * +----------------------------------------------------------------+ 268 * 0 | Buffer Address [63:0] | 269 * +----------------------------------------------------------------+ 270 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 271 * +----------------------------------------------------------------+ 272 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 273 */ 274 printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]" 275 " [bi->dma ] leng ntw timestamp bi->skb " 276 "<-- Legacy format\n"); 277 printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]" 278 " [bi->dma ] leng ntw timestamp bi->skb " 279 "<-- Ext Context format\n"); 280 printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]" 281 " [bi->dma ] leng ntw timestamp bi->skb " 282 "<-- Ext Data format\n"); 283 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 284 tx_desc = E1000_TX_DESC(*tx_ring, i); 285 buffer_info = &tx_ring->buffer_info[i]; 286 u0 = (struct my_u0 *)tx_desc; 287 printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX " 288 "%04X %3X %016llX %p", 289 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' : 290 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i, 291 (unsigned long long)le64_to_cpu(u0->a), 292 (unsigned long long)le64_to_cpu(u0->b), 293 (unsigned long long)buffer_info->dma, 294 buffer_info->length, buffer_info->next_to_watch, 295 (unsigned long long)buffer_info->time_stamp, 296 buffer_info->skb); 297 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 298 printk(KERN_CONT " NTC/U\n"); 299 else if (i == tx_ring->next_to_use) 300 printk(KERN_CONT " NTU\n"); 301 else if (i == tx_ring->next_to_clean) 302 printk(KERN_CONT " NTC\n"); 303 else 304 printk(KERN_CONT "\n"); 305 306 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) 307 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 308 16, 1, phys_to_virt(buffer_info->dma), 309 buffer_info->length, true); 310 } 311 312 /* Print Rx Ring Summary */ 313rx_ring_summary: 314 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); 315 printk(KERN_INFO "Queue [NTU] [NTC]\n"); 316 printk(KERN_INFO " %5d %5X %5X\n", 0, 317 rx_ring->next_to_use, rx_ring->next_to_clean); 318 319 /* Print Rx Ring */ 320 if (!netif_msg_rx_status(adapter)) 321 goto exit; 322 323 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); 324 switch (adapter->rx_ps_pages) { 325 case 1: 326 case 2: 327 case 3: 328 /* [Extended] Packet Split Receive Descriptor Format 329 * 330 * +-----------------------------------------------------+ 331 * 0 | Buffer Address 0 [63:0] | 332 * +-----------------------------------------------------+ 333 * 8 | Buffer Address 1 [63:0] | 334 * +-----------------------------------------------------+ 335 * 16 | Buffer Address 2 [63:0] | 336 * +-----------------------------------------------------+ 337 * 24 | Buffer Address 3 [63:0] | 338 * +-----------------------------------------------------+ 339 */ 340 printk(KERN_INFO "R [desc] [buffer 0 63:0 ] " 341 "[buffer 1 63:0 ] " 342 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] " 343 "[bi->skb] <-- Ext Pkt Split format\n"); 344 /* [Extended] Receive Descriptor (Write-Back) Format 345 * 346 * 63 48 47 32 31 13 12 8 7 4 3 0 347 * +------------------------------------------------------+ 348 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | 349 * | Checksum | Ident | | Queue | | Type | 350 * +------------------------------------------------------+ 351 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 352 * +------------------------------------------------------+ 353 * 63 48 47 32 31 20 19 0 354 */ 355 printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] " 356 "[vl l0 ee es] " 357 "[ l3 l2 l1 hs] [reserved ] ---------------- " 358 "[bi->skb] <-- Ext Rx Write-Back format\n"); 359 for (i = 0; i < rx_ring->count; i++) { 360 buffer_info = &rx_ring->buffer_info[i]; 361 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); 362 u1 = (struct my_u1 *)rx_desc_ps; 363 staterr = 364 le32_to_cpu(rx_desc_ps->wb.middle.status_error); 365 if (staterr & E1000_RXD_STAT_DD) { 366 /* Descriptor Done */ 367 printk(KERN_INFO "RWB[0x%03X] %016llX " 368 "%016llX %016llX %016llX " 369 "---------------- %p", i, 370 (unsigned long long)le64_to_cpu(u1->a), 371 (unsigned long long)le64_to_cpu(u1->b), 372 (unsigned long long)le64_to_cpu(u1->c), 373 (unsigned long long)le64_to_cpu(u1->d), 374 buffer_info->skb); 375 } else { 376 printk(KERN_INFO "R [0x%03X] %016llX " 377 "%016llX %016llX %016llX %016llX %p", i, 378 (unsigned long long)le64_to_cpu(u1->a), 379 (unsigned long long)le64_to_cpu(u1->b), 380 (unsigned long long)le64_to_cpu(u1->c), 381 (unsigned long long)le64_to_cpu(u1->d), 382 (unsigned long long)buffer_info->dma, 383 buffer_info->skb); 384 385 if (netif_msg_pktdata(adapter)) 386 print_hex_dump(KERN_INFO, "", 387 DUMP_PREFIX_ADDRESS, 16, 1, 388 phys_to_virt(buffer_info->dma), 389 adapter->rx_ps_bsize0, true); 390 } 391 392 if (i == rx_ring->next_to_use) 393 printk(KERN_CONT " NTU\n"); 394 else if (i == rx_ring->next_to_clean) 395 printk(KERN_CONT " NTC\n"); 396 else 397 printk(KERN_CONT "\n"); 398 } 399 break; 400 default: 401 case 0: 402 /* Legacy Receive Descriptor Format 403 * 404 * +-----------------------------------------------------+ 405 * | Buffer Address [63:0] | 406 * +-----------------------------------------------------+ 407 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 408 * +-----------------------------------------------------+ 409 * 63 48 47 40 39 32 31 16 15 0 410 */ 411 printk(KERN_INFO "Rl[desc] [address 63:0 ] " 412 "[vl er S cks ln] [bi->dma ] [bi->skb] " 413 "<-- Legacy format\n"); 414 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 415 rx_desc = E1000_RX_DESC(*rx_ring, i); 416 buffer_info = &rx_ring->buffer_info[i]; 417 u0 = (struct my_u0 *)rx_desc; 418 printk(KERN_INFO "Rl[0x%03X] %016llX %016llX " 419 "%016llX %p", i, 420 (unsigned long long)le64_to_cpu(u0->a), 421 (unsigned long long)le64_to_cpu(u0->b), 422 (unsigned long long)buffer_info->dma, 423 buffer_info->skb); 424 if (i == rx_ring->next_to_use) 425 printk(KERN_CONT " NTU\n"); 426 else if (i == rx_ring->next_to_clean) 427 printk(KERN_CONT " NTC\n"); 428 else 429 printk(KERN_CONT "\n"); 430 431 if (netif_msg_pktdata(adapter)) 432 print_hex_dump(KERN_INFO, "", 433 DUMP_PREFIX_ADDRESS, 434 16, 1, 435 phys_to_virt(buffer_info->dma), 436 adapter->rx_buffer_len, true); 437 } 438 } 439 440exit: 441 return; 442} 443 444/** 445 * e1000_desc_unused - calculate if we have unused descriptors 446 **/ 447static int e1000_desc_unused(struct e1000_ring *ring) 448{ 449 if (ring->next_to_clean > ring->next_to_use) 450 return ring->next_to_clean - ring->next_to_use - 1; 451 452 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 453} 454 455/** 456 * e1000_receive_skb - helper function to handle Rx indications 457 * @adapter: board private structure 458 * @status: descriptor status field as written by hardware 459 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 460 * @skb: pointer to sk_buff to be indicated to stack 461 **/ 462static void e1000_receive_skb(struct e1000_adapter *adapter, 463 struct net_device *netdev, struct sk_buff *skb, 464 u8 status, __le16 vlan) 465{ 466 u16 tag = le16_to_cpu(vlan); 467 skb->protocol = eth_type_trans(skb, netdev); 468 469 if (status & E1000_RXD_STAT_VP) 470 __vlan_hwaccel_put_tag(skb, tag); 471 472 napi_gro_receive(&adapter->napi, skb); 473} 474 475/** 476 * e1000_rx_checksum - Receive Checksum Offload 477 * @adapter: board private structure 478 * @status_err: receive descriptor status and error fields 479 * @csum: receive descriptor csum field 480 * @sk_buff: socket buffer with received data 481 **/ 482static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 483 u32 csum, struct sk_buff *skb) 484{ 485 u16 status = (u16)status_err; 486 u8 errors = (u8)(status_err >> 24); 487 488 skb_checksum_none_assert(skb); 489 490 /* Ignore Checksum bit is set */ 491 if (status & E1000_RXD_STAT_IXSM) 492 return; 493 /* TCP/UDP checksum error bit is set */ 494 if (errors & E1000_RXD_ERR_TCPE) { 495 /* let the stack verify checksum errors */ 496 adapter->hw_csum_err++; 497 return; 498 } 499 500 /* TCP/UDP Checksum has not been calculated */ 501 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 502 return; 503 504 /* It must be a TCP or UDP packet with a valid checksum */ 505 if (status & E1000_RXD_STAT_TCPCS) { 506 /* TCP checksum is good */ 507 skb->ip_summed = CHECKSUM_UNNECESSARY; 508 } else { 509 /* 510 * IP fragment with UDP payload 511 * Hardware complements the payload checksum, so we undo it 512 * and then put the value in host order for further stack use. 513 */ 514 __sum16 sum = (__force __sum16)htons(csum); 515 skb->csum = csum_unfold(~sum); 516 skb->ip_summed = CHECKSUM_COMPLETE; 517 } 518 adapter->hw_csum_good++; 519} 520 521/** 522 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa() 523 * @hw: pointer to the HW structure 524 * @tail: address of tail descriptor register 525 * @i: value to write to tail descriptor register 526 * 527 * When updating the tail register, the ME could be accessing Host CSR 528 * registers at the same time. Normally, this is handled in h/w by an 529 * arbiter but on some parts there is a bug that acknowledges Host accesses 530 * later than it should which could result in the descriptor register to 531 * have an incorrect value. Workaround this by checking the FWSM register 532 * which has bit 24 set while ME is accessing Host CSR registers, wait 533 * if it is set and try again a number of times. 534 **/ 535static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, u8 __iomem * tail, 536 unsigned int i) 537{ 538 unsigned int j = 0; 539 540 while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) && 541 (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI)) 542 udelay(50); 543 544 writel(i, tail); 545 546 if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail))) 547 return E1000_ERR_SWFW_SYNC; 548 549 return 0; 550} 551 552static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i) 553{ 554 u8 __iomem *tail = (adapter->hw.hw_addr + adapter->rx_ring->tail); 555 struct e1000_hw *hw = &adapter->hw; 556 557 if (e1000e_update_tail_wa(hw, tail, i)) { 558 u32 rctl = er32(RCTL); 559 ew32(RCTL, rctl & ~E1000_RCTL_EN); 560 e_err("ME firmware caused invalid RDT - resetting\n"); 561 schedule_work(&adapter->reset_task); 562 } 563} 564 565static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i) 566{ 567 u8 __iomem *tail = (adapter->hw.hw_addr + adapter->tx_ring->tail); 568 struct e1000_hw *hw = &adapter->hw; 569 570 if (e1000e_update_tail_wa(hw, tail, i)) { 571 u32 tctl = er32(TCTL); 572 ew32(TCTL, tctl & ~E1000_TCTL_EN); 573 e_err("ME firmware caused invalid TDT - resetting\n"); 574 schedule_work(&adapter->reset_task); 575 } 576} 577 578/** 579 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 580 * @adapter: address of board private structure 581 **/ 582static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 583 int cleaned_count, gfp_t gfp) 584{ 585 struct net_device *netdev = adapter->netdev; 586 struct pci_dev *pdev = adapter->pdev; 587 struct e1000_ring *rx_ring = adapter->rx_ring; 588 struct e1000_rx_desc *rx_desc; 589 struct e1000_buffer *buffer_info; 590 struct sk_buff *skb; 591 unsigned int i; 592 unsigned int bufsz = adapter->rx_buffer_len; 593 594 i = rx_ring->next_to_use; 595 buffer_info = &rx_ring->buffer_info[i]; 596 597 while (cleaned_count--) { 598 skb = buffer_info->skb; 599 if (skb) { 600 skb_trim(skb, 0); 601 goto map_skb; 602 } 603 604 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 605 if (!skb) { 606 /* Better luck next round */ 607 adapter->alloc_rx_buff_failed++; 608 break; 609 } 610 611 buffer_info->skb = skb; 612map_skb: 613 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 614 adapter->rx_buffer_len, 615 DMA_FROM_DEVICE); 616 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 617 dev_err(&pdev->dev, "Rx DMA map failed\n"); 618 adapter->rx_dma_failed++; 619 break; 620 } 621 622 rx_desc = E1000_RX_DESC(*rx_ring, i); 623 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 624 625 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 626 /* 627 * Force memory writes to complete before letting h/w 628 * know there are new descriptors to fetch. (Only 629 * applicable for weak-ordered memory model archs, 630 * such as IA-64). 631 */ 632 wmb(); 633 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 634 e1000e_update_rdt_wa(adapter, i); 635 else 636 writel(i, adapter->hw.hw_addr + rx_ring->tail); 637 } 638 i++; 639 if (i == rx_ring->count) 640 i = 0; 641 buffer_info = &rx_ring->buffer_info[i]; 642 } 643 644 rx_ring->next_to_use = i; 645} 646 647/** 648 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 649 * @adapter: address of board private structure 650 **/ 651static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, 652 int cleaned_count, gfp_t gfp) 653{ 654 struct net_device *netdev = adapter->netdev; 655 struct pci_dev *pdev = adapter->pdev; 656 union e1000_rx_desc_packet_split *rx_desc; 657 struct e1000_ring *rx_ring = adapter->rx_ring; 658 struct e1000_buffer *buffer_info; 659 struct e1000_ps_page *ps_page; 660 struct sk_buff *skb; 661 unsigned int i, j; 662 663 i = rx_ring->next_to_use; 664 buffer_info = &rx_ring->buffer_info[i]; 665 666 while (cleaned_count--) { 667 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 668 669 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 670 ps_page = &buffer_info->ps_pages[j]; 671 if (j >= adapter->rx_ps_pages) { 672 /* all unused desc entries get hw null ptr */ 673 rx_desc->read.buffer_addr[j + 1] = 674 ~cpu_to_le64(0); 675 continue; 676 } 677 if (!ps_page->page) { 678 ps_page->page = alloc_page(gfp); 679 if (!ps_page->page) { 680 adapter->alloc_rx_buff_failed++; 681 goto no_buffers; 682 } 683 ps_page->dma = dma_map_page(&pdev->dev, 684 ps_page->page, 685 0, PAGE_SIZE, 686 DMA_FROM_DEVICE); 687 if (dma_mapping_error(&pdev->dev, 688 ps_page->dma)) { 689 dev_err(&adapter->pdev->dev, 690 "Rx DMA page map failed\n"); 691 adapter->rx_dma_failed++; 692 goto no_buffers; 693 } 694 } 695 /* 696 * Refresh the desc even if buffer_addrs 697 * didn't change because each write-back 698 * erases this info. 699 */ 700 rx_desc->read.buffer_addr[j + 1] = 701 cpu_to_le64(ps_page->dma); 702 } 703 704 skb = __netdev_alloc_skb_ip_align(netdev, 705 adapter->rx_ps_bsize0, 706 gfp); 707 708 if (!skb) { 709 adapter->alloc_rx_buff_failed++; 710 break; 711 } 712 713 buffer_info->skb = skb; 714 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 715 adapter->rx_ps_bsize0, 716 DMA_FROM_DEVICE); 717 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 718 dev_err(&pdev->dev, "Rx DMA map failed\n"); 719 adapter->rx_dma_failed++; 720 /* cleanup skb */ 721 dev_kfree_skb_any(skb); 722 buffer_info->skb = NULL; 723 break; 724 } 725 726 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 727 728 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 729 /* 730 * Force memory writes to complete before letting h/w 731 * know there are new descriptors to fetch. (Only 732 * applicable for weak-ordered memory model archs, 733 * such as IA-64). 734 */ 735 wmb(); 736 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 737 e1000e_update_rdt_wa(adapter, i << 1); 738 else 739 writel(i << 1, 740 adapter->hw.hw_addr + rx_ring->tail); 741 } 742 743 i++; 744 if (i == rx_ring->count) 745 i = 0; 746 buffer_info = &rx_ring->buffer_info[i]; 747 } 748 749no_buffers: 750 rx_ring->next_to_use = i; 751} 752 753/** 754 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 755 * @adapter: address of board private structure 756 * @cleaned_count: number of buffers to allocate this pass 757 **/ 758 759static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 760 int cleaned_count, gfp_t gfp) 761{ 762 struct net_device *netdev = adapter->netdev; 763 struct pci_dev *pdev = adapter->pdev; 764 struct e1000_rx_desc *rx_desc; 765 struct e1000_ring *rx_ring = adapter->rx_ring; 766 struct e1000_buffer *buffer_info; 767 struct sk_buff *skb; 768 unsigned int i; 769 unsigned int bufsz = 256 - 16 /* for skb_reserve */; 770 771 i = rx_ring->next_to_use; 772 buffer_info = &rx_ring->buffer_info[i]; 773 774 while (cleaned_count--) { 775 skb = buffer_info->skb; 776 if (skb) { 777 skb_trim(skb, 0); 778 goto check_page; 779 } 780 781 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 782 if (unlikely(!skb)) { 783 /* Better luck next round */ 784 adapter->alloc_rx_buff_failed++; 785 break; 786 } 787 788 buffer_info->skb = skb; 789check_page: 790 /* allocate a new page if necessary */ 791 if (!buffer_info->page) { 792 buffer_info->page = alloc_page(gfp); 793 if (unlikely(!buffer_info->page)) { 794 adapter->alloc_rx_buff_failed++; 795 break; 796 } 797 } 798 799 if (!buffer_info->dma) 800 buffer_info->dma = dma_map_page(&pdev->dev, 801 buffer_info->page, 0, 802 PAGE_SIZE, 803 DMA_FROM_DEVICE); 804 805 rx_desc = E1000_RX_DESC(*rx_ring, i); 806 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 807 808 if (unlikely(++i == rx_ring->count)) 809 i = 0; 810 buffer_info = &rx_ring->buffer_info[i]; 811 } 812 813 if (likely(rx_ring->next_to_use != i)) { 814 rx_ring->next_to_use = i; 815 if (unlikely(i-- == 0)) 816 i = (rx_ring->count - 1); 817 818 /* Force memory writes to complete before letting h/w 819 * know there are new descriptors to fetch. (Only 820 * applicable for weak-ordered memory model archs, 821 * such as IA-64). */ 822 wmb(); 823 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 824 e1000e_update_rdt_wa(adapter, i); 825 else 826 writel(i, adapter->hw.hw_addr + rx_ring->tail); 827 } 828} 829 830/** 831 * e1000_clean_rx_irq - Send received data up the network stack; legacy 832 * @adapter: board private structure 833 * 834 * the return value indicates whether actual cleaning was done, there 835 * is no guarantee that everything was cleaned 836 **/ 837static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 838 int *work_done, int work_to_do) 839{ 840 struct net_device *netdev = adapter->netdev; 841 struct pci_dev *pdev = adapter->pdev; 842 struct e1000_hw *hw = &adapter->hw; 843 struct e1000_ring *rx_ring = adapter->rx_ring; 844 struct e1000_rx_desc *rx_desc, *next_rxd; 845 struct e1000_buffer *buffer_info, *next_buffer; 846 u32 length; 847 unsigned int i; 848 int cleaned_count = 0; 849 bool cleaned = 0; 850 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 851 852 i = rx_ring->next_to_clean; 853 rx_desc = E1000_RX_DESC(*rx_ring, i); 854 buffer_info = &rx_ring->buffer_info[i]; 855 856 while (rx_desc->status & E1000_RXD_STAT_DD) { 857 struct sk_buff *skb; 858 u8 status; 859 860 if (*work_done >= work_to_do) 861 break; 862 (*work_done)++; 863 rmb(); /* read descriptor and rx_buffer_info after status DD */ 864 865 status = rx_desc->status; 866 skb = buffer_info->skb; 867 buffer_info->skb = NULL; 868 869 prefetch(skb->data - NET_IP_ALIGN); 870 871 i++; 872 if (i == rx_ring->count) 873 i = 0; 874 next_rxd = E1000_RX_DESC(*rx_ring, i); 875 prefetch(next_rxd); 876 877 next_buffer = &rx_ring->buffer_info[i]; 878 879 cleaned = 1; 880 cleaned_count++; 881 dma_unmap_single(&pdev->dev, 882 buffer_info->dma, 883 adapter->rx_buffer_len, 884 DMA_FROM_DEVICE); 885 buffer_info->dma = 0; 886 887 length = le16_to_cpu(rx_desc->length); 888 889 /* 890 * !EOP means multiple descriptors were used to store a single 891 * packet, if that's the case we need to toss it. In fact, we 892 * need to toss every packet with the EOP bit clear and the 893 * next frame that _does_ have the EOP bit set, as it is by 894 * definition only a frame fragment 895 */ 896 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 897 adapter->flags2 |= FLAG2_IS_DISCARDING; 898 899 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 900 /* All receives must fit into a single buffer */ 901 e_dbg("Receive packet consumed multiple buffers\n"); 902 /* recycle */ 903 buffer_info->skb = skb; 904 if (status & E1000_RXD_STAT_EOP) 905 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 906 goto next_desc; 907 } 908 909 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { 910 /* recycle */ 911 buffer_info->skb = skb; 912 goto next_desc; 913 } 914 915 /* adjust length to remove Ethernet CRC */ 916 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) 917 length -= 4; 918 919 total_rx_bytes += length; 920 total_rx_packets++; 921 922 /* 923 * code added for copybreak, this should improve 924 * performance for small packets with large amounts 925 * of reassembly being done in the stack 926 */ 927 if (length < copybreak) { 928 struct sk_buff *new_skb = 929 netdev_alloc_skb_ip_align(netdev, length); 930 if (new_skb) { 931 skb_copy_to_linear_data_offset(new_skb, 932 -NET_IP_ALIGN, 933 (skb->data - 934 NET_IP_ALIGN), 935 (length + 936 NET_IP_ALIGN)); 937 /* save the skb in buffer_info as good */ 938 buffer_info->skb = skb; 939 skb = new_skb; 940 } 941 /* else just continue with the old one */ 942 } 943 /* end copybreak code */ 944 skb_put(skb, length); 945 946 /* Receive Checksum Offload */ 947 e1000_rx_checksum(adapter, 948 (u32)(status) | 949 ((u32)(rx_desc->errors) << 24), 950 le16_to_cpu(rx_desc->csum), skb); 951 952 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); 953 954next_desc: 955 rx_desc->status = 0; 956 957 /* return some buffers to hardware, one at a time is too slow */ 958 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 959 adapter->alloc_rx_buf(adapter, cleaned_count, 960 GFP_ATOMIC); 961 cleaned_count = 0; 962 } 963 964 /* use prefetched values */ 965 rx_desc = next_rxd; 966 buffer_info = next_buffer; 967 } 968 rx_ring->next_to_clean = i; 969 970 cleaned_count = e1000_desc_unused(rx_ring); 971 if (cleaned_count) 972 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC); 973 974 adapter->total_rx_bytes += total_rx_bytes; 975 adapter->total_rx_packets += total_rx_packets; 976 return cleaned; 977} 978 979static void e1000_put_txbuf(struct e1000_adapter *adapter, 980 struct e1000_buffer *buffer_info) 981{ 982 if (buffer_info->dma) { 983 if (buffer_info->mapped_as_page) 984 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 985 buffer_info->length, DMA_TO_DEVICE); 986 else 987 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 988 buffer_info->length, DMA_TO_DEVICE); 989 buffer_info->dma = 0; 990 } 991 if (buffer_info->skb) { 992 dev_kfree_skb_any(buffer_info->skb); 993 buffer_info->skb = NULL; 994 } 995 buffer_info->time_stamp = 0; 996} 997 998static void e1000_print_hw_hang(struct work_struct *work) 999{ 1000 struct e1000_adapter *adapter = container_of(work, 1001 struct e1000_adapter, 1002 print_hang_task); 1003 struct e1000_ring *tx_ring = adapter->tx_ring; 1004 unsigned int i = tx_ring->next_to_clean; 1005 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 1006 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 1007 struct e1000_hw *hw = &adapter->hw; 1008 u16 phy_status, phy_1000t_status, phy_ext_status; 1009 u16 pci_status; 1010 1011 if (test_bit(__E1000_DOWN, &adapter->state)) 1012 return; 1013 1014 e1e_rphy(hw, PHY_STATUS, &phy_status); 1015 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status); 1016 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status); 1017 1018 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); 1019 1020 /* detected Hardware unit hang */ 1021 e_err("Detected Hardware Unit Hang:\n" 1022 " TDH <%x>\n" 1023 " TDT <%x>\n" 1024 " next_to_use <%x>\n" 1025 " next_to_clean <%x>\n" 1026 "buffer_info[next_to_clean]:\n" 1027 " time_stamp <%lx>\n" 1028 " next_to_watch <%x>\n" 1029 " jiffies <%lx>\n" 1030 " next_to_watch.status <%x>\n" 1031 "MAC Status <%x>\n" 1032 "PHY Status <%x>\n" 1033 "PHY 1000BASE-T Status <%x>\n" 1034 "PHY Extended Status <%x>\n" 1035 "PCI Status <%x>\n", 1036 readl(adapter->hw.hw_addr + tx_ring->head), 1037 readl(adapter->hw.hw_addr + tx_ring->tail), 1038 tx_ring->next_to_use, 1039 tx_ring->next_to_clean, 1040 tx_ring->buffer_info[eop].time_stamp, 1041 eop, 1042 jiffies, 1043 eop_desc->upper.fields.status, 1044 er32(STATUS), 1045 phy_status, 1046 phy_1000t_status, 1047 phy_ext_status, 1048 pci_status); 1049} 1050 1051/** 1052 * e1000_clean_tx_irq - Reclaim resources after transmit completes 1053 * @adapter: board private structure 1054 * 1055 * the return value indicates whether actual cleaning was done, there 1056 * is no guarantee that everything was cleaned 1057 **/ 1058static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) 1059{ 1060 struct net_device *netdev = adapter->netdev; 1061 struct e1000_hw *hw = &adapter->hw; 1062 struct e1000_ring *tx_ring = adapter->tx_ring; 1063 struct e1000_tx_desc *tx_desc, *eop_desc; 1064 struct e1000_buffer *buffer_info; 1065 unsigned int i, eop; 1066 unsigned int count = 0; 1067 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 1068 1069 i = tx_ring->next_to_clean; 1070 eop = tx_ring->buffer_info[i].next_to_watch; 1071 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1072 1073 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 1074 (count < tx_ring->count)) { 1075 bool cleaned = false; 1076 rmb(); /* read buffer_info after eop_desc */ 1077 for (; !cleaned; count++) { 1078 tx_desc = E1000_TX_DESC(*tx_ring, i); 1079 buffer_info = &tx_ring->buffer_info[i]; 1080 cleaned = (i == eop); 1081 1082 if (cleaned) { 1083 total_tx_packets += buffer_info->segs; 1084 total_tx_bytes += buffer_info->bytecount; 1085 } 1086 1087 e1000_put_txbuf(adapter, buffer_info); 1088 tx_desc->upper.data = 0; 1089 1090 i++; 1091 if (i == tx_ring->count) 1092 i = 0; 1093 } 1094 1095 if (i == tx_ring->next_to_use) 1096 break; 1097 eop = tx_ring->buffer_info[i].next_to_watch; 1098 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1099 } 1100 1101 tx_ring->next_to_clean = i; 1102 1103#define TX_WAKE_THRESHOLD 32 1104 if (count && netif_carrier_ok(netdev) && 1105 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 1106 /* Make sure that anybody stopping the queue after this 1107 * sees the new next_to_clean. 