at v3.1 2693 lines 72 kB view raw
1/******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2011 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29#include "e1000.h" 30 31enum e1000_mng_mode { 32 e1000_mng_mode_none = 0, 33 e1000_mng_mode_asf, 34 e1000_mng_mode_pt, 35 e1000_mng_mode_ipmi, 36 e1000_mng_mode_host_if_only 37}; 38 39#define E1000_FACTPS_MNGCG 0x20000000 40 41/* Intel(R) Active Management Technology signature */ 42#define E1000_IAMT_SIGNATURE 0x544D4149 43 44/** 45 * e1000e_get_bus_info_pcie - Get PCIe bus information 46 * @hw: pointer to the HW structure 47 * 48 * Determines and stores the system bus information for a particular 49 * network interface. The following bus information is determined and stored: 50 * bus speed, bus width, type (PCIe), and PCIe function. 51 **/ 52s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) 53{ 54 struct e1000_mac_info *mac = &hw->mac; 55 struct e1000_bus_info *bus = &hw->bus; 56 struct e1000_adapter *adapter = hw->adapter; 57 u16 pcie_link_status, cap_offset; 58 59 cap_offset = adapter->pdev->pcie_cap; 60 if (!cap_offset) { 61 bus->width = e1000_bus_width_unknown; 62 } else { 63 pci_read_config_word(adapter->pdev, 64 cap_offset + PCIE_LINK_STATUS, 65 &pcie_link_status); 66 bus->width = (enum e1000_bus_width)((pcie_link_status & 67 PCIE_LINK_WIDTH_MASK) >> 68 PCIE_LINK_WIDTH_SHIFT); 69 } 70 71 mac->ops.set_lan_id(hw); 72 73 return 0; 74} 75 76/** 77 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 78 * 79 * @hw: pointer to the HW structure 80 * 81 * Determines the LAN function id by reading memory-mapped registers 82 * and swaps the port value if requested. 83 **/ 84void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) 85{ 86 struct e1000_bus_info *bus = &hw->bus; 87 u32 reg; 88 89 /* 90 * The status register reports the correct function number 91 * for the device regardless of function swap state. 92 */ 93 reg = er32(STATUS); 94 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; 95} 96 97/** 98 * e1000_set_lan_id_single_port - Set LAN id for a single port device 99 * @hw: pointer to the HW structure 100 * 101 * Sets the LAN function id to zero for a single port device. 102 **/ 103void e1000_set_lan_id_single_port(struct e1000_hw *hw) 104{ 105 struct e1000_bus_info *bus = &hw->bus; 106 107 bus->func = 0; 108} 109 110/** 111 * e1000_clear_vfta_generic - Clear VLAN filter table 112 * @hw: pointer to the HW structure 113 * 114 * Clears the register array which contains the VLAN filter table by 115 * setting all the values to 0. 116 **/ 117void e1000_clear_vfta_generic(struct e1000_hw *hw) 118{ 119 u32 offset; 120 121 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 122 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); 123 e1e_flush(); 124 } 125} 126 127/** 128 * e1000_write_vfta_generic - Write value to VLAN filter table 129 * @hw: pointer to the HW structure 130 * @offset: register offset in VLAN filter table 131 * @value: register value written to VLAN filter table 132 * 133 * Writes value at the given offset in the register array which stores 134 * the VLAN filter table. 135 **/ 136void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) 137{ 138 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); 139 e1e_flush(); 140} 141 142/** 143 * e1000e_init_rx_addrs - Initialize receive address's 144 * @hw: pointer to the HW structure 145 * @rar_count: receive address registers 146 * 147 * Setup the receive address registers by setting the base receive address 148 * register to the devices MAC address and clearing all the other receive 149 * address registers to 0. 150 **/ 151void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) 152{ 153 u32 i; 154 u8 mac_addr[ETH_ALEN] = {0}; 155 156 /* Setup the receive address */ 157 e_dbg("Programming MAC Address into RAR[0]\n"); 158 159 e1000e_rar_set(hw, hw->mac.addr, 0); 160 161 /* Zero out the other (rar_entry_count - 1) receive addresses */ 162 e_dbg("Clearing RAR[1-%u]\n", rar_count-1); 163 for (i = 1; i < rar_count; i++) 164 e1000e_rar_set(hw, mac_addr, i); 165} 166 167/** 168 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr 169 * @hw: pointer to the HW structure 170 * 171 * Checks the nvm for an alternate MAC address. An alternate MAC address 172 * can be setup by pre-boot software and must be treated like a permanent 173 * address and must override the actual permanent MAC address. If an 174 * alternate MAC address is found it is programmed into RAR0, replacing 175 * the permanent address that was installed into RAR0 by the Si on reset. 176 * This function will return SUCCESS unless it encounters an error while 177 * reading the EEPROM. 178 **/ 179s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) 180{ 181 u32 i; 182 s32 ret_val = 0; 183 u16 offset, nvm_alt_mac_addr_offset, nvm_data; 184 u8 alt_mac_addr[ETH_ALEN]; 185 186 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); 187 if (ret_val) 188 goto out; 189 190 /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */ 191 if (!((nvm_data & NVM_COMPAT_LOM) || 192 (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) || 193 (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) || 194 (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES))) 195 goto out; 196 197 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, 198 &nvm_alt_mac_addr_offset); 199 if (ret_val) { 200 e_dbg("NVM Read Error\n"); 201 goto out; 202 } 203 204 if ((nvm_alt_mac_addr_offset == 0xFFFF) || 205 (nvm_alt_mac_addr_offset == 0x0000)) 206 /* There is no Alternate MAC Address */ 207 goto out; 208 209 if (hw->bus.func == E1000_FUNC_1) 210 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; 211 for (i = 0; i < ETH_ALEN; i += 2) { 212 offset = nvm_alt_mac_addr_offset + (i >> 1); 213 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); 214 if (ret_val) { 215 e_dbg("NVM Read Error\n"); 216 goto out; 217 } 218 219 alt_mac_addr[i] = (u8)(nvm_data & 0xFF); 220 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); 221 } 222 223 /* if multicast bit is set, the alternate address will not be used */ 224 if (is_multicast_ether_addr(alt_mac_addr)) { 225 e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); 226 goto out; 227 } 228 229 /* 230 * We have a valid alternate MAC address, and we want to treat it the 231 * same as the normal permanent MAC address stored by the HW into the 232 * RAR. Do this by mapping this address into RAR0. 233 */ 234 e1000e_rar_set(hw, alt_mac_addr, 0); 235 236out: 237 return ret_val; 238} 239 240/** 241 * e1000e_rar_set - Set receive address register 242 * @hw: pointer to the HW structure 243 * @addr: pointer to the receive address 244 * @index: receive address array register 245 * 246 * Sets the receive address array register at index to the address passed 247 * in by addr. 248 **/ 249void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 250{ 251 u32 rar_low, rar_high; 252 253 /* 254 * HW expects these in little endian so we reverse the byte order 255 * from network order (big endian) to little endian 256 */ 257 rar_low = ((u32) addr[0] | 258 ((u32) addr[1] << 8) | 259 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 260 261 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 262 263 /* If MAC address zero, no need to set the AV bit */ 264 if (rar_low || rar_high) 265 rar_high |= E1000_RAH_AV; 266 267 /* 268 * Some bridges will combine consecutive 32-bit writes into 269 * a single burst write, which will malfunction on some parts. 270 * The flushes avoid this. 271 */ 272 ew32(RAL(index), rar_low); 273 e1e_flush(); 274 ew32(RAH(index), rar_high); 275 e1e_flush(); 276} 277 278/** 279 * e1000_hash_mc_addr - Generate a multicast hash value 280 * @hw: pointer to the HW structure 281 * @mc_addr: pointer to a multicast address 282 * 283 * Generates a multicast address hash value which is used to determine 284 * the multicast filter table array address and new table value. See 285 * e1000_mta_set_generic() 286 **/ 287static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 288{ 289 u32 hash_value, hash_mask; 290 u8 bit_shift = 0; 291 292 /* Register count multiplied by bits per register */ 293 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 294 295 /* 296 * For a mc_filter_type of 0, bit_shift is the number of left-shifts 297 * where 0xFF would still fall within the hash mask. 298 */ 299 while (hash_mask >> bit_shift != 0xFF) 300 bit_shift++; 301 302 /* 303 * The portion of the address that is used for the hash table 304 * is determined by the mc_filter_type setting. 305 * The algorithm is such that there is a total of 8 bits of shifting. 306 * The bit_shift for a mc_filter_type of 0 represents the number of 307 * left-shifts where the MSB of mc_addr[5] would still fall within 308 * the hash_mask. Case 0 does this exactly. Since there are a total 309 * of 8 bits of shifting, then mc_addr[4] will shift right the 310 * remaining number of bits. Thus 8 - bit_shift. The rest of the 311 * cases are a variation of this algorithm...essentially raising the 312 * number of bits to shift mc_addr[5] left, while still keeping the 313 * 8-bit shifting total. 314 * 315 * For example, given the following Destination MAC Address and an 316 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), 317 * we can see that the bit_shift for case 0 is 4. These are the hash 318 * values resulting from each mc_filter_type... 319 * [0] [1] [2] [3] [4] [5] 320 * 01 AA 00 12 34 56 321 * LSB MSB 322 * 323 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 324 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 325 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 326 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 327 */ 328 switch (hw->mac.mc_filter_type) { 329 default: 330 case 0: 331 break; 332 case 1: 333 bit_shift += 1; 334 break; 335 case 2: 336 bit_shift += 2; 337 break; 338 case 3: 339 bit_shift += 4; 340 break; 341 } 342 343 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 344 (((u16) mc_addr[5]) << bit_shift))); 345 346 return hash_value; 347} 348 349/** 350 * e1000e_update_mc_addr_list_generic - Update Multicast addresses 351 * @hw: pointer to the HW structure 352 * @mc_addr_list: array of multicast addresses to program 353 * @mc_addr_count: number of multicast addresses to program 354 * 355 * Updates entire Multicast Table Array. 