at v3.1 1257 lines 38 kB view raw
1/* 2 * include/asm-s390/pgtable.h 3 * 4 * S390 version 5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Hartmut Penner (hp@de.ibm.com) 7 * Ulrich Weigand (weigand@de.ibm.com) 8 * Martin Schwidefsky (schwidefsky@de.ibm.com) 9 * 10 * Derived from "include/asm-i386/pgtable.h" 11 */ 12 13#ifndef _ASM_S390_PGTABLE_H 14#define _ASM_S390_PGTABLE_H 15 16/* 17 * The Linux memory management assumes a three-level page table setup. For 18 * s390 31 bit we "fold" the mid level into the top-level page table, so 19 * that we physically have the same two-level page table as the s390 mmu 20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 21 * the hardware provides (region first and region second tables are not 22 * used). 23 * 24 * The "pgd_xxx()" functions are trivial for a folded two-level 25 * setup: the pgd is never bad, and a pmd always exists (as it's folded 26 * into the pgd entry) 27 * 28 * This file contains the functions and defines necessary to modify and use 29 * the S390 page table tree. 30 */ 31#ifndef __ASSEMBLY__ 32#include <linux/sched.h> 33#include <linux/mm_types.h> 34#include <asm/bug.h> 35#include <asm/page.h> 36 37extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 38extern void paging_init(void); 39extern void vmem_map_init(void); 40extern void fault_init(void); 41 42/* 43 * The S390 doesn't have any external MMU info: the kernel page 44 * tables contain all the necessary information. 45 */ 46#define update_mmu_cache(vma, address, ptep) do { } while (0) 47 48/* 49 * ZERO_PAGE is a global shared page that is always zero; used 50 * for zero-mapped memory areas etc.. 51 */ 52 53extern unsigned long empty_zero_page; 54extern unsigned long zero_page_mask; 55 56#define ZERO_PAGE(vaddr) \ 57 (virt_to_page((void *)(empty_zero_page + \ 58 (((unsigned long)(vaddr)) &zero_page_mask)))) 59 60#define is_zero_pfn is_zero_pfn 61static inline int is_zero_pfn(unsigned long pfn) 62{ 63 extern unsigned long zero_pfn; 64 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 65 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 66} 67 68#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 69 70#endif /* !__ASSEMBLY__ */ 71 72/* 73 * PMD_SHIFT determines the size of the area a second-level page 74 * table can map 75 * PGDIR_SHIFT determines what a third-level page table entry can map 76 */ 77#ifndef __s390x__ 78# define PMD_SHIFT 20 79# define PUD_SHIFT 20 80# define PGDIR_SHIFT 20 81#else /* __s390x__ */ 82# define PMD_SHIFT 20 83# define PUD_SHIFT 31 84# define PGDIR_SHIFT 42 85#endif /* __s390x__ */ 86 87#define PMD_SIZE (1UL << PMD_SHIFT) 88#define PMD_MASK (~(PMD_SIZE-1)) 89#define PUD_SIZE (1UL << PUD_SHIFT) 90#define PUD_MASK (~(PUD_SIZE-1)) 91#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 92#define PGDIR_MASK (~(PGDIR_SIZE-1)) 93 94/* 95 * entries per page directory level: the S390 is two-level, so 96 * we don't really have any PMD directory physically. 97 * for S390 segment-table entries are combined to one PGD 98 * that leads to 1024 pte per pgd 99 */ 100#define PTRS_PER_PTE 256 101#ifndef __s390x__ 102#define PTRS_PER_PMD 1 103#define PTRS_PER_PUD 1 104#else /* __s390x__ */ 105#define PTRS_PER_PMD 2048 106#define PTRS_PER_PUD 2048 107#endif /* __s390x__ */ 108#define PTRS_PER_PGD 2048 109 110#define FIRST_USER_ADDRESS 0 111 112#define pte_ERROR(e) \ 113 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 114#define pmd_ERROR(e) \ 115 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 116#define pud_ERROR(e) \ 117 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 118#define pgd_ERROR(e) \ 119 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 120 121#ifndef __ASSEMBLY__ 122/* 123 * The vmalloc area will always be on the topmost area of the kernel 124 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc, 125 * which should be enough for any sane case. 126 * By putting vmalloc at the top, we maximise the gap between physical 127 * memory and vmalloc to catch misplaced memory accesses. As a side 128 * effect, this also makes sure that 64 bit module code cannot be used 129 * as system call address. 130 */ 131 132extern unsigned long VMALLOC_START; 133 134#ifndef __s390x__ 135#define VMALLOC_SIZE (96UL << 20) 136#define VMALLOC_END 0x7e000000UL 137#define VMEM_MAP_END 0x80000000UL 138#else /* __s390x__ */ 139#define VMALLOC_SIZE (128UL << 30) 140#define VMALLOC_END 0x3e000000000UL 141#define VMEM_MAP_END 0x40000000000UL 142#endif /* __s390x__ */ 143 144/* 145 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1 146 * mapping. This needs to be calculated at compile time since the size of the 147 * VMEM_MAP is static but the size of struct page can change. 