1108 */ 1109 smp_mb(); 1110 1111 if (netif_queue_stopped(netdev) && 1112 !(test_bit(__E1000_DOWN, &adapter->state))) { 1113 netif_wake_queue(netdev); 1114 ++adapter->restart_queue; 1115 } 1116 } 1117 1118 if (adapter->detect_tx_hung) { 1119 /* 1120 * Detect a transmit hang in hardware, this serializes the 1121 * check with the clearing of time_stamp and movement of i 1122 */ 1123 adapter->detect_tx_hung = 0; 1124 if (tx_ring->buffer_info[i].time_stamp && 1125 time_after(jiffies, tx_ring->buffer_info[i].time_stamp 1126 + (adapter->tx_timeout_factor * HZ)) && 1127 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 1128 schedule_work(&adapter->print_hang_task); 1129 netif_stop_queue(netdev); 1130 } 1131 } 1132 adapter->total_tx_bytes += total_tx_bytes; 1133 adapter->total_tx_packets += total_tx_packets; 1134 return count < tx_ring->count; 1135} 1136 1137/** 1138 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 1139 * @adapter: board private structure 1140 * 1141 * the return value indicates whether actual cleaning was done, there 1142 * is no guarantee that everything was cleaned 1143 **/ 1144static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, 1145 int *work_done, int work_to_do) 1146{ 1147 struct e1000_hw *hw = &adapter->hw; 1148 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 1149 struct net_device *netdev = adapter->netdev; 1150 struct pci_dev *pdev = adapter->pdev; 1151 struct e1000_ring *rx_ring = adapter->rx_ring; 1152 struct e1000_buffer *buffer_info, *next_buffer; 1153 struct e1000_ps_page *ps_page; 1154 struct sk_buff *skb; 1155 unsigned int i, j; 1156 u32 length, staterr; 1157 int cleaned_count = 0; 1158 bool cleaned = 0; 1159 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1160 1161 i = rx_ring->next_to_clean; 1162 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 1163 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1164 buffer_info = &rx_ring->buffer_info[i]; 1165 1166 while (staterr & E1000_RXD_STAT_DD) { 1167 if (*work_done >= work_to_do) 1168 break; 1169 (*work_done)++; 1170 skb = buffer_info->skb; 1171 rmb(); /* read descriptor and rx_buffer_info after status DD */ 1172 1173 /* in the packet split case this is header only */ 1174 prefetch(skb->data - NET_IP_ALIGN); 1175 1176 i++; 1177 if (i == rx_ring->count) 1178 i = 0; 1179 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 1180 prefetch(next_rxd); 1181 1182 next_buffer = &rx_ring->buffer_info[i]; 1183 1184 cleaned = 1; 1185 cleaned_count++; 1186 dma_unmap_single(&pdev->dev, buffer_info->dma, 1187 adapter->rx_ps_bsize0, DMA_FROM_DEVICE); 1188 buffer_info->dma = 0; 1189 1190 /* see !EOP comment in other Rx routine */ 1191 if (!(staterr & E1000_RXD_STAT_EOP)) 1192 adapter->flags2 |= FLAG2_IS_DISCARDING; 1193 1194 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 1195 e_dbg("Packet Split buffers didn't pick up the full " 1196 "packet\n"); 1197 dev_kfree_skb_irq(skb); 1198 if (staterr & E1000_RXD_STAT_EOP) 1199 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1200 goto next_desc; 1201 } 1202 1203 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 1204 dev_kfree_skb_irq(skb); 1205 goto next_desc; 1206 } 1207 1208 length = le16_to_cpu(rx_desc->wb.middle.length0); 1209 1210 if (!length) { 1211 e_dbg("Last part of the packet spanning multiple " 1212 "descriptors\n"); 1213 dev_kfree_skb_irq(skb); 1214 goto next_desc; 1215 } 1216 1217 /* Good Receive */ 1218 skb_put(skb, length); 1219 1220 { 1221 /* 1222 * this looks ugly, but it seems compiler issues make it 1223 * more efficient than reusing j 1224 */ 1225 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 1226 1227 /* 1228 * page alloc/put takes too long and effects small packet 1229 * throughput, so unsplit small packets and save the alloc/put 1230 * only valid in softirq (napi) context to call kmap_* 1231 */ 1232 if (l1 && (l1 <= copybreak) && 1233 ((length + l1) <= adapter->rx_ps_bsize0)) { 1234 u8 *vaddr; 1235 1236 ps_page = &buffer_info->ps_pages[0]; 1237 1238 /* 1239 * there is no documentation about how to call 1240 * kmap_atomic, so we can't hold the mapping 1241 * very long 1242 */ 1243 dma_sync_single_for_cpu(&pdev->dev, ps_page->dma, 1244 PAGE_SIZE, DMA_FROM_DEVICE); 1245 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); 1246 memcpy(skb_tail_pointer(skb), vaddr, l1); 1247 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 1248 dma_sync_single_for_device(&pdev->dev, ps_page->dma, 1249 PAGE_SIZE, DMA_FROM_DEVICE); 1250 1251 /* remove the CRC */ 1252 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) 1253 l1 -= 4; 1254 1255 skb_put(skb, l1); 1256 goto copydone; 1257 } /* if */ 1258 } 1259 1260 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1261 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 1262 if (!length) 1263 break; 1264 1265 ps_page = &buffer_info->ps_pages[j]; 1266 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1267 DMA_FROM_DEVICE); 1268 ps_page->dma = 0; 1269 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 1270 ps_page->page = NULL; 1271 skb->len += length; 1272 skb->data_len += length; 1273 skb->truesize += length; 1274 } 1275 1276 /* strip the ethernet crc, problem is we're using pages now so 1277 * this whole operation can get a little cpu intensive 1278 */ 1279 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) 1280 pskb_trim(skb, skb->len - 4); 1281 1282copydone: 1283 total_rx_bytes += skb->len; 1284 total_rx_packets++; 1285 1286 e1000_rx_checksum(adapter, staterr, le16_to_cpu( 1287 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); 1288 1289 if (rx_desc->wb.upper.header_status & 1290 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 1291 adapter->rx_hdr_split++; 1292 1293 e1000_receive_skb(adapter, netdev, skb, 1294 staterr, rx_desc->wb.middle.vlan); 1295 1296next_desc: 1297 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 1298 buffer_info->skb = NULL; 1299 1300 /* return some buffers to hardware, one at a time is too slow */ 1301 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1302 adapter->alloc_rx_buf(adapter, cleaned_count, 1303 GFP_ATOMIC); 1304 cleaned_count = 0; 1305 } 1306 1307 /* use prefetched values */ 1308 rx_desc = next_rxd; 1309 buffer_info = next_buffer; 1310 1311 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1312 } 1313 rx_ring->next_to_clean = i; 1314 1315 cleaned_count = e1000_desc_unused(rx_ring); 1316 if (cleaned_count) 1317 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC); 1318 1319 adapter->total_rx_bytes += total_rx_bytes; 1320 adapter->total_rx_packets += total_rx_packets; 1321 return cleaned; 1322} 1323 1324/** 1325 * e1000_consume_page - helper function 1326 **/ 1327static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 1328 u16 length) 1329{ 1330 bi->page = NULL; 1331 skb->len += length; 1332 skb->data_len += length; 1333 skb->truesize += length; 1334} 1335 1336/** 1337 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 1338 * @adapter: board private structure 1339 * 1340 * the return value indicates whether actual cleaning was done, there 1341 * is no guarantee that everything was cleaned 1342 **/ 1343 1344static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 1345 int *work_done, int work_to_do) 1346{ 1347 struct net_device *netdev = adapter->netdev; 1348 struct pci_dev *pdev = adapter->pdev; 1349 struct e1000_ring *rx_ring = adapter->rx_ring; 1350 struct e1000_rx_desc *rx_desc, *next_rxd; 1351 struct e1000_buffer *buffer_info, *next_buffer; 1352 u32 length; 1353 unsigned int i; 1354 int cleaned_count = 0; 1355 bool cleaned = false; 1356 unsigned int total_rx_bytes=0, total_rx_packets=0; 1357 1358 i = rx_ring->next_to_clean; 1359 rx_desc = E1000_RX_DESC(*rx_ring, i); 1360 buffer_info = &rx_ring->buffer_info[i]; 1361 1362 while (rx_desc->status & E1000_RXD_STAT_DD) { 1363 struct sk_buff *skb; 1364 u8 status; 1365 1366 if (*work_done >= work_to_do) 1367 break; 1368 (*work_done)++; 1369 rmb(); /* read descriptor and rx_buffer_info after status DD */ 1370 1371 status = rx_desc->status; 1372 skb = buffer_info->skb; 1373 buffer_info->skb = NULL; 1374 1375 ++i; 1376 if (i == rx_ring->count) 1377 i = 0; 1378 next_rxd = E1000_RX_DESC(*rx_ring, i); 1379 prefetch(next_rxd); 1380 1381 next_buffer = &rx_ring->buffer_info[i]; 1382 1383 cleaned = true; 1384 cleaned_count++; 1385 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, 1386 DMA_FROM_DEVICE); 1387 buffer_info->dma = 0; 1388 1389 length = le16_to_cpu(rx_desc->length); 1390 1391 /* errors is only valid for DD + EOP descriptors */ 1392 if (unlikely((status & E1000_RXD_STAT_EOP) && 1393 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 1394 /* recycle both page and skb */ 1395 buffer_info->skb = skb; 1396 /* an error means any chain goes out the window 1397 * too */ 1398 if (rx_ring->rx_skb_top) 1399 dev_kfree_skb_irq(rx_ring->rx_skb_top); 1400 rx_ring->rx_skb_top = NULL; 1401 goto next_desc; 1402 } 1403 1404#define rxtop (rx_ring->rx_skb_top) 1405 if (!(status & E1000_RXD_STAT_EOP)) { 1406 /* this descriptor is only the beginning (or middle) */ 1407 if (!rxtop) { 1408 /* this is the beginning of a chain */ 1409 rxtop = skb; 1410 skb_fill_page_desc(rxtop, 0, buffer_info->page, 1411 0, length); 1412 } else { 1413 /* this is the middle of a chain */ 1414 skb_fill_page_desc(rxtop, 1415 skb_shinfo(rxtop)->nr_frags, 1416 buffer_info->page, 0, length); 1417 /* re-use the skb, only consumed the page */ 1418 buffer_info->skb = skb; 1419 } 1420 e1000_consume_page(buffer_info, rxtop, length); 1421 goto next_desc; 1422 } else { 1423 if (rxtop) { 1424 /* end of the chain */ 1425 skb_fill_page_desc(rxtop, 1426 skb_shinfo(rxtop)->nr_frags, 1427 buffer_info->page, 0, length); 1428 /* re-use the current skb, we only consumed the 1429 * page */ 1430 buffer_info->skb = skb; 1431 skb = rxtop; 1432 rxtop = NULL; 1433 e1000_consume_page(buffer_info, skb, length); 1434 } else { 1435 /* no chain, got EOP, this buf is the packet 1436 * copybreak to save the put_page/alloc_page */ 1437 if (length <= copybreak && 1438 skb_tailroom(skb) >= length) { 1439 u8 *vaddr; 1440 vaddr = kmap_atomic(buffer_info->page, 1441 KM_SKB_DATA_SOFTIRQ); 1442 memcpy(skb_tail_pointer(skb), vaddr, 1443 length); 1444 kunmap_atomic(vaddr, 1445 KM_SKB_DATA_SOFTIRQ); 1446 /* re-use the page, so don't erase 1447 * buffer_info->page */ 1448 skb_put(skb, length); 1449 } else { 1450 skb_fill_page_desc(skb, 0, 1451 buffer_info->page, 0, 1452 length); 1453 e1000_consume_page(buffer_info, skb, 1454 length); 1455 } 1456 } 1457 } 1458 1459 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 1460 e1000_rx_checksum(adapter, 1461 (u32)(status) | 1462 ((u32)(rx_desc->errors) << 24), 1463 le16_to_cpu(rx_desc->csum), skb); 1464 1465 /* probably a little skewed due to removing CRC */ 1466 total_rx_bytes += skb->len; 1467 total_rx_packets++; 1468 1469 /* eth type trans needs skb->data to point to something */ 1470 if (!pskb_may_pull(skb, ETH_HLEN)) { 1471 e_err("pskb_may_pull failed.\n"); 1472 dev_kfree_skb_irq(skb); 1473 goto next_desc; 1474 } 1475 1476 e1000_receive_skb(adapter, netdev, skb, status, 1477 rx_desc->special); 1478 1479next_desc: 1480 rx_desc->status = 0; 1481 1482 /* return some buffers to hardware, one at a time is too slow */ 1483 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1484 adapter->alloc_rx_buf(adapter, cleaned_count, 1485 GFP_ATOMIC); 1486 cleaned_count = 0; 1487 } 1488 1489 /* use prefetched values */ 1490 rx_desc = next_rxd; 1491 buffer_info = next_buffer; 1492 } 1493 rx_ring->next_to_clean = i; 1494 1495 cleaned_count = e1000_desc_unused(rx_ring); 1496 if (cleaned_count) 1497 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC); 1498 1499 adapter->total_rx_bytes += total_rx_bytes; 1500 adapter->total_rx_packets += total_rx_packets; 1501 return cleaned; 1502} 1503 1504/** 1505 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1506 * @adapter: board private structure 1507 **/ 1508static void e1000_clean_rx_ring(struct e1000_adapter *adapter) 1509{ 1510 struct e1000_ring *rx_ring = adapter->rx_ring; 1511 struct e1000_buffer *buffer_info; 1512 struct e1000_ps_page *ps_page; 1513 struct pci_dev *pdev = adapter->pdev; 1514 unsigned int i, j; 1515 1516 /* Free all the Rx ring sk_buffs */ 1517 for (i = 0; i < rx_ring->count; i++) { 1518 buffer_info = &rx_ring->buffer_info[i]; 1519 if (buffer_info->dma) { 1520 if (adapter->clean_rx == e1000_clean_rx_irq) 1521 dma_unmap_single(&pdev->dev, buffer_info->dma, 1522 adapter->rx_buffer_len, 1523 DMA_FROM_DEVICE); 1524 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1525 dma_unmap_page(&pdev->dev, buffer_info->dma, 1526 PAGE_SIZE, 1527 DMA_FROM_DEVICE); 1528 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1529 dma_unmap_single(&pdev->dev, buffer_info->dma, 1530 adapter->rx_ps_bsize0, 1531 DMA_FROM_DEVICE); 1532 buffer_info->dma = 0; 1533 } 1534 1535 if (buffer_info->page) { 1536 put_page(buffer_info->page); 1537 buffer_info->page = NULL; 1538 } 1539 1540 if (buffer_info->skb) { 1541 dev_kfree_skb(buffer_info->skb); 1542 buffer_info->skb = NULL; 1543 } 1544 1545 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1546 ps_page = &buffer_info->ps_pages[j]; 1547 if (!ps_page->page) 1548 break; 1549 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1550 DMA_FROM_DEVICE); 1551 ps_page->dma = 0; 1552 put_page(ps_page->page); 1553 ps_page->page = NULL; 1554 } 1555 } 1556 1557 /* there also may be some cached data from a chained receive */ 1558 if (rx_ring->rx_skb_top) { 1559 dev_kfree_skb(rx_ring->rx_skb_top); 1560 rx_ring->rx_skb_top = NULL; 1561 } 1562 1563 /* Zero out the descriptor ring */ 1564 memset(rx_ring->desc, 0, rx_ring->size); 1565 1566 rx_ring->next_to_clean = 0; 1567 rx_ring->next_to_use = 0; 1568 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1569 1570 writel(0, adapter->hw.hw_addr + rx_ring->head); 1571 writel(0, adapter->hw.hw_addr + rx_ring->tail); 1572} 1573 1574static void e1000e_downshift_workaround(struct work_struct *work) 1575{ 1576 struct e1000_adapter *adapter = container_of(work, 1577 struct e1000_adapter, downshift_task); 1578 1579 if (test_bit(__E1000_DOWN, &adapter->state)) 1580 return; 1581 1582 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); 1583} 1584 1585/** 1586 * e1000_intr_msi - Interrupt Handler 1587 * @irq: interrupt number 1588 * @data: pointer to a network interface device structure 1589 **/ 1590static irqreturn_t e1000_intr_msi(int irq, void *data) 1591{ 1592 struct net_device *netdev = data; 1593 struct e1000_adapter *adapter = netdev_priv(netdev); 1594 struct e1000_hw *hw = &adapter->hw; 1595 u32 icr = er32(ICR); 1596 1597 /* 1598 * read ICR disables interrupts using IAM 1599 */ 1600 1601 if (icr & E1000_ICR_LSC) { 1602 hw->mac.get_link_status = 1; 1603 /* 1604 * ICH8 workaround-- Call gig speed drop workaround on cable 1605 * disconnect (LSC) before accessing any PHY registers 1606 */ 1607 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1608 (!(er32(STATUS) & E1000_STATUS_LU))) 1609 schedule_work(&adapter->downshift_task); 1610 1611 /* 1612 * 80003ES2LAN workaround-- For packet buffer work-around on 1613 * link down event; disable receives here in the ISR and reset 1614 * adapter in watchdog 1615 */ 1616 if (netif_carrier_ok(netdev) && 1617 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1618 /* disable receives */ 1619 u32 rctl = er32(RCTL); 1620 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1621 adapter->flags |= FLAG_RX_RESTART_NOW; 1622 } 1623 /* guard against interrupt when we're going down */ 1624 if (!test_bit(__E1000_DOWN, &adapter->state)) 1625 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1626 } 1627 1628 if (napi_schedule_prep(&adapter->napi)) { 1629 adapter->total_tx_bytes = 0; 1630 adapter->total_tx_packets = 0; 1631 adapter->total_rx_bytes = 0; 1632 adapter->total_rx_packets = 0; 1633 __napi_schedule(&adapter->napi); 1634 } 1635 1636 return IRQ_HANDLED; 1637} 1638 1639/** 1640 * e1000_intr - Interrupt Handler 1641 * @irq: interrupt number 1642 * @data: pointer to a network interface device structure 1643 **/ 1644static irqreturn_t e1000_intr(int irq, void *data) 1645{ 1646 struct net_device *netdev = data; 1647 struct e1000_adapter *adapter = netdev_priv(netdev); 1648 struct e1000_hw *hw = &adapter->hw; 1649 u32 rctl, icr = er32(ICR); 1650 1651 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) 1652 return IRQ_NONE; /* Not our interrupt */ 1653 1654 /* 1655 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1656 * not set, then the adapter didn't send an interrupt 1657 */ 1658 if (!(icr & E1000_ICR_INT_ASSERTED)) 1659 return IRQ_NONE; 1660 1661 /* 1662 * Interrupt Auto-Mask...upon reading ICR, 1663 * interrupts are masked. No need for the 1664 * IMC write 1665 */ 1666 1667 if (icr & E1000_ICR_LSC) { 1668 hw->mac.get_link_status = 1; 1669 /* 1670 * ICH8 workaround-- Call gig speed drop workaround on cable 1671 * disconnect (LSC) before accessing any PHY registers 1672 */ 1673 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1674 (!(er32(STATUS) & E1000_STATUS_LU))) 1675 schedule_work(&adapter->downshift_task); 1676 1677 /* 1678 * 80003ES2LAN workaround-- 1679 * For packet buffer work-around on link down event; 1680 * disable receives here in the ISR and 1681 * reset adapter in watchdog 1682 */ 1683 if (netif_carrier_ok(netdev) && 1684 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1685 /* disable receives */ 1686 rctl = er32(RCTL); 1687 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1688 adapter->flags |= FLAG_RX_RESTART_NOW; 1689 } 1690 /* guard against interrupt when we're going down */ 1691 if (!test_bit(__E1000_DOWN, &adapter->state)) 1692 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1693 } 1694 1695 if (napi_schedule_prep(&adapter->napi)) { 1696 adapter->total_tx_bytes = 0; 1697 adapter->total_tx_packets = 0; 1698 adapter->total_rx_bytes = 0; 1699 adapter->total_rx_packets = 0; 1700 __napi_schedule(&adapter->napi); 1701 } 1702 1703 return IRQ_HANDLED; 1704} 1705 1706static irqreturn_t e1000_msix_other(int irq, void *data) 1707{ 1708 struct net_device *netdev = data; 1709 struct e1000_adapter *adapter = netdev_priv(netdev); 1710 struct e1000_hw *hw = &adapter->hw; 1711 u32 icr = er32(ICR); 1712 1713 if (!(icr & E1000_ICR_INT_ASSERTED)) { 1714 if (!test_bit(__E1000_DOWN, &adapter->state)) 1715 ew32(IMS, E1000_IMS_OTHER); 1716 return IRQ_NONE; 1717 } 1718 1719 if (icr & adapter->eiac_mask) 1720 ew32(ICS, (icr & adapter->eiac_mask)); 1721 1722 if (icr & E1000_ICR_OTHER) { 1723 if (!(icr & E1000_ICR_LSC)) 1724 goto no_link_interrupt; 1725 hw->mac.get_link_status = 1; 1726 /* guard against interrupt when we're going down */ 1727 if (!test_bit(__E1000_DOWN, &adapter->state)) 1728 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1729 } 1730 1731no_link_interrupt: 1732 if (!test_bit(__E1000_DOWN, &adapter->state)) 1733 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); 1734 1735 return IRQ_HANDLED; 1736} 1737 1738 1739static irqreturn_t e1000_intr_msix_tx(int irq, void *data) 1740{ 1741 struct net_device *netdev = data; 1742 struct e1000_adapter *adapter = netdev_priv(netdev); 1743 struct e1000_hw *hw = &adapter->hw; 1744 struct e1000_ring *tx_ring = adapter->tx_ring; 1745 1746 1747 adapter->total_tx_bytes = 0; 1748 adapter->total_tx_packets = 0; 1749 1750 if (!e1000_clean_tx_irq(adapter)) 1751 /* Ring was not completely cleaned, so fire another interrupt */ 1752 ew32(ICS, tx_ring->ims_val); 1753 1754 return IRQ_HANDLED; 1755} 1756 1757static irqreturn_t e1000_intr_msix_rx(int irq, void *data) 1758{ 1759 struct net_device *netdev = data; 1760 struct e1000_adapter *adapter = netdev_priv(netdev); 1761 1762 /* Write the ITR value calculated at the end of the 1763 * previous interrupt. 1764 */ 1765 if (adapter->rx_ring->set_itr) { 1766 writel(1000000000 / (adapter->rx_ring->itr_val * 256), 1767 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 1768 adapter->rx_ring->set_itr = 0; 1769 } 1770 1771 if (napi_schedule_prep(&adapter->napi)) { 1772 adapter->total_rx_bytes = 0; 1773 adapter->total_rx_packets = 0; 1774 __napi_schedule(&adapter->napi); 1775 } 1776 return IRQ_HANDLED; 1777} 1778 1779/** 1780 * e1000_configure_msix - Configure MSI-X hardware 1781 * 1782 * e1000_configure_msix sets up the hardware to properly 1783 * generate MSI-X interrupts. 