356 * The caller must have a packed mc_addr_list of multicast addresses. 357 **/ 358void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, 359 u8 *mc_addr_list, u32 mc_addr_count) 360{ 361 u32 hash_value, hash_bit, hash_reg; 362 int i; 363 364 /* clear mta_shadow */ 365 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 366 367 /* update mta_shadow from mc_addr_list */ 368 for (i = 0; (u32) i < mc_addr_count; i++) { 369 hash_value = e1000_hash_mc_addr(hw, mc_addr_list); 370 371 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 372 hash_bit = hash_value & 0x1F; 373 374 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); 375 mc_addr_list += (ETH_ALEN); 376 } 377 378 /* replace the entire MTA table */ 379 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 380 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); 381 e1e_flush(); 382} 383 384/** 385 * e1000e_clear_hw_cntrs_base - Clear base hardware counters 386 * @hw: pointer to the HW structure 387 * 388 * Clears the base hardware counters by reading the counter registers. 389 **/ 390void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) 391{ 392 er32(CRCERRS); 393 er32(SYMERRS); 394 er32(MPC); 395 er32(SCC); 396 er32(ECOL); 397 er32(MCC); 398 er32(LATECOL); 399 er32(COLC); 400 er32(DC); 401 er32(SEC); 402 er32(RLEC); 403 er32(XONRXC); 404 er32(XONTXC); 405 er32(XOFFRXC); 406 er32(XOFFTXC); 407 er32(FCRUC); 408 er32(GPRC); 409 er32(BPRC); 410 er32(MPRC); 411 er32(GPTC); 412 er32(GORCL); 413 er32(GORCH); 414 er32(GOTCL); 415 er32(GOTCH); 416 er32(RNBC); 417 er32(RUC); 418 er32(RFC); 419 er32(ROC); 420 er32(RJC); 421 er32(TORL); 422 er32(TORH); 423 er32(TOTL); 424 er32(TOTH); 425 er32(TPR); 426 er32(TPT); 427 er32(MPTC); 428 er32(BPTC); 429} 430 431/** 432 * e1000e_check_for_copper_link - Check for link (Copper) 433 * @hw: pointer to the HW structure 434 * 435 * Checks to see of the link status of the hardware has changed. If a 436 * change in link status has been detected, then we read the PHY registers 437 * to get the current speed/duplex if link exists. 438 **/ 439s32 e1000e_check_for_copper_link(struct e1000_hw *hw) 440{ 441 struct e1000_mac_info *mac = &hw->mac; 442 s32 ret_val; 443 bool link; 444 445 /* 446 * We only want to go out to the PHY registers to see if Auto-Neg 447 * has completed and/or if our link status has changed. The 448 * get_link_status flag is set upon receiving a Link Status 449 * Change or Rx Sequence Error interrupt. 450 */ 451 if (!mac->get_link_status) 452 return 0; 453 454 /* 455 * First we want to see if the MII Status Register reports 456 * link. If so, then we want to get the current speed/duplex 457 * of the PHY. 458 */ 459 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 460 if (ret_val) 461 return ret_val; 462 463 if (!link) 464 return ret_val; /* No link detected */ 465 466 mac->get_link_status = false; 467 468 /* 469 * Check if there was DownShift, must be checked 470 * immediately after link-up 471 */ 472 e1000e_check_downshift(hw); 473 474 /* 475 * If we are forcing speed/duplex, then we simply return since 476 * we have already determined whether we have link or not. 477 */ 478 if (!mac->autoneg) { 479 ret_val = -E1000_ERR_CONFIG; 480 return ret_val; 481 } 482 483 /* 484 * Auto-Neg is enabled. Auto Speed Detection takes care 485 * of MAC speed/duplex configuration. So we only need to 486 * configure Collision Distance in the MAC. 487 */ 488 e1000e_config_collision_dist(hw); 489 490 /* 491 * Configure Flow Control now that Auto-Neg has completed. 492 * First, we need to restore the desired flow control 493 * settings because we may have had to re-autoneg with a 494 * different link partner. 495 */ 496 ret_val = e1000e_config_fc_after_link_up(hw); 497 if (ret_val) 498 e_dbg("Error configuring flow control\n"); 499 500 return ret_val; 501} 502 503/** 504 * e1000e_check_for_fiber_link - Check for link (Fiber) 505 * @hw: pointer to the HW structure 506 * 507 * Checks for link up on the hardware. If link is not up and we have 508 * a signal, then we need to force link up. 509 **/ 510s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) 511{ 512 struct e1000_mac_info *mac = &hw->mac; 513 u32 rxcw; 514 u32 ctrl; 515 u32 status; 516 s32 ret_val; 517 518 ctrl = er32(CTRL); 519 status = er32(STATUS); 520 rxcw = er32(RXCW); 521 522 /* 523 * If we don't have link (auto-negotiation failed or link partner 524 * cannot auto-negotiate), the cable is plugged in (we have signal), 525 * and our link partner is not trying to auto-negotiate with us (we 526 * are receiving idles or data), we need to force link up. We also 527 * need to give auto-negotiation time to complete, in case the cable 528 * was just plugged in. The autoneg_failed flag does this. 529 */ 530 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 531 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && 532 (!(rxcw & E1000_RXCW_C))) { 533 if (mac->autoneg_failed == 0) { 534 mac->autoneg_failed = 1; 535 return 0; 536 } 537 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 538 539 /* Disable auto-negotiation in the TXCW register */ 540 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 541 542 /* Force link-up and also force full-duplex. */ 543 ctrl = er32(CTRL); 544 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 545 ew32(CTRL, ctrl); 546 547 /* Configure Flow Control after forcing link up. */ 548 ret_val = e1000e_config_fc_after_link_up(hw); 549 if (ret_val) { 550 e_dbg("Error configuring flow control\n"); 551 return ret_val; 552 } 553 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 554 /* 555 * If we are forcing link and we are receiving /C/ ordered 556 * sets, re-enable auto-negotiation in the TXCW register 557 * and disable forced link in the Device Control register 558 * in an attempt to auto-negotiate with our link partner. 559 */ 560 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 561 ew32(TXCW, mac->txcw); 562 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 563 564 mac->serdes_has_link = true; 565 } 566 567 return 0; 568} 569 570/** 571 * e1000e_check_for_serdes_link - Check for link (Serdes) 572 * @hw: pointer to the HW structure 573 * 574 * Checks for link up on the hardware. If link is not up and we have 575 * a signal, then we need to force link up. 576 **/ 577s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) 578{ 579 struct e1000_mac_info *mac = &hw->mac; 580 u32 rxcw; 581 u32 ctrl; 582 u32 status; 583 s32 ret_val; 584 585 ctrl = er32(CTRL); 586 status = er32(STATUS); 587 rxcw = er32(RXCW); 588 589 /* 590 * If we don't have link (auto-negotiation failed or link partner 591 * cannot auto-negotiate), and our link partner is not trying to 592 * auto-negotiate with us (we are receiving idles or data), 593 * we need to force link up. We also need to give auto-negotiation 594 * time to complete. 595 */ 596 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 597 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { 598 if (mac->autoneg_failed == 0) { 599 mac->autoneg_failed = 1; 600 return 0; 601 } 602 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 603 604 /* Disable auto-negotiation in the TXCW register */ 605 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 606 607 /* Force link-up and also force full-duplex. */ 608 ctrl = er32(CTRL); 609 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 610 ew32(CTRL, ctrl); 611 612 /* Configure Flow Control after forcing link up. */ 613 ret_val = e1000e_config_fc_after_link_up(hw); 614 if (ret_val) { 615 e_dbg("Error configuring flow control\n"); 616 return ret_val; 617 } 618 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 619 /* 620 * If we are forcing link and we are receiving /C/ ordered 621 * sets, re-enable auto-negotiation in the TXCW register 622 * and disable forced link in the Device Control register 623 * in an attempt to auto-negotiate with our link partner. 624 */ 625 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 626 ew32(TXCW, mac->txcw); 627 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 628 629 mac->serdes_has_link = true; 630 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { 631 /* 632 * If we force link for non-auto-negotiation switch, check 633 * link status based on MAC synchronization for internal 634 * serdes media type. 635 */ 636 /* SYNCH bit and IV bit are sticky. */ 637 udelay(10); 638 rxcw = er32(RXCW); 639 if (rxcw & E1000_RXCW_SYNCH) { 640 if (!(rxcw & E1000_RXCW_IV)) { 641 mac->serdes_has_link = true; 642 e_dbg("SERDES: Link up - forced.\n"); 643 } 644 } else { 645 mac->serdes_has_link = false; 646 e_dbg("SERDES: Link down - force failed.\n"); 647 } 648 } 649 650 if (E1000_TXCW_ANE & er32(TXCW)) { 651 status = er32(STATUS); 652 if (status & E1000_STATUS_LU) { 653 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ 654 udelay(10); 655 rxcw = er32(RXCW); 656 if (rxcw & E1000_RXCW_SYNCH) { 657 if (!(rxcw & E1000_RXCW_IV)) { 658 mac->serdes_has_link = true; 659 e_dbg("SERDES: Link up - autoneg " 660 "completed successfully.\n"); 661 } else { 662 mac->serdes_has_link = false; 663 e_dbg("SERDES: Link down - invalid" 664 "codewords detected in autoneg.