148 */ 149#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page)) 150#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES) 151#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1)) 152#define vmemmap ((struct page *) VMALLOC_END) 153 154/* 155 * A 31 bit pagetable entry of S390 has following format: 156 * | PFRA | | OS | 157 * 0 0IP0 158 * 00000000001111111111222222222233 159 * 01234567890123456789012345678901 160 * 161 * I Page-Invalid Bit: Page is not available for address-translation 162 * P Page-Protection Bit: Store access not possible for page 163 * 164 * A 31 bit segmenttable entry of S390 has following format: 165 * | P-table origin | |PTL 166 * 0 IC 167 * 00000000001111111111222222222233 168 * 01234567890123456789012345678901 169 * 170 * I Segment-Invalid Bit: Segment is not available for address-translation 171 * C Common-Segment Bit: Segment is not private (PoP 3-30) 172 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 173 * 174 * The 31 bit segmenttable origin of S390 has following format: 175 * 176 * |S-table origin | | STL | 177 * X **GPS 178 * 00000000001111111111222222222233 179 * 01234567890123456789012345678901 180 * 181 * X Space-Switch event: 182 * G Segment-Invalid Bit: * 183 * P Private-Space Bit: Segment is not private (PoP 3-30) 184 * S Storage-Alteration: 185 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 186 * 187 * A 64 bit pagetable entry of S390 has following format: 188 * | PFRA |0IPC| OS | 189 * 0000000000111111111122222222223333333333444444444455555555556666 190 * 0123456789012345678901234567890123456789012345678901234567890123 191 * 192 * I Page-Invalid Bit: Page is not available for address-translation 193 * P Page-Protection Bit: Store access not possible for page 194 * C Change-bit override: HW is not required to set change bit 195 * 196 * A 64 bit segmenttable entry of S390 has following format: 197 * | P-table origin | TT 198 * 0000000000111111111122222222223333333333444444444455555555556666 199 * 0123456789012345678901234567890123456789012345678901234567890123 200 * 201 * I Segment-Invalid Bit: Segment is not available for address-translation 202 * C Common-Segment Bit: Segment is not private (PoP 3-30) 203 * P Page-Protection Bit: Store access not possible for page 204 * TT Type 00 205 * 206 * A 64 bit region table entry of S390 has following format: 207 * | S-table origin | TF TTTL 208 * 0000000000111111111122222222223333333333444444444455555555556666 209 * 0123456789012345678901234567890123456789012345678901234567890123 210 * 211 * I Segment-Invalid Bit: Segment is not available for address-translation 212 * TT Type 01 213 * TF 214 * TL Table length 215 * 216 * The 64 bit regiontable origin of S390 has following format: 217 * | region table origon | DTTL 218 * 0000000000111111111122222222223333333333444444444455555555556666 219 * 0123456789012345678901234567890123456789012345678901234567890123 220 * 221 * X Space-Switch event: 222 * G Segment-Invalid Bit: 223 * P Private-Space Bit: 224 * S Storage-Alteration: 225 * R Real space 226 * TL Table-Length: 227 * 228 * A storage key has the following format: 229 * | ACC |F|R|C|0| 230 * 0 3 4 5 6 7 231 * ACC: access key 232 * F : fetch protection bit 233 * R : referenced bit 234 * C : changed bit 235 */ 236 237/* Hardware bits in the page table entry */ 238#define _PAGE_CO 0x100 /* HW Change-bit override */ 239#define _PAGE_RO 0x200 /* HW read-only bit */ 240#define _PAGE_INVALID 0x400 /* HW invalid bit */ 241 242/* Software bits in the page table entry */ 243#define _PAGE_SWT 0x001 /* SW pte type bit t */ 244#define _PAGE_SWX 0x002 /* SW pte type bit x */ 245#define _PAGE_SWC 0x004 /* SW pte changed bit (for KVM) */ 246#define _PAGE_SWR 0x008 /* SW pte referenced bit (for KVM) */ 247#define _PAGE_SPECIAL 0x010 /* SW associated with special page */ 248#define __HAVE_ARCH_PTE_SPECIAL 249 250/* Set of bits not changed in pte_modify */ 251#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_SWC | _PAGE_SWR) 252 253/* Six different types of pages. */ 254#define _PAGE_TYPE_EMPTY 0x400 255#define _PAGE_TYPE_NONE 0x401 256#define _PAGE_TYPE_SWAP 0x403 257#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ 258#define _PAGE_TYPE_RO 0x200 259#define _PAGE_TYPE_RW 0x000 260 261/* 262 * Only four types for huge pages, using the invalid bit and protection bit 263 * of a segment table entry. 264 */ 265#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */ 266#define _HPAGE_TYPE_NONE 0x220 267#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */ 268#define _HPAGE_TYPE_RW 0x000 269 270/* 271 * PTE type bits are rather complicated. handle_pte_fault uses pte_present, 272 * pte_none and pte_file to find out the pte type WITHOUT holding the page 273 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to 274 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs 275 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. 