1784 **/ 1785static void e1000_configure_msix(struct e1000_adapter *adapter) 1786{ 1787 struct e1000_hw *hw = &adapter->hw; 1788 struct e1000_ring *rx_ring = adapter->rx_ring; 1789 struct e1000_ring *tx_ring = adapter->tx_ring; 1790 int vector = 0; 1791 u32 ctrl_ext, ivar = 0; 1792 1793 adapter->eiac_mask = 0; 1794 1795 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ 1796 if (hw->mac.type == e1000_82574) { 1797 u32 rfctl = er32(RFCTL); 1798 rfctl |= E1000_RFCTL_ACK_DIS; 1799 ew32(RFCTL, rfctl); 1800 } 1801 1802#define E1000_IVAR_INT_ALLOC_VALID 0x8 1803 /* Configure Rx vector */ 1804 rx_ring->ims_val = E1000_IMS_RXQ0; 1805 adapter->eiac_mask |= rx_ring->ims_val; 1806 if (rx_ring->itr_val) 1807 writel(1000000000 / (rx_ring->itr_val * 256), 1808 hw->hw_addr + rx_ring->itr_register); 1809 else 1810 writel(1, hw->hw_addr + rx_ring->itr_register); 1811 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; 1812 1813 /* Configure Tx vector */ 1814 tx_ring->ims_val = E1000_IMS_TXQ0; 1815 vector++; 1816 if (tx_ring->itr_val) 1817 writel(1000000000 / (tx_ring->itr_val * 256), 1818 hw->hw_addr + tx_ring->itr_register); 1819 else 1820 writel(1, hw->hw_addr + tx_ring->itr_register); 1821 adapter->eiac_mask |= tx_ring->ims_val; 1822 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); 1823 1824 /* set vector for Other Causes, e.g. link changes */ 1825 vector++; 1826 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); 1827 if (rx_ring->itr_val) 1828 writel(1000000000 / (rx_ring->itr_val * 256), 1829 hw->hw_addr + E1000_EITR_82574(vector)); 1830 else 1831 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); 1832 1833 /* Cause Tx interrupts on every write back */ 1834 ivar |= (1 << 31); 1835 1836 ew32(IVAR, ivar); 1837 1838 /* enable MSI-X PBA support */ 1839 ctrl_ext = er32(CTRL_EXT); 1840 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; 1841 1842 /* Auto-Mask Other interrupts upon ICR read */ 1843#define E1000_EIAC_MASK_82574 0x01F00000 1844 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); 1845 ctrl_ext |= E1000_CTRL_EXT_EIAME; 1846 ew32(CTRL_EXT, ctrl_ext); 1847 e1e_flush(); 1848} 1849 1850void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) 1851{ 1852 if (adapter->msix_entries) { 1853 pci_disable_msix(adapter->pdev); 1854 kfree(adapter->msix_entries); 1855 adapter->msix_entries = NULL; 1856 } else if (adapter->flags & FLAG_MSI_ENABLED) { 1857 pci_disable_msi(adapter->pdev); 1858 adapter->flags &= ~FLAG_MSI_ENABLED; 1859 } 1860} 1861 1862/** 1863 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported 1864 * 1865 * Attempt to configure interrupts using the best available 1866 * capabilities of the hardware and kernel. 1867 **/ 1868void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) 1869{ 1870 int err; 1871 int i; 1872 1873 switch (adapter->int_mode) { 1874 case E1000E_INT_MODE_MSIX: 1875 if (adapter->flags & FLAG_HAS_MSIX) { 1876 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ 1877 adapter->msix_entries = kcalloc(adapter->num_vectors, 1878 sizeof(struct msix_entry), 1879 GFP_KERNEL); 1880 if (adapter->msix_entries) { 1881 for (i = 0; i < adapter->num_vectors; i++) 1882 adapter->msix_entries[i].entry = i; 1883 1884 err = pci_enable_msix(adapter->pdev, 1885 adapter->msix_entries, 1886 adapter->num_vectors); 1887 if (err == 0) 1888 return; 1889 } 1890 /* MSI-X failed, so fall through and try MSI */ 1891 e_err("Failed to initialize MSI-X interrupts. " 1892 "Falling back to MSI interrupts.\n"); 1893 e1000e_reset_interrupt_capability(adapter); 1894 } 1895 adapter->int_mode = E1000E_INT_MODE_MSI; 1896 /* Fall through */ 1897 case E1000E_INT_MODE_MSI: 1898 if (!pci_enable_msi(adapter->pdev)) { 1899 adapter->flags |= FLAG_MSI_ENABLED; 1900 } else { 1901 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1902 e_err("Failed to initialize MSI interrupts. Falling " 1903 "back to legacy interrupts.\n"); 1904 } 1905 /* Fall through */ 1906 case E1000E_INT_MODE_LEGACY: 1907 /* Don't do anything; this is the system default */ 1908 break; 1909 } 1910 1911 /* store the number of vectors being used */ 1912 adapter->num_vectors = 1; 1913} 1914 1915/** 1916 * e1000_request_msix - Initialize MSI-X interrupts 1917 * 1918 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the 1919 * kernel. 1920 **/ 1921static int e1000_request_msix(struct e1000_adapter *adapter) 1922{ 1923 struct net_device *netdev = adapter->netdev; 1924 int err = 0, vector = 0; 1925 1926 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 1927 snprintf(adapter->rx_ring->name, 1928 sizeof(adapter->rx_ring->name) - 1, 1929 "%s-rx-0", netdev->name); 1930 else 1931 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1932 err = request_irq(adapter->msix_entries[vector].vector, 1933 e1000_intr_msix_rx, 0, adapter->rx_ring->name, 1934 netdev); 1935 if (err) 1936 goto out; 1937 adapter->rx_ring->itr_register = E1000_EITR_82574(vector); 1938 adapter->rx_ring->itr_val = adapter->itr; 1939 vector++; 1940 1941 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 1942 snprintf(adapter->tx_ring->name, 1943 sizeof(adapter->tx_ring->name) - 1, 1944 "%s-tx-0", netdev->name); 1945 else 1946 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1947 err = request_irq(adapter->msix_entries[vector].vector, 1948 e1000_intr_msix_tx, 0, adapter->tx_ring->name, 1949 netdev); 1950 if (err) 1951 goto out; 1952 adapter->tx_ring->itr_register = E1000_EITR_82574(vector); 1953 adapter->tx_ring->itr_val = adapter->itr; 1954 vector++; 1955 1956 err = request_irq(adapter->msix_entries[vector].vector, 1957 e1000_msix_other, 0, netdev->name, netdev); 1958 if (err) 1959 goto out; 1960 1961 e1000_configure_msix(adapter); 1962 return 0; 1963out: 1964 return err; 1965} 1966 1967/** 1968 * e1000_request_irq - initialize interrupts 1969 * 1970 * Attempts to configure interrupts using the best available 1971 * capabilities of the hardware and kernel. 1972 **/ 1973static int e1000_request_irq(struct e1000_adapter *adapter) 1974{ 1975 struct net_device *netdev = adapter->netdev; 1976 int err; 1977 1978 if (adapter->msix_entries) { 1979 err = e1000_request_msix(adapter); 1980 if (!err) 1981 return err; 1982 /* fall back to MSI */ 1983 e1000e_reset_interrupt_capability(adapter); 1984 adapter->int_mode = E1000E_INT_MODE_MSI; 1985 e1000e_set_interrupt_capability(adapter); 1986 } 1987 if (adapter->flags & FLAG_MSI_ENABLED) { 1988 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, 1989 netdev->name, netdev); 1990 if (!err) 1991 return err; 1992 1993 /* fall back to legacy interrupt */ 1994 e1000e_reset_interrupt_capability(adapter); 1995 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1996 } 1997 1998 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, 1999 netdev->name, netdev); 2000 if (err) 2001 e_err("Unable to allocate interrupt, Error: %d\n", err); 2002 2003 return err; 2004} 2005 2006static void e1000_free_irq(struct e1000_adapter *adapter) 2007{ 2008 struct net_device *netdev = adapter->netdev; 2009 2010 if (adapter->msix_entries) { 2011 int vector = 0; 2012 2013 free_irq(adapter->msix_entries[vector].vector, netdev); 2014 vector++; 2015 2016 free_irq(adapter->msix_entries[vector].vector, netdev); 2017 vector++; 2018 2019 /* Other Causes interrupt vector */ 2020 free_irq(adapter->msix_entries[vector].vector, netdev); 2021 return; 2022 } 2023 2024 free_irq(adapter->pdev->irq, netdev); 2025} 2026 2027/** 2028 * e1000_irq_disable - Mask off interrupt generation on the NIC 2029 **/ 2030static void e1000_irq_disable(struct e1000_adapter *adapter) 2031{ 2032 struct e1000_hw *hw = &adapter->hw; 2033 2034 ew32(IMC, ~0); 2035 if (adapter->msix_entries) 2036 ew32(EIAC_82574, 0); 2037 e1e_flush(); 2038 2039 if (adapter->msix_entries) { 2040 int i; 2041 for (i = 0; i < adapter->num_vectors; i++) 2042 synchronize_irq(adapter->msix_entries[i].vector); 2043 } else { 2044 synchronize_irq(adapter->pdev->irq); 2045 } 2046} 2047 2048/** 2049 * e1000_irq_enable - Enable default interrupt generation settings 2050 **/ 2051static void e1000_irq_enable(struct e1000_adapter *adapter) 2052{ 2053 struct e1000_hw *hw = &adapter->hw; 2054 2055 if (adapter->msix_entries) { 2056 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); 2057 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); 2058 } else { 2059 ew32(IMS, IMS_ENABLE_MASK); 2060 } 2061 e1e_flush(); 2062} 2063 2064/** 2065 * e1000e_get_hw_control - get control of the h/w from f/w 2066 * @adapter: address of board private structure 2067 * 2068 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2069 * For ASF and Pass Through versions of f/w this means that 2070 * the driver is loaded. For AMT version (only with 82573) 2071 * of the f/w this means that the network i/f is open. 2072 **/ 2073void e1000e_get_hw_control(struct e1000_adapter *adapter) 2074{ 2075 struct e1000_hw *hw = &adapter->hw; 2076 u32 ctrl_ext; 2077 u32 swsm; 2078 2079 /* Let firmware know the driver has taken over */ 2080 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2081 swsm = er32(SWSM); 2082 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 2083 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2084 ctrl_ext = er32(CTRL_EXT); 2085 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 2086 } 2087} 2088 2089/** 2090 * e1000e_release_hw_control - release control of the h/w to f/w 2091 * @adapter: address of board private structure 2092 * 2093 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2094 * For ASF and Pass Through versions of f/w this means that the 2095 * driver is no longer loaded. For AMT version (only with 82573) i 2096 * of the f/w this means that the network i/f is closed. 2097 * 2098 **/ 2099void e1000e_release_hw_control(struct e1000_adapter *adapter) 2100{ 2101 struct e1000_hw *hw = &adapter->hw; 2102 u32 ctrl_ext; 2103 u32 swsm; 2104 2105 /* Let firmware taken over control of h/w */ 2106 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2107 swsm = er32(SWSM); 2108 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 2109 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2110 ctrl_ext = er32(CTRL_EXT); 2111 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 2112 } 2113} 2114 2115/** 2116 * @e1000_alloc_ring - allocate memory for a ring structure 2117 **/ 2118static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 2119 struct e1000_ring *ring) 2120{ 2121 struct pci_dev *pdev = adapter->pdev; 2122 2123 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 2124 GFP_KERNEL); 2125 if (!ring->desc) 2126 return -ENOMEM; 2127 2128 return 0; 2129} 2130 2131/** 2132 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 2133 * @adapter: board private structure 2134 * 2135 * Return 0 on success, negative on failure 2136 **/ 2137int e1000e_setup_tx_resources(struct e1000_adapter *adapter) 2138{ 2139 struct e1000_ring *tx_ring = adapter->tx_ring; 2140 int err = -ENOMEM, size; 2141 2142 size = sizeof(struct e1000_buffer) * tx_ring->count; 2143 tx_ring->buffer_info = vzalloc(size); 2144 if (!tx_ring->buffer_info) 2145 goto err; 2146 2147 /* round up to nearest 4K */ 2148 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 2149 tx_ring->size = ALIGN(tx_ring->size, 4096); 2150 2151 err = e1000_alloc_ring_dma(adapter, tx_ring); 2152 if (err) 2153 goto err; 2154 2155 tx_ring->next_to_use = 0; 2156 tx_ring->next_to_clean = 0; 2157 2158 return 0; 2159err: 2160 vfree(tx_ring->buffer_info); 2161 e_err("Unable to allocate memory for the transmit descriptor ring\n"); 2162 return err; 2163} 2164 2165/** 2166 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 2167 * @adapter: board private structure 2168 * 2169 * Returns 0 on success, negative on failure 2170 **/ 2171int e1000e_setup_rx_resources(struct e1000_adapter *adapter) 2172{ 2173 struct e1000_ring *rx_ring = adapter->rx_ring; 2174 struct e1000_buffer *buffer_info; 2175 int i, size, desc_len, err = -ENOMEM; 2176 2177 size = sizeof(struct e1000_buffer) * rx_ring->count; 2178 rx_ring->buffer_info = vzalloc(size); 2179 if (!rx_ring->buffer_info) 2180 goto err; 2181 2182 for (i = 0; i < rx_ring->count; i++) { 2183 buffer_info = &rx_ring->buffer_info[i]; 2184 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 2185 sizeof(struct e1000_ps_page), 2186 GFP_KERNEL); 2187 if (!buffer_info->ps_pages) 2188 goto err_pages; 2189 } 2190 2191 desc_len = sizeof(union e1000_rx_desc_packet_split); 2192 2193 /* Round up to nearest 4K */ 2194 rx_ring->size = rx_ring->count * desc_len; 2195 rx_ring->size = ALIGN(rx_ring->size, 4096); 2196 2197 err = e1000_alloc_ring_dma(adapter, rx_ring); 2198 if (err) 2199 goto err_pages; 2200 2201 rx_ring->next_to_clean = 0; 2202 rx_ring->next_to_use = 0; 2203 rx_ring->rx_skb_top = NULL; 2204 2205 return 0; 2206 2207err_pages: 2208 for (i = 0; i < rx_ring->count; i++) { 2209 buffer_info = &rx_ring->buffer_info[i]; 2210 kfree(buffer_info->ps_pages); 2211 } 2212err: 2213 vfree(rx_ring->buffer_info); 2214 e_err("Unable to allocate memory for the receive descriptor ring\n"); 2215 return err; 2216} 2217 2218/** 2219 * e1000_clean_tx_ring - Free Tx Buffers 2220 * @adapter: board private structure 2221 **/ 2222static void e1000_clean_tx_ring(struct e1000_adapter *adapter) 2223{ 2224 struct e1000_ring *tx_ring = adapter->tx_ring; 2225 struct e1000_buffer *buffer_info; 2226 unsigned long size; 2227 unsigned int i; 2228 2229 for (i = 0; i < tx_ring->count; i++) { 2230 buffer_info = &tx_ring->buffer_info[i]; 2231 e1000_put_txbuf(adapter, buffer_info); 2232 } 2233 2234 size = sizeof(struct e1000_buffer) * tx_ring->count; 2235 memset(tx_ring->buffer_info, 0, size); 2236 2237 memset(tx_ring->desc, 0, tx_ring->size); 2238 2239 tx_ring->next_to_use = 0; 2240 tx_ring->next_to_clean = 0; 2241 2242 writel(0, adapter->hw.hw_addr + tx_ring->head); 2243 writel(0, adapter->hw.hw_addr + tx_ring->tail); 2244} 2245 2246/** 2247 * e1000e_free_tx_resources - Free Tx Resources per Queue 2248 * @adapter: board private structure 2249 * 2250 * Free all transmit software resources 2251 **/ 2252void e1000e_free_tx_resources(struct e1000_adapter *adapter) 2253{ 2254 struct pci_dev *pdev = adapter->pdev; 2255 struct e1000_ring *tx_ring = adapter->tx_ring; 2256 2257 e1000_clean_tx_ring(adapter); 2258 2259 vfree(tx_ring->buffer_info); 2260 tx_ring->buffer_info = NULL; 2261 2262 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 2263 tx_ring->dma); 2264 tx_ring->desc = NULL; 2265} 2266 2267/** 2268 * e1000e_free_rx_resources - Free Rx Resources 2269 * @adapter: board private structure 2270 * 2271 * Free all receive software resources 2272 **/ 2273 2274void e1000e_free_rx_resources(struct e1000_adapter *adapter) 2275{ 2276 struct pci_dev *pdev = adapter->pdev; 2277 struct e1000_ring *rx_ring = adapter->rx_ring; 2278 int i; 2279 2280 e1000_clean_rx_ring(adapter); 2281 2282 for (i = 0; i < rx_ring->count; i++) 2283 kfree(rx_ring->buffer_info[i].ps_pages); 2284 2285 vfree(rx_ring->buffer_info); 2286 rx_ring->buffer_info = NULL; 2287 2288 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2289 rx_ring->dma); 2290 rx_ring->desc = NULL; 2291} 2292 2293/** 2294 * e1000_update_itr - update the dynamic ITR value based on statistics 2295 * @adapter: pointer to adapter 2296 * @itr_setting: current adapter->itr 2297 * @packets: the number of packets during this measurement interval 2298 * @bytes: the number of bytes during this measurement interval 2299 * 2300 * Stores a new ITR value based on packets and byte 2301 * counts during the last interrupt. The advantage of per interrupt 2302 * computation is faster updates and more accurate ITR for the current 2303 * traffic pattern. Constants in this function were computed 2304 * based on theoretical maximum wire speed and thresholds were set based 2305 * on testing data as well as attempting to minimize response time 2306 * while increasing bulk throughput. This functionality is controlled 2307 * by the InterruptThrottleRate module parameter. 2308 **/ 2309static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2310 u16 itr_setting, int packets, 2311 int bytes) 2312{ 2313 unsigned int retval = itr_setting; 2314 2315 if (packets == 0) 2316 goto update_itr_done; 2317 2318 switch (itr_setting) { 2319 case lowest_latency: 2320 /* handle TSO and jumbo frames */ 2321 if (bytes/packets > 8000) 2322 retval = bulk_latency; 2323 else if ((packets < 5) && (bytes > 512)) 2324 retval = low_latency; 2325 break; 2326 case low_latency: /* 50 usec aka 20000 ints/s */ 2327 if (bytes > 10000) { 2328 /* this if handles the TSO accounting */ 2329 if (bytes/packets > 8000) 2330 retval = bulk_latency; 2331 else if ((packets < 10) || ((bytes/packets) > 1200)) 2332 retval = bulk_latency; 2333 else if ((packets > 35)) 2334 retval = lowest_latency; 2335 } else if (bytes/packets > 2000) { 2336 retval = bulk_latency; 2337 } else if (packets <= 2 && bytes < 512) { 2338 retval = lowest_latency; 2339 } 2340 break; 2341 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2342 if (bytes > 25000) { 2343 if (packets > 35) 2344 retval = low_latency; 2345 } else if (bytes < 6000) { 2346 retval = low_latency; 2347 } 2348 break; 2349 } 2350 2351update_itr_done: 2352 return retval; 2353} 2354 2355static void e1000_set_itr(struct e1000_adapter *adapter) 2356{ 2357 struct e1000_hw *hw = &adapter->hw; 2358 u16 current_itr; 2359 u32 new_itr = adapter->itr; 2360 2361 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2362 if (adapter->link_speed != SPEED_1000) { 2363 current_itr = 0; 2364 new_itr = 4000; 2365 goto set_itr_now; 2366 } 2367 2368 if (adapter->flags2 & FLAG2_DISABLE_AIM) { 2369 new_itr = 0; 2370 goto set_itr_now; 2371 } 2372 2373 adapter->tx_itr = e1000_update_itr(adapter, 2374 adapter->tx_itr, 2375 adapter->total_tx_packets, 2376 adapter->total_tx_bytes); 2377 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2378 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2379 adapter->tx_itr = low_latency; 2380 2381 adapter->rx_itr = e1000_update_itr(adapter, 2382 adapter->rx_itr, 2383 adapter->total_rx_packets, 2384 adapter->total_rx_bytes); 2385 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2386 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2387 adapter->rx_itr = low_latency; 2388 2389 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2390 2391 switch (current_itr) { 2392 /* counts and packets in update_itr are dependent on these numbers */ 2393 case lowest_latency: 2394 new_itr = 70000; 2395 break; 2396 case low_latency: 2397 new_itr = 20000; /* aka hwitr = ~200 */ 2398 break; 2399 case bulk_latency: 2400 new_itr = 4000; 2401 break; 2402 default: 2403 break; 2404 } 2405 2406set_itr_now: 2407 if (new_itr != adapter->itr) { 2408 /* 2409 * this attempts to bias the interrupt rate towards Bulk 2410 * by adding intermediate steps when interrupt rate is 2411 * increasing 2412 */ 2413 new_itr = new_itr > adapter->itr ? 2414 min(adapter->itr + (new_itr >> 2), new_itr) : 2415 new_itr; 2416 adapter->itr = new_itr; 2417 adapter->rx_ring->itr_val = new_itr; 2418 if (adapter->msix_entries) 2419 adapter->rx_ring->set_itr = 1; 2420 else 2421 if (new_itr) 2422 ew32(ITR, 1000000000 / (new_itr * 256)); 2423 else 2424 ew32(ITR, 0); 2425 } 2426} 2427 2428/** 2429 * e1000_alloc_queues - Allocate memory for all rings 2430 * @adapter: board private structure to initialize 2431 **/ 2432static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) 2433{ 2434 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2435 if (!adapter->tx_ring) 2436 goto err; 2437 2438 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2439 if (!adapter->rx_ring) 2440 goto err; 2441 2442 return 0; 2443err: 2444 e_err("Unable to allocate memory for queues\n"); 2445 kfree(adapter->rx_ring); 2446 kfree(adapter->tx_ring); 2447 return -ENOMEM; 2448} 2449 2450/** 2451 * e1000_clean - NAPI Rx polling callback 2452 * @napi: struct associated with this polling callback 2453 * @budget: amount of packets driver is allowed to process this poll 2454 **/ 2455static int e1000_clean(struct napi_struct *napi, int budget) 2456{ 2457 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); 2458 struct e1000_hw *hw = &adapter->hw; 2459 struct net_device *poll_dev = adapter->netdev; 2460 int tx_cleaned = 1, work_done = 0; 2461 2462 adapter = netdev_priv(poll_dev); 2463 2464 if (adapter->msix_entries && 2465 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) 2466 goto clean_rx; 2467 2468 tx_cleaned = e1000_clean_tx_irq(adapter); 2469 2470clean_rx: 2471 adapter->clean_rx(adapter, &work_done, budget); 2472 2473 if (!tx_cleaned) 2474 work_done = budget; 2475 2476 /* If budget not fully consumed, exit the polling mode */ 2477 if (work_done < budget) { 2478 if (adapter->itr_setting & 3) 2479 e1000_set_itr(adapter); 2480 napi_complete(napi); 2481 if (!test_bit(__E1000_DOWN, &adapter->state)) { 2482 if (adapter->msix_entries) 2483 ew32(IMS, adapter->rx_ring->ims_val); 2484 else 2485 e1000_irq_enable(adapter); 2486 } 2487 } 2488 2489 return work_done; 2490} 2491 2492static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 2493{ 2494 struct e1000_adapter *adapter = netdev_priv(netdev); 2495 struct e1000_hw *hw = &adapter->hw; 2496 u32 vfta, index; 2497 2498 /* don't update vlan cookie if already programmed */ 2499 if ((adapter->hw.mng_cookie.status & 2500 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2501 (vid == adapter->mng_vlan_id)) 2502 return; 2503 2504 /* add VID to filter table */ 2505 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2506 index = (vid >> 5) & 0x7F; 2507 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2508 vfta |= (1 << (vid & 0x1F)); 2509 hw->mac.ops.write_vfta(hw, index, vfta); 2510 } 2511 2512 set_bit(vid, adapter->active_vlans); 2513} 2514 2515static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 2516{ 2517 struct e1000_adapter *adapter = netdev_priv(netdev); 2518 struct e1000_hw *hw = &adapter->hw; 2519 u32 vfta, index; 2520 2521 if ((adapter->hw.mng_cookie.status & 2522 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2523 (vid == adapter->mng_vlan_id)) { 2524 /* release control to f/w */ 2525 e1000e_release_hw_control(adapter); 2526 return; 2527 } 2528 2529 /* remove VID from filter table */ 2530 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2531 index = (vid >> 5) & 0x7F; 2532 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2533 vfta &= ~(1 << (vid & 0x1F)); 2534 hw->mac.ops.write_vfta(hw, index, vfta); 2535 } 2536 2537 clear_bit(vid, adapter->active_vlans); 2538} 2539 2540/** 2541 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering 2542 * @adapter: board private structure to initialize 2543 **/ 2544static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) 2545{ 2546 struct net_device *netdev = adapter->netdev; 2547 struct e1000_hw *hw = &adapter->hw; 2548 u32 rctl; 2549 2550 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2551 /* disable VLAN receive filtering */ 2552 rctl = er32(RCTL); 2553 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 2554 ew32(RCTL, rctl); 2555 2556 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { 2557 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); 2558 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2559 } 2560 } 2561} 2562 2563/** 2564 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering 2565 * @adapter: board private structure to initialize 2566 **/ 2567static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) 2568{ 2569 struct e1000_hw *hw = &adapter->hw; 2570 u32 rctl; 2571 2572 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2573 /* enable VLAN receive filtering */ 2574 rctl = er32(RCTL); 2575 rctl |= E1000_RCTL_VFE; 2576 rctl &= ~E1000_RCTL_CFIEN; 2577 ew32(RCTL, rctl); 2578 } 2579} 2580 2581/** 2582 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping 2583 * @adapter: board private structure to initialize 2584 **/ 2585static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) 2586{ 2587 struct e1000_hw *hw = &adapter->hw; 2588 u32 ctrl; 2589 2590 /* disable VLAN tag insert/strip */ 2591 ctrl = er32(CTRL); 2592 ctrl &= ~E1000_CTRL_VME; 2593 ew32(CTRL, ctrl); 2594} 2595 2596/** 2597 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping 2598 * @adapter: board private structure to initialize 2599 **/ 2600static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) 2601{ 2602 struct e1000_hw *hw = &adapter->hw; 2603 u32 ctrl; 2604 2605 /* enable VLAN tag insert/strip */ 2606 ctrl = er32(CTRL); 2607 ctrl |= E1000_CTRL_VME; 2608 ew32(CTRL, ctrl); 2609} 2610 2611static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 2612{ 2613 struct net_device *netdev = adapter->netdev; 2614 u16 vid = adapter->hw.mng_cookie.vlan_id; 2615 u16 old_vid = adapter->mng_vlan_id; 2616 2617 if (adapter->hw.mng_cookie.status & 2618 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 2619 e1000_vlan_rx_add_vid(netdev, vid); 2620 adapter->mng_vlan_id = vid; 2621 } 2622 2623 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) 2624 e1000_vlan_rx_kill_vid(netdev, old_vid); 2625} 2626 2627static void e1000_restore_vlan(struct e1000_adapter *adapter) 2628{ 2629 u16 vid; 2630 2631 e1000_vlan_rx_add_vid(adapter->netdev, 0); 2632 2633 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2634 e1000_vlan_rx_add_vid(adapter->netdev, vid); 2635} 2636 2637static void e1000_init_manageability_pt(struct e1000_adapter *adapter) 2638{ 2639 struct e1000_hw *hw = &adapter->hw; 2640 u32 manc, manc2h, mdef, i, j; 2641 2642 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 2643 return; 2644 2645 manc = er32(MANC); 2646 2647 /* 2648 * enable receiving management packets to the host. this will probably 2649 * generate destination unreachable messages from the host OS, but 2650 * the packets will be handled on SMBUS 2651 */ 2652 manc |= E1000_MANC_EN_MNG2HOST; 2653 manc2h = er32(MANC2H); 2654 2655 switch (hw->mac.type) { 2656 default: 2657 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); 2658 break; 2659 case e1000_82574: 2660 case e1000_82583: 2661 /* 2662 * Check if IPMI pass-through decision filter already exists; 2663 * if so, enable it. 2664 */ 2665 for (i = 0, j = 0; i < 8; i++) { 2666 mdef = er32(MDEF(i)); 2667 2668 /* Ignore filters with anything other than IPMI ports */ 2669 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2670 continue; 2671 2672 /* Enable this decision filter in MANC2H */ 2673 if (mdef) 2674 manc2h |= (1 << i); 2675 2676 j |= mdef; 2677 } 2678 2679 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2680 break; 2681 2682 /* Create new decision filter in an empty filter */ 2683 for (i = 0, j = 0; i < 8; i++) 2684 if (er32(MDEF(i)) == 0) { 2685 ew32(MDEF(i), (E1000_MDEF_PORT_623 | 2686 E1000_MDEF_PORT_664)); 2687 manc2h |= (1 << 1); 2688 j++; 2689 break; 2690 } 2691 2692 if (!j) 2693 e_warn("Unable to create IPMI pass-through filter\n"); 2694 break; 2695 } 2696 2697 ew32(MANC2H, manc2h); 2698 ew32(MANC, manc); 2699} 2700 2701/** 2702 * e1000_configure_tx - Configure Transmit Unit after Reset 2703 * @adapter: board private structure 2704 * 2705 * Configure the Tx unit of the MAC after a reset. 