\n"); 665 } 666 } else { 667 mac->serdes_has_link = false; 668 e_dbg("SERDES: Link down - no sync.\n"); 669 } 670 } else { 671 mac->serdes_has_link = false; 672 e_dbg("SERDES: Link down - autoneg failed\n"); 673 } 674 } 675 676 return 0; 677} 678 679/** 680 * e1000_set_default_fc_generic - Set flow control default values 681 * @hw: pointer to the HW structure 682 * 683 * Read the EEPROM for the default values for flow control and store the 684 * values. 685 **/ 686static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) 687{ 688 s32 ret_val; 689 u16 nvm_data; 690 691 /* 692 * Read and store word 0x0F of the EEPROM. This word contains bits 693 * that determine the hardware's default PAUSE (flow control) mode, 694 * a bit that determines whether the HW defaults to enabling or 695 * disabling auto-negotiation, and the direction of the 696 * SW defined pins. If there is no SW over-ride of the flow 697 * control setting, then the variable hw->fc will 698 * be initialized based on a value in the EEPROM. 699 */ 700 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); 701 702 if (ret_val) { 703 e_dbg("NVM Read Error\n"); 704 return ret_val; 705 } 706 707 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) 708 hw->fc.requested_mode = e1000_fc_none; 709 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 710 NVM_WORD0F_ASM_DIR) 711 hw->fc.requested_mode = e1000_fc_tx_pause; 712 else 713 hw->fc.requested_mode = e1000_fc_full; 714 715 return 0; 716} 717 718/** 719 * e1000e_setup_link - Setup flow control and link settings 720 * @hw: pointer to the HW structure 721 * 722 * Determines which flow control settings to use, then configures flow 723 * control. Calls the appropriate media-specific link configuration 724 * function. Assuming the adapter has a valid link partner, a valid link 725 * should be established. Assumes the hardware has previously been reset 726 * and the transmitter and receiver are not enabled. 727 **/ 728s32 e1000e_setup_link(struct e1000_hw *hw) 729{ 730 struct e1000_mac_info *mac = &hw->mac; 731 s32 ret_val; 732 733 /* 734 * In the case of the phy reset being blocked, we already have a link. 735 * We do not need to set it up again. 736 */ 737 if (e1000_check_reset_block(hw)) 738 return 0; 739 740 /* 741 * If requested flow control is set to default, set flow control 742 * based on the EEPROM flow control settings. 743 */ 744 if (hw->fc.requested_mode == e1000_fc_default) { 745 ret_val = e1000_set_default_fc_generic(hw); 746 if (ret_val) 747 return ret_val; 748 } 749 750 /* 751 * Save off the requested flow control mode for use later. Depending 752 * on the link partner's capabilities, we may or may not use this mode. 753 */ 754 hw->fc.current_mode = hw->fc.requested_mode; 755 756 e_dbg("After fix-ups FlowControl is now = %x\n", 757 hw->fc.current_mode); 758 759 /* Call the necessary media_type subroutine to configure the link. */ 760 ret_val = mac->ops.setup_physical_interface(hw); 761 if (ret_val) 762 return ret_val; 763 764 /* 765 * Initialize the flow control address, type, and PAUSE timer 766 * registers to their default values. This is done even if flow 767 * control is disabled, because it does not hurt anything to 768 * initialize these registers. 769 */ 770 e_dbg("Initializing the Flow Control address, type and timer regs\n"); 771 ew32(FCT, FLOW_CONTROL_TYPE); 772 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); 773 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); 774 775 ew32(FCTTV, hw->fc.pause_time); 776 777 return e1000e_set_fc_watermarks(hw); 778} 779 780/** 781 * e1000_commit_fc_settings_generic - Configure flow control 782 * @hw: pointer to the HW structure 783 * 784 * Write the flow control settings to the Transmit Config Word Register (TXCW) 785 * base on the flow control settings in e1000_mac_info. 786 **/ 787static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) 788{ 789 struct e1000_mac_info *mac = &hw->mac; 790 u32 txcw; 791 792 /* 793 * Check for a software override of the flow control settings, and 794 * setup the device accordingly. If auto-negotiation is enabled, then 795 * software will have to set the "PAUSE" bits to the correct value in 796 * the Transmit Config Word Register (TXCW) and re-start auto- 797 * negotiation. However, if auto-negotiation is disabled, then 798 * software will have to manually configure the two flow control enable 799 * bits in the CTRL register. 800 * 801 * The possible values of the "fc" parameter are: 802 * 0: Flow control is completely disabled 803 * 1: Rx flow control is enabled (we can receive pause frames, 804 * but not send pause frames). 805 * 2: Tx flow control is enabled (we can send pause frames but we 806 * do not support receiving pause frames). 807 * 3: Both Rx and Tx flow control (symmetric) are enabled. 808 */ 809 switch (hw->fc.current_mode) { 810 case e1000_fc_none: 811 /* Flow control completely disabled by a software over-ride. */ 812 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); 813 break; 814 case e1000_fc_rx_pause: 815 /* 816 * Rx Flow control is enabled and Tx Flow control is disabled 817 * by a software over-ride. Since there really isn't a way to 818 * advertise that we are capable of Rx Pause ONLY, we will 819 * advertise that we support both symmetric and asymmetric Rx 820 * PAUSE. Later, we will disable the adapter's ability to send 821 * PAUSE frames. 822 */ 823 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 824 break; 825 case e1000_fc_tx_pause: 826 /* 827 * Tx Flow control is enabled, and Rx Flow control is disabled, 828 * by a software over-ride. 829 */ 830 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); 831 break; 832 case e1000_fc_full: 833 /* 834 * Flow control (both Rx and Tx) is enabled by a software 835 * over-ride. 836 */ 837 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 838 break; 839 default: 840 e_dbg("Flow control param set incorrectly\n"); 841 return -E1000_ERR_CONFIG; 842 break; 843 } 844 845 ew32(TXCW, txcw); 846 mac->txcw = txcw; 847 848 return 0; 849} 850 851/** 852 * e1000_poll_fiber_serdes_link_generic - Poll for link up 853 * @hw: pointer to the HW structure 854 * 855 * Polls for link up by reading the status register, if link fails to come 856 * up with auto-negotiation, then the link is forced if a signal is detected. 857 **/ 858static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) 859{ 860 struct e1000_mac_info *mac = &hw->mac; 861 u32 i, status; 862 s32 ret_val; 863 864 /* 865 * If we have a signal (the cable is plugged in, or assumed true for 866 * serdes media) then poll for a "Link-Up" indication in the Device 867 * Status Register. Time-out if a link isn't seen in 500 milliseconds 868 * seconds (Auto-negotiation should complete in less than 500 869 * milliseconds even if the other end is doing it in SW). 870 */ 871 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { 872 usleep_range(10000, 20000); 873 status = er32(STATUS); 874 if (status & E1000_STATUS_LU) 875 break; 876 } 877 if (i == FIBER_LINK_UP_LIMIT) { 878 e_dbg("Never got a valid link from auto-neg!!!\n"); 879 mac->autoneg_failed = 1; 880 /* 881 * AutoNeg failed to achieve a link, so we'll call 882 * mac->check_for_link. This routine will force the 883 * link up if we detect a signal. This will allow us to 884 * communicate with non-autonegotiating link partners. 885 */ 886 ret_val = mac->ops.check_for_link(hw); 887 if (ret_val) { 888 e_dbg("Error while checking for link\n"); 889 return ret_val; 890 } 891 mac->autoneg_failed = 0; 892 } else { 893 mac->autoneg_failed = 0; 894 e_dbg("Valid Link Found\n"); 895 } 896 897 return 0; 898} 899 900/** 901 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes 902 * @hw: pointer to the HW structure 903 * 904 * Configures collision distance and flow control for fiber and serdes 905 * links. Upon successful setup, poll for link. 906 **/ 907s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) 908{ 909 u32 ctrl; 910 s32 ret_val; 911 912 ctrl = er32(CTRL); 913 914 /* Take the link out of reset */ 915 ctrl &= ~E1000_CTRL_LRST; 916 917 e1000e_config_collision_dist(hw); 918 919 ret_val = e1000_commit_fc_settings_generic(hw); 920 if (ret_val) 921 return ret_val; 922 923 /* 924 * Since auto-negotiation is enabled, take the link out of reset (the 925 * link will be in reset, because we previously reset the chip). This 926 * will restart auto-negotiation. If auto-negotiation is successful 927 * then the link-up status bit will be set and the flow control enable 928 * bits (RFCE and TFCE) will be set according to their negotiated value. 929 */ 930 e_dbg("Auto-negotiation enabled\n"); 931 932 ew32(CTRL, ctrl); 933 e1e_flush(); 934 usleep_range(1000, 2000); 935 936 /* 937 * For these adapters, the SW definable pin 1 is set when the optics 938 * detect a signal. If we have a signal, then poll for a "Link-Up" 939 * indication. 940 */ 941 if (hw->phy.media_type == e1000_media_type_internal_serdes || 942 (er32(CTRL) & E1000_CTRL_SWDPIN1)) { 943 ret_val = e1000_poll_fiber_serdes_link_generic(hw); 944 } else { 945 e_dbg("No signal detected\n"); 946 } 947 948 return 0; 949} 950 951/** 952 * e1000e_config_collision_dist - Configure collision distance 953 * @hw: pointer to the HW structure 954 * 955 * Configures the collision distance to the default value and is used 956 * during link setup. Currently no func pointer exists and all 957 * implementations are handled in the generic version of this function. 