276 * This change is done while holding the lock, but the intermediate step 277 * of a previously valid pte with the hw invalid bit set can be observed by 278 * handle_pte_fault. That makes it necessary that all valid pte types with 279 * the hw invalid bit set must be distinguishable from the four pte types 280 * empty, none, swap and file. 281 * 282 * irxt ipte irxt 283 * _PAGE_TYPE_EMPTY 1000 -> 1000 284 * _PAGE_TYPE_NONE 1001 -> 1001 285 * _PAGE_TYPE_SWAP 1011 -> 1011 286 * _PAGE_TYPE_FILE 11?1 -> 11?1 287 * _PAGE_TYPE_RO 0100 -> 1100 288 * _PAGE_TYPE_RW 0000 -> 1000 289 * 290 * pte_none is true for bits combinations 1000, 1010, 1100, 1110 291 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 292 * pte_file is true for bits combinations 1101, 1111 293 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid. 294 */ 295 296#ifndef __s390x__ 297 298/* Bits in the segment table address-space-control-element */ 299#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */ 300#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */ 301#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 302#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 303#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */ 304 305/* Bits in the segment table entry */ 306#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */ 307#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ 308#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 309#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */ 310#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */ 311 312#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL) 313#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 314 315/* Page status table bits for virtualization */ 316#define RCP_ACC_BITS 0xf0000000UL 317#define RCP_FP_BIT 0x08000000UL 318#define RCP_PCL_BIT 0x00800000UL 319#define RCP_HR_BIT 0x00400000UL 320#define RCP_HC_BIT 0x00200000UL 321#define RCP_GR_BIT 0x00040000UL 322#define RCP_GC_BIT 0x00020000UL 323 324/* User dirty / referenced bit for KVM's migration feature */ 325#define KVM_UR_BIT 0x00008000UL 326#define KVM_UC_BIT 0x00004000UL 327 328#else /* __s390x__ */ 329 330/* Bits in the segment/region table address-space-control-element */ 331#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ 332#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 333#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 334#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 335#define _ASCE_REAL_SPACE 0x20 /* real space control */ 336#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 337#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 338#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 339#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 340#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 341#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 342 343/* Bits in the region table entry */ 344#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 345#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */ 346#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 347#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 348#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 349#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 350#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 351 352#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 353#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV) 354#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 355#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV) 356#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 357#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV) 358 359/* Bits in the segment table entry */ 360#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ 361#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ 362#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 363 364#define _SEGMENT_ENTRY (0) 365#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 366 367#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */ 368#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */ 369 370/* Page status table bits for virtualization */ 371#define RCP_ACC_BITS 0xf000000000000000UL 372#define RCP_FP_BIT 0x0800000000000000UL 373#define RCP_PCL_BIT 0x0080000000000000UL 374#define RCP_HR_BIT 0x0040000000000000UL 375#define RCP_HC_BIT 0x0020000000000000UL 376#define RCP_GR_BIT 0x0004000000000000UL 377#define RCP_GC_BIT 0x0002000000000000UL 378 379/* User dirty / referenced bit for KVM's migration feature */ 380#define KVM_UR_BIT 0x0000800000000000UL 381#define KVM_UC_BIT 0x0000400000000000UL 382 383#endif /* __s390x__ */ 384 385/* 386 * A user page table pointer has the space-switch-event bit, the 387 * private-space-control bit and the storage-alteration-event-control 388 * bit set. A kernel page table pointer doesn't need them. 389 */ 390#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 391 _ASCE_ALT_EVENT) 392 393/* 394 * Page protection definitions. 395 */ 396#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) 397#define PAGE_RO __pgprot(_PAGE_TYPE_RO) 398#define PAGE_RW __pgprot(_PAGE_TYPE_RW) 399 400#define PAGE_KERNEL PAGE_RW 401#define PAGE_COPY PAGE_RO 402 403/* 404 * On s390 the page table entry has an invalid bit and a read-only bit. 405 * Read permission implies execute permission and write permission 406 * implies read permission. 