2706 **/ 2707static void e1000_configure_tx(struct e1000_adapter *adapter) 2708{ 2709 struct e1000_hw *hw = &adapter->hw; 2710 struct e1000_ring *tx_ring = adapter->tx_ring; 2711 u64 tdba; 2712 u32 tdlen, tctl, tipg, tarc; 2713 u32 ipgr1, ipgr2; 2714 2715 /* Setup the HW Tx Head and Tail descriptor pointers */ 2716 tdba = tx_ring->dma; 2717 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 2718 ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); 2719 ew32(TDBAH, (tdba >> 32)); 2720 ew32(TDLEN, tdlen); 2721 ew32(TDH, 0); 2722 ew32(TDT, 0); 2723 tx_ring->head = E1000_TDH; 2724 tx_ring->tail = E1000_TDT; 2725 2726 /* Set the default values for the Tx Inter Packet Gap timer */ 2727 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ 2728 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ 2729 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ 2730 2731 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) 2732 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ 2733 2734 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 2735 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 2736 ew32(TIPG, tipg); 2737 2738 /* Set the Tx Interrupt Delay register */ 2739 ew32(TIDV, adapter->tx_int_delay); 2740 /* Tx irq moderation */ 2741 ew32(TADV, adapter->tx_abs_int_delay); 2742 2743 if (adapter->flags2 & FLAG2_DMA_BURST) { 2744 u32 txdctl = er32(TXDCTL(0)); 2745 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | 2746 E1000_TXDCTL_WTHRESH); 2747 /* 2748 * set up some performance related parameters to encourage the 2749 * hardware to use the bus more efficiently in bursts, depends 2750 * on the tx_int_delay to be enabled, 2751 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time 2752 * hthresh = 1 ==> prefetch when one or more available 2753 * pthresh = 0x1f ==> prefetch if internal cache 31 or less 2754 * BEWARE: this seems to work but should be considered first if 2755 * there are Tx hangs or other Tx related bugs 2756 */ 2757 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; 2758 ew32(TXDCTL(0), txdctl); 2759 /* erratum work around: set txdctl the same for both queues */ 2760 ew32(TXDCTL(1), txdctl); 2761 } 2762 2763 /* Program the Transmit Control Register */ 2764 tctl = er32(TCTL); 2765 tctl &= ~E1000_TCTL_CT; 2766 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2767 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2768 2769 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 2770 tarc = er32(TARC(0)); 2771 /* 2772 * set the speed mode bit, we'll clear it if we're not at 2773 * gigabit link later 2774 */ 2775#define SPEED_MODE_BIT (1 << 21) 2776 tarc |= SPEED_MODE_BIT; 2777 ew32(TARC(0), tarc); 2778 } 2779 2780 /* errata: program both queues to unweighted RR */ 2781 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 2782 tarc = er32(TARC(0)); 2783 tarc |= 1; 2784 ew32(TARC(0), tarc); 2785 tarc = er32(TARC(1)); 2786 tarc |= 1; 2787 ew32(TARC(1), tarc); 2788 } 2789 2790 /* Setup Transmit Descriptor Settings for eop descriptor */ 2791 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 2792 2793 /* only set IDE if we are delaying interrupts using the timers */ 2794 if (adapter->tx_int_delay) 2795 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 2796 2797 /* enable Report Status bit */ 2798 adapter->txd_cmd |= E1000_TXD_CMD_RS; 2799 2800 ew32(TCTL, tctl); 2801 2802 e1000e_config_collision_dist(hw); 2803} 2804 2805/** 2806 * e1000_setup_rctl - configure the receive control registers 2807 * @adapter: Board private structure 2808 **/ 2809#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 2810 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 2811static void e1000_setup_rctl(struct e1000_adapter *adapter) 2812{ 2813 struct e1000_hw *hw = &adapter->hw; 2814 u32 rctl, rfctl; 2815 u32 pages = 0; 2816 2817 /* Workaround Si errata on 82579 - configure jumbo frame flow */ 2818 if (hw->mac.type == e1000_pch2lan) { 2819 s32 ret_val; 2820 2821 if (adapter->netdev->mtu > ETH_DATA_LEN) 2822 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); 2823 else 2824 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); 2825 2826 if (ret_val) 2827 e_dbg("failed to enable jumbo frame workaround mode\n"); 2828 } 2829 2830 /* Program MC offset vector base */ 2831 rctl = er32(RCTL); 2832 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 2833 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 2834 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 2835 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 2836 2837 /* Do not Store bad packets */ 2838 rctl &= ~E1000_RCTL_SBP; 2839 2840 /* Enable Long Packet receive */ 2841 if (adapter->netdev->mtu <= ETH_DATA_LEN) 2842 rctl &= ~E1000_RCTL_LPE; 2843 else 2844 rctl |= E1000_RCTL_LPE; 2845 2846 /* Some systems expect that the CRC is included in SMBUS traffic. The 2847 * hardware strips the CRC before sending to both SMBUS (BMC) and to 2848 * host memory when this is enabled 2849 */ 2850 if (adapter->flags2 & FLAG2_CRC_STRIPPING) 2851 rctl |= E1000_RCTL_SECRC; 2852 2853 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ 2854 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { 2855 u16 phy_data; 2856 2857 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); 2858 phy_data &= 0xfff8; 2859 phy_data |= (1 << 2); 2860 e1e_wphy(hw, PHY_REG(770, 26), phy_data); 2861 2862 e1e_rphy(hw, 22, &phy_data); 2863 phy_data &= 0x0fff; 2864 phy_data |= (1 << 14); 2865 e1e_wphy(hw, 0x10, 0x2823); 2866 e1e_wphy(hw, 0x11, 0x0003); 2867 e1e_wphy(hw, 22, phy_data); 2868 } 2869 2870 /* Setup buffer sizes */ 2871 rctl &= ~E1000_RCTL_SZ_4096; 2872 rctl |= E1000_RCTL_BSEX; 2873 switch (adapter->rx_buffer_len) { 2874 case 2048: 2875 default: 2876 rctl |= E1000_RCTL_SZ_2048; 2877 rctl &= ~E1000_RCTL_BSEX; 2878 break; 2879 case 4096: 2880 rctl |= E1000_RCTL_SZ_4096; 2881 break; 2882 case 8192: 2883 rctl |= E1000_RCTL_SZ_8192; 2884 break; 2885 case 16384: 2886 rctl |= E1000_RCTL_SZ_16384; 2887 break; 2888 } 2889 2890 /* 2891 * 82571 and greater support packet-split where the protocol 2892 * header is placed in skb->data and the packet data is 2893 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 2894 * In the case of a non-split, skb->data is linearly filled, 2895 * followed by the page buffers. Therefore, skb->data is 2896 * sized to hold the largest protocol header. 2897 * 2898 * allocations using alloc_page take too long for regular MTU 2899 * so only enable packet split for jumbo frames 2900 * 2901 * Using pages when the page size is greater than 16k wastes 2902 * a lot of memory, since we allocate 3 pages at all times 2903 * per packet. 2904 */ 2905 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 2906 if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) && 2907 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 2908 adapter->rx_ps_pages = pages; 2909 else 2910 adapter->rx_ps_pages = 0; 2911 2912 if (adapter->rx_ps_pages) { 2913 u32 psrctl = 0; 2914 2915 /* Configure extra packet-split registers */ 2916 rfctl = er32(RFCTL); 2917 rfctl |= E1000_RFCTL_EXTEN; 2918 /* 2919 * disable packet split support for IPv6 extension headers, 2920 * because some malformed IPv6 headers can hang the Rx 2921 */ 2922 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | 2923 E1000_RFCTL_NEW_IPV6_EXT_DIS); 2924 2925 ew32(RFCTL, rfctl); 2926 2927 /* Enable Packet split descriptors */ 2928 rctl |= E1000_RCTL_DTYP_PS; 2929 2930 psrctl |= adapter->rx_ps_bsize0 >> 2931 E1000_PSRCTL_BSIZE0_SHIFT; 2932 2933 switch (adapter->rx_ps_pages) { 2934 case 3: 2935 psrctl |= PAGE_SIZE << 2936 E1000_PSRCTL_BSIZE3_SHIFT; 2937 case 2: 2938 psrctl |= PAGE_SIZE << 2939 E1000_PSRCTL_BSIZE2_SHIFT; 2940 case 1: 2941 psrctl |= PAGE_SIZE >> 2942 E1000_PSRCTL_BSIZE1_SHIFT; 2943 break; 2944 } 2945 2946 ew32(PSRCTL, psrctl); 2947 } 2948 2949 ew32(RCTL, rctl); 2950 /* just started the receive unit, no need to restart */ 2951 adapter->flags &= ~FLAG_RX_RESTART_NOW; 2952} 2953 2954/** 2955 * e1000_configure_rx - Configure Receive Unit after Reset 2956 * @adapter: board private structure 2957 * 2958 * Configure the Rx unit of the MAC after a reset. 2959 **/ 2960static void e1000_configure_rx(struct e1000_adapter *adapter) 2961{ 2962 struct e1000_hw *hw = &adapter->hw; 2963 struct e1000_ring *rx_ring = adapter->rx_ring; 2964 u64 rdba; 2965 u32 rdlen, rctl, rxcsum, ctrl_ext; 2966 2967 if (adapter->rx_ps_pages) { 2968 /* this is a 32 byte descriptor */ 2969 rdlen = rx_ring->count * 2970 sizeof(union e1000_rx_desc_packet_split); 2971 adapter->clean_rx = e1000_clean_rx_irq_ps; 2972 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 2973 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 2974 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); 2975 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 2976 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 2977 } else { 2978 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); 2979 adapter->clean_rx = e1000_clean_rx_irq; 2980 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 2981 } 2982 2983 /* disable receives while setting up the descriptors */ 2984 rctl = er32(RCTL); 2985 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 2986 ew32(RCTL, rctl & ~E1000_RCTL_EN); 2987 e1e_flush(); 2988 usleep_range(10000, 20000); 2989 2990 if (adapter->flags2 & FLAG2_DMA_BURST) { 2991 /* 2992 * set the writeback threshold (only takes effect if the RDTR 2993 * is set). set GRAN=1 and write back up to 0x4 worth, and 2994 * enable prefetching of 0x20 Rx descriptors 2995 * granularity = 01 2996 * wthresh = 04, 2997 * hthresh = 04, 2998 * pthresh = 0x20 2999 */ 3000 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); 3001 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); 3002 3003 /* 3004 * override the delay timers for enabling bursting, only if 3005 * the value was not set by the user via module options 3006 */ 3007 if (adapter->rx_int_delay == DEFAULT_RDTR) 3008 adapter->rx_int_delay = BURST_RDTR; 3009 if (adapter->rx_abs_int_delay == DEFAULT_RADV) 3010 adapter->rx_abs_int_delay = BURST_RADV; 3011 } 3012 3013 /* set the Receive Delay Timer Register */ 3014 ew32(RDTR, adapter->rx_int_delay); 3015 3016 /* irq moderation */ 3017 ew32(RADV, adapter->rx_abs_int_delay); 3018 if ((adapter->itr_setting != 0) && (adapter->itr != 0)) 3019 ew32(ITR, 1000000000 / (adapter->itr * 256)); 3020 3021 ctrl_ext = er32(CTRL_EXT); 3022 /* Auto-Mask interrupts upon ICR access */ 3023 ctrl_ext |= E1000_CTRL_EXT_IAME; 3024 ew32(IAM, 0xffffffff); 3025 ew32(CTRL_EXT, ctrl_ext); 3026 e1e_flush(); 3027 3028 /* 3029 * Setup the HW Rx Head and Tail Descriptor Pointers and 3030 * the Base and Length of the Rx Descriptor Ring 3031 */ 3032 rdba = rx_ring->dma; 3033 ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); 3034 ew32(RDBAH, (rdba >> 32)); 3035 ew32(RDLEN, rdlen); 3036 ew32(RDH, 0); 3037 ew32(RDT, 0); 3038 rx_ring->head = E1000_RDH; 3039 rx_ring->tail = E1000_RDT; 3040 3041 /* Enable Receive Checksum Offload for TCP and UDP */ 3042 rxcsum = er32(RXCSUM); 3043 if (adapter->flags & FLAG_RX_CSUM_ENABLED) { 3044 rxcsum |= E1000_RXCSUM_TUOFL; 3045 3046 /* 3047 * IPv4 payload checksum for UDP fragments must be 3048 * used in conjunction with packet-split. 3049 */ 3050 if (adapter->rx_ps_pages) 3051 rxcsum |= E1000_RXCSUM_IPPCSE; 3052 } else { 3053 rxcsum &= ~E1000_RXCSUM_TUOFL; 3054 /* no need to clear IPPCSE as it defaults to 0 */ 3055 } 3056 ew32(RXCSUM, rxcsum); 3057 3058 /* 3059 * Enable early receives on supported devices, only takes effect when 3060 * packet size is equal or larger than the specified value (in 8 byte 3061 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 3062 */ 3063 if ((adapter->flags & FLAG_HAS_ERT) || 3064 (adapter->hw.mac.type == e1000_pch2lan)) { 3065 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3066 u32 rxdctl = er32(RXDCTL(0)); 3067 ew32(RXDCTL(0), rxdctl | 0x3); 3068 if (adapter->flags & FLAG_HAS_ERT) 3069 ew32(ERT, E1000_ERT_2048 | (1 << 13)); 3070 /* 3071 * With jumbo frames and early-receive enabled, 3072 * excessive C-state transition latencies result in 3073 * dropped transactions. 3074 */ 3075 pm_qos_update_request(&adapter->netdev->pm_qos_req, 55); 3076 } else { 3077 pm_qos_update_request(&adapter->netdev->pm_qos_req, 3078 PM_QOS_DEFAULT_VALUE); 3079 } 3080 } 3081 3082 /* Enable Receives */ 3083 ew32(RCTL, rctl); 3084} 3085 3086/** 3087 * e1000_update_mc_addr_list - Update Multicast addresses 3088 * @hw: pointer to the HW structure 3089 * @mc_addr_list: array of multicast addresses to program 3090 * @mc_addr_count: number of multicast addresses to program 3091 * 3092 * Updates the Multicast Table Array. 3093 * The caller must have a packed mc_addr_list of multicast addresses. 3094 **/ 3095static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 3096 u32 mc_addr_count) 3097{ 3098 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count); 3099} 3100 3101/** 3102 * e1000_set_multi - Multicast and Promiscuous mode set 3103 * @netdev: network interface device structure 3104 * 3105 * The set_multi entry point is called whenever the multicast address 3106 * list or the network interface flags are updated. This routine is 3107 * responsible for configuring the hardware for proper multicast, 3108 * promiscuous mode, and all-multi behavior. 3109 **/ 3110static void e1000_set_multi(struct net_device *netdev) 3111{ 3112 struct e1000_adapter *adapter = netdev_priv(netdev); 3113 struct e1000_hw *hw = &adapter->hw; 3114 struct netdev_hw_addr *ha; 3115 u8 *mta_list; 3116 u32 rctl; 3117 3118 /* Check for Promiscuous and All Multicast modes */ 3119 3120 rctl = er32(RCTL); 3121 3122 if (netdev->flags & IFF_PROMISC) { 3123 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3124 rctl &= ~E1000_RCTL_VFE; 3125 /* Do not hardware filter VLANs in promisc mode */ 3126 e1000e_vlan_filter_disable(adapter); 3127 } else { 3128 if (netdev->flags & IFF_ALLMULTI) { 3129 rctl |= E1000_RCTL_MPE; 3130 rctl &= ~E1000_RCTL_UPE; 3131 } else { 3132 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 3133 } 3134 e1000e_vlan_filter_enable(adapter); 3135 } 3136 3137 ew32(RCTL, rctl); 3138 3139 if (!netdev_mc_empty(netdev)) { 3140 int i = 0; 3141 3142 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 3143 if (!mta_list) 3144 return; 3145 3146 /* prepare a packed array of only addresses. */ 3147 netdev_for_each_mc_addr(ha, netdev) 3148 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3149 3150 e1000_update_mc_addr_list(hw, mta_list, i); 3151 kfree(mta_list); 3152 } else { 3153 /* 3154 * if we're called from probe, we might not have 3155 * anything to do here, so clear out the list 3156 */ 3157 e1000_update_mc_addr_list(hw, NULL, 0); 3158 } 3159 3160 if (netdev->features & NETIF_F_HW_VLAN_RX) 3161 e1000e_vlan_strip_enable(adapter); 3162 else 3163 e1000e_vlan_strip_disable(adapter); 3164} 3165 3166/** 3167 * e1000_configure - configure the hardware for Rx and Tx 3168 * @adapter: private board structure 3169 **/ 3170static void e1000_configure(struct e1000_adapter *adapter) 3171{ 3172 e1000_set_multi(adapter->netdev); 3173 3174 e1000_restore_vlan(adapter); 3175 e1000_init_manageability_pt(adapter); 3176 3177 e1000_configure_tx(adapter); 3178 e1000_setup_rctl(adapter); 3179 e1000_configure_rx(adapter); 3180 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring), 3181 GFP_KERNEL); 3182} 3183 3184/** 3185 * e1000e_power_up_phy - restore link in case the phy was powered down 3186 * @adapter: address of board private structure 3187 * 3188 * The phy may be powered down to save power and turn off link when the 3189 * driver is unloaded and wake on lan is not enabled (among others) 3190 * *** this routine MUST be followed by a call to e1000e_reset *** 3191 **/ 3192void e1000e_power_up_phy(struct e1000_adapter *adapter) 3193{ 3194 if (adapter->hw.phy.ops.power_up) 3195 adapter->hw.phy.ops.power_up(&adapter->hw); 3196 3197 adapter->hw.mac.ops.setup_link(&adapter->hw); 3198} 3199 3200/** 3201 * e1000_power_down_phy - Power down the PHY 3202 * 3203 * Power down the PHY so no link is implied when interface is down. 3204 * The PHY cannot be powered down if management or WoL is active. 3205 */ 3206static void e1000_power_down_phy(struct e1000_adapter *adapter) 3207{ 3208 /* WoL is enabled */ 3209 if (adapter->wol) 3210 return; 3211 3212 if (adapter->hw.phy.ops.power_down) 3213 adapter->hw.phy.ops.power_down(&adapter->hw); 3214} 3215 3216/** 3217 * e1000e_reset - bring the hardware into a known good state 3218 * 3219 * This function boots the hardware and enables some settings that 3220 * require a configuration cycle of the hardware - those cannot be 3221 * set/changed during runtime. After reset the device needs to be 3222 * properly configured for Rx, Tx etc. 3223 */ 3224void e1000e_reset(struct e1000_adapter *adapter) 3225{ 3226 struct e1000_mac_info *mac = &adapter->hw.mac; 3227 struct e1000_fc_info *fc = &adapter->hw.fc; 3228 struct e1000_hw *hw = &adapter->hw; 3229 u32 tx_space, min_tx_space, min_rx_space; 3230 u32 pba = adapter->pba; 3231 u16 hwm; 3232 3233 /* reset Packet Buffer Allocation to default */ 3234 ew32(PBA, pba); 3235 3236 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 3237 /* 3238 * To maintain wire speed transmits, the Tx FIFO should be 3239 * large enough to accommodate two full transmit packets, 3240 * rounded up to the next 1KB and expressed in KB. Likewise, 3241 * the Rx FIFO should be large enough to accommodate at least 3242 * one full receive packet and is similarly rounded up and 3243 * expressed in KB. 3244 */ 3245 pba = er32(PBA); 3246 /* upper 16 bits has Tx packet buffer allocation size in KB */ 3247 tx_space = pba >> 16; 3248 /* lower 16 bits has Rx packet buffer allocation size in KB */ 3249 pba &= 0xffff; 3250 /* 3251 * the Tx fifo also stores 16 bytes of information about the Tx 3252 * but don't include ethernet FCS because hardware appends it 3253 */ 3254 min_tx_space = (adapter->max_frame_size + 3255 sizeof(struct e1000_tx_desc) - 3256 ETH_FCS_LEN) * 2; 3257 min_tx_space = ALIGN(min_tx_space, 1024); 3258 min_tx_space >>= 10; 3259 /* software strips receive CRC, so leave room for it */ 3260 min_rx_space = adapter->max_frame_size; 3261 min_rx_space = ALIGN(min_rx_space, 1024); 3262 min_rx_space >>= 10; 3263 3264 /* 3265 * If current Tx allocation is less than the min Tx FIFO size, 3266 * and the min Tx FIFO size is less than the current Rx FIFO 3267 * allocation, take space away from current Rx allocation 3268 */ 3269 if ((tx_space < min_tx_space) && 3270 ((min_tx_space - tx_space) < pba)) { 3271 pba -= min_tx_space - tx_space; 3272 3273 /* 3274 * if short on Rx space, Rx wins and must trump Tx 3275 * adjustment or use Early Receive if available 3276 */ 3277 if ((pba < min_rx_space) && 3278 (!(adapter->flags & FLAG_HAS_ERT))) 3279 /* ERT enabled in e1000_configure_rx */ 3280 pba = min_rx_space; 3281 } 3282 3283 ew32(PBA, pba); 3284 } 3285 3286 /* 3287 * flow control settings 3288 * 3289 * The high water mark must be low enough to fit one full frame 3290 * (or the size used for early receive) above it in the Rx FIFO. 3291 * Set it to the lower of: 3292 * - 90% of the Rx FIFO size, and 3293 * - the full Rx FIFO size minus the early receive size (for parts 3294 * with ERT support assuming ERT set to E1000_ERT_2048), or 3295 * - the full Rx FIFO size minus one full frame 3296 */ 3297 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 3298 fc->pause_time = 0xFFFF; 3299 else 3300 fc->pause_time = E1000_FC_PAUSE_TIME; 3301 fc->send_xon = 1; 3302 fc->current_mode = fc->requested_mode; 3303 3304 switch (hw->mac.type) { 3305 default: 3306 if ((adapter->flags & FLAG_HAS_ERT) && 3307 (adapter->netdev->mtu > ETH_DATA_LEN)) 3308 hwm = min(((pba << 10) * 9 / 10), 3309 ((pba << 10) - (E1000_ERT_2048 << 3))); 3310 else 3311 hwm = min(((pba << 10) * 9 / 10), 3312 ((pba << 10) - adapter->max_frame_size)); 3313 3314 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ 3315 fc->low_water = fc->high_water - 8; 3316 break; 3317 case e1000_pchlan: 3318 /* 3319 * Workaround PCH LOM adapter hangs with certain network 3320 * loads. If hangs persist, try disabling Tx flow control. 3321 */ 3322 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3323 fc->high_water = 0x3500; 3324 fc->low_water = 0x1500; 3325 } else { 3326 fc->high_water = 0x5000; 3327 fc->low_water = 0x3000; 3328 } 3329 fc->refresh_time = 0x1000; 3330 break; 3331 case e1000_pch2lan: 3332 fc->high_water = 0x05C20; 3333 fc->low_water = 0x05048; 3334 fc->pause_time = 0x0650; 3335 fc->refresh_time = 0x0400; 3336 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3337 pba = 14; 3338 ew32(PBA, pba); 3339 } 3340 break; 3341 } 3342 3343 /* 3344 * Disable Adaptive Interrupt Moderation if 2 full packets cannot 3345 * fit in receive buffer and early-receive not supported. 