958 **/ 959void e1000e_config_collision_dist(struct e1000_hw *hw) 960{ 961 u32 tctl; 962 963 tctl = er32(TCTL); 964 965 tctl &= ~E1000_TCTL_COLD; 966 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; 967 968 ew32(TCTL, tctl); 969 e1e_flush(); 970} 971 972/** 973 * e1000e_set_fc_watermarks - Set flow control high/low watermarks 974 * @hw: pointer to the HW structure 975 * 976 * Sets the flow control high/low threshold (watermark) registers. If 977 * flow control XON frame transmission is enabled, then set XON frame 978 * transmission as well. 979 **/ 980s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) 981{ 982 u32 fcrtl = 0, fcrth = 0; 983 984 /* 985 * Set the flow control receive threshold registers. Normally, 986 * these registers will be set to a default threshold that may be 987 * adjusted later by the driver's runtime code. However, if the 988 * ability to transmit pause frames is not enabled, then these 989 * registers will be set to 0. 990 */ 991 if (hw->fc.current_mode & e1000_fc_tx_pause) { 992 /* 993 * We need to set up the Receive Threshold high and low water 994 * marks as well as (optionally) enabling the transmission of 995 * XON frames. 996 */ 997 fcrtl = hw->fc.low_water; 998 fcrtl |= E1000_FCRTL_XONE; 999 fcrth = hw->fc.high_water; 1000 } 1001 ew32(FCRTL, fcrtl); 1002 ew32(FCRTH, fcrth); 1003 1004 return 0; 1005} 1006 1007/** 1008 * e1000e_force_mac_fc - Force the MAC's flow control settings 1009 * @hw: pointer to the HW structure 1010 * 1011 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 1012 * device control register to reflect the adapter settings. TFCE and RFCE 1013 * need to be explicitly set by software when a copper PHY is used because 1014 * autonegotiation is managed by the PHY rather than the MAC. Software must 1015 * also configure these bits when link is forced on a fiber connection. 1016 **/ 1017s32 e1000e_force_mac_fc(struct e1000_hw *hw) 1018{ 1019 u32 ctrl; 1020 1021 ctrl = er32(CTRL); 1022 1023 /* 1024 * Because we didn't get link via the internal auto-negotiation 1025 * mechanism (we either forced link or we got link via PHY 1026 * auto-neg), we have to manually enable/disable transmit an 1027 * receive flow control. 1028 * 1029 * The "Case" statement below enables/disable flow control 1030 * according to the "hw->fc.current_mode" parameter. 1031 * 1032 * The possible values of the "fc" parameter are: 1033 * 0: Flow control is completely disabled 1034 * 1: Rx flow control is enabled (we can receive pause 1035 * frames but not send pause frames). 1036 * 2: Tx flow control is enabled (we can send pause frames 1037 * frames but we do not receive pause frames). 1038 * 3: Both Rx and Tx flow control (symmetric) is enabled. 1039 * other: No other values should be possible at this point. 1040 */ 1041 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); 1042 1043 switch (hw->fc.current_mode) { 1044 case e1000_fc_none: 1045 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 1046 break; 1047 case e1000_fc_rx_pause: 1048 ctrl &= (~E1000_CTRL_TFCE); 1049 ctrl |= E1000_CTRL_RFCE; 1050 break; 1051 case e1000_fc_tx_pause: 1052 ctrl &= (~E1000_CTRL_RFCE); 1053 ctrl |= E1000_CTRL_TFCE; 1054 break; 1055 case e1000_fc_full: 1056 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 1057 break; 1058 default: 1059 e_dbg("Flow control param set incorrectly\n"); 1060 return -E1000_ERR_CONFIG; 1061 } 1062 1063 ew32(CTRL, ctrl); 1064 1065 return 0; 1066} 1067 1068/** 1069 * e1000e_config_fc_after_link_up - Configures flow control after link 1070 * @hw: pointer to the HW structure 1071 * 1072 * Checks the status of auto-negotiation after link up to ensure that the 1073 * speed and duplex were not forced. If the link needed to be forced, then 1074 * flow control needs to be forced also. If auto-negotiation is enabled 1075 * and did not fail, then we configure flow control based on our link 1076 * partner. 1077 **/ 1078s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) 1079{ 1080 struct e1000_mac_info *mac = &hw->mac; 1081 s32 ret_val = 0; 1082 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 1083 u16 speed, duplex; 1084 1085 /* 1086 * Check for the case where we have fiber media and auto-neg failed 1087 * so we had to force link. In this case, we need to force the 1088 * configuration of the MAC to match the "fc" parameter. 1089 */ 1090 if (mac->autoneg_failed) { 1091 if (hw->phy.media_type == e1000_media_type_fiber || 1092 hw->phy.media_type == e1000_media_type_internal_serdes) 1093 ret_val = e1000e_force_mac_fc(hw); 1094 } else { 1095 if (hw->phy.media_type == e1000_media_type_copper) 1096 ret_val = e1000e_force_mac_fc(hw); 1097 } 1098 1099 if (ret_val) { 1100 e_dbg("Error forcing flow control settings\n"); 1101 return ret_val; 1102 } 1103 1104 /* 1105 * Check for the case where we have copper media and auto-neg is 1106 * enabled. In this case, we need to check and see if Auto-Neg 1107 * has completed, and if so, how the PHY and link partner has 1108 * flow control configured. 1109 */ 1110 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { 1111 /* 1112 * Read the MII Status Register and check to see if AutoNeg 1113 * has completed. We read this twice because this reg has 1114 * some "sticky" (latched) bits. 1115 */ 1116 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); 1117 if (ret_val) 1118 return ret_val; 1119 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); 1120 if (ret_val) 1121 return ret_val; 1122 1123 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { 1124 e_dbg("Copper PHY and Auto Neg " 1125 "has not completed.\n"); 1126 return ret_val; 1127 } 1128 1129 /* 1130 * The AutoNeg process has completed, so we now need to 1131 * read both the Auto Negotiation Advertisement 1132 * Register (Address 4) and the Auto_Negotiation Base 1133 * Page Ability Register (Address 5) to determine how 1134 * flow control was negotiated. 1135 */ 1136 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); 1137 if (ret_val) 1138 return ret_val; 1139 ret_val = 1140 e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); 1141 if (ret_val) 1142 return ret_val; 1143 1144 /* 1145 * Two bits in the Auto Negotiation Advertisement Register 1146 * (Address 4) and two bits in the Auto Negotiation Base 1147 * Page Ability Register (Address 5) determine flow control 1148 * for both the PHY and the link partner. The following 1149 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1150 * 1999, describes these PAUSE resolution bits and how flow 1151 * control is determined based upon these settings. 1152 * NOTE: DC = Don't Care 1153 * 1154 * LOCAL DEVICE | LINK PARTNER 1155 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1156 *-------|---------|-------|---------|-------------------- 1157 * 0 | 0 | DC | DC | e1000_fc_none 1158 * 0 | 1 | 0 | DC | e1000_fc_none 1159 * 0 | 1 | 1 | 0 | e1000_fc_none 1160 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1161 * 1 | 0 | 0 | DC | e1000_fc_none 1162 * 1 | DC | 1 | DC | e1000_fc_full 1163 * 1 | 1 | 0 | 0 | e1000_fc_none 1164 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1165 * 1166 * Are both PAUSE bits set to 1? If so, this implies 1167 * Symmetric Flow Control is enabled at both ends. The 1168 * ASM_DIR bits are irrelevant per the spec. 1169 * 1170 * For Symmetric Flow Control: 1171 * 1172 * LOCAL DEVICE | LINK PARTNER 1173 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1174 *-------|---------|-------|---------|-------------------- 1175 * 1 | DC | 1 | DC | E1000_fc_full 1176 * 1177 */ 1178 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 1179 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { 1180 /* 1181 * Now we need to check if the user selected Rx ONLY 1182 * of pause frames. In this case, we had to advertise 1183 * FULL flow control because we could not advertise Rx 1184 * ONLY. Hence, we must now check to see if we need to 1185 * turn OFF the TRANSMISSION of PAUSE frames. 1186 */ 1187 if (hw->fc.requested_mode == e1000_fc_full) { 1188 hw->fc.current_mode = e1000_fc_full; 1189 e_dbg("Flow Control = FULL.\r\n"); 1190 } else { 1191 hw->fc.current_mode = e1000_fc_rx_pause; 1192 e_dbg("Flow Control = " 1193 "Rx PAUSE frames only.\r\n"); 1194 } 1195 } 1196 /* 1197 * For receiving PAUSE frames ONLY. 1198 * 1199 * LOCAL DEVICE | LINK PARTNER 1200 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1201 *-------|---------|-------|---------|-------------------- 1202 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1203 */ 1204 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && 1205 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 1206 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 1207 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 1208 hw->fc.current_mode = e1000_fc_tx_pause; 1209 e_dbg("Flow Control = Tx PAUSE frames only.\r\n"); 1210 } 1211 /* 1212 * For transmitting PAUSE frames ONLY. 1213 * 1214 * LOCAL DEVICE | LINK PARTNER 1215 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1216 *-------|---------|-------|---------|-------------------- 1217 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1218 */ 1219 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 1220 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 1221 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 1222 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 1223 hw->fc.current_mode = e1000_fc_rx_pause; 1224 e_dbg("Flow Control = Rx PAUSE frames only.\r\n"); 1225 } else { 1226 /* 1227 * Per the IEEE spec, at this point flow control 1228 * should be disabled. 1229 */ 1230 hw->fc.current_mode = e1000_fc_none; 1231 e_dbg("Flow Control = NONE.\r\n"); 1232 } 1233 1234 /* 1235 * Now we need to do one last check... If we auto- 1236 * negotiated to HALF DUPLEX, flow control should not be 1237 * enabled per IEEE 802.3 spec. 1238 */ 1239 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); 1240 if (ret_val) { 1241 e_dbg("Error getting link speed and duplex\n"); 1242 return ret_val; 1243 } 1244 1245 if (duplex == HALF_DUPLEX) 1246 hw->fc.current_mode = e1000_fc_none; 1247 1248 /* 1249 * Now we call a subroutine to actually force the MAC 1250 * controller to use the correct flow control settings. 