at v3.1-rc6 113 kB view raw
1/* 2 * Linux Security plug 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au> 8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * Due to this file being licensed under the GPL there is controversy over 16 * whether this permits you to write a module that #includes this file 17 * without placing your module under the GPL. Please consult a lawyer for 18 * advice before doing this. 19 * 20 */ 21 22#ifndef __LINUX_SECURITY_H 23#define __LINUX_SECURITY_H 24 25#include <linux/fs.h> 26#include <linux/fsnotify.h> 27#include <linux/binfmts.h> 28#include <linux/dcache.h> 29#include <linux/signal.h> 30#include <linux/resource.h> 31#include <linux/sem.h> 32#include <linux/shm.h> 33#include <linux/mm.h> /* PAGE_ALIGN */ 34#include <linux/msg.h> 35#include <linux/sched.h> 36#include <linux/key.h> 37#include <linux/xfrm.h> 38#include <linux/slab.h> 39#include <net/flow.h> 40 41/* Maximum number of letters for an LSM name string */ 42#define SECURITY_NAME_MAX 10 43 44/* If capable should audit the security request */ 45#define SECURITY_CAP_NOAUDIT 0 46#define SECURITY_CAP_AUDIT 1 47 48struct ctl_table; 49struct audit_krule; 50struct user_namespace; 51 52/* 53 * These functions are in security/capability.c and are used 54 * as the default capabilities functions 55 */ 56extern int cap_capable(struct task_struct *tsk, const struct cred *cred, 57 struct user_namespace *ns, int cap, int audit); 58extern int cap_settime(const struct timespec *ts, const struct timezone *tz); 59extern int cap_ptrace_access_check(struct task_struct *child, unsigned int mode); 60extern int cap_ptrace_traceme(struct task_struct *parent); 61extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); 62extern int cap_capset(struct cred *new, const struct cred *old, 63 const kernel_cap_t *effective, 64 const kernel_cap_t *inheritable, 65 const kernel_cap_t *permitted); 66extern int cap_bprm_set_creds(struct linux_binprm *bprm); 67extern int cap_bprm_secureexec(struct linux_binprm *bprm); 68extern int cap_inode_setxattr(struct dentry *dentry, const char *name, 69 const void *value, size_t size, int flags); 70extern int cap_inode_removexattr(struct dentry *dentry, const char *name); 71extern int cap_inode_need_killpriv(struct dentry *dentry); 72extern int cap_inode_killpriv(struct dentry *dentry); 73extern int cap_file_mmap(struct file *file, unsigned long reqprot, 74 unsigned long prot, unsigned long flags, 75 unsigned long addr, unsigned long addr_only); 76extern int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags); 77extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, 78 unsigned long arg4, unsigned long arg5); 79extern int cap_task_setscheduler(struct task_struct *p); 80extern int cap_task_setioprio(struct task_struct *p, int ioprio); 81extern int cap_task_setnice(struct task_struct *p, int nice); 82extern int cap_vm_enough_memory(struct mm_struct *mm, long pages); 83 84struct msghdr; 85struct sk_buff; 86struct sock; 87struct sockaddr; 88struct socket; 89struct flowi; 90struct dst_entry; 91struct xfrm_selector; 92struct xfrm_policy; 93struct xfrm_state; 94struct xfrm_user_sec_ctx; 95struct seq_file; 96 97extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); 98extern int cap_netlink_recv(struct sk_buff *skb, int cap); 99 100void reset_security_ops(void); 101 102#ifdef CONFIG_MMU 103extern unsigned long mmap_min_addr; 104extern unsigned long dac_mmap_min_addr; 105#else 106#define dac_mmap_min_addr 0UL 107#endif 108 109/* 110 * Values used in the task_security_ops calls 111 */ 112/* setuid or setgid, id0 == uid or gid */ 113#define LSM_SETID_ID 1 114 115/* setreuid or setregid, id0 == real, id1 == eff */ 116#define LSM_SETID_RE 2 117 118/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ 119#define LSM_SETID_RES 4 120 121/* setfsuid or setfsgid, id0 == fsuid or fsgid */ 122#define LSM_SETID_FS 8 123 124/* forward declares to avoid warnings */ 125struct sched_param; 126struct request_sock; 127 128/* bprm->unsafe reasons */ 129#define LSM_UNSAFE_SHARE 1 130#define LSM_UNSAFE_PTRACE 2 131#define LSM_UNSAFE_PTRACE_CAP 4 132 133#ifdef CONFIG_MMU 134/* 135 * If a hint addr is less than mmap_min_addr change hint to be as 136 * low as possible but still greater than mmap_min_addr 137 */ 138static inline unsigned long round_hint_to_min(unsigned long hint) 139{ 140 hint &= PAGE_MASK; 141 if (((void *)hint != NULL) && 142 (hint < mmap_min_addr)) 143 return PAGE_ALIGN(mmap_min_addr); 144 return hint; 145} 146extern int mmap_min_addr_handler(struct ctl_table *table, int write, 147 void __user *buffer, size_t *lenp, loff_t *ppos); 148#endif 149 150#ifdef CONFIG_SECURITY 151 152struct security_mnt_opts { 153 char **mnt_opts; 154 int *mnt_opts_flags; 155 int num_mnt_opts; 156}; 157 158static inline void security_init_mnt_opts(struct security_mnt_opts *opts) 159{ 160 opts->mnt_opts = NULL; 161 opts->mnt_opts_flags = NULL; 162 opts->num_mnt_opts = 0; 163} 164 165static inline void security_free_mnt_opts(struct security_mnt_opts *opts) 166{ 167 int i; 168 if (opts->mnt_opts) 169 for (i = 0; i < opts->num_mnt_opts; i++) 170 kfree(opts->mnt_opts[i]); 171 kfree(opts->mnt_opts); 172 opts->mnt_opts = NULL; 173 kfree(opts->mnt_opts_flags); 174 opts->mnt_opts_flags = NULL; 175 opts->num_mnt_opts = 0; 176} 177 178/** 179 * struct security_operations - main security structure 180 * 181 * Security module identifier. 182 * 183 * @name: 184 * A string that acts as a unique identifeir for the LSM with max number 185 * of characters = SECURITY_NAME_MAX. 186 * 187 * Security hooks for program execution operations. 188 * 189 * @bprm_set_creds: 190 * Save security information in the bprm->security field, typically based 191 * on information about the bprm->file, for later use by the apply_creds 192 * hook. This hook may also optionally check permissions (e.g. for 193 * transitions between security domains). 194 * This hook may be called multiple times during a single execve, e.g. for 195 * interpreters. The hook can tell whether it has already been called by 196 * checking to see if @bprm->security is non-NULL. If so, then the hook 197 * may decide either to retain the security information saved earlier or 198 * to replace it. 199 * @bprm contains the linux_binprm structure. 200 * Return 0 if the hook is successful and permission is granted. 201 * @bprm_check_security: 202 * This hook mediates the point when a search for a binary handler will 203 * begin. It allows a check the @bprm->security value which is set in the 204 * preceding set_creds call. The primary difference from set_creds is 205 * that the argv list and envp list are reliably available in @bprm. This 206 * hook may be called multiple times during a single execve; and in each 207 * pass set_creds is called first. 208 * @bprm contains the linux_binprm structure. 209 * Return 0 if the hook is successful and permission is granted. 210 * @bprm_committing_creds: 211 * Prepare to install the new security attributes of a process being 212 * transformed by an execve operation, based on the old credentials 213 * pointed to by @current->cred and the information set in @bprm->cred by 214 * the bprm_set_creds hook. @bprm points to the linux_binprm structure. 215 * This hook is a good place to perform state changes on the process such 216 * as closing open file descriptors to which access will no longer be 217 * granted when the attributes are changed. This is called immediately 218 * before commit_creds(). 219 * @bprm_committed_creds: 220 * Tidy up after the installation of the new security attributes of a 221 * process being transformed by an execve operation. The new credentials 222 * have, by this point, been set to @current->cred. @bprm points to the 223 * linux_binprm structure. This hook is a good place to perform state 224 * changes on the process such as clearing out non-inheritable signal 225 * state. This is called immediately after commit_creds(). 226 * @bprm_secureexec: 227 * Return a boolean value (0 or 1) indicating whether a "secure exec" 228 * is required. The flag is passed in the auxiliary table 229 * on the initial stack to the ELF interpreter to indicate whether libc 230 * should enable secure mode. 231 * @bprm contains the linux_binprm structure. 232 * 233 * Security hooks for filesystem operations. 234 * 235 * @sb_alloc_security: 236 * Allocate and attach a security structure to the sb->s_security field. 237 * The s_security field is initialized to NULL when the structure is 238 * allocated. 239 * @sb contains the super_block structure to be modified. 240 * Return 0 if operation was successful. 241 * @sb_free_security: 242 * Deallocate and clear the sb->s_security field. 243 * @sb contains the super_block structure to be modified. 244 * @sb_statfs: 245 * Check permission before obtaining filesystem statistics for the @mnt 246 * mountpoint. 247 * @dentry is a handle on the superblock for the filesystem. 248 * Return 0 if permission is granted. 249 * @sb_mount: 250 * Check permission before an object specified by @dev_name is mounted on 251 * the mount point named by @nd. For an ordinary mount, @dev_name 252 * identifies a device if the file system type requires a device. For a 253 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a 254 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the 255 * pathname of the object being mounted. 256 * @dev_name contains the name for object being mounted. 257 * @path contains the path for mount point object. 258 * @type contains the filesystem type. 259 * @flags contains the mount flags. 260 * @data contains the filesystem-specific data. 261 * Return 0 if permission is granted. 262 * @sb_copy_data: 263 * Allow mount option data to be copied prior to parsing by the filesystem, 264 * so that the security module can extract security-specific mount 265 * options cleanly (a filesystem may modify the data e.g. with strsep()). 266 * This also allows the original mount data to be stripped of security- 267 * specific options to avoid having to make filesystems aware of them. 268 * @type the type of filesystem being mounted. 269 * @orig the original mount data copied from userspace. 270 * @copy copied data which will be passed to the security module. 271 * Returns 0 if the copy was successful. 272 * @sb_remount: 273 * Extracts security system specifc mount options and verifys no changes 274 * are being made to those options. 275 * @sb superblock being remounted 276 * @data contains the filesystem-specific data. 277 * Return 0 if permission is granted. 278 * @sb_umount: 279 * Check permission before the @mnt file system is unmounted. 280 * @mnt contains the mounted file system. 281 * @flags contains the unmount flags, e.g. MNT_FORCE. 282 * Return 0 if permission is granted. 283 * @sb_pivotroot: 284 * Check permission before pivoting the root filesystem. 285 * @old_path contains the path for the new location of the current root (put_old). 286 * @new_path contains the path for the new root (new_root). 287 * Return 0 if permission is granted. 288 * @sb_set_mnt_opts: 289 * Set the security relevant mount options used for a superblock 290 * @sb the superblock to set security mount options for 291 * @opts binary data structure containing all lsm mount data 292 * @sb_clone_mnt_opts: 293 * Copy all security options from a given superblock to another 294 * @oldsb old superblock which contain information to clone 295 * @newsb new superblock which needs filled in 296 * @sb_parse_opts_str: 297 * Parse a string of security data filling in the opts structure 298 * @options string containing all mount options known by the LSM 299 * @opts binary data structure usable by the LSM 300 * 301 * Security hooks for inode operations. 302 * 303 * @inode_alloc_security: 304 * Allocate and attach a security structure to @inode->i_security. The 305 * i_security field is initialized to NULL when the inode structure is 306 * allocated. 