407 */ 408 /*xwr*/ 409#define __P000 PAGE_NONE 410#define __P001 PAGE_RO 411#define __P010 PAGE_RO 412#define __P011 PAGE_RO 413#define __P100 PAGE_RO 414#define __P101 PAGE_RO 415#define __P110 PAGE_RO 416#define __P111 PAGE_RO 417 418#define __S000 PAGE_NONE 419#define __S001 PAGE_RO 420#define __S010 PAGE_RW 421#define __S011 PAGE_RW 422#define __S100 PAGE_RO 423#define __S101 PAGE_RO 424#define __S110 PAGE_RW 425#define __S111 PAGE_RW 426 427static inline int mm_exclusive(struct mm_struct *mm) 428{ 429 return likely(mm == current->active_mm && 430 atomic_read(&mm->context.attach_count) <= 1); 431} 432 433static inline int mm_has_pgste(struct mm_struct *mm) 434{ 435#ifdef CONFIG_PGSTE 436 if (unlikely(mm->context.has_pgste)) 437 return 1; 438#endif 439 return 0; 440} 441/* 442 * pgd/pmd/pte query functions 443 */ 444#ifndef __s390x__ 445 446static inline int pgd_present(pgd_t pgd) { return 1; } 447static inline int pgd_none(pgd_t pgd) { return 0; } 448static inline int pgd_bad(pgd_t pgd) { return 0; } 449 450static inline int pud_present(pud_t pud) { return 1; } 451static inline int pud_none(pud_t pud) { return 0; } 452static inline int pud_bad(pud_t pud) { return 0; } 453 454#else /* __s390x__ */ 455 456static inline int pgd_present(pgd_t pgd) 457{ 458 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 459 return 1; 460 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 461} 462 463static inline int pgd_none(pgd_t pgd) 464{ 465 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 466 return 0; 467 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL; 468} 469 470static inline int pgd_bad(pgd_t pgd) 471{ 472 /* 473 * With dynamic page table levels the pgd can be a region table 474 * entry or a segment table entry. Check for the bit that are 475 * invalid for either table entry. 476 */ 477 unsigned long mask = 478 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 479 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 480 return (pgd_val(pgd) & mask) != 0; 481} 482 483static inline int pud_present(pud_t pud) 484{ 485 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 486 return 1; 487 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 488} 489 490static inline int pud_none(pud_t pud) 491{ 492 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 493 return 0; 494 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL; 495} 496 497static inline int pud_bad(pud_t pud) 498{ 499 /* 500 * With dynamic page table levels the pud can be a region table 501 * entry or a segment table entry. Check for the bit that are 502 * invalid for either table entry. 503 */ 504 unsigned long mask = 505 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 506 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 507 return (pud_val(pud) & mask) != 0; 508} 509 510#endif /* __s390x__ */ 511 512static inline int pmd_present(pmd_t pmd) 513{ 514 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL; 515} 516 517static inline int pmd_none(pmd_t pmd) 518{ 519 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL; 520} 521 522static inline int pmd_bad(pmd_t pmd) 523{ 524 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV; 525 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY; 526} 527 528static inline int pte_none(pte_t pte) 529{ 530 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); 531} 532 533static inline int pte_present(pte_t pte) 534{ 535 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; 536 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || 537 (!(pte_val(pte) & _PAGE_INVALID) && 538 !(pte_val(pte) & _PAGE_SWT)); 539} 540 541static inline int pte_file(pte_t pte) 542{ 543 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; 544 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; 545} 546 547static inline int pte_special(pte_t pte) 548{ 549 return (pte_val(pte) & _PAGE_SPECIAL); 550} 551 552#define __HAVE_ARCH_PTE_SAME 553static inline int pte_same(pte_t a, pte_t b) 554{ 555 return pte_val(a) == pte_val(b); 556} 557 558static inline pgste_t pgste_get_lock(pte_t *ptep) 559{ 560 unsigned long new = 0; 561#ifdef CONFIG_PGSTE 562 unsigned long old; 563 564 preempt_disable(); 565 asm( 566 " lg %0,%2\n" 567 "0: lgr %1,%0\n" 568 " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */ 569 " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */ 570 " csg %0,%1,%2\n" 571 " jl 0b\n" 572 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE]) 573 : "Q" (ptep[PTRS_PER_PTE]) : "cc"); 574#endif 575 return __pgste(new); 576} 577 578static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste) 579{ 580#ifdef CONFIG_PGSTE 581 asm( 582 " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */ 583 " stg %1,%0\n" 584 : "=Q" (ptep[PTRS_PER_PTE]) 585 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc"); 586 preempt_enable(); 587#endif 588} 