1251 */ 1252 ret_val = e1000e_force_mac_fc(hw); 1253 if (ret_val) { 1254 e_dbg("Error forcing flow control settings\n"); 1255 return ret_val; 1256 } 1257 } 1258 1259 return 0; 1260} 1261 1262/** 1263 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex 1264 * @hw: pointer to the HW structure 1265 * @speed: stores the current speed 1266 * @duplex: stores the current duplex 1267 * 1268 * Read the status register for the current speed/duplex and store the current 1269 * speed and duplex for copper connections. 1270 **/ 1271s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) 1272{ 1273 u32 status; 1274 1275 status = er32(STATUS); 1276 if (status & E1000_STATUS_SPEED_1000) 1277 *speed = SPEED_1000; 1278 else if (status & E1000_STATUS_SPEED_100) 1279 *speed = SPEED_100; 1280 else 1281 *speed = SPEED_10; 1282 1283 if (status & E1000_STATUS_FD) 1284 *duplex = FULL_DUPLEX; 1285 else 1286 *duplex = HALF_DUPLEX; 1287 1288 e_dbg("%u Mbps, %s Duplex\n", 1289 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, 1290 *duplex == FULL_DUPLEX ? "Full" : "Half"); 1291 1292 return 0; 1293} 1294 1295/** 1296 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex 1297 * @hw: pointer to the HW structure 1298 * @speed: stores the current speed 1299 * @duplex: stores the current duplex 1300 * 1301 * Sets the speed and duplex to gigabit full duplex (the only possible option) 1302 * for fiber/serdes links. 1303 **/ 1304s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) 1305{ 1306 *speed = SPEED_1000; 1307 *duplex = FULL_DUPLEX; 1308 1309 return 0; 1310} 1311 1312/** 1313 * e1000e_get_hw_semaphore - Acquire hardware semaphore 1314 * @hw: pointer to the HW structure 1315 * 1316 * Acquire the HW semaphore to access the PHY or NVM 1317 **/ 1318s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) 1319{ 1320 u32 swsm; 1321 s32 timeout = hw->nvm.word_size + 1; 1322 s32 i = 0; 1323 1324 /* Get the SW semaphore */ 1325 while (i < timeout) { 1326 swsm = er32(SWSM); 1327 if (!(swsm & E1000_SWSM_SMBI)) 1328 break; 1329 1330 udelay(50); 1331 i++; 1332 } 1333 1334 if (i == timeout) { 1335 e_dbg("Driver can't access device - SMBI bit is set.\n"); 1336 return -E1000_ERR_NVM; 1337 } 1338 1339 /* Get the FW semaphore. */ 1340 for (i = 0; i < timeout; i++) { 1341 swsm = er32(SWSM); 1342 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); 1343 1344 /* Semaphore acquired if bit latched */ 1345 if (er32(SWSM) & E1000_SWSM_SWESMBI) 1346 break; 1347 1348 udelay(50); 1349 } 1350 1351 if (i == timeout) { 1352 /* Release semaphores */ 1353 e1000e_put_hw_semaphore(hw); 1354 e_dbg("Driver can't access the NVM\n"); 1355 return -E1000_ERR_NVM; 1356 } 1357 1358 return 0; 1359} 1360 1361/** 1362 * e1000e_put_hw_semaphore - Release hardware semaphore 1363 * @hw: pointer to the HW structure 1364 * 1365 * Release hardware semaphore used to access the PHY or NVM 1366 **/ 1367void e1000e_put_hw_semaphore(struct e1000_hw *hw) 1368{ 1369 u32 swsm; 1370 1371 swsm = er32(SWSM); 1372 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 1373 ew32(SWSM, swsm); 1374} 1375 1376/** 1377 * e1000e_get_auto_rd_done - Check for auto read completion 1378 * @hw: pointer to the HW structure 1379 * 1380 * Check EEPROM for Auto Read done bit. 1381 **/ 1382s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) 1383{ 1384 s32 i = 0; 1385 1386 while (i < AUTO_READ_DONE_TIMEOUT) { 1387 if (er32(EECD) & E1000_EECD_AUTO_RD) 1388 break; 1389 usleep_range(1000, 2000); 1390 i++; 1391 } 1392 1393 if (i == AUTO_READ_DONE_TIMEOUT) { 1394 e_dbg("Auto read by HW from NVM has not completed.\n"); 1395 return -E1000_ERR_RESET; 1396 } 1397 1398 return 0; 1399} 1400 1401/** 1402 * e1000e_valid_led_default - Verify a valid default LED config 1403 * @hw: pointer to the HW structure 1404 * @data: pointer to the NVM (EEPROM) 1405 * 1406 * Read the EEPROM for the current default LED configuration. If the 1407 * LED configuration is not valid, set to a valid LED configuration. 1408 **/ 1409s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) 1410{ 1411 s32 ret_val; 1412 1413 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 1414 if (ret_val) { 1415 e_dbg("NVM Read Error\n"); 1416 return ret_val; 1417 } 1418 1419 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 1420 *data = ID_LED_DEFAULT; 1421 1422 return 0; 1423} 1424 1425/** 1426 * e1000e_id_led_init - 1427 * @hw: pointer to the HW structure 1428 * 1429 **/ 1430s32 e1000e_id_led_init(struct e1000_hw *hw) 1431{ 1432 struct e1000_mac_info *mac = &hw->mac; 1433 s32 ret_val; 1434 const u32 ledctl_mask = 0x000000FF; 1435 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; 1436 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; 1437 u16 data, i, temp; 1438 const u16 led_mask = 0x0F; 1439 1440 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 1441 if (ret_val) 1442 return ret_val; 1443 1444 mac->ledctl_default = er32(LEDCTL); 1445 mac->ledctl_mode1 = mac->ledctl_default; 1446 mac->ledctl_mode2 = mac->ledctl_default; 1447 1448 for (i = 0; i < 4; i++) { 1449 temp = (data >> (i << 2)) & led_mask; 1450 switch (temp) { 1451 case ID_LED_ON1_DEF2: 1452 case ID_LED_ON1_ON2: 1453 case ID_LED_ON1_OFF2: 1454 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1455 mac->ledctl_mode1 |= ledctl_on << (i << 3); 1456 break; 1457 case ID_LED_OFF1_DEF2: 1458 case ID_LED_OFF1_ON2: 1459 case ID_LED_OFF1_OFF2: 1460 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1461 mac->ledctl_mode1 |= ledctl_off << (i << 3); 1462 break; 1463 default: 1464 /* Do nothing */ 1465 break; 1466 } 1467 switch (temp) { 1468 case ID_LED_DEF1_ON2: 1469 case ID_LED_ON1_ON2: 1470 case ID_LED_OFF1_ON2: 1471 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1472 mac->ledctl_mode2 |= ledctl_on << (i << 3); 1473 break; 1474 case ID_LED_DEF1_OFF2: 1475 case ID_LED_ON1_OFF2: 1476 case ID_LED_OFF1_OFF2: 1477 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1478 mac->ledctl_mode2 |= ledctl_off << (i << 3); 1479 break; 1480 default: 1481 /* Do nothing */ 1482 break; 1483 } 1484 } 1485 1486 return 0; 1487} 1488 1489/** 1490 * e1000e_setup_led_generic - Configures SW controllable LED 1491 * @hw: pointer to the HW structure 1492 * 1493 * This prepares the SW controllable LED for use and saves the current state 1494 * of the LED so it can be later restored. 1495 **/ 1496s32 e1000e_setup_led_generic(struct e1000_hw *hw) 1497{ 1498 u32 ledctl; 1499 1500 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) 1501 return -E1000_ERR_CONFIG; 1502 1503 if (hw->phy.media_type == e1000_media_type_fiber) { 1504 ledctl = er32(LEDCTL); 1505 hw->mac.ledctl_default = ledctl; 1506 /* Turn off LED0 */ 1507 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | 1508 E1000_LEDCTL_LED0_BLINK | 1509 E1000_LEDCTL_LED0_MODE_MASK); 1510 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << 1511 E1000_LEDCTL_LED0_MODE_SHIFT); 1512 ew32(LEDCTL, ledctl); 1513 } else if (hw->phy.media_type == e1000_media_type_copper) { 1514 ew32(LEDCTL, hw->mac.ledctl_mode1); 1515 } 1516 1517 return 0; 1518} 1519 1520/** 1521 * e1000e_cleanup_led_generic - Set LED config to default operation 1522 * @hw: pointer to the HW structure 1523 * 1524 * Remove the current LED configuration and set the LED configuration 1525 * to the default value, saved from the EEPROM. 1526 **/ 1527s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) 1528{ 1529 ew32(LEDCTL, hw->mac.ledctl_default); 1530 return 0; 1531} 1532 1533/** 1534 * e1000e_blink_led_generic - Blink LED 1535 * @hw: pointer to the HW structure 1536 * 1537 * Blink the LEDs which are set to be on. 1538 **/ 1539s32 e1000e_blink_led_generic(struct e1000_hw *hw) 1540{ 1541 u32 ledctl_blink = 0; 1542 u32 i; 1543 1544 if (hw->phy.media_type == e1000_media_type_fiber) { 1545 /* always blink LED0 for PCI-E fiber */ 1546 ledctl_blink = E1000_LEDCTL_LED0_BLINK | 1547 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); 1548 } else { 1549 /* 1550 * set the blink bit for each LED that's "on" (0x0E) 1551 * in ledctl_mode2 1552 */ 1553 ledctl_blink = hw->mac.ledctl_mode2; 1554 for (i = 0; i < 4; i++) 1555 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == 1556 E1000_LEDCTL_MODE_LED_ON) 1557 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << 1558 (i * 8)); 1559 } 1560 1561 ew32(LEDCTL, ledctl_blink); 1562 1563 return 0; 1564} 1565 1566/** 1567 * e1000e_led_on_generic - Turn LED on 1568 * @hw: pointer to the HW structure 1569 * 1570 * Turn LED on. 1571 **/ 1572s32 e1000e_led_on_generic(struct e1000_hw *hw) 1573{ 1574 u32 ctrl; 1575 1576 switch (hw->phy.media_type) { 1577 case e1000_media_type_fiber: 1578 ctrl = er32(CTRL); 1579 ctrl &= ~E1000_CTRL_SWDPIN0; 1580 ctrl |= E1000_CTRL_SWDPIO0; 1581 ew32(CTRL, ctrl); 1582 break; 1583 case e1000_media_type_copper: 1584 ew32(LEDCTL, hw->mac.ledctl_mode2); 1585 break; 1586 default: 1587 break; 1588 } 1589 1590 return 0; 1591} 1592 1593/** 1594 * e1000e_led_off_generic - Turn LED off 1595 * @hw: pointer to the HW structure 1596 * 1597 * Turn LED off. 1598 **/ 1599s32 e1000e_led_off_generic(struct e1000_hw *hw) 1600{ 1601 u32 ctrl; 1602 1603 switch (hw->phy.media_type) { 1604 case e1000_media_type_fiber: 1605 ctrl = er32(CTRL); 1606 ctrl |= E1000_CTRL_SWDPIN0; 1607 ctrl |= E1000_CTRL_SWDPIO0; 1608 ew32(CTRL, ctrl); 1609 break; 1610 case e1000_media_type_copper: 1611 ew32(LEDCTL, hw->mac.ledctl_mode1); 1612 break; 1613 default: 1614 break; 1615 } 1616 1617 return 0; 1618} 1619 1620/** 1621 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities 1622 * @hw: pointer to the HW structure 1623 * @no_snoop: bitmap of snoop events 1624 * 1625 * Set the PCI-express register to snoop for events enabled in 'no_snoop'. 