307 * @inode contains the inode structure. 308 * Return 0 if operation was successful. 309 * @inode_free_security: 310 * @inode contains the inode structure. 311 * Deallocate the inode security structure and set @inode->i_security to 312 * NULL. 313 * @inode_init_security: 314 * Obtain the security attribute name suffix and value to set on a newly 315 * created inode and set up the incore security field for the new inode. 316 * This hook is called by the fs code as part of the inode creation 317 * transaction and provides for atomic labeling of the inode, unlike 318 * the post_create/mkdir/... hooks called by the VFS. The hook function 319 * is expected to allocate the name and value via kmalloc, with the caller 320 * being responsible for calling kfree after using them. 321 * If the security module does not use security attributes or does 322 * not wish to put a security attribute on this particular inode, 323 * then it should return -EOPNOTSUPP to skip this processing. 324 * @inode contains the inode structure of the newly created inode. 325 * @dir contains the inode structure of the parent directory. 326 * @qstr contains the last path component of the new object 327 * @name will be set to the allocated name suffix (e.g. selinux). 328 * @value will be set to the allocated attribute value. 329 * @len will be set to the length of the value. 330 * Returns 0 if @name and @value have been successfully set, 331 * -EOPNOTSUPP if no security attribute is needed, or 332 * -ENOMEM on memory allocation failure. 333 * @inode_create: 334 * Check permission to create a regular file. 335 * @dir contains inode structure of the parent of the new file. 336 * @dentry contains the dentry structure for the file to be created. 337 * @mode contains the file mode of the file to be created. 338 * Return 0 if permission is granted. 339 * @inode_link: 340 * Check permission before creating a new hard link to a file. 341 * @old_dentry contains the dentry structure for an existing link to the file. 342 * @dir contains the inode structure of the parent directory of the new link. 343 * @new_dentry contains the dentry structure for the new link. 344 * Return 0 if permission is granted. 345 * @path_link: 346 * Check permission before creating a new hard link to a file. 347 * @old_dentry contains the dentry structure for an existing link 348 * to the file. 349 * @new_dir contains the path structure of the parent directory of 350 * the new link. 351 * @new_dentry contains the dentry structure for the new link. 352 * Return 0 if permission is granted. 353 * @inode_unlink: 354 * Check the permission to remove a hard link to a file. 355 * @dir contains the inode structure of parent directory of the file. 356 * @dentry contains the dentry structure for file to be unlinked. 357 * Return 0 if permission is granted. 358 * @path_unlink: 359 * Check the permission to remove a hard link to a file. 360 * @dir contains the path structure of parent directory of the file. 361 * @dentry contains the dentry structure for file to be unlinked. 362 * Return 0 if permission is granted. 363 * @inode_symlink: 364 * Check the permission to create a symbolic link to a file. 365 * @dir contains the inode structure of parent directory of the symbolic link. 366 * @dentry contains the dentry structure of the symbolic link. 367 * @old_name contains the pathname of file. 368 * Return 0 if permission is granted. 369 * @path_symlink: 370 * Check the permission to create a symbolic link to a file. 371 * @dir contains the path structure of parent directory of 372 * the symbolic link. 373 * @dentry contains the dentry structure of the symbolic link. 374 * @old_name contains the pathname of file. 375 * Return 0 if permission is granted. 376 * @inode_mkdir: 377 * Check permissions to create a new directory in the existing directory 378 * associated with inode strcture @dir. 379 * @dir containst the inode structure of parent of the directory to be created. 380 * @dentry contains the dentry structure of new directory. 381 * @mode contains the mode of new directory. 382 * Return 0 if permission is granted. 383 * @path_mkdir: 384 * Check permissions to create a new directory in the existing directory 385 * associated with path strcture @path. 386 * @dir containst the path structure of parent of the directory 387 * to be created. 388 * @dentry contains the dentry structure of new directory. 389 * @mode contains the mode of new directory. 390 * Return 0 if permission is granted. 391 * @inode_rmdir: 392 * Check the permission to remove a directory. 393 * @dir contains the inode structure of parent of the directory to be removed. 394 * @dentry contains the dentry structure of directory to be removed. 395 * Return 0 if permission is granted. 396 * @path_rmdir: 397 * Check the permission to remove a directory. 398 * @dir contains the path structure of parent of the directory to be 399 * removed. 400 * @dentry contains the dentry structure of directory to be removed. 401 * Return 0 if permission is granted. 402 * @inode_mknod: 403 * Check permissions when creating a special file (or a socket or a fifo 404 * file created via the mknod system call). Note that if mknod operation 405 * is being done for a regular file, then the create hook will be called 406 * and not this hook. 407 * @dir contains the inode structure of parent of the new file. 408 * @dentry contains the dentry structure of the new file. 409 * @mode contains the mode of the new file. 410 * @dev contains the device number. 411 * Return 0 if permission is granted. 412 * @path_mknod: 413 * Check permissions when creating a file. Note that this hook is called 414 * even if mknod operation is being done for a regular file. 415 * @dir contains the path structure of parent of the new file. 416 * @dentry contains the dentry structure of the new file. 417 * @mode contains the mode of the new file. 418 * @dev contains the undecoded device number. Use new_decode_dev() to get 419 * the decoded device number. 420 * Return 0 if permission is granted. 421 * @inode_rename: 422 * Check for permission to rename a file or directory. 423 * @old_dir contains the inode structure for parent of the old link. 424 * @old_dentry contains the dentry structure of the old link. 425 * @new_dir contains the inode structure for parent of the new link. 426 * @new_dentry contains the dentry structure of the new link. 427 * Return 0 if permission is granted. 428 * @path_rename: 429 * Check for permission to rename a file or directory. 430 * @old_dir contains the path structure for parent of the old link. 431 * @old_dentry contains the dentry structure of the old link. 432 * @new_dir contains the path structure for parent of the new link. 433 * @new_dentry contains the dentry structure of the new link. 434 * Return 0 if permission is granted. 435 * @path_chmod: 436 * Check for permission to change DAC's permission of a file or directory. 437 * @dentry contains the dentry structure. 438 * @mnt contains the vfsmnt structure. 439 * @mode contains DAC's mode. 440 * Return 0 if permission is granted. 441 * @path_chown: 442 * Check for permission to change owner/group of a file or directory. 443 * @path contains the path structure. 444 * @uid contains new owner's ID. 445 * @gid contains new group's ID. 446 * Return 0 if permission is granted. 447 * @path_chroot: 448 * Check for permission to change root directory. 449 * @path contains the path structure. 450 * Return 0 if permission is granted. 451 * @inode_readlink: 452 * Check the permission to read the symbolic link. 453 * @dentry contains the dentry structure for the file link. 454 * Return 0 if permission is granted. 455 * @inode_follow_link: 456 * Check permission to follow a symbolic link when looking up a pathname. 457 * @dentry contains the dentry structure for the link. 458 * @nd contains the nameidata structure for the parent directory. 459 * Return 0 if permission is granted. 460 * @inode_permission: 461 * Check permission before accessing an inode. This hook is called by the 462 * existing Linux permission function, so a security module can use it to 463 * provide additional checking for existing Linux permission checks. 464 * Notice that this hook is called when a file is opened (as well as many 465 * other operations), whereas the file_security_ops permission hook is 466 * called when the actual read/write operations are performed. 467 * @inode contains the inode structure to check. 468 * @mask contains the permission mask. 469 * Return 0 if permission is granted. 470 * @inode_setattr: 471 * Check permission before setting file attributes. Note that the kernel 472 * call to notify_change is performed from several locations, whenever 473 * file attributes change (such as when a file is truncated, chown/chmod 474 * operations, transferring disk quotas, etc). 475 * @dentry contains the dentry structure for the file. 476 * @attr is the iattr structure containing the new file attributes. 477 * Return 0 if permission is granted. 478 * @path_truncate: 479 * Check permission before truncating a file. 480 * @path contains the path structure for the file. 481 * Return 0 if permission is granted. 482 * @inode_getattr: 483 * Check permission before obtaining file attributes. 484 * @mnt is the vfsmount where the dentry was looked up 485 * @dentry contains the dentry structure for the file. 486 * Return 0 if permission is granted. 487 * @inode_setxattr: 488 * Check permission before setting the extended attributes 489 * @value identified by @name for @dentry. 490 * Return 0 if permission is granted. 491 * @inode_post_setxattr: 492 * Update inode security field after successful setxattr operation. 493 * @value identified by @name for @dentry. 494 * @inode_getxattr: 495 * Check permission before obtaining the extended attributes 496 * identified by @name for @dentry. 497 * Return 0 if permission is granted. 498 * @inode_listxattr: 499 * Check permission before obtaining the list of extended attribute 500 * names for @dentry. 501 * Return 0 if permission is granted. 502 * @inode_removexattr: 503 * Check permission before removing the extended attribute 504 * identified by @name for @dentry. 505 * Return 0 if permission is granted. 506 * @inode_getsecurity: 507 * Retrieve a copy of the extended attribute representation of the 508 * security label associated with @name for @inode via @buffer. Note that 509 * @name is the remainder of the attribute name after the security prefix 510 * has been removed. @alloc is used to specify of the call should return a 511 * value via the buffer or just the value length Return size of buffer on 512 * success. 513 * @inode_setsecurity: 514 * Set the security label associated with @name for @inode from the 515 * extended attribute value @value. @size indicates the size of the 516 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. 517 * Note that @name is the remainder of the attribute name after the 518 * security. prefix has been removed. 519 * Return 0 on success. 520 * @inode_listsecurity: 521 * Copy the extended attribute names for the security labels 522 * associated with @inode into @buffer. The maximum size of @buffer 523 * is specified by @buffer_size. @buffer may be NULL to request 524 * the size of the buffer required. 525 * Returns number of bytes used/required on success. 526 * @inode_need_killpriv: 527 * Called when an inode has been changed. 528 * @dentry is the dentry being changed. 529 * Return <0 on error to abort the inode change operation. 530 * Return 0 if inode_killpriv does not need to be called. 531 * Return >0 if inode_killpriv does need to be called. 532 * @inode_killpriv: 533 * The setuid bit is being removed. Remove similar security labels. 534 * Called with the dentry->d_inode->i_mutex held. 535 * @dentry is the dentry being changed. 