3346 */ 3347 if (adapter->itr_setting & 0x3) { 3348 if (((adapter->max_frame_size * 2) > (pba << 10)) && 3349 !(adapter->flags & FLAG_HAS_ERT)) { 3350 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { 3351 dev_info(&adapter->pdev->dev, 3352 "Interrupt Throttle Rate turned off\n"); 3353 adapter->flags2 |= FLAG2_DISABLE_AIM; 3354 ew32(ITR, 0); 3355 } 3356 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { 3357 dev_info(&adapter->pdev->dev, 3358 "Interrupt Throttle Rate turned on\n"); 3359 adapter->flags2 &= ~FLAG2_DISABLE_AIM; 3360 adapter->itr = 20000; 3361 ew32(ITR, 1000000000 / (adapter->itr * 256)); 3362 } 3363 } 3364 3365 /* Allow time for pending master requests to run */ 3366 mac->ops.reset_hw(hw); 3367 3368 /* 3369 * For parts with AMT enabled, let the firmware know 3370 * that the network interface is in control 3371 */ 3372 if (adapter->flags & FLAG_HAS_AMT) 3373 e1000e_get_hw_control(adapter); 3374 3375 ew32(WUC, 0); 3376 3377 if (mac->ops.init_hw(hw)) 3378 e_err("Hardware Error\n"); 3379 3380 e1000_update_mng_vlan(adapter); 3381 3382 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 3383 ew32(VET, ETH_P_8021Q); 3384 3385 e1000e_reset_adaptive(hw); 3386 3387 if (!netif_running(adapter->netdev) && 3388 !test_bit(__E1000_TESTING, &adapter->state)) { 3389 e1000_power_down_phy(adapter); 3390 return; 3391 } 3392 3393 e1000_get_phy_info(hw); 3394 3395 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && 3396 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { 3397 u16 phy_data = 0; 3398 /* 3399 * speed up time to link by disabling smart power down, ignore 3400 * the return value of this function because there is nothing 3401 * different we would do if it failed 3402 */ 3403 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 3404 phy_data &= ~IGP02E1000_PM_SPD; 3405 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 3406 } 3407} 3408 3409int e1000e_up(struct e1000_adapter *adapter) 3410{ 3411 struct e1000_hw *hw = &adapter->hw; 3412 3413 /* hardware has been reset, we need to reload some things */ 3414 e1000_configure(adapter); 3415 3416 clear_bit(__E1000_DOWN, &adapter->state); 3417 3418 napi_enable(&adapter->napi); 3419 if (adapter->msix_entries) 3420 e1000_configure_msix(adapter); 3421 e1000_irq_enable(adapter); 3422 3423 netif_start_queue(adapter->netdev); 3424 3425 /* fire a link change interrupt to start the watchdog */ 3426 if (adapter->msix_entries) 3427 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 3428 else 3429 ew32(ICS, E1000_ICS_LSC); 3430 3431 return 0; 3432} 3433 3434static void e1000e_flush_descriptors(struct e1000_adapter *adapter) 3435{ 3436 struct e1000_hw *hw = &adapter->hw; 3437 3438 if (!(adapter->flags2 & FLAG2_DMA_BURST)) 3439 return; 3440 3441 /* flush pending descriptor writebacks to memory */ 3442 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 3443 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 3444 3445 /* execute the writes immediately */ 3446 e1e_flush(); 3447} 3448 3449static void e1000e_update_stats(struct e1000_adapter *adapter); 3450 3451void e1000e_down(struct e1000_adapter *adapter) 3452{ 3453 struct net_device *netdev = adapter->netdev; 3454 struct e1000_hw *hw = &adapter->hw; 3455 u32 tctl, rctl; 3456 3457 /* 3458 * signal that we're down so the interrupt handler does not 3459 * reschedule our watchdog timer 3460 */ 3461 set_bit(__E1000_DOWN, &adapter->state); 3462 3463 /* disable receives in the hardware */ 3464 rctl = er32(RCTL); 3465 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 3466 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3467 /* flush and sleep below */ 3468 3469 netif_stop_queue(netdev); 3470 3471 /* disable transmits in the hardware */ 3472 tctl = er32(TCTL); 3473 tctl &= ~E1000_TCTL_EN; 3474 ew32(TCTL, tctl); 3475 3476 /* flush both disables and wait for them to finish */ 3477 e1e_flush(); 3478 usleep_range(10000, 20000); 3479 3480 napi_disable(&adapter->napi); 3481 e1000_irq_disable(adapter); 3482 3483 del_timer_sync(&adapter->watchdog_timer); 3484 del_timer_sync(&adapter->phy_info_timer); 3485 3486 netif_carrier_off(netdev); 3487 3488 spin_lock(&adapter->stats64_lock); 3489 e1000e_update_stats(adapter); 3490 spin_unlock(&adapter->stats64_lock); 3491 3492 e1000e_flush_descriptors(adapter); 3493 e1000_clean_tx_ring(adapter); 3494 e1000_clean_rx_ring(adapter); 3495 3496 adapter->link_speed = 0; 3497 adapter->link_duplex = 0; 3498 3499 if (!pci_channel_offline(adapter->pdev)) 3500 e1000e_reset(adapter); 3501 3502 /* 3503 * TODO: for power management, we could drop the link and 3504 * pci_disable_device here. 3505 */ 3506} 3507 3508void e1000e_reinit_locked(struct e1000_adapter *adapter) 3509{ 3510 might_sleep(); 3511 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 3512 usleep_range(1000, 2000); 3513 e1000e_down(adapter); 3514 e1000e_up(adapter); 3515 clear_bit(__E1000_RESETTING, &adapter->state); 3516} 3517 3518/** 3519 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 3520 * @adapter: board private structure to initialize 3521 * 3522 * e1000_sw_init initializes the Adapter private data structure. 3523 * Fields are initialized based on PCI device information and 3524 * OS network device settings (MTU size). 3525 **/ 3526static int __devinit e1000_sw_init(struct e1000_adapter *adapter) 3527{ 3528 struct net_device *netdev = adapter->netdev; 3529 3530 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 3531 adapter->rx_ps_bsize0 = 128; 3532 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 3533 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3534 3535 spin_lock_init(&adapter->stats64_lock); 3536 3537 e1000e_set_interrupt_capability(adapter); 3538 3539 if (e1000_alloc_queues(adapter)) 3540 return -ENOMEM; 3541 3542 /* Explicitly disable IRQ since the NIC can be in any state. */ 3543 e1000_irq_disable(adapter); 3544 3545 set_bit(__E1000_DOWN, &adapter->state); 3546 return 0; 3547} 3548 3549/** 3550 * e1000_intr_msi_test - Interrupt Handler 3551 * @irq: interrupt number 3552 * @data: pointer to a network interface device structure 3553 **/ 3554static irqreturn_t e1000_intr_msi_test(int irq, void *data) 3555{ 3556 struct net_device *netdev = data; 3557 struct e1000_adapter *adapter = netdev_priv(netdev); 3558 struct e1000_hw *hw = &adapter->hw; 3559 u32 icr = er32(ICR); 3560 3561 e_dbg("icr is %08X\n", icr); 3562 if (icr & E1000_ICR_RXSEQ) { 3563 adapter->flags &= ~FLAG_MSI_TEST_FAILED; 3564 wmb(); 3565 } 3566 3567 return IRQ_HANDLED; 3568} 3569 3570/** 3571 * e1000_test_msi_interrupt - Returns 0 for successful test 3572 * @adapter: board private struct 3573 * 3574 * code flow taken from tg3.c 3575 **/ 3576static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) 3577{ 3578 struct net_device *netdev = adapter->netdev; 3579 struct e1000_hw *hw = &adapter->hw; 3580 int err; 3581 3582 /* poll_enable hasn't been called yet, so don't need disable */ 3583 /* clear any pending events */ 3584 er32(ICR); 3585 3586 /* free the real vector and request a test handler */ 3587 e1000_free_irq(adapter); 3588 e1000e_reset_interrupt_capability(adapter); 3589 3590 /* Assume that the test fails, if it succeeds then the test 3591 * MSI irq handler will unset this flag */ 3592 adapter->flags |= FLAG_MSI_TEST_FAILED; 3593 3594 err = pci_enable_msi(adapter->pdev); 3595 if (err) 3596 goto msi_test_failed; 3597 3598 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, 3599 netdev->name, netdev); 3600 if (err) { 3601 pci_disable_msi(adapter->pdev); 3602 goto msi_test_failed; 3603 } 3604 3605 wmb(); 3606 3607 e1000_irq_enable(adapter); 3608 3609 /* fire an unusual interrupt on the test handler */ 3610 ew32(ICS, E1000_ICS_RXSEQ); 3611 e1e_flush(); 3612 msleep(50); 3613 3614 e1000_irq_disable(adapter); 3615 3616 rmb(); 3617 3618 if (adapter->flags & FLAG_MSI_TEST_FAILED) { 3619 adapter->int_mode = E1000E_INT_MODE_LEGACY; 3620 e_info("MSI interrupt test failed, using legacy interrupt.\n"); 3621 } else 3622 e_dbg("MSI interrupt test succeeded!\n"); 3623 3624 free_irq(adapter->pdev->irq, netdev); 3625 pci_disable_msi(adapter->pdev); 3626 3627msi_test_failed: 3628 e1000e_set_interrupt_capability(adapter); 3629 return e1000_request_irq(adapter); 3630} 3631 3632/** 3633 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored 3634 * @adapter: board private struct 3635 * 3636 * code flow taken from tg3.c, called with e1000 interrupts disabled. 3637 **/ 3638static int e1000_test_msi(struct e1000_adapter *adapter) 3639{ 3640 int err; 3641 u16 pci_cmd; 3642 3643 if (!(adapter->flags & FLAG_MSI_ENABLED)) 3644 return 0; 3645 3646 /* disable SERR in case the MSI write causes a master abort */ 3647 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 3648 if (pci_cmd & PCI_COMMAND_SERR) 3649 pci_write_config_word(adapter->pdev, PCI_COMMAND, 3650 pci_cmd & ~PCI_COMMAND_SERR); 3651 3652 err = e1000_test_msi_interrupt(adapter); 3653 3654 /* re-enable SERR */ 3655 if (pci_cmd & PCI_COMMAND_SERR) { 3656 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 3657 pci_cmd |= PCI_COMMAND_SERR; 3658 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); 3659 } 3660 3661 return err; 3662} 3663 3664/** 3665 * e1000_open - Called when a network interface is made active 3666 * @netdev: network interface device structure 3667 * 3668 * Returns 0 on success, negative value on failure 3669 * 3670 * The open entry point is called when a network interface is made 3671 * active by the system (IFF_UP). At this point all resources needed 3672 * for transmit and receive operations are allocated, the interrupt 3673 * handler is registered with the OS, the watchdog timer is started, 3674 * and the stack is notified that the interface is ready. 3675 **/ 3676static int e1000_open(struct net_device *netdev) 3677{ 3678 struct e1000_adapter *adapter = netdev_priv(netdev); 3679 struct e1000_hw *hw = &adapter->hw; 3680 struct pci_dev *pdev = adapter->pdev; 3681 int err; 3682 3683 /* disallow open during test */ 3684 if (test_bit(__E1000_TESTING, &adapter->state)) 3685 return -EBUSY; 3686 3687 pm_runtime_get_sync(&pdev->dev); 3688 3689 netif_carrier_off(netdev); 3690 3691 /* allocate transmit descriptors */ 3692 err = e1000e_setup_tx_resources(adapter); 3693 if (err) 3694 goto err_setup_tx; 3695 3696 /* allocate receive descriptors */ 3697 err = e1000e_setup_rx_resources(adapter); 3698 if (err) 3699 goto err_setup_rx; 3700 3701 /* 3702 * If AMT is enabled, let the firmware know that the network 3703 * interface is now open and reset the part to a known state. 3704 */ 3705 if (adapter->flags & FLAG_HAS_AMT) { 3706 e1000e_get_hw_control(adapter); 3707 e1000e_reset(adapter); 3708 } 3709 3710 e1000e_power_up_phy(adapter); 3711 3712 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 3713 if ((adapter->hw.mng_cookie.status & 3714 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 3715 e1000_update_mng_vlan(adapter); 3716 3717 /* DMA latency requirement to workaround early-receive/jumbo issue */ 3718 if ((adapter->flags & FLAG_HAS_ERT) || 3719 (adapter->hw.mac.type == e1000_pch2lan)) 3720 pm_qos_add_request(&adapter->netdev->pm_qos_req, 3721 PM_QOS_CPU_DMA_LATENCY, 3722 PM_QOS_DEFAULT_VALUE); 3723 3724 /* 3725 * before we allocate an interrupt, we must be ready to handle it. 3726 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 3727 * as soon as we call pci_request_irq, so we have to setup our 3728 * clean_rx handler before we do so. 3729 */ 3730 e1000_configure(adapter); 3731 3732 err = e1000_request_irq(adapter); 3733 if (err) 3734 goto err_req_irq; 3735 3736 /* 3737 * Work around PCIe errata with MSI interrupts causing some chipsets to 3738 * ignore e1000e MSI messages, which means we need to test our MSI 3739 * interrupt now 3740 */ 3741 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { 3742 err = e1000_test_msi(adapter); 3743 if (err) { 3744 e_err("Interrupt allocation failed\n"); 3745 goto err_req_irq; 3746 } 3747 } 3748 3749 /* From here on the code is the same as e1000e_up() */ 3750 clear_bit(__E1000_DOWN, &adapter->state); 3751 3752 napi_enable(&adapter->napi); 3753 3754 e1000_irq_enable(adapter); 3755 3756 netif_start_queue(netdev); 3757 3758 adapter->idle_check = true; 3759 pm_runtime_put(&pdev->dev); 3760 3761 /* fire a link status change interrupt to start the watchdog */ 3762 if (adapter->msix_entries) 3763 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 3764 else 3765 ew32(ICS, E1000_ICS_LSC); 3766 3767 return 0; 3768 3769err_req_irq: 3770 e1000e_release_hw_control(adapter); 3771 e1000_power_down_phy(adapter); 3772 e1000e_free_rx_resources(adapter); 3773err_setup_rx: 3774 e1000e_free_tx_resources(adapter); 3775err_setup_tx: 3776 e1000e_reset(adapter); 3777 pm_runtime_put_sync(&pdev->dev); 3778 3779 return err; 3780} 3781 3782/** 3783 * e1000_close - Disables a network interface 3784 * @netdev: network interface device structure 3785 * 3786 * Returns 0, this is not allowed to fail 3787 * 3788 * The close entry point is called when an interface is de-activated 3789 * by the OS. The hardware is still under the drivers control, but 3790 * needs to be disabled. A global MAC reset is issued to stop the 3791 * hardware, and all transmit and receive resources are freed. 3792 **/ 3793static int e1000_close(struct net_device *netdev) 3794{ 3795 struct e1000_adapter *adapter = netdev_priv(netdev); 3796 struct pci_dev *pdev = adapter->pdev; 3797 3798 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 3799 3800 pm_runtime_get_sync(&pdev->dev); 3801 3802 if (!test_bit(__E1000_DOWN, &adapter->state)) { 3803 e1000e_down(adapter); 3804 e1000_free_irq(adapter); 3805 } 3806 e1000_power_down_phy(adapter); 3807 3808 e1000e_free_tx_resources(adapter); 3809 e1000e_free_rx_resources(adapter); 3810 3811 /* 3812 * kill manageability vlan ID if supported, but not if a vlan with 3813 * the same ID is registered on the host OS (let 8021q kill it) 3814 */ 3815 if (adapter->hw.mng_cookie.status & 3816 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) 3817 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); 3818 3819 /* 3820 * If AMT is enabled, let the firmware know that the network 3821 * interface is now closed 3822 */ 3823 if ((adapter->flags & FLAG_HAS_AMT) && 3824 !test_bit(__E1000_TESTING, &adapter->state)) 3825 e1000e_release_hw_control(adapter); 3826 3827 if ((adapter->flags & FLAG_HAS_ERT) || 3828 (adapter->hw.mac.type == e1000_pch2lan)) 3829 pm_qos_remove_request(&adapter->netdev->pm_qos_req); 3830 3831 pm_runtime_put_sync(&pdev->dev); 3832 3833 return 0; 3834} 3835/** 3836 * e1000_set_mac - Change the Ethernet Address of the NIC 3837 * @netdev: network interface device structure 3838 * @p: pointer to an address structure 3839 * 3840 * Returns 0 on success, negative on failure 3841 **/ 3842static int e1000_set_mac(struct net_device *netdev, void *p) 3843{ 3844 struct e1000_adapter *adapter = netdev_priv(netdev); 3845 struct sockaddr *addr = p; 3846 3847 if (!is_valid_ether_addr(addr->sa_data)) 3848 return -EADDRNOTAVAIL; 3849 3850 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3851 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 3852 3853 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 3854 3855 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 3856 /* activate the work around */ 3857 e1000e_set_laa_state_82571(&adapter->hw, 1); 3858 3859 /* 3860 * Hold a copy of the LAA in RAR[14] This is done so that 3861 * between the time RAR[0] gets clobbered and the time it 3862 * gets fixed (in e1000_watchdog), the actual LAA is in one 3863 * of the RARs and no incoming packets directed to this port 3864 * are dropped. Eventually the LAA will be in RAR[0] and 3865 * RAR[14] 3866 */ 3867 e1000e_rar_set(&adapter->hw, 3868 adapter->hw.mac.addr, 3869 adapter->hw.mac.rar_entry_count - 1); 3870 } 3871 3872 return 0; 3873} 3874 3875/** 3876 * e1000e_update_phy_task - work thread to update phy 3877 * @work: pointer to our work struct 3878 * 3879 * this worker thread exists because we must acquire a 3880 * semaphore to read the phy, which we could msleep while 3881 * waiting for it, and we can't msleep in a timer. 3882 **/ 3883static void e1000e_update_phy_task(struct work_struct *work) 3884{ 3885 struct e1000_adapter *adapter = container_of(work, 3886 struct e1000_adapter, update_phy_task); 3887 3888 if (test_bit(__E1000_DOWN, &adapter->state)) 3889 return; 3890 3891 e1000_get_phy_info(&adapter->hw); 3892} 3893 3894/* 3895 * Need to wait a few seconds after link up to get diagnostic information from 3896 * the phy 3897 */ 3898static void e1000_update_phy_info(unsigned long data) 3899{ 3900 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 3901 3902 if (test_bit(__E1000_DOWN, &adapter->state)) 3903 return; 3904 3905 schedule_work(&adapter->update_phy_task); 3906} 3907 3908/** 3909 * e1000e_update_phy_stats - Update the PHY statistics counters 3910 * @adapter: board private structure 3911 * 3912 * Read/clear the upper 16-bit PHY registers and read/accumulate lower 3913 **/ 3914static void e1000e_update_phy_stats(struct e1000_adapter *adapter) 3915{ 3916 struct e1000_hw *hw = &adapter->hw; 3917 s32 ret_val; 3918 u16 phy_data; 3919 3920 ret_val = hw->phy.ops.acquire(hw); 3921 if (ret_val) 3922 return; 3923 3924 /* 3925 * A page set is expensive so check if already on desired page. 3926 * If not, set to the page with the PHY status registers. 3927 */ 3928 hw->phy.addr = 1; 3929 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 3930 &phy_data); 3931 if (ret_val) 3932 goto release; 3933 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { 3934 ret_val = hw->phy.ops.set_page(hw, 3935 HV_STATS_PAGE << IGP_PAGE_SHIFT); 3936 if (ret_val) 3937 goto release; 3938 } 3939 3940 /* Single Collision Count */ 3941 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 3942 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 3943 if (!ret_val) 3944 adapter->stats.scc += phy_data; 3945 3946 /* Excessive Collision Count */ 3947 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 3948 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 3949 if (!ret_val) 3950 adapter->stats.ecol += phy_data; 3951 3952 /* Multiple Collision Count */ 3953 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 3954 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 3955 if (!ret_val) 3956 adapter->stats.mcc += phy_data; 3957 3958 /* Late Collision Count */ 3959 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 3960 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 3961 if (!ret_val) 3962 adapter->stats.latecol += phy_data; 3963 3964 /* Collision Count - also used for adaptive IFS */ 3965 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 3966 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 3967 if (!ret_val) 3968 hw->mac.collision_delta = phy_data; 3969 3970 /* Defer Count */ 3971 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 3972 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 3973 if (!ret_val) 3974 adapter->stats.dc += phy_data; 3975 3976 /* Transmit with no CRS */ 3977 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 3978 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 3979 if (!ret_val) 3980 adapter->stats.tncrs += phy_data; 3981 3982release: 3983 hw->phy.ops.release(hw); 3984} 3985 3986/** 3987 * e1000e_update_stats - Update the board statistics counters 3988 * @adapter: board private structure 3989 **/ 3990static void e1000e_update_stats(struct e1000_adapter *adapter) 3991{ 3992 struct net_device *netdev = adapter->netdev; 3993 struct e1000_hw *hw = &adapter->hw; 3994 struct pci_dev *pdev = adapter->pdev; 3995 3996 /* 3997 * Prevent stats update while adapter is being reset, or if the pci 3998 * connection is down. 3999 */ 4000 if (adapter->link_speed == 0) 4001 return; 4002 if (pci_channel_offline(pdev)) 4003 return; 4004 4005 adapter->stats.crcerrs += er32(CRCERRS); 4006 adapter->stats.gprc += er32(GPRC); 4007 adapter->stats.gorc += er32(GORCL); 4008 er32(GORCH); /* Clear gorc */ 4009 adapter->stats.bprc += er32(BPRC); 4010 adapter->stats.mprc += er32(MPRC); 4011 adapter->stats.roc += er32(ROC); 4012 4013 adapter->stats.mpc += er32(MPC); 4014 4015 /* Half-duplex statistics */ 4016 if (adapter->link_duplex == HALF_DUPLEX) { 4017 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { 4018 e1000e_update_phy_stats(adapter); 4019 } else { 4020 adapter->stats.scc += er32(SCC); 4021 adapter->stats.ecol += er32(ECOL); 4022 adapter->stats.mcc += er32(MCC); 4023 adapter->stats.latecol += er32(LATECOL); 4024 adapter->stats.dc += er32(DC); 4025 4026 hw->mac.collision_delta = er32(COLC); 4027 4028 if ((hw->mac.type != e1000_82574) && 4029 (hw->mac.type != e1000_82583)) 4030 adapter->stats.tncrs += er32(TNCRS); 4031 } 4032 adapter->stats.colc += hw->mac.collision_delta; 4033 } 4034 4035 adapter->stats.xonrxc += er32(XONRXC); 4036 adapter->stats.xontxc += er32(XONTXC); 4037 adapter->stats.xoffrxc += er32(XOFFRXC); 4038 adapter->stats.xofftxc += er32(XOFFTXC); 4039 adapter->stats.gptc += er32(GPTC); 4040 adapter->stats.gotc += er32(GOTCL); 4041 er32(GOTCH); /* Clear gotc */ 4042 adapter->stats.rnbc += er32(RNBC); 4043 adapter->stats.ruc += er32(RUC); 4044 4045 adapter->stats.mptc += er32(MPTC); 4046 adapter->stats.bptc += er32(BPTC); 4047 4048 /* used for adaptive IFS */ 4049 4050 hw->mac.tx_packet_delta = er32(TPT); 4051 adapter->stats.tpt += hw->mac.tx_packet_delta; 4052 4053 adapter->stats.algnerrc += er32(ALGNERRC); 4054 adapter->stats.rxerrc += er32(RXERRC); 4055 adapter->stats.cexterr += er32(CEXTERR); 4056 adapter->stats.tsctc += er32(TSCTC); 4057 adapter->stats.tsctfc += er32(TSCTFC); 4058 4059 /* Fill out the OS statistics structure */ 4060 netdev->stats.multicast = adapter->stats.mprc; 4061 netdev->stats.collisions = adapter->stats.colc; 4062 4063 /* Rx Errors */ 4064 4065 /* 4066 * RLEC on some newer hardware can be incorrect so build 4067 * our own version based on RUC and ROC 4068 */ 4069 netdev->stats.rx_errors = adapter->stats.rxerrc + 4070 adapter->stats.crcerrs + adapter->stats.algnerrc + 4071 adapter->stats.ruc + adapter->stats.roc + 4072 adapter->stats.cexterr; 4073 netdev->stats.rx_length_errors = adapter->stats.ruc + 4074 adapter->stats.roc; 4075 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 4076 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 4077 netdev->stats.rx_missed_errors = adapter->stats.mpc; 4078 4079 /* Tx Errors */ 4080 netdev->stats.tx_errors = adapter->stats.ecol + 4081 adapter->stats.latecol; 4082 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 4083 netdev->stats.tx_window_errors = adapter->stats.latecol; 4084 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 4085 4086 /* Tx Dropped needs to be maintained elsewhere */ 4087 4088 /* Management Stats */ 4089 adapter->stats.mgptc += er32(MGTPTC); 4090 adapter->stats.mgprc += er32(MGTPRC); 4091 adapter->stats.mgpdc += er32(MGTPDC); 4092} 4093 4094/** 4095 * e1000_phy_read_status - Update the PHY register status snapshot 4096 * @adapter: board private structure 4097 **/ 4098static void e1000_phy_read_status(struct e1000_adapter *adapter) 4099{ 4100 struct e1000_hw *hw = &adapter->hw; 4101 struct e1000_phy_regs *phy = &adapter->phy_regs; 4102 4103 if ((er32(STATUS) & E1000_STATUS_LU) && 4104 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 4105 int ret_val; 4106 4107 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); 4108 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); 4109 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); 4110 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); 4111 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); 4112 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); 4113 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); 4114 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); 4115 if (ret_val) 4116 e_warn("Error reading PHY register\n"); 4117 } else { 4118 /* 4119 * Do not read PHY registers if link is not up 4120 * Set values to typical power-on defaults 4121 */ 4122 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 4123 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 4124 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 4125 BMSR_ERCAP); 4126 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 4127 ADVERTISE_ALL | ADVERTISE_CSMA); 4128 phy->lpa = 0; 4129 phy->expansion = EXPANSION_ENABLENPAGE; 4130 phy->ctrl1000 = ADVERTISE_1000FULL; 4131 phy->stat1000 = 0; 4132 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 4133 } 4134} 4135 4136static void e1000_print_link_info(struct e1000_adapter *adapter) 4137{ 4138 struct e1000_hw *hw = &adapter->hw; 4139 u32 ctrl = er32(CTRL); 4140 4141 /* Link status message must follow this format for user tools */ 4142 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " 4143 "Flow Control: %s\n", 4144 adapter->netdev->name, 4145 adapter->link_speed, 4146 (adapter->link_duplex == FULL_DUPLEX) ? 