589 590static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste) 591{ 592#ifdef CONFIG_PGSTE 593 unsigned long address, bits; 594 unsigned char skey; 595 596 address = pte_val(*ptep) & PAGE_MASK; 597 skey = page_get_storage_key(address); 598 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED); 599 /* Clear page changed & referenced bit in the storage key */ 600 if (bits) { 601 skey ^= bits; 602 page_set_storage_key(address, skey, 1); 603 } 604 /* Transfer page changed & referenced bit to guest bits in pgste */ 605 pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */ 606 /* Get host changed & referenced bits from pgste */ 607 bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52; 608 /* Clear host bits in pgste. */ 609 pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT); 610 pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT); 611 /* Copy page access key and fetch protection bit to pgste */ 612 pgste_val(pgste) |= 613 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56; 614 /* Transfer changed and referenced to kvm user bits */ 615 pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */ 616 /* Transfer changed & referenced to pte sofware bits */ 617 pte_val(*ptep) |= bits << 1; /* _PAGE_SWR & _PAGE_SWC */ 618#endif 619 return pgste; 620 621} 622 623static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste) 624{ 625#ifdef CONFIG_PGSTE 626 int young; 627 628 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK); 629 /* Transfer page referenced bit to pte software bit (host view) */ 630 if (young || (pgste_val(pgste) & RCP_HR_BIT)) 631 pte_val(*ptep) |= _PAGE_SWR; 632 /* Clear host referenced bit in pgste. */ 633 pgste_val(pgste) &= ~RCP_HR_BIT; 634 /* Transfer page referenced bit to guest bit in pgste */ 635 pgste_val(pgste) |= (unsigned long) young << 50; /* set RCP_GR_BIT */ 636#endif 637 return pgste; 638 639} 640 641static inline void pgste_set_pte(pte_t *ptep, pgste_t pgste) 642{ 643#ifdef CONFIG_PGSTE 644 unsigned long address; 645 unsigned long okey, nkey; 646 647 address = pte_val(*ptep) & PAGE_MASK; 648 okey = nkey = page_get_storage_key(address); 649 nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT); 650 /* Set page access key and fetch protection bit from pgste */ 651 nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56; 652 if (okey != nkey) 653 page_set_storage_key(address, nkey, 1); 654#endif 655} 656 657/** 658 * struct gmap_struct - guest address space 659 * @mm: pointer to the parent mm_struct 660 * @table: pointer to the page directory 661 * @asce: address space control element for gmap page table 662 * @crst_list: list of all crst tables used in the guest address space 663 */ 664struct gmap { 665 struct list_head list; 666 struct mm_struct *mm; 667 unsigned long *table; 668 unsigned long asce; 669 struct list_head crst_list; 670}; 671 672/** 673 * struct gmap_rmap - reverse mapping for segment table entries 674 * @next: pointer to the next gmap_rmap structure in the list 675 * @entry: pointer to a segment table entry 676 */ 677struct gmap_rmap { 678 struct list_head list; 679 unsigned long *entry; 680}; 681 682/** 683 * struct gmap_pgtable - gmap information attached to a page table 684 * @vmaddr: address of the 1MB segment in the process virtual memory 685 * @mapper: list of segment table entries maping a page table 686 */ 687struct gmap_pgtable { 688 unsigned long vmaddr; 689 struct list_head mapper; 690}; 691 692struct gmap *gmap_alloc(struct mm_struct *mm); 693void gmap_free(struct gmap *gmap); 694void gmap_enable(struct gmap *gmap); 695void gmap_disable(struct gmap *gmap); 696int gmap_map_segment(struct gmap *gmap, unsigned long from, 697 unsigned long to, unsigned long length); 698int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len); 699unsigned long gmap_fault(unsigned long address, struct gmap *); 700 701/* 702 * Certain architectures need to do special things when PTEs 703 * within a page table are directly modified. Thus, the following 704 * hook is made available. 705 */ 706static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 707 pte_t *ptep, pte_t entry) 708{ 709 pgste_t pgste; 710 711 if (mm_has_pgste(mm)) { 712 pgste = pgste_get_lock(ptep); 713 pgste_set_pte(ptep, pgste); 714 *ptep = entry; 715 pgste_set_unlock(ptep, pgste); 716 } else 717 *ptep = entry; 718} 719 720/* 721 * query functions pte_write/pte_dirty/pte_young only work if 722 * pte_present() is true. Undefined behaviour if not.. 723 */ 724static inline int pte_write(pte_t pte) 725{ 726 return (pte_val(pte) & _PAGE_RO) == 0; 727} 728 729static inline int pte_dirty(pte_t pte) 730{ 731#ifdef CONFIG_PGSTE 732 if (pte_val(pte) & _PAGE_SWC) 733 return 1; 734#endif 735 return 0; 736} 737 738static inline int pte_young(pte_t pte) 739{ 740#ifdef CONFIG_PGSTE 741 if (pte_val(pte) & _PAGE_SWR) 742 return 1; 743#endif 744 return 0; 745} 746 747/* 748 * pgd/pmd/pte modification functions 749 */ 750 751static inline void pgd_clear(pgd_t *pgd) 752{ 753#ifdef __s390x__ 754 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 755 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; 756#endif 757} 758 759static inline void pud_clear(pud_t *pud) 760{ 761#ifdef __s390x__ 762 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 763 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 764#endif 765} 766 767static inline void pmd_clear(pmd_t *pmdp) 768{ 769 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 770} 771 772static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 773{ 774 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 775} 776 777/* 778 * The following pte modification functions only work if 779 * pte_present() is true. Undefined behaviour if not.. 780 */ 781static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 782{ 783 pte_val(pte) &= _PAGE_CHG_MASK; 784 pte_val(pte) |= pgprot_val(newprot); 785 return pte; 786} 787 788static inline pte_t pte_wrprotect(pte_t pte) 789{ 790 /* Do not clobber _PAGE_TYPE_NONE pages! */ 791 if (!(pte_val(pte) & _PAGE_INVALID)) 792 pte_val(pte) |= _PAGE_RO; 793 return pte; 794} 795 796static inline pte_t pte_mkwrite(pte_t pte) 797{ 798 pte_val(pte) &= ~_PAGE_RO; 799 return pte; 800} 801 802static inline pte_t pte_mkclean(pte_t pte) 803{ 804#ifdef CONFIG_PGSTE 805 pte_val(pte) &= ~_PAGE_SWC; 806#endif 807 return pte; 808} 809 810static inline pte_t pte_mkdirty(pte_t pte) 811{ 812 return pte; 813} 814 815static inline pte_t pte_mkold(pte_t pte) 816{ 817#ifdef CONFIG_PGSTE 818 pte_val(pte) &= ~_PAGE_SWR; 819#endif 820 return pte; 821} 822 823static inline pte_t pte_mkyoung(pte_t pte) 824{ 825 return pte; 826} 827 828static inline pte_t pte_mkspecial(pte_t pte) 829{ 830 pte_val(pte) |= _PAGE_SPECIAL; 831 return pte; 832} 833 834#ifdef CONFIG_HUGETLB_PAGE 835static inline pte_t pte_mkhuge(pte_t pte) 836{ 837 /* 838 * PROT_NONE needs to be remapped from the pte type to the ste type. 839 * The HW invalid bit is also different for pte and ste. The pte 840 * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE 841 * bit, so we don't have to clear it. 842 */ 843 if (pte_val(pte) & _PAGE_INVALID) { 844 if (pte_val(pte) & _PAGE_SWT) 845 pte_val(pte) |= _HPAGE_TYPE_NONE; 846 pte_val(pte) |= _SEGMENT_ENTRY_INV; 847 } 848 /* 849 * Clear SW pte bits SWT and SWX, there are no SW bits in a segment 850 * table entry. 851 */ 852 pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX); 853 /* 854 * Also set the change-override bit because we don't need dirty bit 855 * tracking for hugetlbfs pages. 856 */ 857 pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO); 858 return pte; 859} 860#endif 861 862/* 863 * Get (and clear) the user dirty bit for a pte. 864 */ 865static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm, 866 pte_t *ptep) 867{ 868 pgste_t pgste; 869 int dirty = 0; 870 871 if (mm_has_pgste(mm)) { 872 pgste = pgste_get_lock(ptep); 873 pgste = pgste_update_all(ptep, pgste); 874 dirty = !!(pgste_val(pgste) & KVM_UC_BIT); 875 pgste_val(pgste) &= ~KVM_UC_BIT; 876 pgste_set_unlock(ptep, pgste); 877 return dirty; 878 } 879 return dirty; 880} 881 882/* 883 * Get (and clear) the user referenced bit for a pte. 884 */ 885static inline int ptep_test_and_clear_user_young(struct mm_struct *mm, 886 pte_t *ptep) 887{ 888 pgste_t pgste; 889 int young = 0; 890 891 if (mm_has_pgste(mm)) { 892 pgste = pgste_get_lock(ptep); 893 pgste = pgste_update_young(ptep, pgste); 894 young = !!(pgste_val(pgste) & KVM_UR_BIT); 895 pgste_val(pgste) &= ~KVM_UR_BIT; 896 pgste_set_unlock(ptep, pgste); 897 } 898 return young; 899} 900 901#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 902static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 903 unsigned long addr, pte_t *ptep) 904{ 905 pgste_t pgste; 906 pte_t pte; 907 908 if (mm_has_pgste(vma->vm_mm)) { 909 pgste = pgste_get_lock(ptep); 910 pgste = pgste_update_young(ptep, pgste); 911 pte = *ptep; 912 *ptep = pte_mkold(pte); 913 pgste_set_unlock(ptep, pgste); 914 return pte_young(pte); 915 } 916 return 0; 917} 918 919#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 920static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 921 unsigned long address, pte_t *ptep) 922{ 923 /* No need to flush TLB 924 * On s390 reference bits are in storage key and never in TLB 925 * With virtualization we handle the reference bit, without we 926 * we can simply return */ 927 return ptep_test_and_clear_young(vma, address, ptep); 928} 929 930static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 931{ 932 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 933#ifndef __s390x__ 934 /* pto must point to the start of the segment table */ 935 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 936#else 937 /* ipte in zarch mode can do the math */ 938 pte_t *pto = ptep; 939#endif 940 asm volatile( 941 " ipte %2,%3" 942 : "=m" (*ptep) : "m" (*ptep), 943 "a" (pto), "a" (address)); 944 } 945} 946 947/* 948 