536 * Return 0 on success. If error is returned, then the operation 537 * causing setuid bit removal is failed. 538 * @inode_getsecid: 539 * Get the secid associated with the node. 540 * @inode contains a pointer to the inode. 541 * @secid contains a pointer to the location where result will be saved. 542 * In case of failure, @secid will be set to zero. 543 * 544 * Security hooks for file operations 545 * 546 * @file_permission: 547 * Check file permissions before accessing an open file. This hook is 548 * called by various operations that read or write files. A security 549 * module can use this hook to perform additional checking on these 550 * operations, e.g. to revalidate permissions on use to support privilege 551 * bracketing or policy changes. Notice that this hook is used when the 552 * actual read/write operations are performed, whereas the 553 * inode_security_ops hook is called when a file is opened (as well as 554 * many other operations). 555 * Caveat: Although this hook can be used to revalidate permissions for 556 * various system call operations that read or write files, it does not 557 * address the revalidation of permissions for memory-mapped files. 558 * Security modules must handle this separately if they need such 559 * revalidation. 560 * @file contains the file structure being accessed. 561 * @mask contains the requested permissions. 562 * Return 0 if permission is granted. 563 * @file_alloc_security: 564 * Allocate and attach a security structure to the file->f_security field. 565 * The security field is initialized to NULL when the structure is first 566 * created. 567 * @file contains the file structure to secure. 568 * Return 0 if the hook is successful and permission is granted. 569 * @file_free_security: 570 * Deallocate and free any security structures stored in file->f_security. 571 * @file contains the file structure being modified. 572 * @file_ioctl: 573 * @file contains the file structure. 574 * @cmd contains the operation to perform. 575 * @arg contains the operational arguments. 576 * Check permission for an ioctl operation on @file. Note that @arg can 577 * sometimes represents a user space pointer; in other cases, it may be a 578 * simple integer value. When @arg represents a user space pointer, it 579 * should never be used by the security module. 580 * Return 0 if permission is granted. 581 * @file_mmap : 582 * Check permissions for a mmap operation. The @file may be NULL, e.g. 583 * if mapping anonymous memory. 584 * @file contains the file structure for file to map (may be NULL). 585 * @reqprot contains the protection requested by the application. 586 * @prot contains the protection that will be applied by the kernel. 587 * @flags contains the operational flags. 588 * Return 0 if permission is granted. 589 * @file_mprotect: 590 * Check permissions before changing memory access permissions. 591 * @vma contains the memory region to modify. 592 * @reqprot contains the protection requested by the application. 593 * @prot contains the protection that will be applied by the kernel. 594 * Return 0 if permission is granted. 595 * @file_lock: 596 * Check permission before performing file locking operations. 597 * Note: this hook mediates both flock and fcntl style locks. 598 * @file contains the file structure. 599 * @cmd contains the posix-translated lock operation to perform 600 * (e.g. F_RDLCK, F_WRLCK). 601 * Return 0 if permission is granted. 602 * @file_fcntl: 603 * Check permission before allowing the file operation specified by @cmd 604 * from being performed on the file @file. Note that @arg can sometimes 605 * represents a user space pointer; in other cases, it may be a simple 606 * integer value. When @arg represents a user space pointer, it should 607 * never be used by the security module. 608 * @file contains the file structure. 609 * @cmd contains the operation to be performed. 610 * @arg contains the operational arguments. 611 * Return 0 if permission is granted. 612 * @file_set_fowner: 613 * Save owner security information (typically from current->security) in 614 * file->f_security for later use by the send_sigiotask hook. 615 * @file contains the file structure to update. 616 * Return 0 on success. 617 * @file_send_sigiotask: 618 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 619 * process @tsk. Note that this hook is sometimes called from interrupt. 620 * Note that the fown_struct, @fown, is never outside the context of a 621 * struct file, so the file structure (and associated security information) 622 * can always be obtained: 623 * container_of(fown, struct file, f_owner) 624 * @tsk contains the structure of task receiving signal. 625 * @fown contains the file owner information. 626 * @sig is the signal that will be sent. When 0, kernel sends SIGIO. 627 * Return 0 if permission is granted. 628 * @file_receive: 629 * This hook allows security modules to control the ability of a process 630 * to receive an open file descriptor via socket IPC. 631 * @file contains the file structure being received. 632 * Return 0 if permission is granted. 633 * 634 * Security hook for dentry 635 * 636 * @dentry_open 637 * Save open-time permission checking state for later use upon 638 * file_permission, and recheck access if anything has changed 639 * since inode_permission. 640 * 641 * Security hooks for task operations. 642 * 643 * @task_create: 644 * Check permission before creating a child process. See the clone(2) 645 * manual page for definitions of the @clone_flags. 646 * @clone_flags contains the flags indicating what should be shared. 647 * Return 0 if permission is granted. 648 * @cred_alloc_blank: 649 * @cred points to the credentials. 650 * @gfp indicates the atomicity of any memory allocations. 651 * Only allocate sufficient memory and attach to @cred such that 652 * cred_transfer() will not get ENOMEM. 653 * @cred_free: 654 * @cred points to the credentials. 655 * Deallocate and clear the cred->security field in a set of credentials. 656 * @cred_prepare: 657 * @new points to the new credentials. 658 * @old points to the original credentials. 659 * @gfp indicates the atomicity of any memory allocations. 660 * Prepare a new set of credentials by copying the data from the old set. 661 * @cred_transfer: 662 * @new points to the new credentials. 663 * @old points to the original credentials. 664 * Transfer data from original creds to new creds 665 * @kernel_act_as: 666 * Set the credentials for a kernel service to act as (subjective context). 667 * @new points to the credentials to be modified. 668 * @secid specifies the security ID to be set 669 * The current task must be the one that nominated @secid. 670 * Return 0 if successful. 671 * @kernel_create_files_as: 672 * Set the file creation context in a set of credentials to be the same as 673 * the objective context of the specified inode. 674 * @new points to the credentials to be modified. 675 * @inode points to the inode to use as a reference. 676 * The current task must be the one that nominated @inode. 677 * Return 0 if successful. 678 * @kernel_module_request: 679 * Ability to trigger the kernel to automatically upcall to userspace for 680 * userspace to load a kernel module with the given name. 681 * @kmod_name name of the module requested by the kernel 682 * Return 0 if successful. 683 * @task_fix_setuid: 684 * Update the module's state after setting one or more of the user 685 * identity attributes of the current process. The @flags parameter 686 * indicates which of the set*uid system calls invoked this hook. If 687 * @new is the set of credentials that will be installed. Modifications 688 * should be made to this rather than to @current->cred. 689 * @old is the set of credentials that are being replaces 690 * @flags contains one of the LSM_SETID_* values. 691 * Return 0 on success. 692 * @task_setpgid: 693 * Check permission before setting the process group identifier of the 694 * process @p to @pgid. 695 * @p contains the task_struct for process being modified. 696 * @pgid contains the new pgid. 697 * Return 0 if permission is granted. 698 * @task_getpgid: 699 * Check permission before getting the process group identifier of the 700 * process @p. 701 * @p contains the task_struct for the process. 702 * Return 0 if permission is granted. 703 * @task_getsid: 704 * Check permission before getting the session identifier of the process 705 * @p. 706 * @p contains the task_struct for the process. 707 * Return 0 if permission is granted. 708 * @task_getsecid: 709 * Retrieve the security identifier of the process @p. 710 * @p contains the task_struct for the process and place is into @secid. 711 * In case of failure, @secid will be set to zero. 712 * 713 * @task_setnice: 714 * Check permission before setting the nice value of @p to @nice. 715 * @p contains the task_struct of process. 716 * @nice contains the new nice value. 717 * Return 0 if permission is granted. 718 * @task_setioprio 719 * Check permission before setting the ioprio value of @p to @ioprio. 720 * @p contains the task_struct of process. 721 * @ioprio contains the new ioprio value 722 * Return 0 if permission is granted. 723 * @task_getioprio 724 * Check permission before getting the ioprio value of @p. 725 * @p contains the task_struct of process. 726 * Return 0 if permission is granted. 727 * @task_setrlimit: 728 * Check permission before setting the resource limits of the current 729 * process for @resource to @new_rlim. The old resource limit values can 730 * be examined by dereferencing (current->signal->rlim + resource). 731 * @resource contains the resource whose limit is being set. 732 * @new_rlim contains the new limits for @resource. 733 * Return 0 if permission is granted. 734 * @task_setscheduler: 735 * Check permission before setting scheduling policy and/or parameters of 736 * process @p based on @policy and @lp. 737 * @p contains the task_struct for process. 738 * @policy contains the scheduling policy. 739 * @lp contains the scheduling parameters. 740 * Return 0 if permission is granted. 741 * @task_getscheduler: 742 * Check permission before obtaining scheduling information for process 743 * @p. 744 * @p contains the task_struct for process. 745 * Return 0 if permission is granted. 746 * @task_movememory 747 * Check permission before moving memory owned by process @p. 748 * @p contains the task_struct for process. 749 * Return 0 if permission is granted. 750 * @task_kill: 751 * Check permission before sending signal @sig to @p. @info can be NULL, 752 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or 753 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming 754 * from the kernel and should typically be permitted. 755 * SIGIO signals are handled separately by the send_sigiotask hook in 756 * file_security_ops. 757 * @p contains the task_struct for process. 758 * @info contains the signal information. 759 * @sig contains the signal value. 760 * @secid contains the sid of the process where the signal originated 761 * Return 0 if permission is granted. 762 * @task_wait: 763 * Check permission before allowing a process to reap a child process @p 764 * and collect its status information. 765 * @p contains the task_struct for process. 766 * Return 0 if permission is granted. 767 * @task_prctl: 768 * Check permission before performing a process control operation on the 769 * current process. 770 * @option contains the operation. 771 * @arg2 contains a argument. 772 * @arg3 contains a argument. 773 * @arg4 contains a argument. 774 * @arg5 contains a argument. 775 * Return -ENOSYS if no-one wanted to handle this op, any other value to 776 * cause prctl() to return immediately with that value. 777 * @task_to_inode: 778 * Set the security attributes for an inode based on an associated task's 779 * security attributes, e.g. for /proc/pid inodes. 