1626 **/ 1627void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) 1628{ 1629 u32 gcr; 1630 1631 if (no_snoop) { 1632 gcr = er32(GCR); 1633 gcr &= ~(PCIE_NO_SNOOP_ALL); 1634 gcr |= no_snoop; 1635 ew32(GCR, gcr); 1636 } 1637} 1638 1639/** 1640 * e1000e_disable_pcie_master - Disables PCI-express master access 1641 * @hw: pointer to the HW structure 1642 * 1643 * Returns 0 if successful, else returns -10 1644 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 1645 * the master requests to be disabled. 1646 * 1647 * Disables PCI-Express master access and verifies there are no pending 1648 * requests. 1649 **/ 1650s32 e1000e_disable_pcie_master(struct e1000_hw *hw) 1651{ 1652 u32 ctrl; 1653 s32 timeout = MASTER_DISABLE_TIMEOUT; 1654 1655 ctrl = er32(CTRL); 1656 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; 1657 ew32(CTRL, ctrl); 1658 1659 while (timeout) { 1660 if (!(er32(STATUS) & 1661 E1000_STATUS_GIO_MASTER_ENABLE)) 1662 break; 1663 udelay(100); 1664 timeout--; 1665 } 1666 1667 if (!timeout) { 1668 e_dbg("Master requests are pending.\n"); 1669 return -E1000_ERR_MASTER_REQUESTS_PENDING; 1670 } 1671 1672 return 0; 1673} 1674 1675/** 1676 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing 1677 * @hw: pointer to the HW structure 1678 * 1679 * Reset the Adaptive Interframe Spacing throttle to default values. 1680 **/ 1681void e1000e_reset_adaptive(struct e1000_hw *hw) 1682{ 1683 struct e1000_mac_info *mac = &hw->mac; 1684 1685 if (!mac->adaptive_ifs) { 1686 e_dbg("Not in Adaptive IFS mode!\n"); 1687 goto out; 1688 } 1689 1690 mac->current_ifs_val = 0; 1691 mac->ifs_min_val = IFS_MIN; 1692 mac->ifs_max_val = IFS_MAX; 1693 mac->ifs_step_size = IFS_STEP; 1694 mac->ifs_ratio = IFS_RATIO; 1695 1696 mac->in_ifs_mode = false; 1697 ew32(AIT, 0); 1698out: 1699 return; 1700} 1701 1702/** 1703 * e1000e_update_adaptive - Update Adaptive Interframe Spacing 1704 * @hw: pointer to the HW structure 1705 * 1706 * Update the Adaptive Interframe Spacing Throttle value based on the 1707 * time between transmitted packets and time between collisions. 1708 **/ 1709void e1000e_update_adaptive(struct e1000_hw *hw) 1710{ 1711 struct e1000_mac_info *mac = &hw->mac; 1712 1713 if (!mac->adaptive_ifs) { 1714 e_dbg("Not in Adaptive IFS mode!\n"); 1715 goto out; 1716 } 1717 1718 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { 1719 if (mac->tx_packet_delta > MIN_NUM_XMITS) { 1720 mac->in_ifs_mode = true; 1721 if (mac->current_ifs_val < mac->ifs_max_val) { 1722 if (!mac->current_ifs_val) 1723 mac->current_ifs_val = mac->ifs_min_val; 1724 else 1725 mac->current_ifs_val += 1726 mac->ifs_step_size; 1727 ew32(AIT, mac->current_ifs_val); 1728 } 1729 } 1730 } else { 1731 if (mac->in_ifs_mode && 1732 (mac->tx_packet_delta <= MIN_NUM_XMITS)) { 1733 mac->current_ifs_val = 0; 1734 mac->in_ifs_mode = false; 1735 ew32(AIT, 0); 1736 } 1737 } 1738out: 1739 return; 1740} 1741 1742/** 1743 * e1000_raise_eec_clk - Raise EEPROM clock 1744 * @hw: pointer to the HW structure 1745 * @eecd: pointer to the EEPROM 1746 * 1747 * Enable/Raise the EEPROM clock bit. 1748 **/ 1749static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) 1750{ 1751 *eecd = *eecd | E1000_EECD_SK; 1752 ew32(EECD, *eecd); 1753 e1e_flush(); 1754 udelay(hw->nvm.delay_usec); 1755} 1756 1757/** 1758 * e1000_lower_eec_clk - Lower EEPROM clock 1759 * @hw: pointer to the HW structure 1760 * @eecd: pointer to the EEPROM 1761 * 1762 * Clear/Lower the EEPROM clock bit. 1763 **/ 1764static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) 1765{ 1766 *eecd = *eecd & ~E1000_EECD_SK; 1767 ew32(EECD, *eecd); 1768 e1e_flush(); 1769 udelay(hw->nvm.delay_usec); 1770} 1771 1772/** 1773 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM 1774 * @hw: pointer to the HW structure 1775 * @data: data to send to the EEPROM 1776 * @count: number of bits to shift out 1777 * 1778 * We need to shift 'count' bits out to the EEPROM. So, the value in the 1779 * "data" parameter will be shifted out to the EEPROM one bit at a time. 1780 * In order to do this, "data" must be broken down into bits. 1781 **/ 1782static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) 1783{ 1784 struct e1000_nvm_info *nvm = &hw->nvm; 1785 u32 eecd = er32(EECD); 1786 u32 mask; 1787 1788 mask = 0x01 << (count - 1); 1789 if (nvm->type == e1000_nvm_eeprom_spi) 1790 eecd |= E1000_EECD_DO; 1791 1792 do { 1793 eecd &= ~E1000_EECD_DI; 1794 1795 if (data & mask) 1796 eecd |= E1000_EECD_DI; 1797 1798 ew32(EECD, eecd); 1799 e1e_flush(); 1800 1801 udelay(nvm->delay_usec); 1802 1803 e1000_raise_eec_clk(hw, &eecd); 1804 e1000_lower_eec_clk(hw, &eecd); 1805 1806 mask >>= 1; 1807 } while (mask); 1808 1809 eecd &= ~E1000_EECD_DI; 1810 ew32(EECD, eecd); 1811} 1812 1813/** 1814 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM 1815 * @hw: pointer to the HW structure 1816 * @count: number of bits to shift in 1817 * 1818 * In order to read a register from the EEPROM, we need to shift 'count' bits 1819 * in from the EEPROM. Bits are "shifted in" by raising the clock input to 1820 * the EEPROM (setting the SK bit), and then reading the value of the data out 1821 * "DO" bit. During this "shifting in" process the data in "DI" bit should 1822 * always be clear. 1823 **/ 1824static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) 1825{ 1826 u32 eecd; 1827 u32 i; 1828 u16 data; 1829 1830 eecd = er32(EECD); 1831 1832 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 1833 data = 0; 1834 1835 for (i = 0; i < count; i++) { 1836 data <<= 1; 1837 e1000_raise_eec_clk(hw, &eecd); 1838 1839 eecd = er32(EECD); 1840 1841 eecd &= ~E1000_EECD_DI; 1842 if (eecd & E1000_EECD_DO) 1843 data |= 1; 1844 1845 e1000_lower_eec_clk(hw, &eecd); 1846 } 1847 1848 return data; 1849} 1850 1851/** 1852 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion 1853 * @hw: pointer to the HW structure 1854 * @ee_reg: EEPROM flag for polling 1855 * 1856 * Polls the EEPROM status bit for either read or write completion based 1857 * upon the value of 'ee_reg'. 1858 **/ 1859s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) 1860{ 1861 u32 attempts = 100000; 1862 u32 i, reg = 0; 1863 1864 for (i = 0; i < attempts; i++) { 1865 if (ee_reg == E1000_NVM_POLL_READ) 1866 reg = er32(EERD); 1867 else 1868 reg = er32(EEWR); 1869 1870 if (reg & E1000_NVM_RW_REG_DONE) 1871 return 0; 1872 1873 udelay(5); 1874 } 1875 1876 return -E1000_ERR_NVM; 1877} 1878 1879/** 1880 * e1000e_acquire_nvm - Generic request for access to EEPROM 1881 * @hw: pointer to the HW structure 1882 * 1883 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 1884 * Return successful if access grant bit set, else clear the request for 1885 * EEPROM access and return -E1000_ERR_NVM (-1). 1886 **/ 1887s32 e1000e_acquire_nvm(struct e1000_hw *hw) 1888{ 1889 u32 eecd = er32(EECD); 1890 s32 timeout = E1000_NVM_GRANT_ATTEMPTS; 1891 1892 ew32(EECD, eecd | E1000_EECD_REQ); 1893 eecd = er32(EECD); 1894 1895 while (timeout) { 1896 if (eecd & E1000_EECD_GNT) 1897 break; 1898 udelay(5); 1899 eecd = er32(EECD); 1900 timeout--; 1901 } 1902 1903 if (!timeout) { 1904 eecd &= ~E1000_EECD_REQ; 1905 ew32(EECD, eecd); 1906 e_dbg("Could not acquire NVM grant\n"); 1907 return -E1000_ERR_NVM; 1908 } 1909 1910 return 0; 1911} 1912 1913/** 1914 * e1000_standby_nvm - Return EEPROM to standby state 1915 * @hw: pointer to the HW structure 1916 * 1917 * Return the EEPROM to a standby state. 1918 **/ 1919static void e1000_standby_nvm(struct e1000_hw *hw) 1920{ 1921 struct e1000_nvm_info *nvm = &hw->nvm; 1922 u32 eecd = er32(EECD); 1923 1924 if (nvm->type == e1000_nvm_eeprom_spi) { 1925 /* Toggle CS to flush commands */ 1926 eecd |= E1000_EECD_CS; 1927 ew32(EECD, eecd); 1928 e1e_flush(); 1929 udelay(nvm->delay_usec); 1930 eecd &= ~E1000_EECD_CS; 1931 ew32(EECD, eecd); 1932 e1e_flush(); 1933 udelay(nvm->delay_usec); 1934 } 1935} 1936 1937/** 1938 * e1000_stop_nvm - Terminate EEPROM command 1939 * @hw: pointer to the HW structure 1940 * 1941 * Terminates the current command by inverting the EEPROM's chip select pin. 1942 **/ 1943static void e1000_stop_nvm(struct e1000_hw *hw) 1944{ 1945 u32 eecd; 1946 1947 eecd = er32(EECD); 1948 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 1949 /* Pull CS high */ 1950 eecd |= E1000_EECD_CS; 1951 e1000_lower_eec_clk(hw, &eecd); 1952 } 1953} 1954 1955/** 1956 * e1000e_release_nvm - Release exclusive access to EEPROM 1957 * @hw: pointer to the HW structure 1958 * 1959 * Stop any current commands to the EEPROM and clear the EEPROM request bit. 1960 **/ 1961void e1000e_release_nvm(struct e1000_hw *hw) 1962{ 1963 u32 eecd; 1964 1965 e1000_stop_nvm(hw); 1966 1967 eecd = er32(EECD); 1968 eecd &= ~E1000_EECD_REQ; 1969 ew32(EECD, eecd); 1970} 1971 1972/** 1973 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write 1974 * @hw: pointer to the HW structure 1975 * 1976 * Setups the EEPROM for reading and writing. 1977 **/ 1978static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) 1979{ 1980 struct e1000_nvm_info *nvm = &hw->nvm; 1981 u32 eecd = er32(EECD); 1982 u8 spi_stat_reg; 1983 1984 if (nvm->type == e1000_nvm_eeprom_spi) { 1985 u16 timeout = NVM_MAX_RETRY_SPI; 1986 1987 /* Clear SK and CS */ 1988 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 1989 ew32(EECD, eecd); 1990 e1e_flush(); 1991 udelay(1); 1992 1993 /* 1994 * Read "Status Register" repeatedly until the LSB is cleared. 