4147 "Full Duplex" : "Half Duplex", 4148 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? 4149 "Rx/Tx" : 4150 ((ctrl & E1000_CTRL_RFCE) ? "Rx" : 4151 ((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"))); 4152} 4153 4154static bool e1000e_has_link(struct e1000_adapter *adapter) 4155{ 4156 struct e1000_hw *hw = &adapter->hw; 4157 bool link_active = 0; 4158 s32 ret_val = 0; 4159 4160 /* 4161 * get_link_status is set on LSC (link status) interrupt or 4162 * Rx sequence error interrupt. get_link_status will stay 4163 * false until the check_for_link establishes link 4164 * for copper adapters ONLY 4165 */ 4166 switch (hw->phy.media_type) { 4167 case e1000_media_type_copper: 4168 if (hw->mac.get_link_status) { 4169 ret_val = hw->mac.ops.check_for_link(hw); 4170 link_active = !hw->mac.get_link_status; 4171 } else { 4172 link_active = 1; 4173 } 4174 break; 4175 case e1000_media_type_fiber: 4176 ret_val = hw->mac.ops.check_for_link(hw); 4177 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 4178 break; 4179 case e1000_media_type_internal_serdes: 4180 ret_val = hw->mac.ops.check_for_link(hw); 4181 link_active = adapter->hw.mac.serdes_has_link; 4182 break; 4183 default: 4184 case e1000_media_type_unknown: 4185 break; 4186 } 4187 4188 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 4189 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 4190 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 4191 e_info("Gigabit has been disabled, downgrading speed\n"); 4192 } 4193 4194 return link_active; 4195} 4196 4197static void e1000e_enable_receives(struct e1000_adapter *adapter) 4198{ 4199 /* make sure the receive unit is started */ 4200 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 4201 (adapter->flags & FLAG_RX_RESTART_NOW)) { 4202 struct e1000_hw *hw = &adapter->hw; 4203 u32 rctl = er32(RCTL); 4204 ew32(RCTL, rctl | E1000_RCTL_EN); 4205 adapter->flags &= ~FLAG_RX_RESTART_NOW; 4206 } 4207} 4208 4209static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) 4210{ 4211 struct e1000_hw *hw = &adapter->hw; 4212 4213 /* 4214 * With 82574 controllers, PHY needs to be checked periodically 4215 * for hung state and reset, if two calls return true 4216 */ 4217 if (e1000_check_phy_82574(hw)) 4218 adapter->phy_hang_count++; 4219 else 4220 adapter->phy_hang_count = 0; 4221 4222 if (adapter->phy_hang_count > 1) { 4223 adapter->phy_hang_count = 0; 4224 schedule_work(&adapter->reset_task); 4225 } 4226} 4227 4228/** 4229 * e1000_watchdog - Timer Call-back 4230 * @data: pointer to adapter cast into an unsigned long 4231 **/ 4232static void e1000_watchdog(unsigned long data) 4233{ 4234 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 4235 4236 /* Do the rest outside of interrupt context */ 4237 schedule_work(&adapter->watchdog_task); 4238 4239 /* TODO: make this use queue_delayed_work() */ 4240} 4241 4242static void e1000_watchdog_task(struct work_struct *work) 4243{ 4244 struct e1000_adapter *adapter = container_of(work, 4245 struct e1000_adapter, watchdog_task); 4246 struct net_device *netdev = adapter->netdev; 4247 struct e1000_mac_info *mac = &adapter->hw.mac; 4248 struct e1000_phy_info *phy = &adapter->hw.phy; 4249 struct e1000_ring *tx_ring = adapter->tx_ring; 4250 struct e1000_hw *hw = &adapter->hw; 4251 u32 link, tctl; 4252 4253 if (test_bit(__E1000_DOWN, &adapter->state)) 4254 return; 4255 4256 link = e1000e_has_link(adapter); 4257 if ((netif_carrier_ok(netdev)) && link) { 4258 /* Cancel scheduled suspend requests. */ 4259 pm_runtime_resume(netdev->dev.parent); 4260 4261 e1000e_enable_receives(adapter); 4262 goto link_up; 4263 } 4264 4265 if ((e1000e_enable_tx_pkt_filtering(hw)) && 4266 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 4267 e1000_update_mng_vlan(adapter); 4268 4269 if (link) { 4270 if (!netif_carrier_ok(netdev)) { 4271 bool txb2b = 1; 4272 4273 /* Cancel scheduled suspend requests. */ 4274 pm_runtime_resume(netdev->dev.parent); 4275 4276 /* update snapshot of PHY registers on LSC */ 4277 e1000_phy_read_status(adapter); 4278 mac->ops.get_link_up_info(&adapter->hw, 4279 &adapter->link_speed, 4280 &adapter->link_duplex); 4281 e1000_print_link_info(adapter); 4282 /* 4283 * On supported PHYs, check for duplex mismatch only 4284 * if link has autonegotiated at 10/100 half 4285 */ 4286 if ((hw->phy.type == e1000_phy_igp_3 || 4287 hw->phy.type == e1000_phy_bm) && 4288 (hw->mac.autoneg == true) && 4289 (adapter->link_speed == SPEED_10 || 4290 adapter->link_speed == SPEED_100) && 4291 (adapter->link_duplex == HALF_DUPLEX)) { 4292 u16 autoneg_exp; 4293 4294 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); 4295 4296 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) 4297 e_info("Autonegotiated half duplex but" 4298 " link partner cannot autoneg. " 4299 " Try forcing full duplex if " 4300 "link gets many collisions.\n"); 4301 } 4302 4303 /* adjust timeout factor according to speed/duplex */ 4304 adapter->tx_timeout_factor = 1; 4305 switch (adapter->link_speed) { 4306 case SPEED_10: 4307 txb2b = 0; 4308 adapter->tx_timeout_factor = 16; 4309 break; 4310 case SPEED_100: 4311 txb2b = 0; 4312 adapter->tx_timeout_factor = 10; 4313 break; 4314 } 4315 4316 /* 4317 * workaround: re-program speed mode bit after 4318 * link-up event 4319 */ 4320 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 4321 !txb2b) { 4322 u32 tarc0; 4323 tarc0 = er32(TARC(0)); 4324 tarc0 &= ~SPEED_MODE_BIT; 4325 ew32(TARC(0), tarc0); 4326 } 4327 4328 /* 4329 * disable TSO for pcie and 10/100 speeds, to avoid 4330 * some hardware issues 4331 */ 4332 if (!(adapter->flags & FLAG_TSO_FORCE)) { 4333 switch (adapter->link_speed) { 4334 case SPEED_10: 4335 case SPEED_100: 4336 e_info("10/100 speed: disabling TSO\n"); 4337 netdev->features &= ~NETIF_F_TSO; 4338 netdev->features &= ~NETIF_F_TSO6; 4339 break; 4340 case SPEED_1000: 4341 netdev->features |= NETIF_F_TSO; 4342 netdev->features |= NETIF_F_TSO6; 4343 break; 4344 default: 4345 /* oops */ 4346 break; 4347 } 4348 } 4349 4350 /* 4351 * enable transmits in the hardware, need to do this 4352 * after setting TARC(0) 4353 */ 4354 tctl = er32(TCTL); 4355 tctl |= E1000_TCTL_EN; 4356 ew32(TCTL, tctl); 4357 4358 /* 4359 * Perform any post-link-up configuration before 4360 * reporting link up. 4361 */ 4362 if (phy->ops.cfg_on_link_up) 4363 phy->ops.cfg_on_link_up(hw); 4364 4365 netif_carrier_on(netdev); 4366 4367 if (!test_bit(__E1000_DOWN, &adapter->state)) 4368 mod_timer(&adapter->phy_info_timer, 4369 round_jiffies(jiffies + 2 * HZ)); 4370 } 4371 } else { 4372 if (netif_carrier_ok(netdev)) { 4373 adapter->link_speed = 0; 4374 adapter->link_duplex = 0; 4375 /* Link status message must follow this format */ 4376 printk(KERN_INFO "e1000e: %s NIC Link is Down\n", 4377 adapter->netdev->name); 4378 netif_carrier_off(netdev); 4379 if (!test_bit(__E1000_DOWN, &adapter->state)) 4380 mod_timer(&adapter->phy_info_timer, 4381 round_jiffies(jiffies + 2 * HZ)); 4382 4383 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 4384 schedule_work(&adapter->reset_task); 4385 else 4386 pm_schedule_suspend(netdev->dev.parent, 4387 LINK_TIMEOUT); 4388 } 4389 } 4390 4391link_up: 4392 spin_lock(&adapter->stats64_lock); 4393 e1000e_update_stats(adapter); 4394 4395 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 4396 adapter->tpt_old = adapter->stats.tpt; 4397 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 4398 adapter->colc_old = adapter->stats.colc; 4399 4400 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 4401 adapter->gorc_old = adapter->stats.gorc; 4402 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 4403 adapter->gotc_old = adapter->stats.gotc; 4404 spin_unlock(&adapter->stats64_lock); 4405 4406 e1000e_update_adaptive(&adapter->hw); 4407 4408 if (!netif_carrier_ok(netdev) && 4409 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) { 4410 /* 4411 * We've lost link, so the controller stops DMA, 4412 * but we've got queued Tx work that's never going 4413 * to get done, so reset controller to flush Tx. 4414 * (Do the reset outside of interrupt context). 4415 */ 4416 schedule_work(&adapter->reset_task); 4417 /* return immediately since reset is imminent */ 4418 return; 4419 } 4420 4421 /* Simple mode for Interrupt Throttle Rate (ITR) */ 4422 if (adapter->itr_setting == 4) { 4423 /* 4424 * Symmetric Tx/Rx gets a reduced ITR=2000; 4425 * Total asymmetrical Tx or Rx gets ITR=8000; 4426 * everyone else is between 2000-8000. 4427 */ 4428 u32 goc = (adapter->gotc + adapter->gorc) / 10000; 4429 u32 dif = (adapter->gotc > adapter->gorc ? 4430 adapter->gotc - adapter->gorc : 4431 adapter->gorc - adapter->gotc) / 10000; 4432 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 4433 4434 ew32(ITR, 1000000000 / (itr * 256)); 4435 } 4436 4437 /* Cause software interrupt to ensure Rx ring is cleaned */ 4438 if (adapter->msix_entries) 4439 ew32(ICS, adapter->rx_ring->ims_val); 4440 else 4441 ew32(ICS, E1000_ICS_RXDMT0); 4442 4443 /* flush pending descriptors to memory before detecting Tx hang */ 4444 e1000e_flush_descriptors(adapter); 4445 4446 /* Force detection of hung controller every watchdog period */ 4447 adapter->detect_tx_hung = 1; 4448 4449 /* 4450 * With 82571 controllers, LAA may be overwritten due to controller 4451 * reset from the other port. Set the appropriate LAA in RAR[0] 4452 */ 4453 if (e1000e_get_laa_state_82571(hw)) 4454 e1000e_rar_set(hw, adapter->hw.mac.addr, 0); 4455 4456 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) 4457 e1000e_check_82574_phy_workaround(adapter); 4458 4459 /* Reset the timer */ 4460 if (!test_bit(__E1000_DOWN, &adapter->state)) 4461 mod_timer(&adapter->watchdog_timer, 4462 round_jiffies(jiffies + 2 * HZ)); 4463} 4464 4465#define E1000_TX_FLAGS_CSUM 0x00000001 4466#define E1000_TX_FLAGS_VLAN 0x00000002 4467#define E1000_TX_FLAGS_TSO 0x00000004 4468#define E1000_TX_FLAGS_IPV4 0x00000008 4469#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 4470#define E1000_TX_FLAGS_VLAN_SHIFT 16 4471 4472static int e1000_tso(struct e1000_adapter *adapter, 4473 struct sk_buff *skb) 4474{ 4475 struct e1000_ring *tx_ring = adapter->tx_ring; 4476 struct e1000_context_desc *context_desc; 4477 struct e1000_buffer *buffer_info; 4478 unsigned int i; 4479 u32 cmd_length = 0; 4480 u16 ipcse = 0, tucse, mss; 4481 u8 ipcss, ipcso, tucss, tucso, hdr_len; 4482 4483 if (!skb_is_gso(skb)) 4484 return 0; 4485 4486 if (skb_header_cloned(skb)) { 4487 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4488 4489 if (err) 4490 return err; 4491 } 4492 4493 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 4494 mss = skb_shinfo(skb)->gso_size; 4495 if (skb->protocol == htons(ETH_P_IP)) { 4496 struct iphdr *iph = ip_hdr(skb); 4497 iph->tot_len = 0; 4498 iph->check = 0; 4499 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 4500 0, IPPROTO_TCP, 0); 4501 cmd_length = E1000_TXD_CMD_IP; 4502 ipcse = skb_transport_offset(skb) - 1; 4503 } else if (skb_is_gso_v6(skb)) { 4504 ipv6_hdr(skb)->payload_len = 0; 4505 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4506 &ipv6_hdr(skb)->daddr, 4507 0, IPPROTO_TCP, 0); 4508 ipcse = 0; 4509 } 4510 ipcss = skb_network_offset(skb); 4511 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 4512 tucss = skb_transport_offset(skb); 4513 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 4514 tucse = 0; 4515 4516 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 4517 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 4518 4519 i = tx_ring->next_to_use; 4520 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 4521 buffer_info = &tx_ring->buffer_info[i]; 4522 4523 context_desc->lower_setup.ip_fields.ipcss = ipcss; 4524 context_desc->lower_setup.ip_fields.ipcso = ipcso; 4525 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 4526 context_desc->upper_setup.tcp_fields.tucss = tucss; 4527 context_desc->upper_setup.tcp_fields.tucso = tucso; 4528 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 4529 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 4530 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 4531 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 4532 4533 buffer_info->time_stamp = jiffies; 4534 buffer_info->next_to_watch = i; 4535 4536 i++; 4537 if (i == tx_ring->count) 4538 i = 0; 4539 tx_ring->next_to_use = i; 4540 4541 return 1; 4542} 4543 4544static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) 4545{ 4546 struct e1000_ring *tx_ring = adapter->tx_ring; 4547 struct e1000_context_desc *context_desc; 4548 struct e1000_buffer *buffer_info; 4549 unsigned int i; 4550 u8 css; 4551 u32 cmd_len = E1000_TXD_CMD_DEXT; 4552 __be16 protocol; 4553 4554 if (skb->ip_summed != CHECKSUM_PARTIAL) 4555 return 0; 4556 4557 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) 4558 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; 4559 else 4560 protocol = skb->protocol; 4561 4562 switch (protocol) { 4563 case cpu_to_be16(ETH_P_IP): 4564 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 4565 cmd_len |= E1000_TXD_CMD_TCP; 4566 break; 4567 case cpu_to_be16(ETH_P_IPV6): 4568 /* XXX not handling all IPV6 headers */ 4569 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 4570 cmd_len |= E1000_TXD_CMD_TCP; 4571 break; 4572 default: 4573 if (unlikely(net_ratelimit())) 4574 e_warn("checksum_partial proto=%x!\n", 4575 be16_to_cpu(protocol)); 4576 break; 4577 } 4578 4579 css = skb_checksum_start_offset(skb); 4580 4581 i = tx_ring->next_to_use; 4582 buffer_info = &tx_ring->buffer_info[i]; 4583 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 4584 4585 context_desc->lower_setup.ip_config = 0; 4586 context_desc->upper_setup.tcp_fields.tucss = css; 4587 context_desc->upper_setup.tcp_fields.tucso = 4588 css + skb->csum_offset; 4589 context_desc->upper_setup.tcp_fields.tucse = 0; 4590 context_desc->tcp_seg_setup.data = 0; 4591 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 4592 4593 buffer_info->time_stamp = jiffies; 4594 buffer_info->next_to_watch = i; 4595 4596 i++; 4597 if (i == tx_ring->count) 4598 i = 0; 4599 tx_ring->next_to_use = i; 4600 4601 return 1; 4602} 4603 4604#define E1000_MAX_PER_TXD 8192 4605#define E1000_MAX_TXD_PWR 12 4606 4607static int e1000_tx_map(struct e1000_adapter *adapter, 4608 struct sk_buff *skb, unsigned int first, 4609 unsigned int max_per_txd, unsigned int nr_frags, 4610 unsigned int mss) 4611{ 4612 struct e1000_ring *tx_ring = adapter->tx_ring; 4613 struct pci_dev *pdev = adapter->pdev; 4614 struct e1000_buffer *buffer_info; 4615 unsigned int len = skb_headlen(skb); 4616 unsigned int offset = 0, size, count = 0, i; 4617 unsigned int f, bytecount, segs; 4618 4619 i = tx_ring->next_to_use; 4620 4621 while (len) { 4622 buffer_info = &tx_ring->buffer_info[i]; 4623 size = min(len, max_per_txd); 4624 4625 buffer_info->length = size; 4626 buffer_info->time_stamp = jiffies; 4627 buffer_info->next_to_watch = i; 4628 buffer_info->dma = dma_map_single(&pdev->dev, 4629 skb->data + offset, 4630 size, DMA_TO_DEVICE); 4631 buffer_info->mapped_as_page = false; 4632 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 4633 goto dma_error; 4634 4635 len -= size; 4636 offset += size; 4637 count++; 4638 4639 if (len) { 4640 i++; 4641 if (i == tx_ring->count) 4642 i = 0; 4643 } 4644 } 4645 4646 for (f = 0; f < nr_frags; f++) { 4647 struct skb_frag_struct *frag; 4648 4649 frag = &skb_shinfo(skb)->frags[f]; 4650 len = frag->size; 4651 offset = frag->page_offset; 4652 4653 while (len) { 4654 i++; 4655 if (i == tx_ring->count) 4656 i = 0; 4657 4658 buffer_info = &tx_ring->buffer_info[i]; 4659 size = min(len, max_per_txd); 4660 4661 buffer_info->length = size; 4662 buffer_info->time_stamp = jiffies; 4663 buffer_info->next_to_watch = i; 4664 buffer_info->dma = dma_map_page(&pdev->dev, frag->page, 4665 offset, size, 4666 DMA_TO_DEVICE); 4667 buffer_info->mapped_as_page = true; 4668 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 4669 goto dma_error; 4670 4671 len -= size; 4672 offset += size; 4673 count++; 4674 } 4675 } 4676 4677 segs = skb_shinfo(skb)->gso_segs ? : 1; 4678 /* multiply data chunks by size of headers */ 4679 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 4680 4681 tx_ring->buffer_info[i].skb = skb; 4682 tx_ring->buffer_info[i].segs = segs; 4683 tx_ring->buffer_info[i].bytecount = bytecount; 4684 tx_ring->buffer_info[first].next_to_watch = i; 4685 4686 return count; 4687 4688dma_error: 4689 dev_err(&pdev->dev, "Tx DMA map failed\n"); 4690 buffer_info->dma = 0; 4691 if (count) 4692 count--; 4693 4694 while (count--) { 4695 if (i == 0) 4696 i += tx_ring->count; 4697 i--; 4698 buffer_info = &tx_ring->buffer_info[i]; 4699 e1000_put_txbuf(adapter, buffer_info); 4700 } 4701 4702 return 0; 4703} 4704 4705static void e1000_tx_queue(struct e1000_adapter *adapter, 4706 int tx_flags, int count) 4707{ 4708 struct e1000_ring *tx_ring = adapter->tx_ring; 4709 struct e1000_tx_desc *tx_desc = NULL; 4710 struct e1000_buffer *buffer_info; 4711 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 4712 unsigned int i; 4713 4714 if (tx_flags & E1000_TX_FLAGS_TSO) { 4715 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 4716 E1000_TXD_CMD_TSE; 4717 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 4718 4719 if (tx_flags & E1000_TX_FLAGS_IPV4) 4720 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 4721 } 4722 4723 if (tx_flags & E1000_TX_FLAGS_CSUM) { 4724 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 4725 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 4726 } 4727 4728 if (tx_flags & E1000_TX_FLAGS_VLAN) { 4729 txd_lower |= E1000_TXD_CMD_VLE; 4730 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 4731 } 4732 4733 i = tx_ring->next_to_use; 4734 4735 do { 4736 buffer_info = &tx_ring->buffer_info[i]; 4737 tx_desc = E1000_TX_DESC(*tx_ring, i); 4738 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4739 tx_desc->lower.data = 4740 cpu_to_le32(txd_lower | buffer_info->length); 4741 tx_desc->upper.data = cpu_to_le32(txd_upper); 4742 4743 i++; 4744 if (i == tx_ring->count) 4745 i = 0; 4746 } while (--count > 0); 4747 4748 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 4749 4750 /* 4751 * Force memory writes to complete before letting h/w 4752 * know there are new descriptors to fetch. (Only 4753 * applicable for weak-ordered memory model archs, 4754 * such as IA-64). 4755 */ 4756 wmb(); 4757 4758 tx_ring->next_to_use = i; 4759 4760 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 4761 e1000e_update_tdt_wa(adapter, i); 4762 else 4763 writel(i, adapter->hw.hw_addr + tx_ring->tail); 4764 4765 /* 4766 * we need this if more than one processor can write to our tail 4767 * at a time, it synchronizes IO on IA64/Altix systems 4768 */ 4769 mmiowb(); 4770} 4771 4772#define MINIMUM_DHCP_PACKET_SIZE 282 4773static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 4774 struct sk_buff *skb) 4775{ 4776 struct e1000_hw *hw = &adapter->hw; 4777 u16 length, offset; 4778 4779 if (vlan_tx_tag_present(skb)) { 4780 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && 4781 (adapter->hw.mng_cookie.status & 4782 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 4783 return 0; 4784 } 4785 4786 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 4787 return 0; 4788 4789 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) 4790 return 0; 4791 4792 { 4793 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); 4794 struct udphdr *udp; 4795 4796 if (ip->protocol != IPPROTO_UDP) 4797 return 0; 4798 4799 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 4800 if (ntohs(udp->dest) != 67) 4801 return 0; 4802 4803 offset = (u8 *)udp + 8 - skb->data; 4804 length = skb->len - offset; 4805 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 4806 } 4807 4808 return 0; 4809} 4810 4811static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 4812{ 4813 struct e1000_adapter *adapter = netdev_priv(netdev); 4814 4815 netif_stop_queue(netdev); 4816 /* 4817 * Herbert's original patch had: 4818 * smp_mb__after_netif_stop_queue(); 4819 * but since that doesn't exist yet, just open code it. 4820 */ 4821 smp_mb(); 4822 4823 /* 4824 * We need to check again in a case another CPU has just 4825 * made room available. 4826 */ 4827 if (e1000_desc_unused(adapter->tx_ring) < size) 4828 return -EBUSY; 4829 4830 /* A reprieve! */ 4831 netif_start_queue(netdev); 4832 ++adapter->restart_queue; 4833 return 0; 4834} 4835 4836static int e1000_maybe_stop_tx(struct net_device *netdev, int size) 4837{ 4838 struct e1000_adapter *adapter = netdev_priv(netdev); 4839 4840 if (e1000_desc_unused(adapter->tx_ring) >= size) 4841 return 0; 4842 return __e1000_maybe_stop_tx(netdev, size); 4843} 4844 4845#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 4846static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 4847 struct net_device *netdev) 4848{ 4849 struct e1000_adapter *adapter = netdev_priv(netdev); 4850 struct e1000_ring *tx_ring = adapter->tx_ring; 4851 unsigned int first; 4852 unsigned int max_per_txd = E1000_MAX_PER_TXD; 4853 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 4854 unsigned int tx_flags = 0; 4855 unsigned int len = skb_headlen(skb); 4856 unsigned int nr_frags; 4857 unsigned int mss; 4858 int count = 0; 4859 int tso; 4860 unsigned int f; 4861 4862 if (test_bit(__E1000_DOWN, &adapter->state)) { 4863 dev_kfree_skb_any(skb); 4864 return NETDEV_TX_OK; 4865 } 4866 4867 if (skb->len <= 0) { 4868 dev_kfree_skb_any(skb); 4869 return NETDEV_TX_OK; 4870 } 4871 4872 mss = skb_shinfo(skb)->gso_size; 4873 /* 4874 * The controller does a simple calculation to 4875 * make sure there is enough room in the FIFO before 4876 * initiating the DMA for each buffer. The calc is: 4877 * 4 = ceil(buffer len/mss). To make sure we don't 4878 * overrun the FIFO, adjust the max buffer len if mss 4879 * drops. 