780 * @p contains the task_struct for the task. 781 * @inode contains the inode structure for the inode. 782 * 783 * Security hooks for Netlink messaging. 784 * 785 * @netlink_send: 786 * Save security information for a netlink message so that permission 787 * checking can be performed when the message is processed. The security 788 * information can be saved using the eff_cap field of the 789 * netlink_skb_parms structure. Also may be used to provide fine 790 * grained control over message transmission. 791 * @sk associated sock of task sending the message., 792 * @skb contains the sk_buff structure for the netlink message. 793 * Return 0 if the information was successfully saved and message 794 * is allowed to be transmitted. 795 * @netlink_recv: 796 * Check permission before processing the received netlink message in 797 * @skb. 798 * @skb contains the sk_buff structure for the netlink message. 799 * @cap indicates the capability required 800 * Return 0 if permission is granted. 801 * 802 * Security hooks for Unix domain networking. 803 * 804 * @unix_stream_connect: 805 * Check permissions before establishing a Unix domain stream connection 806 * between @sock and @other. 807 * @sock contains the sock structure. 808 * @other contains the peer sock structure. 809 * @newsk contains the new sock structure. 810 * Return 0 if permission is granted. 811 * @unix_may_send: 812 * Check permissions before connecting or sending datagrams from @sock to 813 * @other. 814 * @sock contains the socket structure. 815 * @sock contains the peer socket structure. 816 * Return 0 if permission is granted. 817 * 818 * The @unix_stream_connect and @unix_may_send hooks were necessary because 819 * Linux provides an alternative to the conventional file name space for Unix 820 * domain sockets. Whereas binding and connecting to sockets in the file name 821 * space is mediated by the typical file permissions (and caught by the mknod 822 * and permission hooks in inode_security_ops), binding and connecting to 823 * sockets in the abstract name space is completely unmediated. Sufficient 824 * control of Unix domain sockets in the abstract name space isn't possible 825 * using only the socket layer hooks, since we need to know the actual target 826 * socket, which is not looked up until we are inside the af_unix code. 827 * 828 * Security hooks for socket operations. 829 * 830 * @socket_create: 831 * Check permissions prior to creating a new socket. 832 * @family contains the requested protocol family. 833 * @type contains the requested communications type. 834 * @protocol contains the requested protocol. 835 * @kern set to 1 if a kernel socket. 836 * Return 0 if permission is granted. 837 * @socket_post_create: 838 * This hook allows a module to update or allocate a per-socket security 839 * structure. Note that the security field was not added directly to the 840 * socket structure, but rather, the socket security information is stored 841 * in the associated inode. Typically, the inode alloc_security hook will 842 * allocate and and attach security information to 843 * sock->inode->i_security. This hook may be used to update the 844 * sock->inode->i_security field with additional information that wasn't 845 * available when the inode was allocated. 846 * @sock contains the newly created socket structure. 847 * @family contains the requested protocol family. 848 * @type contains the requested communications type. 849 * @protocol contains the requested protocol. 850 * @kern set to 1 if a kernel socket. 851 * @socket_bind: 852 * Check permission before socket protocol layer bind operation is 853 * performed and the socket @sock is bound to the address specified in the 854 * @address parameter. 855 * @sock contains the socket structure. 856 * @address contains the address to bind to. 857 * @addrlen contains the length of address. 858 * Return 0 if permission is granted. 859 * @socket_connect: 860 * Check permission before socket protocol layer connect operation 861 * attempts to connect socket @sock to a remote address, @address. 862 * @sock contains the socket structure. 863 * @address contains the address of remote endpoint. 864 * @addrlen contains the length of address. 865 * Return 0 if permission is granted. 866 * @socket_listen: 867 * Check permission before socket protocol layer listen operation. 868 * @sock contains the socket structure. 869 * @backlog contains the maximum length for the pending connection queue. 870 * Return 0 if permission is granted. 871 * @socket_accept: 872 * Check permission before accepting a new connection. Note that the new 873 * socket, @newsock, has been created and some information copied to it, 874 * but the accept operation has not actually been performed. 875 * @sock contains the listening socket structure. 876 * @newsock contains the newly created server socket for connection. 877 * Return 0 if permission is granted. 878 * @socket_sendmsg: 879 * Check permission before transmitting a message to another socket. 880 * @sock contains the socket structure. 881 * @msg contains the message to be transmitted. 882 * @size contains the size of message. 883 * Return 0 if permission is granted. 884 * @socket_recvmsg: 885 * Check permission before receiving a message from a socket. 886 * @sock contains the socket structure. 887 * @msg contains the message structure. 888 * @size contains the size of message structure. 889 * @flags contains the operational flags. 890 * Return 0 if permission is granted. 891 * @socket_getsockname: 892 * Check permission before the local address (name) of the socket object 893 * @sock is retrieved. 894 * @sock contains the socket structure. 895 * Return 0 if permission is granted. 896 * @socket_getpeername: 897 * Check permission before the remote address (name) of a socket object 898 * @sock is retrieved. 899 * @sock contains the socket structure. 900 * Return 0 if permission is granted. 901 * @socket_getsockopt: 902 * Check permissions before retrieving the options associated with socket 903 * @sock. 904 * @sock contains the socket structure. 905 * @level contains the protocol level to retrieve option from. 906 * @optname contains the name of option to retrieve. 907 * Return 0 if permission is granted. 908 * @socket_setsockopt: 909 * Check permissions before setting the options associated with socket 910 * @sock. 911 * @sock contains the socket structure. 912 * @level contains the protocol level to set options for. 913 * @optname contains the name of the option to set. 914 * Return 0 if permission is granted. 915 * @socket_shutdown: 916 * Checks permission before all or part of a connection on the socket 917 * @sock is shut down. 918 * @sock contains the socket structure. 919 * @how contains the flag indicating how future sends and receives are handled. 920 * Return 0 if permission is granted. 921 * @socket_sock_rcv_skb: 922 * Check permissions on incoming network packets. This hook is distinct 923 * from Netfilter's IP input hooks since it is the first time that the 924 * incoming sk_buff @skb has been associated with a particular socket, @sk. 925 * Must not sleep inside this hook because some callers hold spinlocks. 926 * @sk contains the sock (not socket) associated with the incoming sk_buff. 927 * @skb contains the incoming network data. 928 * @socket_getpeersec_stream: 929 * This hook allows the security module to provide peer socket security 930 * state for unix or connected tcp sockets to userspace via getsockopt 931 * SO_GETPEERSEC. For tcp sockets this can be meaningful if the 932 * socket is associated with an ipsec SA. 933 * @sock is the local socket. 934 * @optval userspace memory where the security state is to be copied. 935 * @optlen userspace int where the module should copy the actual length 936 * of the security state. 937 * @len as input is the maximum length to copy to userspace provided 938 * by the caller. 939 * Return 0 if all is well, otherwise, typical getsockopt return 940 * values. 941 * @socket_getpeersec_dgram: 942 * This hook allows the security module to provide peer socket security 943 * state for udp sockets on a per-packet basis to userspace via 944 * getsockopt SO_GETPEERSEC. The application must first have indicated 945 * the IP_PASSSEC option via getsockopt. It can then retrieve the 946 * security state returned by this hook for a packet via the SCM_SECURITY 947 * ancillary message type. 948 * @skb is the skbuff for the packet being queried 949 * @secdata is a pointer to a buffer in which to copy the security data 950 * @seclen is the maximum length for @secdata 951 * Return 0 on success, error on failure. 952 * @sk_alloc_security: 953 * Allocate and attach a security structure to the sk->sk_security field, 954 * which is used to copy security attributes between local stream sockets. 955 * @sk_free_security: 956 * Deallocate security structure. 957 * @sk_clone_security: 958 * Clone/copy security structure. 959 * @sk_getsecid: 960 * Retrieve the LSM-specific secid for the sock to enable caching of network 961 * authorizations. 962 * @sock_graft: 963 * Sets the socket's isec sid to the sock's sid. 964 * @inet_conn_request: 965 * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. 966 * @inet_csk_clone: 967 * Sets the new child socket's sid to the openreq sid. 968 * @inet_conn_established: 969 * Sets the connection's peersid to the secmark on skb. 970 * @secmark_relabel_packet: 971 * check if the process should be allowed to relabel packets to the given secid 972 * @security_secmark_refcount_inc 973 * tells the LSM to increment the number of secmark labeling rules loaded 974 * @security_secmark_refcount_dec 975 * tells the LSM to decrement the number of secmark labeling rules loaded 976 * @req_classify_flow: 977 * Sets the flow's sid to the openreq sid. 978 * @tun_dev_create: 979 * Check permissions prior to creating a new TUN device. 980 * @tun_dev_post_create: 981 * This hook allows a module to update or allocate a per-socket security 982 * structure. 983 * @sk contains the newly created sock structure. 984 * @tun_dev_attach: 985 * Check permissions prior to attaching to a persistent TUN device. This 986 * hook can also be used by the module to update any security state 987 * associated with the TUN device's sock structure. 988 * @sk contains the existing sock structure. 989 * 990 * Security hooks for XFRM operations. 991 * 992 * @xfrm_policy_alloc_security: 993 * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy 994 * Database used by the XFRM system. 995 * @sec_ctx contains the security context information being provided by 996 * the user-level policy update program (e.g., setkey). 997 * Allocate a security structure to the xp->security field; the security 998 * field is initialized to NULL when the xfrm_policy is allocated. 999 * Return 0 if operation was successful (memory to allocate, legal context) 1000 * @xfrm_policy_clone_security: 1001 * @old_ctx contains an existing xfrm_sec_ctx. 1002 * @new_ctxp contains a new xfrm_sec_ctx being cloned from old. 1003 * Allocate a security structure in new_ctxp that contains the 1004 * information from the old_ctx structure. 1005 * Return 0 if operation was successful (memory to allocate). 1006 * @xfrm_policy_free_security: 1007 * @ctx contains the xfrm_sec_ctx 1008 * Deallocate xp->security. 1009 * @xfrm_policy_delete_security: 1010 * @ctx contains the xfrm_sec_ctx. 1011 * Authorize deletion of xp->security. 1012 * @xfrm_state_alloc_security: 1013 * @x contains the xfrm_state being added to the Security Association 1014 * Database by the XFRM system. 1015 * @sec_ctx contains the security context information being provided by 1016 * the user-level SA generation program (e.g., setkey or racoon). 1017 * @secid contains the secid from which to take the mls portion of the context. 