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 949 * both clear the TLB for the unmapped pte. The reason is that 950 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 951 * to modify an active pte. The sequence is 952 * 1) ptep_get_and_clear 953 * 2) set_pte_at 954 * 3) flush_tlb_range 955 * On s390 the tlb needs to get flushed with the modification of the pte 956 * if the pte is active. The only way how this can be implemented is to 957 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 958 * is a nop. 959 */ 960#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 961static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 962 unsigned long address, pte_t *ptep) 963{ 964 pgste_t pgste; 965 pte_t pte; 966 967 mm->context.flush_mm = 1; 968 if (mm_has_pgste(mm)) 969 pgste = pgste_get_lock(ptep); 970 971 pte = *ptep; 972 if (!mm_exclusive(mm)) 973 __ptep_ipte(address, ptep); 974 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 975 976 if (mm_has_pgste(mm)) { 977 pgste = pgste_update_all(&pte, pgste); 978 pgste_set_unlock(ptep, pgste); 979 } 980 return pte; 981} 982 983#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 984static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 985 unsigned long address, 986 pte_t *ptep) 987{ 988 pte_t pte; 989 990 mm->context.flush_mm = 1; 991 if (mm_has_pgste(mm)) 992 pgste_get_lock(ptep); 993 994 pte = *ptep; 995 if (!mm_exclusive(mm)) 996 __ptep_ipte(address, ptep); 997 return pte; 998} 999 1000static inline void ptep_modify_prot_commit(struct mm_struct *mm, 1001 unsigned long address, 1002 pte_t *ptep, pte_t pte) 1003{ 1004 *ptep = pte; 1005 if (mm_has_pgste(mm)) 1006 pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE)); 1007} 1008 1009#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1010static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1011 unsigned long address, pte_t *ptep) 1012{ 1013 pgste_t pgste; 1014 pte_t pte; 1015 1016 if (mm_has_pgste(vma->vm_mm)) 1017 pgste = pgste_get_lock(ptep); 1018 1019 pte = *ptep; 1020 __ptep_ipte(address, ptep); 1021 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 1022 1023 if (mm_has_pgste(vma->vm_mm)) { 1024 pgste = pgste_update_all(&pte, pgste); 1025 pgste_set_unlock(ptep, pgste); 1026 } 1027 return pte; 1028} 1029 1030/* 1031 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1032 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1033 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1034 * cannot be accessed while the batched unmap is running. In this case 1035 * full==1 and a simple pte_clear is enough. See tlb.h. 1036 */ 1037#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1038static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1039 unsigned long address, 1040 pte_t *ptep, int full) 1041{ 1042 pgste_t pgste; 1043 pte_t pte; 1044 1045 if (mm_has_pgste(mm)) 1046 pgste = pgste_get_lock(ptep); 1047 1048 pte = *ptep; 1049 if (!full) 1050 __ptep_ipte(address, ptep); 1051 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 1052 1053 if (mm_has_pgste(mm)) { 1054 pgste = pgste_update_all(&pte, pgste); 1055 pgste_set_unlock(ptep, pgste); 1056 } 1057 return pte; 1058} 1059 1060#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1061static inline pte_t ptep_set_wrprotect(struct mm_struct *mm, 1062 unsigned long address, pte_t *ptep) 1063{ 1064 pgste_t pgste; 1065 pte_t pte = *ptep; 1066 1067 if (pte_write(pte)) { 1068 mm->context.flush_mm = 1; 1069 if (mm_has_pgste(mm)) 1070 pgste = pgste_get_lock(ptep); 1071 1072 if (!mm_exclusive(mm)) 1073 __ptep_ipte(address, ptep); 1074 *ptep = pte_wrprotect(pte); 1075 1076 if (mm_has_pgste(mm)) 1077 pgste_set_unlock(ptep, pgste); 1078 } 1079 return pte; 1080} 1081 1082#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1083static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1084 unsigned long address, pte_t *ptep, 1085 pte_t entry, int dirty) 1086{ 1087 pgste_t pgste; 1088 1089 if (pte_same(*ptep, entry)) 1090 return 0; 1091 if (mm_has_pgste(vma->vm_mm)) 1092 pgste = pgste_get_lock(ptep); 1093 1094 __ptep_ipte(address, ptep); 1095 *ptep = entry; 1096 1097 if (mm_has_pgste(vma->vm_mm)) 1098 pgste_set_unlock(ptep, pgste); 1099 return 1; 1100} 1101 1102/* 1103 * Conversion functions: convert a page and protection to a page entry, 1104 * and a page entry and page directory to the page they refer to. 1105 */ 1106static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1107{ 1108 pte_t __pte; 1109 pte_val(__pte) = physpage + pgprot_val(pgprot); 1110 return __pte; 1111} 1112 1113static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1114{ 1115 unsigned long physpage = page_to_phys(page); 1116 1117 return mk_pte_phys(physpage, pgprot); 1118} 1119 1120#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1121#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1122#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1123#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1124 1125#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 