4880 */ 4881 if (mss) { 4882 u8 hdr_len; 4883 max_per_txd = min(mss << 2, max_per_txd); 4884 max_txd_pwr = fls(max_per_txd) - 1; 4885 4886 /* 4887 * TSO Workaround for 82571/2/3 Controllers -- if skb->data 4888 * points to just header, pull a few bytes of payload from 4889 * frags into skb->data 4890 */ 4891 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 4892 /* 4893 * we do this workaround for ES2LAN, but it is un-necessary, 4894 * avoiding it could save a lot of cycles 4895 */ 4896 if (skb->data_len && (hdr_len == len)) { 4897 unsigned int pull_size; 4898 4899 pull_size = min((unsigned int)4, skb->data_len); 4900 if (!__pskb_pull_tail(skb, pull_size)) { 4901 e_err("__pskb_pull_tail failed.\n"); 4902 dev_kfree_skb_any(skb); 4903 return NETDEV_TX_OK; 4904 } 4905 len = skb_headlen(skb); 4906 } 4907 } 4908 4909 /* reserve a descriptor for the offload context */ 4910 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 4911 count++; 4912 count++; 4913 4914 count += TXD_USE_COUNT(len, max_txd_pwr); 4915 4916 nr_frags = skb_shinfo(skb)->nr_frags; 4917 for (f = 0; f < nr_frags; f++) 4918 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, 4919 max_txd_pwr); 4920 4921 if (adapter->hw.mac.tx_pkt_filtering) 4922 e1000_transfer_dhcp_info(adapter, skb); 4923 4924 /* 4925 * need: count + 2 desc gap to keep tail from touching 4926 * head, otherwise try next time 4927 */ 4928 if (e1000_maybe_stop_tx(netdev, count + 2)) 4929 return NETDEV_TX_BUSY; 4930 4931 if (vlan_tx_tag_present(skb)) { 4932 tx_flags |= E1000_TX_FLAGS_VLAN; 4933 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 4934 } 4935 4936 first = tx_ring->next_to_use; 4937 4938 tso = e1000_tso(adapter, skb); 4939 if (tso < 0) { 4940 dev_kfree_skb_any(skb); 4941 return NETDEV_TX_OK; 4942 } 4943 4944 if (tso) 4945 tx_flags |= E1000_TX_FLAGS_TSO; 4946 else if (e1000_tx_csum(adapter, skb)) 4947 tx_flags |= E1000_TX_FLAGS_CSUM; 4948 4949 /* 4950 * Old method was to assume IPv4 packet by default if TSO was enabled. 4951 * 82571 hardware supports TSO capabilities for IPv6 as well... 4952 * no longer assume, we must. 4953 */ 4954 if (skb->protocol == htons(ETH_P_IP)) 4955 tx_flags |= E1000_TX_FLAGS_IPV4; 4956 4957 /* if count is 0 then mapping error has occurred */ 4958 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); 4959 if (count) { 4960 e1000_tx_queue(adapter, tx_flags, count); 4961 /* Make sure there is space in the ring for the next send. */ 4962 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); 4963 4964 } else { 4965 dev_kfree_skb_any(skb); 4966 tx_ring->buffer_info[first].time_stamp = 0; 4967 tx_ring->next_to_use = first; 4968 } 4969 4970 return NETDEV_TX_OK; 4971} 4972 4973/** 4974 * e1000_tx_timeout - Respond to a Tx Hang 4975 * @netdev: network interface device structure 4976 **/ 4977static void e1000_tx_timeout(struct net_device *netdev) 4978{ 4979 struct e1000_adapter *adapter = netdev_priv(netdev); 4980 4981 /* Do the reset outside of interrupt context */ 4982 adapter->tx_timeout_count++; 4983 schedule_work(&adapter->reset_task); 4984} 4985 4986static void e1000_reset_task(struct work_struct *work) 4987{ 4988 struct e1000_adapter *adapter; 4989 adapter = container_of(work, struct e1000_adapter, reset_task); 4990 4991 /* don't run the task if already down */ 4992 if (test_bit(__E1000_DOWN, &adapter->state)) 4993 return; 4994 4995 if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) && 4996 (adapter->flags & FLAG_RX_RESTART_NOW))) { 4997 e1000e_dump(adapter); 4998 e_err("Reset adapter\n"); 4999 } 5000 e1000e_reinit_locked(adapter); 5001} 5002 5003/** 5004 * e1000_get_stats64 - Get System Network Statistics 5005 * @netdev: network interface device structure 5006 * @stats: rtnl_link_stats64 pointer 5007 * 5008 * Returns the address of the device statistics structure. 5009 **/ 5010struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, 5011 struct rtnl_link_stats64 *stats) 5012{ 5013 struct e1000_adapter *adapter = netdev_priv(netdev); 5014 5015 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 5016 spin_lock(&adapter->stats64_lock); 5017 e1000e_update_stats(adapter); 5018 /* Fill out the OS statistics structure */ 5019 stats->rx_bytes = adapter->stats.gorc; 5020 stats->rx_packets = adapter->stats.gprc; 5021 stats->tx_bytes = adapter->stats.gotc; 5022 stats->tx_packets = adapter->stats.gptc; 5023 stats->multicast = adapter->stats.mprc; 5024 stats->collisions = adapter->stats.colc; 5025 5026 /* Rx Errors */ 5027 5028 /* 5029 * RLEC on some newer hardware can be incorrect so build 5030 * our own version based on RUC and ROC 5031 */ 5032 stats->rx_errors = adapter->stats.rxerrc + 5033 adapter->stats.crcerrs + adapter->stats.algnerrc + 5034 adapter->stats.ruc + adapter->stats.roc + 5035 adapter->stats.cexterr; 5036 stats->rx_length_errors = adapter->stats.ruc + 5037 adapter->stats.roc; 5038 stats->rx_crc_errors = adapter->stats.crcerrs; 5039 stats->rx_frame_errors = adapter->stats.algnerrc; 5040 stats->rx_missed_errors = adapter->stats.mpc; 5041 5042 /* Tx Errors */ 5043 stats->tx_errors = adapter->stats.ecol + 5044 adapter->stats.latecol; 5045 stats->tx_aborted_errors = adapter->stats.ecol; 5046 stats->tx_window_errors = adapter->stats.latecol; 5047 stats->tx_carrier_errors = adapter->stats.tncrs; 5048 5049 /* Tx Dropped needs to be maintained elsewhere */ 5050 5051 spin_unlock(&adapter->stats64_lock); 5052 return stats; 5053} 5054 5055/** 5056 * e1000_change_mtu - Change the Maximum Transfer Unit 5057 * @netdev: network interface device structure 5058 * @new_mtu: new value for maximum frame size 5059 * 5060 * Returns 0 on success, negative on failure 5061 **/ 5062static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 5063{ 5064 struct e1000_adapter *adapter = netdev_priv(netdev); 5065 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 5066 5067 /* Jumbo frame support */ 5068 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && 5069 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 5070 e_err("Jumbo Frames not supported.\n"); 5071 return -EINVAL; 5072 } 5073 5074 /* Supported frame sizes */ 5075 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || 5076 (max_frame > adapter->max_hw_frame_size)) { 5077 e_err("Unsupported MTU setting\n"); 5078 return -EINVAL; 5079 } 5080 5081 /* Jumbo frame workaround on 82579 requires CRC be stripped */ 5082 if ((adapter->hw.mac.type == e1000_pch2lan) && 5083 !(adapter->flags2 & FLAG2_CRC_STRIPPING) && 5084 (new_mtu > ETH_DATA_LEN)) { 5085 e_err("Jumbo Frames not supported on 82579 when CRC " 5086 "stripping is disabled.\n"); 5087 return -EINVAL; 5088 } 5089 5090 /* 82573 Errata 17 */ 5091 if (((adapter->hw.mac.type == e1000_82573) || 5092 (adapter->hw.mac.type == e1000_82574)) && 5093 (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) { 5094 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1; 5095 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1); 5096 } 5097 5098 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 5099 usleep_range(1000, 2000); 5100 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ 5101 adapter->max_frame_size = max_frame; 5102 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5103 netdev->mtu = new_mtu; 5104 if (netif_running(netdev)) 5105 e1000e_down(adapter); 5106 5107 /* 5108 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 5109 * means we reserve 2 more, this pushes us to allocate from the next 5110 * larger slab size. 5111 * i.e. RXBUFFER_2048 --> size-4096 slab 5112 * However with the new *_jumbo_rx* routines, jumbo receives will use 5113 * fragmented skbs 5114 */ 5115 5116 if (max_frame <= 2048) 5117 adapter->rx_buffer_len = 2048; 5118 else 5119 adapter->rx_buffer_len = 4096; 5120 5121 /* adjust allocation if LPE protects us, and we aren't using SBP */ 5122 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 5123 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 5124 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN 5125 + ETH_FCS_LEN; 5126 5127 if (netif_running(netdev)) 5128 e1000e_up(adapter); 5129 else 5130 e1000e_reset(adapter); 5131 5132 clear_bit(__E1000_RESETTING, &adapter->state); 5133 5134 return 0; 5135} 5136 5137static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 5138 int cmd) 5139{ 5140 struct e1000_adapter *adapter = netdev_priv(netdev); 5141 struct mii_ioctl_data *data = if_mii(ifr); 5142 5143 if (adapter->hw.phy.media_type != e1000_media_type_copper) 5144 return -EOPNOTSUPP; 5145 5146 switch (cmd) { 5147 case SIOCGMIIPHY: 5148 data->phy_id = adapter->hw.phy.addr; 5149 break; 5150 case SIOCGMIIREG: 5151 e1000_phy_read_status(adapter); 5152 5153 switch (data->reg_num & 0x1F) { 5154 case MII_BMCR: 5155 data->val_out = adapter->phy_regs.bmcr; 5156 break; 5157 case MII_BMSR: 5158 data->val_out = adapter->phy_regs.bmsr; 5159 break; 5160 case MII_PHYSID1: 5161 data->val_out = (adapter->hw.phy.id >> 16); 5162 break; 5163 case MII_PHYSID2: 5164 data->val_out = (adapter->hw.phy.id & 0xFFFF); 5165 break; 5166 case MII_ADVERTISE: 5167 data->val_out = adapter->phy_regs.advertise; 5168 break; 5169 case MII_LPA: 5170 data->val_out = adapter->phy_regs.lpa; 5171 break; 5172 case MII_EXPANSION: 5173 data->val_out = adapter->phy_regs.expansion; 5174 break; 5175 case MII_CTRL1000: 5176 data->val_out = adapter->phy_regs.ctrl1000; 5177 break; 5178 case MII_STAT1000: 5179 data->val_out = adapter->phy_regs.stat1000; 5180 break; 5181 case MII_ESTATUS: 5182 data->val_out = adapter->phy_regs.estatus; 5183 break; 5184 default: 5185 return -EIO; 5186 } 5187 break; 5188 case SIOCSMIIREG: 5189 default: 5190 return -EOPNOTSUPP; 5191 } 5192 return 0; 5193} 5194 5195static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5196{ 5197 switch (cmd) { 5198 case SIOCGMIIPHY: 5199 case SIOCGMIIREG: 5200 case SIOCSMIIREG: 5201 return e1000_mii_ioctl(netdev, ifr, cmd); 5202 default: 5203 return -EOPNOTSUPP; 5204 } 5205} 5206 5207static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) 5208{ 5209 struct e1000_hw *hw = &adapter->hw; 5210 u32 i, mac_reg; 5211 u16 phy_reg, wuc_enable; 5212 int retval = 0; 5213 5214 /* copy MAC RARs to PHY RARs */ 5215 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 5216 5217 retval = hw->phy.ops.acquire(hw); 5218 if (retval) { 5219 e_err("Could not acquire PHY\n"); 5220 return retval; 5221 } 5222 5223 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ 5224 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 5225 if (retval) 5226 goto out; 5227 5228 /* copy MAC MTA to PHY MTA - only needed for pchlan */ 5229 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 5230 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 5231 hw->phy.ops.write_reg_page(hw, BM_MTA(i), 5232 (u16)(mac_reg & 0xFFFF)); 5233 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, 5234 (u16)((mac_reg >> 16) & 0xFFFF)); 5235 } 5236 5237 /* configure PHY Rx Control register */ 5238 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); 5239 mac_reg = er32(RCTL); 5240 if (mac_reg & E1000_RCTL_UPE) 5241 phy_reg |= BM_RCTL_UPE; 5242 if (mac_reg & E1000_RCTL_MPE) 5243 phy_reg |= BM_RCTL_MPE; 5244 phy_reg &= ~(BM_RCTL_MO_MASK); 5245 if (mac_reg & E1000_RCTL_MO_3) 5246 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 5247 << BM_RCTL_MO_SHIFT); 5248 if (mac_reg & E1000_RCTL_BAM) 5249 phy_reg |= BM_RCTL_BAM; 5250 if (mac_reg & E1000_RCTL_PMCF) 5251 phy_reg |= BM_RCTL_PMCF; 5252 mac_reg = er32(CTRL); 5253 if (mac_reg & E1000_CTRL_RFCE) 5254 phy_reg |= BM_RCTL_RFCE; 5255 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); 5256 5257 /* enable PHY wakeup in MAC register */ 5258 ew32(WUFC, wufc); 5259 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); 5260 5261 /* configure and enable PHY wakeup in PHY registers */ 5262 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); 5263 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); 5264 5265 /* activate PHY wakeup */ 5266 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 5267 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 5268 if (retval) 5269 e_err("Could not set PHY Host Wakeup bit\n"); 5270out: 5271 hw->phy.ops.release(hw); 5272 5273 return retval; 5274} 5275 5276static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake, 5277 bool runtime) 5278{ 5279 struct net_device *netdev = pci_get_drvdata(pdev); 5280 struct e1000_adapter *adapter = netdev_priv(netdev); 5281 struct e1000_hw *hw = &adapter->hw; 5282 u32 ctrl, ctrl_ext, rctl, status; 5283 /* Runtime suspend should only enable wakeup for link changes */ 5284 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 5285 int retval = 0; 5286 5287 netif_device_detach(netdev); 5288 5289 if (netif_running(netdev)) { 5290 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 5291 e1000e_down(adapter); 5292 e1000_free_irq(adapter); 5293 } 5294 e1000e_reset_interrupt_capability(adapter); 5295 5296 retval = pci_save_state(pdev); 5297 if (retval) 5298 return retval; 5299 5300 status = er32(STATUS); 5301 if (status & E1000_STATUS_LU) 5302 wufc &= ~E1000_WUFC_LNKC; 5303 5304 if (wufc) { 5305 e1000_setup_rctl(adapter); 5306 e1000_set_multi(netdev); 5307 5308 /* turn on all-multi mode if wake on multicast is enabled */ 5309 if (wufc & E1000_WUFC_MC) { 5310 rctl = er32(RCTL); 5311 rctl |= E1000_RCTL_MPE; 5312 ew32(RCTL, rctl); 5313 } 5314 5315 ctrl = er32(CTRL); 5316 /* advertise wake from D3Cold */ 5317 #define E1000_CTRL_ADVD3WUC 0x00100000 5318 /* phy power management enable */ 5319 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5320 ctrl |= E1000_CTRL_ADVD3WUC; 5321 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) 5322 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; 5323 ew32(CTRL, ctrl); 5324 5325 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 5326 adapter->hw.phy.media_type == 5327 e1000_media_type_internal_serdes) { 5328 /* keep the laser running in D3 */ 5329 ctrl_ext = er32(CTRL_EXT); 5330 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 5331 ew32(CTRL_EXT, ctrl_ext); 5332 } 5333 5334 if (adapter->flags & FLAG_IS_ICH) 5335 e1000_suspend_workarounds_ich8lan(&adapter->hw); 5336 5337 /* Allow time for pending master requests to run */ 5338 e1000e_disable_pcie_master(&adapter->hw); 5339 5340 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 5341 /* enable wakeup by the PHY */ 5342 retval = e1000_init_phy_wakeup(adapter, wufc); 5343 if (retval) 5344 return retval; 5345 } else { 5346 /* enable wakeup by the MAC */ 5347 ew32(WUFC, wufc); 5348 ew32(WUC, E1000_WUC_PME_EN); 5349 } 5350 } else { 5351 ew32(WUC, 0); 5352 ew32(WUFC, 0); 5353 } 5354 5355 *enable_wake = !!wufc; 5356 5357 /* make sure adapter isn't asleep if manageability is enabled */ 5358 if ((adapter->flags & FLAG_MNG_PT_ENABLED) || 5359 (hw->mac.ops.check_mng_mode(hw))) 5360 *enable_wake = true; 5361 5362 if (adapter->hw.phy.type == e1000_phy_igp_3) 5363 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 5364 5365 /* 5366 * Release control of h/w to f/w. If f/w is AMT enabled, this 5367 * would have already happened in close and is redundant. 5368 */ 5369 e1000e_release_hw_control(adapter); 5370 5371 pci_disable_device(pdev); 5372 5373 return 0; 5374} 5375 5376static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) 5377{ 5378 if (sleep && wake) { 5379 pci_prepare_to_sleep(pdev); 5380 return; 5381 } 5382 5383 pci_wake_from_d3(pdev, wake); 5384 pci_set_power_state(pdev, PCI_D3hot); 5385} 5386 5387static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, 5388 bool wake) 5389{ 5390 struct net_device *netdev = pci_get_drvdata(pdev); 5391 struct e1000_adapter *adapter = netdev_priv(netdev); 5392 5393 /* 5394 * The pci-e switch on some quad port adapters will report a 5395 * correctable error when the MAC transitions from D0 to D3. To 5396 * prevent this we need to mask off the correctable errors on the 5397 * downstream port of the pci-e switch. 5398 */ 5399 if (adapter->flags & FLAG_IS_QUAD_PORT) { 5400 struct pci_dev *us_dev = pdev->bus->self; 5401 int pos = pci_pcie_cap(us_dev); 5402 u16 devctl; 5403 5404 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); 5405 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, 5406 (devctl & ~PCI_EXP_DEVCTL_CERE)); 5407 5408 e1000_power_off(pdev, sleep, wake); 5409 5410 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); 5411 } else { 5412 e1000_power_off(pdev, sleep, wake); 5413 } 5414} 5415 5416#ifdef CONFIG_PCIEASPM 5417static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 5418{ 5419 pci_disable_link_state_locked(pdev, state); 5420} 5421#else 5422static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 5423{ 5424 int pos; 5425 u16 reg16; 5426 5427 /* 5428 * Both device and parent should have the same ASPM setting. 5429 * Disable ASPM in downstream component first and then upstream. 5430 */ 5431 pos = pci_pcie_cap(pdev); 5432 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16); 5433 reg16 &= ~state; 5434 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16); 5435 5436 if (!pdev->bus->self) 5437 return; 5438 5439 pos = pci_pcie_cap(pdev->bus->self); 5440 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16); 5441 reg16 &= ~state; 5442 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16); 5443} 5444#endif 5445static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 5446{ 5447 dev_info(&pdev->dev, "Disabling ASPM %s %s\n", 5448 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "", 5449 (state & PCIE_LINK_STATE_L1) ? "L1" : ""); 5450 5451 __e1000e_disable_aspm(pdev, state); 5452} 5453 5454#ifdef CONFIG_PM 5455static bool e1000e_pm_ready(struct e1000_adapter *adapter) 5456{ 5457 return !!adapter->tx_ring->buffer_info; 5458} 5459 5460static int __e1000_resume(struct pci_dev *pdev) 5461{ 5462 struct net_device *netdev = pci_get_drvdata(pdev); 5463 struct e1000_adapter *adapter = netdev_priv(netdev); 5464 struct e1000_hw *hw = &adapter->hw; 5465 u16 aspm_disable_flag = 0; 5466 u32 err; 5467 5468 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 5469 aspm_disable_flag = PCIE_LINK_STATE_L0S; 5470 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 5471 aspm_disable_flag |= PCIE_LINK_STATE_L1; 5472 if (aspm_disable_flag) 5473 e1000e_disable_aspm(pdev, aspm_disable_flag); 5474 5475 pci_set_power_state(pdev, PCI_D0); 5476 pci_restore_state(pdev); 5477 pci_save_state(pdev); 5478 5479 e1000e_set_interrupt_capability(adapter); 5480 if (netif_running(netdev)) { 5481 err = e1000_request_irq(adapter); 5482 if (err) 5483 return err; 5484 } 5485 5486 if (hw->mac.type == e1000_pch2lan) 5487 e1000_resume_workarounds_pchlan(&adapter->hw); 5488 5489 e1000e_power_up_phy(adapter); 5490 5491 /* report the system wakeup cause from S3/S4 */ 5492 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 5493 u16 phy_data; 5494 5495 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); 5496 if (phy_data) { 5497 e_info("PHY Wakeup cause - %s\n", 5498 phy_data & E1000_WUS_EX ? "Unicast Packet" : 5499 phy_data & E1000_WUS_MC ? "Multicast Packet" : 5500 phy_data & E1000_WUS_BC ? "Broadcast Packet" : 5501 phy_data & E1000_WUS_MAG ? "Magic Packet" : 5502 phy_data & E1000_WUS_LNKC ? "Link Status " 5503 " Change" : "other"); 5504 } 5505 e1e_wphy(&adapter->hw, BM_WUS, ~0); 5506 } else { 5507 u32 wus = er32(WUS); 5508 if (wus) { 5509 e_info("MAC Wakeup cause - %s\n", 5510 wus & E1000_WUS_EX ? "Unicast Packet" : 5511 wus & E1000_WUS_MC ? "Multicast Packet" : 5512 wus & E1000_WUS_BC ? "Broadcast Packet" : 5513 wus & E1000_WUS_MAG ? "Magic Packet" : 5514 wus & E1000_WUS_LNKC ? "Link Status Change" : 5515 "other"); 5516 } 5517 ew32(WUS, ~0); 5518 } 5519 5520 e1000e_reset(adapter); 5521 5522 e1000_init_manageability_pt(adapter); 5523 5524 if (netif_running(netdev)) 5525 e1000e_up(adapter); 5526 5527 netif_device_attach(netdev); 5528 5529 /* 5530 * If the controller has AMT, do not set DRV_LOAD until the interface 5531 * is up. For all other cases, let the f/w know that the h/w is now 5532 * under the control of the driver. 5533 */ 5534 if (!(adapter->flags & FLAG_HAS_AMT)) 5535 e1000e_get_hw_control(adapter); 5536 5537 return 0; 5538} 5539 5540#ifdef CONFIG_PM_SLEEP 5541static int e1000_suspend(struct device *dev) 5542{ 5543 struct pci_dev *pdev = to_pci_dev(dev); 5544 int retval; 5545 bool wake; 5546 5547 retval = __e1000_shutdown(pdev, &wake, false); 5548 if (!retval) 5549 e1000_complete_shutdown(pdev, true, wake); 5550 5551 return retval; 5552} 5553 5554static int e1000_resume(struct device *dev) 5555{ 5556 struct pci_dev *pdev = to_pci_dev(dev); 5557 struct net_device *netdev = pci_get_drvdata(pdev); 5558 struct e1000_adapter *adapter = netdev_priv(netdev); 5559 5560 if (e1000e_pm_ready(adapter)) 5561 adapter->idle_check = true; 5562 5563 return __e1000_resume(pdev); 5564} 5565#endif /* CONFIG_PM_SLEEP */ 5566 5567#ifdef CONFIG_PM_RUNTIME 5568static int e1000_runtime_suspend(struct device *dev) 5569{ 5570 struct pci_dev *pdev = to_pci_dev(dev); 5571 struct net_device *netdev = pci_get_drvdata(pdev); 5572 struct e1000_adapter *adapter = netdev_priv(netdev); 5573 5574 if (e1000e_pm_ready(adapter)) { 5575 bool wake; 5576 5577 __e1000_shutdown(pdev, &wake, true); 5578 } 5579 5580 return 0; 5581} 5582 5583static int e1000_idle(struct device *dev) 5584{ 5585 struct pci_dev *pdev = to_pci_dev(dev); 5586 struct net_device *netdev = pci_get_drvdata(pdev); 5587 struct e1000_adapter *adapter = netdev_priv(netdev); 5588 5589 if (!e1000e_pm_ready(adapter)) 5590 return 0; 5591 5592 if (adapter->idle_check) { 5593 adapter->idle_check = false; 5594 if (!e1000e_has_link(adapter)) 5595 pm_schedule_suspend(dev, MSEC_PER_SEC); 5596 } 5597 5598 return -EBUSY; 5599} 5600 5601static int e1000_runtime_resume(struct device *dev) 5602{ 5603 struct pci_dev *pdev = to_pci_dev(dev); 5604 struct net_device *netdev = pci_get_drvdata(pdev); 5605 struct e1000_adapter *adapter = netdev_priv(netdev); 5606 5607 if (!e1000e_pm_ready(adapter)) 5608 return 0; 5609 5610 adapter->idle_check = !dev->power.runtime_auto; 5611 return __e1000_resume(pdev); 5612} 5613#endif /* CONFIG_PM_RUNTIME */ 5614#endif /* CONFIG_PM */ 5615 5616static void e1000_shutdown(struct pci_dev *pdev) 5617{ 5618 bool wake = false; 5619 5620 __e1000_shutdown(pdev, &wake, false); 5621 5622 if (system_state == SYSTEM_POWER_OFF) 5623 e1000_complete_shutdown(pdev, false, wake); 5624} 5625 5626#ifdef CONFIG_NET_POLL_CONTROLLER 5627 5628static irqreturn_t e1000_intr_msix(int irq, void *data) 5629{ 5630 struct net_device *netdev = data; 5631 struct e1000_adapter *adapter = netdev_priv(netdev); 5632 5633 if (adapter->msix_entries) { 5634 int vector, msix_irq; 5635 5636 vector = 0; 5637 msix_irq = adapter->msix_entries[vector].vector; 5638 disable_irq(msix_irq); 5639 e1000_intr_msix_rx(msix_irq, netdev); 5640 enable_irq(msix_irq); 5641 5642 vector++; 5643 msix_irq = adapter->msix_entries[vector].vector; 5644 disable_irq(msix_irq); 5645 e1000_intr_msix_tx(msix_irq, netdev); 5646 enable_irq(msix_irq); 5647 5648 vector++; 5649 msix_irq = adapter->msix_entries[vector].vector; 5650 disable_irq(msix_irq); 5651 e1000_msix_other(msix_irq, netdev); 5652 enable_irq(msix_irq); 5653 } 5654 5655 return IRQ_HANDLED; 5656} 5657 5658/* 5659 * Polling 'interrupt' - used by things like netconsole to send skbs 5660 * without having to re-enable interrupts. It's not called while 5661 * the interrupt routine is executing. 