1018 * Allocate a security structure to the x->security field; the security 1019 * field is initialized to NULL when the xfrm_state is allocated. Set the 1020 * context to correspond to either sec_ctx or polsec, with the mls portion 1021 * taken from secid in the latter case. 1022 * Return 0 if operation was successful (memory to allocate, legal context). 1023 * @xfrm_state_free_security: 1024 * @x contains the xfrm_state. 1025 * Deallocate x->security. 1026 * @xfrm_state_delete_security: 1027 * @x contains the xfrm_state. 1028 * Authorize deletion of x->security. 1029 * @xfrm_policy_lookup: 1030 * @ctx contains the xfrm_sec_ctx for which the access control is being 1031 * checked. 1032 * @fl_secid contains the flow security label that is used to authorize 1033 * access to the policy xp. 1034 * @dir contains the direction of the flow (input or output). 1035 * Check permission when a flow selects a xfrm_policy for processing 1036 * XFRMs on a packet. The hook is called when selecting either a 1037 * per-socket policy or a generic xfrm policy. 1038 * Return 0 if permission is granted, -ESRCH otherwise, or -errno 1039 * on other errors. 1040 * @xfrm_state_pol_flow_match: 1041 * @x contains the state to match. 1042 * @xp contains the policy to check for a match. 1043 * @fl contains the flow to check for a match. 1044 * Return 1 if there is a match. 1045 * @xfrm_decode_session: 1046 * @skb points to skb to decode. 1047 * @secid points to the flow key secid to set. 1048 * @ckall says if all xfrms used should be checked for same secid. 1049 * Return 0 if ckall is zero or all xfrms used have the same secid. 1050 * 1051 * Security hooks affecting all Key Management operations 1052 * 1053 * @key_alloc: 1054 * Permit allocation of a key and assign security data. Note that key does 1055 * not have a serial number assigned at this point. 1056 * @key points to the key. 1057 * @flags is the allocation flags 1058 * Return 0 if permission is granted, -ve error otherwise. 1059 * @key_free: 1060 * Notification of destruction; free security data. 1061 * @key points to the key. 1062 * No return value. 1063 * @key_permission: 1064 * See whether a specific operational right is granted to a process on a 1065 * key. 1066 * @key_ref refers to the key (key pointer + possession attribute bit). 1067 * @cred points to the credentials to provide the context against which to 1068 * evaluate the security data on the key. 1069 * @perm describes the combination of permissions required of this key. 1070 * Return 0 if permission is granted, -ve error otherwise. 1071 * @key_getsecurity: 1072 * Get a textual representation of the security context attached to a key 1073 * for the purposes of honouring KEYCTL_GETSECURITY. This function 1074 * allocates the storage for the NUL-terminated string and the caller 1075 * should free it. 1076 * @key points to the key to be queried. 1077 * @_buffer points to a pointer that should be set to point to the 1078 * resulting string (if no label or an error occurs). 1079 * Return the length of the string (including terminating NUL) or -ve if 1080 * an error. 1081 * May also return 0 (and a NULL buffer pointer) if there is no label. 1082 * 1083 * Security hooks affecting all System V IPC operations. 1084 * 1085 * @ipc_permission: 1086 * Check permissions for access to IPC 1087 * @ipcp contains the kernel IPC permission structure 1088 * @flag contains the desired (requested) permission set 1089 * Return 0 if permission is granted. 1090 * @ipc_getsecid: 1091 * Get the secid associated with the ipc object. 1092 * @ipcp contains the kernel IPC permission structure. 1093 * @secid contains a pointer to the location where result will be saved. 1094 * In case of failure, @secid will be set to zero. 1095 * 1096 * Security hooks for individual messages held in System V IPC message queues 1097 * @msg_msg_alloc_security: 1098 * Allocate and attach a security structure to the msg->security field. 1099 * The security field is initialized to NULL when the structure is first 1100 * created. 1101 * @msg contains the message structure to be modified. 1102 * Return 0 if operation was successful and permission is granted. 1103 * @msg_msg_free_security: 1104 * Deallocate the security structure for this message. 1105 * @msg contains the message structure to be modified. 1106 * 1107 * Security hooks for System V IPC Message Queues 1108 * 1109 * @msg_queue_alloc_security: 1110 * Allocate and attach a security structure to the 1111 * msq->q_perm.security field. The security field is initialized to 1112 * NULL when the structure is first created. 1113 * @msq contains the message queue structure to be modified. 1114 * Return 0 if operation was successful and permission is granted. 1115 * @msg_queue_free_security: 1116 * Deallocate security structure for this message queue. 1117 * @msq contains the message queue structure to be modified. 1118 * @msg_queue_associate: 1119 * Check permission when a message queue is requested through the 1120 * msgget system call. This hook is only called when returning the 1121 * message queue identifier for an existing message queue, not when a 1122 * new message queue is created. 1123 * @msq contains the message queue to act upon. 1124 * @msqflg contains the operation control flags. 1125 * Return 0 if permission is granted. 1126 * @msg_queue_msgctl: 1127 * Check permission when a message control operation specified by @cmd 1128 * is to be performed on the message queue @msq. 1129 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. 1130 * @msq contains the message queue to act upon. May be NULL. 1131 * @cmd contains the operation to be performed. 1132 * Return 0 if permission is granted. 1133 * @msg_queue_msgsnd: 1134 * Check permission before a message, @msg, is enqueued on the message 1135 * queue, @msq. 1136 * @msq contains the message queue to send message to. 1137 * @msg contains the message to be enqueued. 1138 * @msqflg contains operational flags. 1139 * Return 0 if permission is granted. 1140 * @msg_queue_msgrcv: 1141 * Check permission before a message, @msg, is removed from the message 1142 * queue, @msq. The @target task structure contains a pointer to the 1143 * process that will be receiving the message (not equal to the current 1144 * process when inline receives are being performed). 1145 * @msq contains the message queue to retrieve message from. 1146 * @msg contains the message destination. 1147 * @target contains the task structure for recipient process. 1148 * @type contains the type of message requested. 1149 * @mode contains the operational flags. 1150 * Return 0 if permission is granted. 1151 * 1152 * Security hooks for System V Shared Memory Segments 1153 * 1154 * @shm_alloc_security: 1155 * Allocate and attach a security structure to the shp->shm_perm.security 1156 * field. The security field is initialized to NULL when the structure is 1157 * first created. 1158 * @shp contains the shared memory structure to be modified. 1159 * Return 0 if operation was successful and permission is granted. 1160 * @shm_free_security: 1161 * Deallocate the security struct for this memory segment. 1162 * @shp contains the shared memory structure to be modified. 1163 * @shm_associate: 1164 * Check permission when a shared memory region is requested through the 1165 * shmget system call. This hook is only called when returning the shared 1166 * memory region identifier for an existing region, not when a new shared 1167 * memory region is created. 1168 * @shp contains the shared memory structure to be modified. 1169 * @shmflg contains the operation control flags. 1170 * Return 0 if permission is granted. 1171 * @shm_shmctl: 1172 * Check permission when a shared memory control operation specified by 1173 * @cmd is to be performed on the shared memory region @shp. 1174 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. 1175 * @shp contains shared memory structure to be modified. 1176 * @cmd contains the operation to be performed. 1177 * Return 0 if permission is granted. 1178 * @shm_shmat: 1179 * Check permissions prior to allowing the shmat system call to attach the 1180 * shared memory segment @shp to the data segment of the calling process. 1181 * The attaching address is specified by @shmaddr. 1182 * @shp contains the shared memory structure to be modified. 1183 * @shmaddr contains the address to attach memory region to. 1184 * @shmflg contains the operational flags. 1185 * Return 0 if permission is granted. 1186 * 1187 * Security hooks for System V Semaphores 1188 * 1189 * @sem_alloc_security: 1190 * Allocate and attach a security structure to the sma->sem_perm.security 1191 * field. The security field is initialized to NULL when the structure is 1192 * first created. 1193 * @sma contains the semaphore structure 1194 * Return 0 if operation was successful and permission is granted. 1195 * @sem_free_security: 1196 * deallocate security struct for this semaphore 1197 * @sma contains the semaphore structure. 1198 * @sem_associate: 1199 * Check permission when a semaphore is requested through the semget 1200 * system call. This hook is only called when returning the semaphore 1201 * identifier for an existing semaphore, not when a new one must be 1202 * created. 1203 * @sma contains the semaphore structure. 1204 * @semflg contains the operation control flags. 1205 * Return 0 if permission is granted. 1206 * @sem_semctl: 1207 * Check permission when a semaphore operation specified by @cmd is to be 1208 * performed on the semaphore @sma. The @sma may be NULL, e.g. for 1209 * IPC_INFO or SEM_INFO. 1210 * @sma contains the semaphore structure. May be NULL. 1211 * @cmd contains the operation to be performed. 1212 * Return 0 if permission is granted. 1213 * @sem_semop 1214 * Check permissions before performing operations on members of the 1215 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set 1216 * may be modified. 1217 * @sma contains the semaphore structure. 1218 * @sops contains the operations to perform. 1219 * @nsops contains the number of operations to perform. 1220 * @alter contains the flag indicating whether changes are to be made. 1221 * Return 0 if permission is granted. 1222 * 1223 * @ptrace_access_check: 1224 * Check permission before allowing the current process to trace the 1225 * @child process. 1226 * Security modules may also want to perform a process tracing check 1227 * during an execve in the set_security or apply_creds hooks of 1228 * tracing check during an execve in the bprm_set_creds hook of 1229 * binprm_security_ops if the process is being traced and its security 1230 * attributes would be changed by the execve. 1231 * @child contains the task_struct structure for the target process. 1232 * @mode contains the PTRACE_MODE flags indicating the form of access. 1233 * Return 0 if permission is granted. 1234 * @ptrace_traceme: 1235 * Check that the @parent process has sufficient permission to trace the 1236 * current process before allowing the current process to present itself 1237 * to the @parent process for tracing. 1238 * The parent process will still have to undergo the ptrace_access_check 1239 * checks before it is allowed to trace this one. 1240 * @parent contains the task_struct structure for debugger process. 1241 * Return 0 if permission is granted. 1242 * @capget: 1243 * Get the @effective, @inheritable, and @permitted capability sets for 1244 * the @target process. The hook may also perform permission checking to 1245 * determine if the current process is allowed to see the capability sets 1246 * of the @target process. 1247 * @target contains the task_struct structure for target process. 1248 * @effective contains the effective capability set. 1249 * @inheritable contains the inheritable capability set. 1250 * @permitted contains the permitted capability set. 1251 * Return 0 if the capability sets were successfully obtained. 