1995 * The EEPROM will signal that the command has been completed 1996 * by clearing bit 0 of the internal status register. If it's 1997 * not cleared within 'timeout', then error out. 1998 */ 1999 while (timeout) { 2000 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, 2001 hw->nvm.opcode_bits); 2002 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); 2003 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) 2004 break; 2005 2006 udelay(5); 2007 e1000_standby_nvm(hw); 2008 timeout--; 2009 } 2010 2011 if (!timeout) { 2012 e_dbg("SPI NVM Status error\n"); 2013 return -E1000_ERR_NVM; 2014 } 2015 } 2016 2017 return 0; 2018} 2019 2020/** 2021 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register 2022 * @hw: pointer to the HW structure 2023 * @offset: offset of word in the EEPROM to read 2024 * @words: number of words to read 2025 * @data: word read from the EEPROM 2026 * 2027 * Reads a 16 bit word from the EEPROM using the EERD register. 2028 **/ 2029s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 2030{ 2031 struct e1000_nvm_info *nvm = &hw->nvm; 2032 u32 i, eerd = 0; 2033 s32 ret_val = 0; 2034 2035 /* 2036 * A check for invalid values: offset too large, too many words, 2037 * too many words for the offset, and not enough words. 2038 */ 2039 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 2040 (words == 0)) { 2041 e_dbg("nvm parameter(s) out of bounds\n"); 2042 return -E1000_ERR_NVM; 2043 } 2044 2045 for (i = 0; i < words; i++) { 2046 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + 2047 E1000_NVM_RW_REG_START; 2048 2049 ew32(EERD, eerd); 2050 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); 2051 if (ret_val) 2052 break; 2053 2054 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); 2055 } 2056 2057 return ret_val; 2058} 2059 2060/** 2061 * e1000e_write_nvm_spi - Write to EEPROM using SPI 2062 * @hw: pointer to the HW structure 2063 * @offset: offset within the EEPROM to be written to 2064 * @words: number of words to write 2065 * @data: 16 bit word(s) to be written to the EEPROM 2066 * 2067 * Writes data to EEPROM at offset using SPI interface. 2068 * 2069 * If e1000e_update_nvm_checksum is not called after this function , the 2070 * EEPROM will most likely contain an invalid checksum. 2071 **/ 2072s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 2073{ 2074 struct e1000_nvm_info *nvm = &hw->nvm; 2075 s32 ret_val; 2076 u16 widx = 0; 2077 2078 /* 2079 * A check for invalid values: offset too large, too many words, 2080 * and not enough words. 2081 */ 2082 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 2083 (words == 0)) { 2084 e_dbg("nvm parameter(s) out of bounds\n"); 2085 return -E1000_ERR_NVM; 2086 } 2087 2088 ret_val = nvm->ops.acquire(hw); 2089 if (ret_val) 2090 return ret_val; 2091 2092 while (widx < words) { 2093 u8 write_opcode = NVM_WRITE_OPCODE_SPI; 2094 2095 ret_val = e1000_ready_nvm_eeprom(hw); 2096 if (ret_val) { 2097 nvm->ops.release(hw); 2098 return ret_val; 2099 } 2100 2101 e1000_standby_nvm(hw); 2102 2103 /* Send the WRITE ENABLE command (8 bit opcode) */ 2104 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, 2105 nvm->opcode_bits); 2106 2107 e1000_standby_nvm(hw); 2108 2109 /* 2110 * Some SPI eeproms use the 8th address bit embedded in the 2111 * opcode 2112 */ 2113 if ((nvm->address_bits == 8) && (offset >= 128)) 2114 write_opcode |= NVM_A8_OPCODE_SPI; 2115 2116 /* Send the Write command (8-bit opcode + addr) */ 2117 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); 2118 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), 2119 nvm->address_bits); 2120 2121 /* Loop to allow for up to whole page write of eeprom */ 2122 while (widx < words) { 2123 u16 word_out = data[widx]; 2124 word_out = (word_out >> 8) | (word_out << 8); 2125 e1000_shift_out_eec_bits(hw, word_out, 16); 2126 widx++; 2127 2128 if ((((offset + widx) * 2) % nvm->page_size) == 0) { 2129 e1000_standby_nvm(hw); 2130 break; 2131 } 2132 } 2133 } 2134 2135 usleep_range(10000, 20000); 2136 nvm->ops.release(hw); 2137 return 0; 2138} 2139 2140/** 2141 * e1000_read_pba_string_generic - Read device part number 2142 * @hw: pointer to the HW structure 2143 * @pba_num: pointer to device part number 2144 * @pba_num_size: size of part number buffer 2145 * 2146 * Reads the product board assembly (PBA) number from the EEPROM and stores 2147 * the value in pba_num. 2148 **/ 2149s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, 2150 u32 pba_num_size) 2151{ 2152 s32 ret_val; 2153 u16 nvm_data; 2154 u16 pba_ptr; 2155 u16 offset; 2156 u16 length; 2157 2158 if (pba_num == NULL) { 2159 e_dbg("PBA string buffer was null\n"); 2160 ret_val = E1000_ERR_INVALID_ARGUMENT; 2161 goto out; 2162 } 2163 2164 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); 2165 if (ret_val) { 2166 e_dbg("NVM Read Error\n"); 2167 goto out; 2168 } 2169 2170 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); 2171 if (ret_val) { 2172 e_dbg("NVM Read Error\n"); 2173 goto out; 2174 } 2175 2176 /* 2177 * if nvm_data is not ptr guard the PBA must be in legacy format which 2178 * means pba_ptr is actually our second data word for the PBA number 2179 * and we can decode it into an ascii string 2180 */ 2181 if (nvm_data != NVM_PBA_PTR_GUARD) { 2182 e_dbg("NVM PBA number is not stored as string\n"); 2183 2184 /* we will need 11 characters to store the PBA */ 2185 if (pba_num_size < 11) { 2186 e_dbg("PBA string buffer too small\n"); 2187 return E1000_ERR_NO_SPACE; 2188 } 2189 2190 /* extract hex string from data and pba_ptr */ 2191 pba_num[0] = (nvm_data >> 12) & 0xF; 2192 pba_num[1] = (nvm_data >> 8) & 0xF; 2193 pba_num[2] = (nvm_data >> 4) & 0xF; 2194 pba_num[3] = nvm_data & 0xF; 2195 pba_num[4] = (pba_ptr >> 12) & 0xF; 2196 pba_num[5] = (pba_ptr >> 8) & 0xF; 2197 pba_num[6] = '-'; 2198 pba_num[7] = 0; 2199 pba_num[8] = (pba_ptr >> 4) & 0xF; 2200 pba_num[9] = pba_ptr & 0xF; 2201 2202 /* put a null character on the end of our string */ 2203 pba_num[10] = '\0'; 2204 2205 /* switch all the data but the '-' to hex char */ 2206 for (offset = 0; offset < 10; offset++) { 2207 if (pba_num[offset] < 0xA) 2208 pba_num[offset] += '0'; 2209 else if (pba_num[offset] < 0x10) 2210 pba_num[offset] += 'A' - 0xA; 2211 } 2212 2213 goto out; 2214 } 2215 2216 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); 2217 if (ret_val) { 2218 e_dbg("NVM Read Error\n"); 2219 goto out; 2220 } 2221 2222 if (length == 0xFFFF || length == 0) { 2223 e_dbg("NVM PBA number section invalid length\n"); 2224 ret_val = E1000_ERR_NVM_PBA_SECTION; 2225 goto out; 2226 } 2227 /* check if pba_num buffer is big enough */ 2228 if (pba_num_size < (((u32)length * 2) - 1)) { 2229 e_dbg("PBA string buffer too small\n"); 2230 ret_val = E1000_ERR_NO_SPACE; 2231 goto out; 2232 } 2233 2234 /* trim pba length from start of string */ 2235 pba_ptr++; 2236 length--; 2237 2238 for (offset = 0; offset < length; offset++) { 2239 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); 2240 if (ret_val) { 2241 e_dbg("NVM Read Error\n"); 2242 goto out; 2243 } 2244 pba_num[offset * 2] = (u8)(nvm_data >> 8); 2245 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); 2246 } 2247 pba_num[offset * 2] = '\0'; 2248 2249out: 2250 return ret_val; 2251} 2252 2253/** 2254 * e1000_read_mac_addr_generic - Read device MAC address 2255 * @hw: pointer to the HW structure 2256 * 2257 * Reads the device MAC address from the EEPROM and stores the value. 2258 * Since devices with two ports use the same EEPROM, we increment the 2259 * last bit in the MAC address for the second port. 2260 **/ 2261s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) 2262{ 2263 u32 rar_high; 2264 u32 rar_low; 2265 u16 i; 2266 2267 rar_high = er32(RAH(0)); 2268 rar_low = er32(RAL(0)); 2269 2270 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) 2271 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); 2272 2273 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) 2274 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); 2275 2276 for (i = 0; i < ETH_ALEN; i++) 2277 hw->mac.addr[i] = hw->mac.perm_addr[i]; 2278 2279 return 0; 2280} 2281 2282/** 2283 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum 2284 * @hw: pointer to the HW structure 2285 * 2286 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 2287 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 2288 **/ 2289s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) 2290{ 2291 s32 ret_val; 2292 u16 checksum = 0; 2293 u16 i, nvm_data; 2294 2295 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 2296 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); 2297 if (ret_val) { 2298 e_dbg("NVM Read Error\n"); 2299 return ret_val; 2300 } 2301 checksum += nvm_data; 2302 } 2303 2304 if (checksum != (u16) NVM_SUM) { 2305 e_dbg("NVM Checksum Invalid\n"); 2306 return -E1000_ERR_NVM; 2307 } 2308 2309 return 0; 2310} 2311 2312/** 2313 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum 2314 * @hw: pointer to the HW structure 2315 * 2316 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 2317 * up to the checksum. Then calculates the EEPROM checksum and writes the 2318 * value to the EEPROM. 2319 **/ 2320s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) 2321{ 2322 s32 ret_val; 2323 u16 checksum = 0; 2324 u16 i, nvm_data; 2325 2326 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 2327 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); 2328 if (ret_val) { 2329 e_dbg("NVM Read Error while updating checksum.\n"); 2330 return ret_val; 2331 } 2332 checksum += nvm_data; 2333 } 2334 checksum = (u16) NVM_SUM - checksum; 2335 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); 2336 if (ret_val) 2337 e_dbg("NVM Write Error while updating checksum.\n"); 2338 2339 return ret_val; 2340} 2341 2342/** 2343 * e1000e_reload_nvm - Reloads EEPROM 2344 * @hw: pointer to the HW structure 2345 * 2346 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 2347 * extended control register. 