1126#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1127 1128#ifndef __s390x__ 1129 1130#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1131#define pud_deref(pmd) ({ BUG(); 0UL; }) 1132#define pgd_deref(pmd) ({ BUG(); 0UL; }) 1133 1134#define pud_offset(pgd, address) ((pud_t *) pgd) 1135#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address)) 1136 1137#else /* __s390x__ */ 1138 1139#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1140#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1141#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1142 1143static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 1144{ 1145 pud_t *pud = (pud_t *) pgd; 1146 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 1147 pud = (pud_t *) pgd_deref(*pgd); 1148 return pud + pud_index(address); 1149} 1150 1151static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1152{ 1153 pmd_t *pmd = (pmd_t *) pud; 1154 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 1155 pmd = (pmd_t *) pud_deref(*pud); 1156 return pmd + pmd_index(address); 1157} 1158 1159#endif /* __s390x__ */ 1160 1161#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1162#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1163#define pte_page(x) pfn_to_page(pte_pfn(x)) 1164 1165#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 1166 1167/* Find an entry in the lowest level page table.. */ 1168#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 1169#define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 1170#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1171#define pte_unmap(pte) do { } while (0) 1172 1173/* 1174 * 31 bit swap entry format: 1175 * A page-table entry has some bits we have to treat in a special way. 1176 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 1177 * exception will occur instead of a page translation exception. The 1178 * specifiation exception has the bad habit not to store necessary 1179 * information in the lowcore. 1180 * Bit 21 and bit 22 are the page invalid bit and the page protection 1181 * bit. We set both to indicate a swapped page. 1182 * Bit 30 and 31 are used to distinguish the different page types. For 1183 * a swapped page these bits need to be zero. 1184 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 1185 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 1186 * plus 24 for the offset. 1187 * 0| offset |0110|o|type |00| 1188 * 0 0000000001111111111 2222 2 22222 33 1189 * 0 1234567890123456789 0123 4 56789 01 1190 * 1191 * 64 bit swap entry format: 1192 * A page-table entry has some bits we have to treat in a special way. 1193 * Bits 52 and bit 55 have to be zero, otherwise an specification 1194 * exception will occur instead of a page translation exception. The 1195 * specifiation exception has the bad habit not to store necessary 1196 * information in the lowcore. 1197 * Bit 53 and bit 54 are the page invalid bit and the page protection 1198 * bit. We set both to indicate a swapped page. 1199 * Bit 62 and 63 are used to distinguish the different page types. For 1200 * a swapped page these bits need to be zero. 1201 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 1202 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 1203 * plus 56 for the offset. 1204 * | offset |0110|o|type |00| 1205 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 1206 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 1207 */ 1208#ifndef __s390x__ 1209#define __SWP_OFFSET_MASK (~0UL >> 12) 1210#else 1211#define __SWP_OFFSET_MASK (~0UL >> 11) 1212#endif 1213static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1214{ 1215 pte_t pte; 1216 offset &= __SWP_OFFSET_MASK; 1217 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | 1218 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 1219 return pte; 1220} 1221 1222#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 1223#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 1224#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 1225 1226#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1227#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1228 1229#ifndef __s390x__ 1230# define PTE_FILE_MAX_BITS 26 1231#else /* __s390x__ */ 1232# define PTE_FILE_MAX_BITS 59 1233#endif /* __s390x__ */ 1234 1235#define pte_to_pgoff(__pte) \ 1236 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 1237 1238#define pgoff_to_pte(__off) \ 1239 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 1240 | _PAGE_TYPE_FILE }) 1241 1242#endif /* !__ASSEMBLY__ */ 1243 1244#define kern_addr_valid(addr) (1) 1245 1246extern int vmem_add_mapping(unsigned long start, unsigned long size); 1247extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1248extern int s390_enable_sie(void); 1249 1250/* 1251 * No page table caches to initialise 1252 */ 1253#define pgtable_cache_init() do { } while (0) 1254 1255#include <asm-generic/pgtable.h> 1256 1257#endif /* _S390_PAGE_H */