1252 * @capset: 1253 * Set the @effective, @inheritable, and @permitted capability sets for 1254 * the current process. 1255 * @new contains the new credentials structure for target process. 1256 * @old contains the current credentials structure for target process. 1257 * @effective contains the effective capability set. 1258 * @inheritable contains the inheritable capability set. 1259 * @permitted contains the permitted capability set. 1260 * Return 0 and update @new if permission is granted. 1261 * @capable: 1262 * Check whether the @tsk process has the @cap capability in the indicated 1263 * credentials. 1264 * @tsk contains the task_struct for the process. 1265 * @cred contains the credentials to use. 1266 * @ns contains the user namespace we want the capability in 1267 * @cap contains the capability <include/linux/capability.h>. 1268 * @audit: Whether to write an audit message or not 1269 * Return 0 if the capability is granted for @tsk. 1270 * @syslog: 1271 * Check permission before accessing the kernel message ring or changing 1272 * logging to the console. 1273 * See the syslog(2) manual page for an explanation of the @type values. 1274 * @type contains the type of action. 1275 * @from_file indicates the context of action (if it came from /proc). 1276 * Return 0 if permission is granted. 1277 * @settime: 1278 * Check permission to change the system time. 1279 * struct timespec and timezone are defined in include/linux/time.h 1280 * @ts contains new time 1281 * @tz contains new timezone 1282 * Return 0 if permission is granted. 1283 * @vm_enough_memory: 1284 * Check permissions for allocating a new virtual mapping. 1285 * @mm contains the mm struct it is being added to. 1286 * @pages contains the number of pages. 1287 * Return 0 if permission is granted. 1288 * 1289 * @secid_to_secctx: 1290 * Convert secid to security context. If secdata is NULL the length of 1291 * the result will be returned in seclen, but no secdata will be returned. 1292 * This does mean that the length could change between calls to check the 1293 * length and the next call which actually allocates and returns the secdata. 1294 * @secid contains the security ID. 1295 * @secdata contains the pointer that stores the converted security context. 1296 * @seclen pointer which contains the length of the data 1297 * @secctx_to_secid: 1298 * Convert security context to secid. 1299 * @secid contains the pointer to the generated security ID. 1300 * @secdata contains the security context. 1301 * 1302 * @release_secctx: 1303 * Release the security context. 1304 * @secdata contains the security context. 1305 * @seclen contains the length of the security context. 1306 * 1307 * Security hooks for Audit 1308 * 1309 * @audit_rule_init: 1310 * Allocate and initialize an LSM audit rule structure. 1311 * @field contains the required Audit action. Fields flags are defined in include/linux/audit.h 1312 * @op contains the operator the rule uses. 1313 * @rulestr contains the context where the rule will be applied to. 1314 * @lsmrule contains a pointer to receive the result. 1315 * Return 0 if @lsmrule has been successfully set, 1316 * -EINVAL in case of an invalid rule. 1317 * 1318 * @audit_rule_known: 1319 * Specifies whether given @rule contains any fields related to current LSM. 1320 * @rule contains the audit rule of interest. 1321 * Return 1 in case of relation found, 0 otherwise. 1322 * 1323 * @audit_rule_match: 1324 * Determine if given @secid matches a rule previously approved 1325 * by @audit_rule_known. 1326 * @secid contains the security id in question. 1327 * @field contains the field which relates to current LSM. 1328 * @op contains the operator that will be used for matching. 1329 * @rule points to the audit rule that will be checked against. 1330 * @actx points to the audit context associated with the check. 1331 * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure. 1332 * 1333 * @audit_rule_free: 1334 * Deallocate the LSM audit rule structure previously allocated by 1335 * audit_rule_init. 1336 * @rule contains the allocated rule 1337 * 1338 * @inode_notifysecctx: 1339 * Notify the security module of what the security context of an inode 1340 * should be. Initializes the incore security context managed by the 1341 * security module for this inode. Example usage: NFS client invokes 1342 * this hook to initialize the security context in its incore inode to the 1343 * value provided by the server for the file when the server returned the 1344 * file's attributes to the client. 1345 * 1346 * Must be called with inode->i_mutex locked. 1347 * 1348 * @inode we wish to set the security context of. 1349 * @ctx contains the string which we wish to set in the inode. 1350 * @ctxlen contains the length of @ctx. 1351 * 1352 * @inode_setsecctx: 1353 * Change the security context of an inode. Updates the 1354 * incore security context managed by the security module and invokes the 1355 * fs code as needed (via __vfs_setxattr_noperm) to update any backing 1356 * xattrs that represent the context. Example usage: NFS server invokes 1357 * this hook to change the security context in its incore inode and on the 1358 * backing filesystem to a value provided by the client on a SETATTR 1359 * operation. 1360 * 1361 * Must be called with inode->i_mutex locked. 1362 * 1363 * @dentry contains the inode we wish to set the security context of. 1364 * @ctx contains the string which we wish to set in the inode. 1365 * @ctxlen contains the length of @ctx. 1366 * 1367 * @inode_getsecctx: 1368 * Returns a string containing all relavent security context information 1369 * 1370 * @inode we wish to set the security context of. 1371 * @ctx is a pointer in which to place the allocated security context. 1372 * @ctxlen points to the place to put the length of @ctx. 1373 * This is the main security structure. 1374 */ 1375struct security_operations { 1376 char name[SECURITY_NAME_MAX + 1]; 1377 1378 int (*ptrace_access_check) (struct task_struct *child, unsigned int mode); 1379 int (*ptrace_traceme) (struct task_struct *parent); 1380 int (*capget) (struct task_struct *target, 1381 kernel_cap_t *effective, 1382 kernel_cap_t *inheritable, kernel_cap_t *permitted); 1383 int (*capset) (struct cred *new, 1384 const struct cred *old, 1385 const kernel_cap_t *effective, 1386 const kernel_cap_t *inheritable, 1387 const kernel_cap_t *permitted); 1388 int (*capable) (struct task_struct *tsk, const struct cred *cred, 1389 struct user_namespace *ns, int cap, int audit); 1390 int (*quotactl) (int cmds, int type, int id, struct super_block *sb); 1391 int (*quota_on) (struct dentry *dentry); 1392 int (*syslog) (int type); 1393 int (*settime) (const struct timespec *ts, const struct timezone *tz); 1394 int (*vm_enough_memory) (struct mm_struct *mm, long pages); 1395 1396 int (*bprm_set_creds) (struct linux_binprm *bprm); 1397 int (*bprm_check_security) (struct linux_binprm *bprm); 1398 int (*bprm_secureexec) (struct linux_binprm *bprm); 1399 void (*bprm_committing_creds) (struct linux_binprm *bprm); 1400 void (*bprm_committed_creds) (struct linux_binprm *bprm); 1401 1402 int (*sb_alloc_security) (struct super_block *sb); 1403 void (*sb_free_security) (struct super_block *sb); 1404 int (*sb_copy_data) (char *orig, char *copy); 1405 int (*sb_remount) (struct super_block *sb, void *data); 1406 int (*sb_kern_mount) (struct super_block *sb, int flags, void *data); 1407 int (*sb_show_options) (struct seq_file *m, struct super_block *sb); 1408 int (*sb_statfs) (struct dentry *dentry); 1409 int (*sb_mount) (char *dev_name, struct path *path, 1410 char *type, unsigned long flags, void *data); 1411 int (*sb_umount) (struct vfsmount *mnt, int flags); 1412 int (*sb_pivotroot) (struct path *old_path, 1413 struct path *new_path); 1414 int (*sb_set_mnt_opts) (struct super_block *sb, 1415 struct security_mnt_opts *opts); 1416 void (*sb_clone_mnt_opts) (const struct super_block *oldsb, 1417 struct super_block *newsb); 1418 int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts); 1419 1420#ifdef CONFIG_SECURITY_PATH 1421 int (*path_unlink) (struct path *dir, struct dentry *dentry); 1422 int (*path_mkdir) (struct path *dir, struct dentry *dentry, int mode); 1423 int (*path_rmdir) (struct path *dir, struct dentry *dentry); 1424 int (*path_mknod) (struct path *dir, struct dentry *dentry, int mode, 1425 unsigned int dev); 1426 int (*path_truncate) (struct path *path); 1427 int (*path_symlink) (struct path *dir, struct dentry *dentry, 1428 const char *old_name); 1429 int (*path_link) (struct dentry *old_dentry, struct path *new_dir, 1430 struct dentry *new_dentry); 1431 int (*path_rename) (struct path *old_dir, struct dentry *old_dentry, 1432 struct path *new_dir, struct dentry *new_dentry); 1433 int (*path_chmod) (struct dentry *dentry, struct vfsmount *mnt, 1434 mode_t mode); 1435 int (*path_chown) (struct path *path, uid_t uid, gid_t gid); 1436 int (*path_chroot) (struct path *path); 1437#endif 1438 1439 int (*inode_alloc_security) (struct inode *inode); 1440 void (*inode_free_security) (struct inode *inode); 1441 int (*inode_init_security) (struct inode *inode, struct inode *dir, 1442 const struct qstr *qstr, char **name, 1443 void **value, size_t *len); 1444 int (*inode_create) (struct inode *dir, 1445 struct dentry *dentry, int mode); 1446 int (*inode_link) (struct dentry *old_dentry, 1447 struct inode *dir, struct dentry *new_dentry); 1448 int (*inode_unlink) (struct inode *dir, struct dentry *dentry); 1449 int (*inode_symlink) (struct inode *dir, 1450 struct dentry *dentry, const char *old_name); 1451 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); 1452 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); 1453 int (*inode_mknod) (struct inode *dir, struct dentry *dentry, 1454 int mode, dev_t dev); 1455 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, 1456 struct inode *new_dir, struct dentry *new_dentry); 1457 int (*inode_readlink) (struct dentry *dentry); 1458 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); 1459 int (*inode_permission) (struct inode *inode, int mask); 1460 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); 1461 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); 1462 int (*inode_setxattr) (struct dentry *dentry, const char *name, 1463 const void *value, size_t size, int flags); 1464 void (*inode_post_setxattr) (struct dentry *dentry, const char *name, 1465 const void *value, size_t size, int flags); 1466 int (*inode_getxattr) (struct dentry *dentry, const char *name); 1467 int (*inode_listxattr) (struct dentry *dentry); 1468 int (*inode_removexattr) (struct dentry *dentry, const char *name); 1469 int (*inode_need_killpriv) (struct dentry *dentry); 1470 int (*inode_killpriv) (struct dentry *dentry); 1471 int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc); 1472 int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags); 1473 int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size); 1474 void (*inode_getsecid) (const struct inode *inode, u32 *secid); 1475 1476 int (*file_permission) (struct file *file, int mask); 1477 int (*file_alloc_security) (struct file *file); 1478 void (*file_free_security) (struct file *file); 1479 int (*file_ioctl) (struct file *file, unsigned int cmd, 1480 unsigned long arg); 1481 int (*file_mmap) (struct file *file, 1482 unsigned long reqprot, unsigned long prot, 1483 unsigned long flags, unsigned long addr, 1484 unsigned long addr_only); 1485 int (*file_mprotect) (struct vm_area_struct *vma, 1486 unsigned long reqprot, 1487 unsigned long prot); 1488 int (*file_lock) (struct file *file, unsigned int cmd); 1489 int (*file_fcntl) (struct file *file, unsigned int cmd, 1490 unsigned long arg); 1491 int (*file_set_fowner) (struct file *file); 1492 int (*file_send_sigiotask) (struct task_struct *tsk, 1493 struct fown_struct *fown, int sig); 1494 int (*file_receive) (struct file *file); 1495 int (*dentry_open) (struct file *file, const struct cred *cred); 1496 1497 int (*task_create) (unsigned long clone_flags); 1498 int (*cred_alloc_blank) (struct cred *cred, gfp_t gfp); 1499 void (*cred_free) (struct cred *cred); 1500 int (*cred_prepare)(struct cred *new, const struct cred *old, 1501 gfp_t gfp); 1502 void (*cred_transfer)(struct cred *new, const struct cred *old); 1503 int (*kernel_act_as)(struct cred *new, u32 secid); 1504 int (*kernel_create_files_as)(struct cred *new, struct inode *inode); 1505 int (*kernel_module_request)(char *kmod_name); 1506 int (*task_fix_setuid) (struct cred *new, const struct cred *old, 1507 int flags); 1508 int (*task_setpgid) (struct task_struct *p, pid_t pgid); 1509 int (*task_getpgid) (struct task_struct *p); 1510 int (*task_getsid) (struct task_struct *p); 1511 void (*task_getsecid) (struct task_struct *p, u32 *secid); 1512 int (*task_setnice) (struct task_struct *p, int nice); 1513 int (*task_setioprio) (struct task_struct *p, int ioprio); 1514 int (*task_getioprio) (struct task_struct *p); 1515 int (*task_setrlimit) (struct task_struct *p, unsigned int resource, 1516 struct rlimit *new_rlim); 1517 int (*task_setscheduler) (struct task_struct *p); 1518 int (*task_getscheduler) (struct task_struct *p); 1519 int (*task_movememory) (struct task_struct *p); 1520 int (*task_kill) (struct task_struct *p, 1521 struct siginfo *info, int sig, u32 secid); 1522 int (*task_wait) (struct task_struct *p); 1523 int (*task_prctl) (int option, unsigned long arg2, 1524 unsigned long arg3, unsigned long arg4, 1525 unsigned long arg5); 1526 void (*task_to_inode) (struct task_struct *p, struct inode *inode); 1527 1528 int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag); 1529 void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid); 1530 1531 int (*msg_msg_alloc_security) (struct msg_msg *msg); 1532 void (*msg_msg_free_security) (struct msg_msg *msg); 1533 1534 int (*msg_queue_alloc_security) (struct msg_queue *msq); 1535 void (*msg_queue_free_security) (struct msg_queue *msq); 1536 int (*msg_queue_associate) (struct msg_queue *msq, int msqflg); 1537 int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd); 1538 int (*msg_queue_msgsnd) (struct msg_queue *msq, 1539 struct msg_msg *msg, int msqflg); 1540 int (*msg_queue_msgrcv) (struct msg_queue *msq, 1541 struct msg_msg *msg, 1542 struct task_struct *target, 1543 long type, int mode); 1544 1545 int (*shm_alloc_security) (struct shmid_kernel *shp); 1546 void (*shm_free_security) (struct shmid_kernel *shp); 1547 int (*shm_associate) (struct shmid_kernel *shp, int shmflg); 1548 int (*shm_shmctl) (struct shmid_kernel *shp, int cmd); 1549 int (*shm_shmat) (struct shmid_kernel *shp, 1550 char __user *shmaddr, int shmflg); 1551 1552 int (*sem_alloc_security) (struct sem_array *sma); 1553 void (*sem_free_security) (struct sem_array *sma); 1554 int (*sem_associate) (struct sem_array *sma, int semflg); 1555 int (*sem_semctl) (struct sem_array *sma, int cmd); 1556 int (*sem_semop) (struct sem_array *sma, 1557 struct sembuf *sops, unsigned nsops, int alter); 1558 1559 int (*netlink_send) (struct sock *sk, struct sk_buff *skb); 1560 int (*netlink_recv) (struct sk_buff *skb, int cap); 1561 1562 void (*d_instantiate) (struct dentry *dentry, struct inode *inode); 1563 1564 int (*getprocattr) (struct task_struct *p, char *name, char **value); 1565 int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size); 1566 int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen); 1567 int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid); 1568 void (*release_secctx) (char *secdata, u32 seclen); 1569 1570 int (*inode_notifysecctx)(struct inode *inode, void *ctx, u32 ctxlen); 1571 int (*inode_setsecctx)(struct dentry *dentry, void *ctx, u32 ctxlen); 1572 int (*inode_getsecctx)(struct inode *inode, void **ctx, u32 *ctxlen); 1573 1574#ifdef CONFIG_SECURITY_NETWORK 1575 int (*unix_stream_connect) (struct sock *sock, struct sock *other, struct sock *newsk); 1576 int (*unix_may_send) (struct socket *sock, struct socket *other); 1577 1578 int (*socket_create) (int family, int type, int protocol, int kern); 1579 int (*socket_post_create) (struct socket *sock, int family, 1580 int type, int protocol, int kern); 1581 int (*socket_bind) (struct socket *sock, 1582 struct sockaddr *address, int addrlen); 1583 int (*socket_connect) (struct socket *sock, 1584 struct sockaddr *address, int addrlen); 1585 int (*socket_listen) (struct socket *sock, int backlog); 1586 int (*socket_accept) (struct socket *sock, struct socket *newsock); 1587 int (*socket_sendmsg) (struct socket *sock, 1588 struct msghdr *msg, int size); 1589 int (*socket_recvmsg) (struct socket *sock, 1590 struct msghdr *msg, int size, int flags); 1591 int (*socket_getsockname) (struct socket *sock); 1592 int (*socket_getpeername) (struct socket *sock); 1593 int (*socket_getsockopt) (struct socket *sock, int level, int optname); 1594 int (*socket_setsockopt) (struct socket *sock, int level, int optname); 1595 int (*socket_shutdown) (struct socket *sock, int how); 1596 int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb); 1597 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); 1598 int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); 1599 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); 1600 void (*sk_free_security) (struct sock *sk); 1601 void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); 1602 void (*sk_getsecid) (struct sock *sk, u32 *secid); 1603 void (*sock_graft) (struct sock *sk, struct socket *parent); 1604 int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb, 1605 struct request_sock *req); 1606 void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req); 1607 void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb); 1608 int (*secmark_relabel_packet) (u32 secid); 1609 void (*secmark_refcount_inc) (void); 1610 void (*secmark_refcount_dec) (void); 1611 void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl); 1612 int (*tun_dev_create)(void); 1613 void (*tun_dev_post_create)(struct sock *sk); 1614 int (*tun_dev_attach)(struct sock *sk); 1615#endif /* CONFIG_SECURITY_NETWORK */ 1616 1617#ifdef CONFIG_SECURITY_NETWORK_XFRM 1618 int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp, 1619 struct xfrm_user_sec_ctx *sec_ctx); 1620 int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx); 1621 void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx); 1622 int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx); 1623 int (*xfrm_state_alloc_security) (struct xfrm_state *x, 1624 struct xfrm_user_sec_ctx *sec_ctx, 1625 u32 secid); 1626 void (*xfrm_state_free_security) (struct xfrm_state *x); 1627 int (*xfrm_state_delete_security) (struct xfrm_state *x); 1628 int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); 1629 int (*xfrm_state_pol_flow_match) (struct xfrm_state *x, 1630 struct xfrm_policy *xp, 1631 const struct flowi *fl); 1632 int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall); 1633#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1634 1635 /* key management security hooks */ 1636#ifdef CONFIG_KEYS 1637 int (*key_alloc) (struct key *key, const struct cred *cred, unsigned long flags); 1638 void (*key_free) (struct key *key); 1639 int (*key_permission) (key_ref_t key_ref, 1640 const struct cred *cred, 1641 key_perm_t perm); 1642 int (*key_getsecurity)(struct key *key, char **_buffer); 1643#endif /* CONFIG_KEYS */ 1644 1645#ifdef CONFIG_AUDIT 1646 int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule); 1647 int (*audit_rule_known) (struct audit_krule *krule); 1648 int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule, 1649 struct audit_context *actx); 1650 void (*audit_rule_free) (void *lsmrule); 1651#endif /* CONFIG_AUDIT */ 1652}; 1653 1654/* prototypes */ 1655extern int security_init(void); 1656extern int security_module_enable(struct security_operations *ops); 1657extern int register_security(struct security_operations *ops); 1658 1659/* Security operations */ 1660int security_ptrace_access_check(struct task_struct *child, unsigned int mode); 1661int security_ptrace_traceme(struct task_struct *parent); 1662int security_capget(struct task_struct *target, 1663 kernel_cap_t *effective, 1664 kernel_cap_t *inheritable, 1665 kernel_cap_t *permitted); 1666int security_capset(struct cred *new, const struct cred *old, 1667 const kernel_cap_t *effective, 1668 const kernel_cap_t *inheritable, 1669 const kernel_cap_t *permitted); 1670int security_capable(struct user_namespace *ns, const struct cred *cred, 1671 int cap); 1672int security_real_capable(struct task_struct *tsk, struct user_namespace *ns, 1673 int cap); 1674int security_real_capable_noaudit(struct task_struct *tsk, 1675 struct user_namespace *ns, int cap); 1676int security_quotactl(int cmds, int type, int id, struct super_block *sb); 1677int security_quota_on(struct dentry *dentry); 1678int security_syslog(int type); 1679int security_settime(const struct timespec *ts, const struct timezone *tz); 1680int security_vm_enough_memory(long pages); 1681int security_vm_enough_memory_mm(struct mm_struct *mm, long pages); 1682int security_vm_enough_memory_kern(long pages); 1683int security_bprm_set_creds(struct linux_binprm *bprm); 1684int security_bprm_check(struct linux_binprm *bprm); 1685void security_bprm_committing_creds(struct linux_binprm *bprm); 1686void security_bprm_committed_creds(struct linux_binprm *bprm); 1687int security_bprm_secureexec(struct linux_binprm *bprm); 1688int security_sb_alloc(struct super_block *sb); 1689void security_sb_free(struct super_block *sb); 1690int security_sb_copy_data(char *orig, char *copy); 1691int security_sb_remount(struct super_block *sb, void *data); 1692int security_sb_kern_mount(struct super_block *sb, int flags, void *data); 1693int security_sb_show_options(struct seq_file *m, struct super_block *sb); 1694int security_sb_statfs(struct dentry *dentry); 1695int security_sb_mount(char *dev_name, struct path *path, 1696 char *type, unsigned long flags, void *data); 1697int security_sb_umount(struct vfsmount *mnt, int flags); 1698int security_sb_pivotroot(struct path *old_path, struct path *new_path); 1699int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts); 1700void security_sb_clone_mnt_opts(const struct super_block *oldsb, 1701 struct super_block *newsb); 1702int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts); 1703 1704int security_inode_alloc(struct inode *inode); 1705void security_inode_free(struct inode *inode); 1706int security_inode_init_security(struct inode *inode, struct inode *dir, 1707 const struct qstr *qstr, char **name, 1708 void **value, size_t *len); 1709int security_inode_create(struct inode *dir, struct dentry *dentry, int mode); 1710int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1711 struct dentry *new_dentry); 1712int security_inode_unlink(struct inode *dir, struct dentry *dentry); 1713int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1714 const char *old_name); 1715int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode); 1716int security_inode_rmdir(struct inode *dir, struct dentry *dentry); 1717int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev); 1718int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1719 struct inode *new_dir, struct dentry *new_dentry); 1720int security_inode_readlink(struct dentry *dentry); 1721int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd); 1722int security_inode_permission(struct inode *inode, int mask); 1723int security_inode_setattr(struct dentry *dentry, struct iattr *attr); 1724int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry); 1725int security_inode_setxattr(struct dentry *dentry, const