5662 */ 5663static void e1000_netpoll(struct net_device *netdev) 5664{ 5665 struct e1000_adapter *adapter = netdev_priv(netdev); 5666 5667 switch (adapter->int_mode) { 5668 case E1000E_INT_MODE_MSIX: 5669 e1000_intr_msix(adapter->pdev->irq, netdev); 5670 break; 5671 case E1000E_INT_MODE_MSI: 5672 disable_irq(adapter->pdev->irq); 5673 e1000_intr_msi(adapter->pdev->irq, netdev); 5674 enable_irq(adapter->pdev->irq); 5675 break; 5676 default: /* E1000E_INT_MODE_LEGACY */ 5677 disable_irq(adapter->pdev->irq); 5678 e1000_intr(adapter->pdev->irq, netdev); 5679 enable_irq(adapter->pdev->irq); 5680 break; 5681 } 5682} 5683#endif 5684 5685/** 5686 * e1000_io_error_detected - called when PCI error is detected 5687 * @pdev: Pointer to PCI device 5688 * @state: The current pci connection state 5689 * 5690 * This function is called after a PCI bus error affecting 5691 * this device has been detected. 5692 */ 5693static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5694 pci_channel_state_t state) 5695{ 5696 struct net_device *netdev = pci_get_drvdata(pdev); 5697 struct e1000_adapter *adapter = netdev_priv(netdev); 5698 5699 netif_device_detach(netdev); 5700 5701 if (state == pci_channel_io_perm_failure) 5702 return PCI_ERS_RESULT_DISCONNECT; 5703 5704 if (netif_running(netdev)) 5705 e1000e_down(adapter); 5706 pci_disable_device(pdev); 5707 5708 /* Request a slot slot reset. */ 5709 return PCI_ERS_RESULT_NEED_RESET; 5710} 5711 5712/** 5713 * e1000_io_slot_reset - called after the pci bus has been reset. 5714 * @pdev: Pointer to PCI device 5715 * 5716 * Restart the card from scratch, as if from a cold-boot. Implementation 5717 * resembles the first-half of the e1000_resume routine. 5718 */ 5719static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5720{ 5721 struct net_device *netdev = pci_get_drvdata(pdev); 5722 struct e1000_adapter *adapter = netdev_priv(netdev); 5723 struct e1000_hw *hw = &adapter->hw; 5724 u16 aspm_disable_flag = 0; 5725 int err; 5726 pci_ers_result_t result; 5727 5728 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 5729 aspm_disable_flag = PCIE_LINK_STATE_L0S; 5730 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 5731 aspm_disable_flag |= PCIE_LINK_STATE_L1; 5732 if (aspm_disable_flag) 5733 e1000e_disable_aspm(pdev, aspm_disable_flag); 5734 5735 err = pci_enable_device_mem(pdev); 5736 if (err) { 5737 dev_err(&pdev->dev, 5738 "Cannot re-enable PCI device after reset.\n"); 5739 result = PCI_ERS_RESULT_DISCONNECT; 5740 } else { 5741 pci_set_master(pdev); 5742 pdev->state_saved = true; 5743 pci_restore_state(pdev); 5744 5745 pci_enable_wake(pdev, PCI_D3hot, 0); 5746 pci_enable_wake(pdev, PCI_D3cold, 0); 5747 5748 e1000e_reset(adapter); 5749 ew32(WUS, ~0); 5750 result = PCI_ERS_RESULT_RECOVERED; 5751 } 5752 5753 pci_cleanup_aer_uncorrect_error_status(pdev); 5754 5755 return result; 5756} 5757 5758/** 5759 * e1000_io_resume - called when traffic can start flowing again. 5760 * @pdev: Pointer to PCI device 5761 * 5762 * This callback is called when the error recovery driver tells us that 5763 * its OK to resume normal operation. Implementation resembles the 5764 * second-half of the e1000_resume routine. 5765 */ 5766static void e1000_io_resume(struct pci_dev *pdev) 5767{ 5768 struct net_device *netdev = pci_get_drvdata(pdev); 5769 struct e1000_adapter *adapter = netdev_priv(netdev); 5770 5771 e1000_init_manageability_pt(adapter); 5772 5773 if (netif_running(netdev)) { 5774 if (e1000e_up(adapter)) { 5775 dev_err(&pdev->dev, 5776 "can't bring device back up after reset\n"); 5777 return; 5778 } 5779 } 5780 5781 netif_device_attach(netdev); 5782 5783 /* 5784 * If the controller has AMT, do not set DRV_LOAD until the interface 5785 * is up. For all other cases, let the f/w know that the h/w is now 5786 * under the control of the driver. 5787 */ 5788 if (!(adapter->flags & FLAG_HAS_AMT)) 5789 e1000e_get_hw_control(adapter); 5790 5791} 5792 5793static void e1000_print_device_info(struct e1000_adapter *adapter) 5794{ 5795 struct e1000_hw *hw = &adapter->hw; 5796 struct net_device *netdev = adapter->netdev; 5797 u32 ret_val; 5798 u8 pba_str[E1000_PBANUM_LENGTH]; 5799 5800 /* print bus type/speed/width info */ 5801 e_info("(PCI Express:2.5GT/s:%s) %pM\n", 5802 /* bus width */ 5803 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 5804 "Width x1"), 5805 /* MAC address */ 5806 netdev->dev_addr); 5807 e_info("Intel(R) PRO/%s Network Connection\n", 5808 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); 5809 ret_val = e1000_read_pba_string_generic(hw, pba_str, 5810 E1000_PBANUM_LENGTH); 5811 if (ret_val) 5812 strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1); 5813 e_info("MAC: %d, PHY: %d, PBA No: %s\n", 5814 hw->mac.type, hw->phy.type, pba_str); 5815} 5816 5817static void e1000_eeprom_checks(struct e1000_adapter *adapter) 5818{ 5819 struct e1000_hw *hw = &adapter->hw; 5820 int ret_val; 5821 u16 buf = 0; 5822 5823 if (hw->mac.type != e1000_82573) 5824 return; 5825 5826 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); 5827 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { 5828 /* Deep Smart Power Down (DSPD) */ 5829 dev_warn(&adapter->pdev->dev, 5830 "Warning: detected DSPD enabled in EEPROM\n"); 5831 } 5832} 5833 5834static const struct net_device_ops e1000e_netdev_ops = { 5835 .ndo_open = e1000_open, 5836 .ndo_stop = e1000_close, 5837 .ndo_start_xmit = e1000_xmit_frame, 5838 .ndo_get_stats64 = e1000e_get_stats64, 5839 .ndo_set_multicast_list = e1000_set_multi, 5840 .ndo_set_mac_address = e1000_set_mac, 5841 .ndo_change_mtu = e1000_change_mtu, 5842 .ndo_do_ioctl = e1000_ioctl, 5843 .ndo_tx_timeout = e1000_tx_timeout, 5844 .ndo_validate_addr = eth_validate_addr, 5845 5846 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 5847 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 5848#ifdef CONFIG_NET_POLL_CONTROLLER 5849 .ndo_poll_controller = e1000_netpoll, 5850#endif 5851}; 5852 5853/** 5854 * e1000_probe - Device Initialization Routine 5855 * @pdev: PCI device information struct 5856 * @ent: entry in e1000_pci_tbl 5857 * 5858 * Returns 0 on success, negative on failure 5859 * 5860 * e1000_probe initializes an adapter identified by a pci_dev structure. 5861 * The OS initialization, configuring of the adapter private structure, 5862 * and a hardware reset occur. 5863 **/ 5864static int __devinit e1000_probe(struct pci_dev *pdev, 5865 const struct pci_device_id *ent) 5866{ 5867 struct net_device *netdev; 5868 struct e1000_adapter *adapter; 5869 struct e1000_hw *hw; 5870 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 5871 resource_size_t mmio_start, mmio_len; 5872 resource_size_t flash_start, flash_len; 5873 5874 static int cards_found; 5875 u16 aspm_disable_flag = 0; 5876 int i, err, pci_using_dac; 5877 u16 eeprom_data = 0; 5878 u16 eeprom_apme_mask = E1000_EEPROM_APME; 5879 5880 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) 5881 aspm_disable_flag = PCIE_LINK_STATE_L0S; 5882 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) 5883 aspm_disable_flag |= PCIE_LINK_STATE_L1; 5884 if (aspm_disable_flag) 5885 e1000e_disable_aspm(pdev, aspm_disable_flag); 5886 5887 err = pci_enable_device_mem(pdev); 5888 if (err) 5889 return err; 5890 5891 pci_using_dac = 0; 5892 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 5893 if (!err) { 5894 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 5895 if (!err) 5896 pci_using_dac = 1; 5897 } else { 5898 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 5899 if (err) { 5900 err = dma_set_coherent_mask(&pdev->dev, 5901 DMA_BIT_MASK(32)); 5902 if (err) { 5903 dev_err(&pdev->dev, "No usable DMA " 5904 "configuration, aborting\n"); 5905 goto err_dma; 5906 } 5907 } 5908 } 5909 5910 err = pci_request_selected_regions_exclusive(pdev, 5911 pci_select_bars(pdev, IORESOURCE_MEM), 5912 e1000e_driver_name); 5913 if (err) 5914 goto err_pci_reg; 5915 5916 /* AER (Advanced Error Reporting) hooks */ 5917 pci_enable_pcie_error_reporting(pdev); 5918 5919 pci_set_master(pdev); 5920 /* PCI config space info */ 5921 err = pci_save_state(pdev); 5922 if (err) 5923 goto err_alloc_etherdev; 5924 5925 err = -ENOMEM; 5926 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 5927 if (!netdev) 5928 goto err_alloc_etherdev; 5929 5930 SET_NETDEV_DEV(netdev, &pdev->dev); 5931 5932 netdev->irq = pdev->irq; 5933 5934 pci_set_drvdata(pdev, netdev); 5935 adapter = netdev_priv(netdev); 5936 hw = &adapter->hw; 5937 adapter->netdev = netdev; 5938 adapter->pdev = pdev; 5939 adapter->ei = ei; 5940 adapter->pba = ei->pba; 5941 adapter->flags = ei->flags; 5942 adapter->flags2 = ei->flags2; 5943 adapter->hw.adapter = adapter; 5944 adapter->hw.mac.type = ei->mac; 5945 adapter->max_hw_frame_size = ei->max_hw_frame_size; 5946 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; 5947 5948 mmio_start = pci_resource_start(pdev, 0); 5949 mmio_len = pci_resource_len(pdev, 0); 5950 5951 err = -EIO; 5952 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 5953 if (!adapter->hw.hw_addr) 5954 goto err_ioremap; 5955 5956 if ((adapter->flags & FLAG_HAS_FLASH) && 5957 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { 5958 flash_start = pci_resource_start(pdev, 1); 5959 flash_len = pci_resource_len(pdev, 1); 5960 adapter->hw.flash_address = ioremap(flash_start, flash_len); 5961 if (!adapter->hw.flash_address) 5962 goto err_flashmap; 5963 } 5964 5965 /* construct the net_device struct */ 5966 netdev->netdev_ops = &e1000e_netdev_ops; 5967 e1000e_set_ethtool_ops(netdev); 5968 netdev->watchdog_timeo = 5 * HZ; 5969 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 5970 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 5971 5972 netdev->mem_start = mmio_start; 5973 netdev->mem_end = mmio_start + mmio_len; 5974 5975 adapter->bd_number = cards_found++; 5976 5977 e1000e_check_options(adapter); 5978 5979 /* setup adapter struct */ 5980 err = e1000_sw_init(adapter); 5981 if (err) 5982 goto err_sw_init; 5983 5984 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 5985 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 5986 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 5987 5988 err = ei->get_variants(adapter); 5989 if (err) 5990 goto err_hw_init; 5991 5992 if ((adapter->flags & FLAG_IS_ICH) && 5993 (adapter->flags & FLAG_READ_ONLY_NVM)) 5994 e1000e_write_protect_nvm_ich8lan(&adapter->hw); 5995 5996 hw->mac.ops.get_bus_info(&adapter->hw); 5997 5998 adapter->hw.phy.autoneg_wait_to_complete = 0; 5999 6000 /* Copper options */ 6001 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 6002 adapter->hw.phy.mdix = AUTO_ALL_MODES; 6003 adapter->hw.phy.disable_polarity_correction = 0; 6004 adapter->hw.phy.ms_type = e1000_ms_hw_default; 6005 } 6006 6007 if (e1000_check_reset_block(&adapter->hw)) 6008 e_info("PHY reset is blocked due to SOL/IDER session.\n"); 6009 6010 netdev->features = NETIF_F_SG | 6011 NETIF_F_HW_CSUM | 6012 NETIF_F_HW_VLAN_TX | 6013 NETIF_F_HW_VLAN_RX; 6014 6015 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 6016 netdev->features |= NETIF_F_HW_VLAN_FILTER; 6017 6018 netdev->features |= NETIF_F_TSO; 6019 netdev->features |= NETIF_F_TSO6; 6020 6021 netdev->vlan_features |= NETIF_F_TSO; 6022 netdev->vlan_features |= NETIF_F_TSO6; 6023 netdev->vlan_features |= NETIF_F_HW_CSUM; 6024 netdev->vlan_features |= NETIF_F_SG; 6025 6026 if (pci_using_dac) { 6027 netdev->features |= NETIF_F_HIGHDMA; 6028 netdev->vlan_features |= NETIF_F_HIGHDMA; 6029 } 6030 6031 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 6032 adapter->flags |= FLAG_MNG_PT_ENABLED; 6033 6034 /* 6035 * before reading the NVM, reset the controller to 6036 * put the device in a known good starting state 6037 */ 6038 adapter->hw.mac.ops.reset_hw(&adapter->hw); 6039 6040 /* 6041 * systems with ASPM and others may see the checksum fail on the first 6042 * attempt. Let's give it a few tries 6043 */ 6044 for (i = 0;; i++) { 6045 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 6046 break; 6047 if (i == 2) { 6048 e_err("The NVM Checksum Is Not Valid\n"); 6049 err = -EIO; 6050 goto err_eeprom; 6051 } 6052 } 6053 6054 e1000_eeprom_checks(adapter); 6055 6056 /* copy the MAC address */ 6057 if (e1000e_read_mac_addr(&adapter->hw)) 6058 e_err("NVM Read Error while reading MAC address\n"); 6059 6060 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 6061 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); 6062 6063 if (!is_valid_ether_addr(netdev->perm_addr)) { 6064 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); 6065 err = -EIO; 6066 goto err_eeprom; 6067 } 6068 6069 init_timer(&adapter->watchdog_timer); 6070 adapter->watchdog_timer.function = e1000_watchdog; 6071 adapter->watchdog_timer.data = (unsigned long) adapter; 6072 6073 init_timer(&adapter->phy_info_timer); 6074 adapter->phy_info_timer.function = e1000_update_phy_info; 6075 adapter->phy_info_timer.data = (unsigned long) adapter; 6076 6077 INIT_WORK(&adapter->reset_task, e1000_reset_task); 6078 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 6079 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); 6080 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); 6081 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); 6082 6083 /* Initialize link parameters. User can change them with ethtool */ 6084 adapter->hw.mac.autoneg = 1; 6085 adapter->fc_autoneg = 1; 6086 adapter->hw.fc.requested_mode = e1000_fc_default; 6087 adapter->hw.fc.current_mode = e1000_fc_default; 6088 adapter->hw.phy.autoneg_advertised = 0x2f; 6089 6090 /* ring size defaults */ 6091 adapter->rx_ring->count = 256; 6092 adapter->tx_ring->count = 256; 6093 6094 /* 6095 * Initial Wake on LAN setting - If APM wake is enabled in 6096 * the EEPROM, enable the ACPI Magic Packet filter 6097 */ 6098 if (adapter->flags & FLAG_APME_IN_WUC) { 6099 /* APME bit in EEPROM is mapped to WUC.APME */ 6100 eeprom_data = er32(WUC); 6101 eeprom_apme_mask = E1000_WUC_APME; 6102 if ((hw->mac.type > e1000_ich10lan) && 6103 (eeprom_data & E1000_WUC_PHY_WAKE)) 6104 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; 6105 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 6106 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 6107 (adapter->hw.bus.func == 1)) 6108 e1000_read_nvm(&adapter->hw, 6109 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 6110 else 6111 e1000_read_nvm(&adapter->hw, 6112 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 6113 } 6114 6115 /* fetch WoL from EEPROM */ 6116 if (eeprom_data & eeprom_apme_mask) 6117 adapter->eeprom_wol |= E1000_WUFC_MAG; 6118 6119 /* 6120 * now that we have the eeprom settings, apply the special cases 6121 * where the eeprom may be wrong or the board simply won't support 6122 * wake on lan on a particular port 6123 */ 6124 if (!(adapter->flags & FLAG_HAS_WOL)) 6125 adapter->eeprom_wol = 0; 6126 6127 /* initialize the wol settings based on the eeprom settings */ 6128 adapter->wol = adapter->eeprom_wol; 6129 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 6130 6131 /* save off EEPROM version number */ 6132 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); 6133 6134 /* reset the hardware with the new settings */ 6135 e1000e_reset(adapter); 6136 6137 /* 6138 * If the controller has AMT, do not set DRV_LOAD until the interface 6139 * is up. For all other cases, let the f/w know that the h/w is now 6140 * under the control of the driver. 6141 */ 6142 if (!(adapter->flags & FLAG_HAS_AMT)) 6143 e1000e_get_hw_control(adapter); 6144 6145 strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1); 6146 err = register_netdev(netdev); 6147 if (err) 6148 goto err_register; 6149 6150 /* carrier off reporting is important to ethtool even BEFORE open */ 6151 netif_carrier_off(netdev); 6152 6153 e1000_print_device_info(adapter); 6154 6155 if (pci_dev_run_wake(pdev)) 6156 pm_runtime_put_noidle(&pdev->dev); 6157 6158 return 0; 6159 6160err_register: 6161 if (!(adapter->flags & FLAG_HAS_AMT)) 6162 e1000e_release_hw_control(adapter); 6163err_eeprom: 6164 if (!e1000_check_reset_block(&adapter->hw)) 6165 e1000_phy_hw_reset(&adapter->hw); 6166err_hw_init: 6167 kfree(adapter->tx_ring); 6168 kfree(adapter->rx_ring); 6169err_sw_init: 6170 if (adapter->hw.flash_address) 6171 iounmap(adapter->hw.flash_address); 6172 e1000e_reset_interrupt_capability(adapter); 6173err_flashmap: 6174 iounmap(adapter->hw.hw_addr); 6175err_ioremap: 6176 free_netdev(netdev); 6177err_alloc_etherdev: 6178 pci_release_selected_regions(pdev, 6179 pci_select_bars(pdev, IORESOURCE_MEM)); 6180err_pci_reg: 6181err_dma: 6182 pci_disable_device(pdev); 6183 return err; 6184} 6185 6186/** 6187 * e1000_remove - Device Removal Routine 6188 * @pdev: PCI device information struct 6189 * 6190 * e1000_remove is called by the PCI subsystem to alert the driver 6191 * that it should release a PCI device. The could be caused by a 6192 * Hot-Plug event, or because the driver is going to be removed from 6193 * memory. 6194 **/ 6195static void __devexit e1000_remove(struct pci_dev *pdev) 6196{ 6197 struct net_device *netdev = pci_get_drvdata(pdev); 6198 struct e1000_adapter *adapter = netdev_priv(netdev); 6199 bool down = test_bit(__E1000_DOWN, &adapter->state); 6200 6201 /* 6202 * The timers may be rescheduled, so explicitly disable them 6203 * from being rescheduled. 6204 */ 6205 if (!down) 6206 set_bit(__E1000_DOWN, &adapter->state); 6207 del_timer_sync(&adapter->watchdog_timer); 6208 del_timer_sync(&adapter->phy_info_timer); 6209 6210 cancel_work_sync(&adapter->reset_task); 6211 cancel_work_sync(&adapter->watchdog_task); 6212 cancel_work_sync(&adapter->downshift_task); 6213 cancel_work_sync(&adapter->update_phy_task); 6214 cancel_work_sync(&adapter->print_hang_task); 6215 6216 if (!(netdev->flags & IFF_UP)) 6217 e1000_power_down_phy(adapter); 6218 6219 /* Don't lie to e1000_close() down the road. */ 6220 if (!down) 6221 clear_bit(__E1000_DOWN, &adapter->state); 6222 unregister_netdev(netdev); 6223 6224 if (pci_dev_run_wake(pdev)) 6225 pm_runtime_get_noresume(&pdev->dev); 6226 6227 /* 6228 * Release control of h/w to f/w. If f/w is AMT enabled, this 6229 * would have already happened in close and is redundant. 6230 */ 6231 e1000e_release_hw_control(adapter); 6232 6233 e1000e_reset_interrupt_capability(adapter); 6234 kfree(adapter->tx_ring); 6235 kfree(adapter->rx_ring); 6236 6237 iounmap(adapter->hw.hw_addr); 6238 if (adapter->hw.flash_address) 6239 iounmap(adapter->hw.flash_address); 6240 pci_release_selected_regions(pdev, 6241 pci_select_bars(pdev, IORESOURCE_MEM)); 6242 6243 free_netdev(netdev); 6244 6245 /* AER disable */ 6246 pci_disable_pcie_error_reporting(pdev); 6247 6248 pci_disable_device(pdev); 6249} 6250 6251/* PCI Error Recovery (ERS) */ 6252static struct pci_error_handlers e1000_err_handler = { 6253 .error_detected = e1000_io_error_detected, 6254 .slot_reset = e1000_io_slot_reset, 6255 .resume = e1000_io_resume, 6256}; 6257 6258static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { 6259 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 6260 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 6261 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 6262 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, 6263 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 6264 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 6265 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 6266 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 6267 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 6268 6269 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 6270 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 6271 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 6272 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 6273 6274 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 6275 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 6276 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 6277 6278 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, 6279 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, 6280 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, 6281 6282 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 6283 board_80003es2lan }, 6284 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 6285 board_80003es2lan }, 6286 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 6287 board_80003es2lan }, 6288 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 6289 board_80003es2lan }, 6290 6291 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 6292 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 6293 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 6294 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 6295 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 6296 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 6297 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 6298 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, 6299 6300 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 6301 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 6302 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 6303 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 6304 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 6305 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, 6306 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 6307 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 6308 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 6309 6310 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 6311 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 6312 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 6313 6314 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, 6315 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, 6316 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, 6317 6318 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, 6319 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, 6320 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, 6321 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, 6322 6323 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, 6324 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, 6325 6326 { } /* terminate list */ 6327}; 6328MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 6329 6330#ifdef CONFIG_PM 6331static const struct dev_pm_ops e1000_pm_ops = { 6332 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume) 6333 SET_RUNTIME_PM_OPS(e1000_runtime_suspend, 6334 e1000_runtime_resume, e1000_idle) 6335}; 6336#endif 6337 6338/* PCI Device API Driver */ 6339static struct pci_driver e1000_driver = { 6340 .name = e1000e_driver_name, 6341 .id_table = e1000_pci_tbl, 6342 .probe = e1000_probe, 6343 .remove = __devexit_p(e1000_remove), 6344#ifdef CONFIG_PM 6345 .driver.pm = &e1000_pm_ops, 6346#endif 6347 .shutdown = e1000_shutdown, 6348 .err_handler = &e1000_err_handler 6349}; 6350 6351/** 6352 * e1000_init_module - Driver Registration Routine 6353 * 6354 * e1000_init_module is the first routine called when the driver is 6355 * loaded. All it does is register with the PCI subsystem. 6356 **/ 6357static int __init e1000_init_module(void) 6358{ 6359 int ret; 6360 pr_info("Intel(R) PRO/1000 Network Driver - %s\n", 6361 e1000e_driver_version); 6362 pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n"); 6363 ret = pci_register_driver(&e1000_driver); 6364 6365 return ret; 6366} 6367module_init(e1000_init_module); 6368 6369/** 6370 * e1000_exit_module - Driver Exit Cleanup Routine 6371 * 6372 * e1000_exit_module is called just before the driver is removed 6373 * from memory. 6374 **/ 6375static void __exit e1000_exit_module(void) 6376{ 6377 pci_unregister_driver(&e1000_driver); 6378} 6379module_exit(e1000_exit_module); 6380 6381 6382MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 6383MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 6384MODULE_LICENSE("GPL"); 6385MODULE_VERSION(DRV_VERSION); 6386 6387/* e1000_main.c */