2348 **/ 2349void e1000e_reload_nvm(struct e1000_hw *hw) 2350{ 2351 u32 ctrl_ext; 2352 2353 udelay(10); 2354 ctrl_ext = er32(CTRL_EXT); 2355 ctrl_ext |= E1000_CTRL_EXT_EE_RST; 2356 ew32(CTRL_EXT, ctrl_ext); 2357 e1e_flush(); 2358} 2359 2360/** 2361 * e1000_calculate_checksum - Calculate checksum for buffer 2362 * @buffer: pointer to EEPROM 2363 * @length: size of EEPROM to calculate a checksum for 2364 * 2365 * Calculates the checksum for some buffer on a specified length. The 2366 * checksum calculated is returned. 2367 **/ 2368static u8 e1000_calculate_checksum(u8 *buffer, u32 length) 2369{ 2370 u32 i; 2371 u8 sum = 0; 2372 2373 if (!buffer) 2374 return 0; 2375 2376 for (i = 0; i < length; i++) 2377 sum += buffer[i]; 2378 2379 return (u8) (0 - sum); 2380} 2381 2382/** 2383 * e1000_mng_enable_host_if - Checks host interface is enabled 2384 * @hw: pointer to the HW structure 2385 * 2386 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 2387 * 2388 * This function checks whether the HOST IF is enabled for command operation 2389 * and also checks whether the previous command is completed. It busy waits 2390 * in case of previous command is not completed. 2391 **/ 2392static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 2393{ 2394 u32 hicr; 2395 u8 i; 2396 2397 if (!(hw->mac.arc_subsystem_valid)) { 2398 e_dbg("ARC subsystem not valid.\n"); 2399 return -E1000_ERR_HOST_INTERFACE_COMMAND; 2400 } 2401 2402 /* Check that the host interface is enabled. */ 2403 hicr = er32(HICR); 2404 if ((hicr & E1000_HICR_EN) == 0) { 2405 e_dbg("E1000_HOST_EN bit disabled.\n"); 2406 return -E1000_ERR_HOST_INTERFACE_COMMAND; 2407 } 2408 /* check the previous command is completed */ 2409 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { 2410 hicr = er32(HICR); 2411 if (!(hicr & E1000_HICR_C)) 2412 break; 2413 mdelay(1); 2414 } 2415 2416 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { 2417 e_dbg("Previous command timeout failed .\n"); 2418 return -E1000_ERR_HOST_INTERFACE_COMMAND; 2419 } 2420 2421 return 0; 2422} 2423 2424/** 2425 * e1000e_check_mng_mode_generic - check management mode 2426 * @hw: pointer to the HW structure 2427 * 2428 * Reads the firmware semaphore register and returns true (>0) if 2429 * manageability is enabled, else false (0). 2430 **/ 2431bool e1000e_check_mng_mode_generic(struct e1000_hw *hw) 2432{ 2433 u32 fwsm = er32(FWSM); 2434 2435 return (fwsm & E1000_FWSM_MODE_MASK) == 2436 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); 2437} 2438 2439/** 2440 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx 2441 * @hw: pointer to the HW structure 2442 * 2443 * Enables packet filtering on transmit packets if manageability is enabled 2444 * and host interface is enabled. 2445 **/ 2446bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) 2447{ 2448 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; 2449 u32 *buffer = (u32 *)&hw->mng_cookie; 2450 u32 offset; 2451 s32 ret_val, hdr_csum, csum; 2452 u8 i, len; 2453 2454 hw->mac.tx_pkt_filtering = true; 2455 2456 /* No manageability, no filtering */ 2457 if (!e1000e_check_mng_mode(hw)) { 2458 hw->mac.tx_pkt_filtering = false; 2459 goto out; 2460 } 2461 2462 /* 2463 * If we can't read from the host interface for whatever 2464 * reason, disable filtering. 2465 */ 2466 ret_val = e1000_mng_enable_host_if(hw); 2467 if (ret_val) { 2468 hw->mac.tx_pkt_filtering = false; 2469 goto out; 2470 } 2471 2472 /* Read in the header. Length and offset are in dwords. */ 2473 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; 2474 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; 2475 for (i = 0; i < len; i++) 2476 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); 2477 hdr_csum = hdr->checksum; 2478 hdr->checksum = 0; 2479 csum = e1000_calculate_checksum((u8 *)hdr, 2480 E1000_MNG_DHCP_COOKIE_LENGTH); 2481 /* 2482 * If either the checksums or signature don't match, then 2483 * the cookie area isn't considered valid, in which case we 2484 * take the safe route of assuming Tx filtering is enabled. 2485 */ 2486 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { 2487 hw->mac.tx_pkt_filtering = true; 2488 goto out; 2489 } 2490 2491 /* Cookie area is valid, make the final check for filtering. */ 2492 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { 2493 hw->mac.tx_pkt_filtering = false; 2494 goto out; 2495 } 2496 2497out: 2498 return hw->mac.tx_pkt_filtering; 2499} 2500 2501/** 2502 * e1000_mng_write_cmd_header - Writes manageability command header 2503 * @hw: pointer to the HW structure 2504 * @hdr: pointer to the host interface command header 2505 * 2506 * Writes the command header after does the checksum calculation. 2507 **/ 2508static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 2509 struct e1000_host_mng_command_header *hdr) 2510{ 2511 u16 i, length = sizeof(struct e1000_host_mng_command_header); 2512 2513 /* Write the whole command header structure with new checksum. */ 2514 2515 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); 2516 2517 length >>= 2; 2518 /* Write the relevant command block into the ram area. */ 2519 for (i = 0; i < length; i++) { 2520 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, 2521 *((u32 *) hdr + i)); 2522 e1e_flush(); 2523 } 2524 2525 return 0; 2526} 2527 2528/** 2529 * e1000_mng_host_if_write - Write to the manageability host interface 2530 * @hw: pointer to the HW structure 2531 * @buffer: pointer to the host interface buffer 2532 * @length: size of the buffer 2533 * @offset: location in the buffer to write to 2534 * @sum: sum of the data (not checksum) 2535 * 2536 * This function writes the buffer content at the offset given on the host if. 2537 * It also does alignment considerations to do the writes in most efficient 2538 * way. Also fills up the sum of the buffer in *buffer parameter. 2539 **/ 2540static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, 2541 u16 length, u16 offset, u8 *sum) 2542{ 2543 u8 *tmp; 2544 u8 *bufptr = buffer; 2545 u32 data = 0; 2546 u16 remaining, i, j, prev_bytes; 2547 2548 /* sum = only sum of the data and it is not checksum */ 2549 2550 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) 2551 return -E1000_ERR_PARAM; 2552 2553 tmp = (u8 *)&data; 2554 prev_bytes = offset & 0x3; 2555 offset >>= 2; 2556 2557 if (prev_bytes) { 2558 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); 2559 for (j = prev_bytes; j < sizeof(u32); j++) { 2560 *(tmp + j) = *bufptr++; 2561 *sum += *(tmp + j); 2562 } 2563 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); 2564 length -= j - prev_bytes; 2565 offset++; 2566 } 2567 2568 remaining = length & 0x3; 2569 length -= remaining; 2570 2571 /* Calculate length in DWORDs */ 2572 length >>= 2; 2573 2574 /* 2575 * The device driver writes the relevant command block into the 2576 * ram area. 2577 */ 2578 for (i = 0; i < length; i++) { 2579 for (j = 0; j < sizeof(u32); j++) { 2580 *(tmp + j) = *bufptr++; 2581 *sum += *(tmp + j); 2582 } 2583 2584 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); 2585 } 2586 if (remaining) { 2587 for (j = 0; j < sizeof(u32); j++) { 2588 if (j < remaining) 2589 *(tmp + j) = *bufptr++; 2590 else 2591 *(tmp + j) = 0; 2592 2593 *sum += *(tmp + j); 2594 } 2595 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); 2596 } 2597 2598 return 0; 2599} 2600 2601/** 2602 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface 2603 * @hw: pointer to the HW structure 2604 * @buffer: pointer to the host interface 2605 * @length: size of the buffer 2606 * 2607 * Writes the DHCP information to the host interface. 2608 **/ 2609s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 2610{ 2611 struct e1000_host_mng_command_header hdr; 2612 s32 ret_val; 2613 u32 hicr; 2614 2615 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; 2616 hdr.command_length = length; 2617 hdr.reserved1 = 0; 2618 hdr.reserved2 = 0; 2619 hdr.checksum = 0; 2620 2621 /* Enable the host interface */ 2622 ret_val = e1000_mng_enable_host_if(hw); 2623 if (ret_val) 2624 return ret_val; 2625 2626 /* Populate the host interface with the contents of "buffer". */ 2627 ret_val = e1000_mng_host_if_write(hw, buffer, length, 2628 sizeof(hdr), &(hdr.checksum)); 2629 if (ret_val) 2630 return ret_val; 2631 2632 /* Write the manageability command header */ 2633 ret_val = e1000_mng_write_cmd_header(hw, &hdr); 2634 if (ret_val) 2635 return ret_val; 2636 2637 /* Tell the ARC a new command is pending. */ 2638 hicr = er32(HICR); 2639 ew32(HICR, hicr | E1000_HICR_C); 2640 2641 return 0; 2642} 2643 2644/** 2645 * e1000e_enable_mng_pass_thru - Check if management passthrough is needed 2646 * @hw: pointer to the HW structure 2647 * 2648 * Verifies the hardware needs to leave interface enabled so that frames can 2649 * be directed to and from the management interface. 2650 **/ 2651bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) 2652{ 2653 u32 manc; 2654 u32 fwsm, factps; 2655 bool ret_val = false; 2656 2657 manc = er32(MANC); 2658 2659 if (!(manc & E1000_MANC_RCV_TCO_EN)) 2660 goto out; 2661 2662 if (hw->mac.has_fwsm) { 2663 fwsm = er32(FWSM); 2664 factps = er32(FACTPS); 2665 2666 if (!(factps & E1000_FACTPS_MNGCG) && 2667 ((fwsm & E1000_FWSM_MODE_MASK) == 2668 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { 2669 ret_val = true; 2670 goto out; 2671 } 2672 } else if ((hw->mac.type == e1000_82574) || 2673 (hw->mac.type == e1000_82583)) { 2674 u16 data; 2675 2676 factps = er32(FACTPS); 2677 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); 2678 2679 if (!(factps & E1000_FACTPS_MNGCG) && 2680 ((data & E1000_NVM_INIT_CTRL2_MNGM) == 2681 (e1000_mng_mode_pt << 13))) { 2682 ret_val = true; 2683 goto out; 2684 } 2685 } else if ((manc & E1000_MANC_SMBUS_EN) && 2686 !(manc & E1000_MANC_ASF_EN)) { 2687 ret_val = true; 2688 goto out; 2689 } 2690 2691out: 2692 return ret_val; 2693}