char *name, 1726 const void *value, size_t size, int flags); 1727void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1728 const void *value, size_t size, int flags); 1729int security_inode_getxattr(struct dentry *dentry, const char *name); 1730int security_inode_listxattr(struct dentry *dentry); 1731int security_inode_removexattr(struct dentry *dentry, const char *name); 1732int security_inode_need_killpriv(struct dentry *dentry); 1733int security_inode_killpriv(struct dentry *dentry); 1734int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc); 1735int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags); 1736int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size); 1737void security_inode_getsecid(const struct inode *inode, u32 *secid); 1738int security_file_permission(struct file *file, int mask); 1739int security_file_alloc(struct file *file); 1740void security_file_free(struct file *file); 1741int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1742int security_file_mmap(struct file *file, unsigned long reqprot, 1743 unsigned long prot, unsigned long flags, 1744 unsigned long addr, unsigned long addr_only); 1745int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1746 unsigned long prot); 1747int security_file_lock(struct file *file, unsigned int cmd); 1748int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg); 1749int security_file_set_fowner(struct file *file); 1750int security_file_send_sigiotask(struct task_struct *tsk, 1751 struct fown_struct *fown, int sig); 1752int security_file_receive(struct file *file); 1753int security_dentry_open(struct file *file, const struct cred *cred); 1754int security_task_create(unsigned long clone_flags); 1755int security_cred_alloc_blank(struct cred *cred, gfp_t gfp); 1756void security_cred_free(struct cred *cred); 1757int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp); 1758void security_transfer_creds(struct cred *new, const struct cred *old); 1759int security_kernel_act_as(struct cred *new, u32 secid); 1760int security_kernel_create_files_as(struct cred *new, struct inode *inode); 1761int security_kernel_module_request(char *kmod_name); 1762int security_task_fix_setuid(struct cred *new, const struct cred *old, 1763 int flags); 1764int security_task_setpgid(struct task_struct *p, pid_t pgid); 1765int security_task_getpgid(struct task_struct *p); 1766int security_task_getsid(struct task_struct *p); 1767void security_task_getsecid(struct task_struct *p, u32 *secid); 1768int security_task_setnice(struct task_struct *p, int nice); 1769int security_task_setioprio(struct task_struct *p, int ioprio); 1770int security_task_getioprio(struct task_struct *p); 1771int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1772 struct rlimit *new_rlim); 1773int security_task_setscheduler(struct task_struct *p); 1774int security_task_getscheduler(struct task_struct *p); 1775int security_task_movememory(struct task_struct *p); 1776int security_task_kill(struct task_struct *p, struct siginfo *info, 1777 int sig, u32 secid); 1778int security_task_wait(struct task_struct *p); 1779int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1780 unsigned long arg4, unsigned long arg5); 1781void security_task_to_inode(struct task_struct *p, struct inode *inode); 1782int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag); 1783void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid); 1784int security_msg_msg_alloc(struct msg_msg *msg); 1785void security_msg_msg_free(struct msg_msg *msg); 1786int security_msg_queue_alloc(struct msg_queue *msq); 1787void security_msg_queue_free(struct msg_queue *msq); 1788int security_msg_queue_associate(struct msg_queue *msq, int msqflg); 1789int security_msg_queue_msgctl(struct msg_queue *msq, int cmd); 1790int security_msg_queue_msgsnd(struct msg_queue *msq, 1791 struct msg_msg *msg, int msqflg); 1792int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 1793 struct task_struct *target, long type, int mode); 1794int security_shm_alloc(struct shmid_kernel *shp); 1795void security_shm_free(struct shmid_kernel *shp); 1796int security_shm_associate(struct shmid_kernel *shp, int shmflg); 1797int security_shm_shmctl(struct shmid_kernel *shp, int cmd); 1798int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg); 1799int security_sem_alloc(struct sem_array *sma); 1800void security_sem_free(struct sem_array *sma); 1801int security_sem_associate(struct sem_array *sma, int semflg); 1802int security_sem_semctl(struct sem_array *sma, int cmd); 1803int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1804 unsigned nsops, int alter); 1805void security_d_instantiate(struct dentry *dentry, struct inode *inode); 1806int security_getprocattr(struct task_struct *p, char *name, char **value); 1807int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size); 1808int security_netlink_send(struct sock *sk, struct sk_buff *skb); 1809int security_netlink_recv(struct sk_buff *skb, int cap); 1810int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen); 1811int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid); 1812void security_release_secctx(char *secdata, u32 seclen); 1813 1814int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen); 1815int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen); 1816int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen); 1817#else /* CONFIG_SECURITY */ 1818struct security_mnt_opts { 1819}; 1820 1821static inline void security_init_mnt_opts(struct security_mnt_opts *opts) 1822{ 1823} 1824 1825static inline void security_free_mnt_opts(struct security_mnt_opts *opts) 1826{ 1827} 1828 1829/* 1830 * This is the default capabilities functionality. Most of these functions 1831 * are just stubbed out, but a few must call the proper capable code. 1832 */ 1833 1834static inline int security_init(void) 1835{ 1836 return 0; 1837} 1838 1839static inline int security_ptrace_access_check(struct task_struct *child, 1840 unsigned int mode) 1841{ 1842 return cap_ptrace_access_check(child, mode); 1843} 1844 1845static inline int security_ptrace_traceme(struct task_struct *parent) 1846{ 1847 return cap_ptrace_traceme(parent); 1848} 1849 1850static inline int security_capget(struct task_struct *target, 1851 kernel_cap_t *effective, 1852 kernel_cap_t *inheritable, 1853 kernel_cap_t *permitted) 1854{ 1855 return cap_capget(target, effective, inheritable, permitted); 1856} 1857 1858static inline int security_capset(struct cred *new, 1859 const struct cred *old, 1860 const kernel_cap_t *effective, 1861 const kernel_cap_t *inheritable, 1862 const kernel_cap_t *permitted) 1863{ 1864 return cap_capset(new, old, effective, inheritable, permitted); 1865} 1866 1867static inline int security_capable(struct user_namespace *ns, 1868 const struct cred *cred, int cap) 1869{ 1870 return cap_capable(current, cred, ns, cap, SECURITY_CAP_AUDIT); 1871} 1872 1873static inline int security_real_capable(struct task_struct *tsk, struct user_namespace *ns, int cap) 1874{ 1875 int ret; 1876 1877 rcu_read_lock(); 1878 ret = cap_capable(tsk, __task_cred(tsk), ns, cap, SECURITY_CAP_AUDIT); 1879 rcu_read_unlock(); 1880 return ret; 1881} 1882 1883static inline 1884int security_real_capable_noaudit(struct task_struct *tsk, struct user_namespace *ns, int cap) 1885{ 1886 int ret; 1887 1888 rcu_read_lock(); 1889 ret = cap_capable(tsk, __task_cred(tsk), ns, cap, 1890 SECURITY_CAP_NOAUDIT); 1891 rcu_read_unlock(); 1892 return ret; 1893} 1894 1895static inline int security_quotactl(int cmds, int type, int id, 1896 struct super_block *sb) 1897{ 1898 return 0; 1899} 1900 1901static inline int security_quota_on(struct dentry *dentry) 1902{ 1903 return 0; 1904} 1905 1906static inline int security_syslog(int type) 1907{ 1908 return 0; 1909} 1910 1911static inline int security_settime(const struct timespec *ts, 1912 const struct timezone *tz) 1913{ 1914 return cap_settime(ts, tz); 1915} 1916 1917static inline int security_vm_enough_memory(long pages) 1918{ 1919 WARN_ON(current->mm == NULL); 1920 return cap_vm_enough_memory(current->mm, pages); 1921} 1922 1923static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1924{ 1925 WARN_ON(mm == NULL); 1926 return cap_vm_enough_memory(mm, pages); 1927} 1928 1929static inline int security_vm_enough_memory_kern(long pages) 1930{ 1931 /* If current->mm is a kernel thread then we will pass NULL, 1932 for this specific case that is fine */ 1933 return cap_vm_enough_memory(current->mm, pages); 1934} 1935 1936static inline int security_bprm_set_creds(struct linux_binprm *bprm) 1937{ 1938 return cap_bprm_set_creds(bprm); 1939} 1940 1941static inline int security_bprm_check(struct linux_binprm *bprm) 1942{ 1943 return 0; 1944} 1945 1946static inline void security_bprm_committing_creds(struct linux_binprm *bprm) 1947{ 1948} 1949 1950static inline void security_bprm_committed_creds(struct linux_binprm *bprm) 1951{ 1952} 1953 1954static inline int security_bprm_secureexec(struct linux_binprm *bprm) 1955{ 1956 return cap_bprm_secureexec(bprm); 1957} 1958 1959static inline int security_sb_alloc(struct super_block *sb) 1960{ 1961 return 0; 1962} 1963 1964static inline void security_sb_free(struct super_block *sb) 1965{ } 1966 1967static inline int security_sb_copy_data(char *orig, char *copy) 1968{ 1969 return 0; 1970} 1971 1972static inline int security_sb_remount(struct super_block *sb, void *data) 1973{ 1974 return 0; 1975} 1976 1977static inline int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 1978{ 1979 return 0; 1980} 1981 1982static inline int security_sb_show_options(struct seq_file *m, 1983 struct super_block *sb) 1984{ 1985 return 0; 1986} 1987 1988static inline int security_sb_statfs(struct dentry *dentry) 1989{ 1990 return 0; 1991} 1992 1993static inline int security_sb_mount(char *dev_name, struct path *path, 1994 char *type, unsigned long flags, 1995 void *data) 1996{ 1997 return 0; 1998} 1999 2000static inline int security_sb_umount(struct vfsmount *mnt, int flags) 2001{ 2002 return 0; 2003} 2004 2005static inline int security_sb_pivotroot(struct path *old_path, 2006 struct path *new_path) 2007{ 2008 return 0; 2009} 2010 2011static inline int security_sb_set_mnt_opts(struct super_block *sb, 2012 struct security_mnt_opts *opts) 2013{ 2014 return 0; 2015} 2016 2017static inline void security_sb_clone_mnt_opts(const struct super_block *oldsb, 2018 struct super_block *newsb) 2019{ } 2020 2021static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 2022{ 2023 return 0; 2024} 2025 2026static inline int security_inode_alloc(struct inode *inode) 2027{ 2028 return 0; 2029} 2030 2031static inline void security_inode_free(struct inode *inode) 2032{ } 2033 2034static inline int security_inode_init_security(struct inode *inode, 2035 struct inode *dir, 2036 const struct qstr *qstr, 2037 char **name, 2038 void **value, 2039 size_t *len) 2040{ 2041 return -EOPNOTSUPP; 2042} 2043 2044static inline int security_inode_create(struct inode *dir, 2045 struct dentry *dentry, 2046 int mode) 2047{ 2048 return 0; 2049} 2050 2051static inline int security_inode_link(struct dentry *old_dentry, 2052 struct inode *dir, 2053 struct dentry *new_dentry) 2054{ 2055 return 0; 2056} 2057 2058static inline int security_inode_unlink(struct inode *dir, 2059 struct dentry *dentry) 2060{ 2061 return 0; 2062} 2063 2064static inline int security_inode_symlink(struct inode *dir, 2065 struct dentry *dentry, 2066 const char *old_name) 2067{ 2068 return 0; 2069} 2070 2071static inline int security_inode_mkdir(struct inode *dir, 2072 struct dentry *dentry, 2073 int mode) 2074{ 2075 return 0; 2076} 2077 2078static inline int security_inode_rmdir(struct inode *dir, 2079 struct dentry *dentry) 2080{ 2081 return 0; 2082} 2083 2084static inline int security_inode_mknod(struct inode *dir, 2085 struct dentry *dentry, 2086 int mode, dev_t dev) 2087{ 2088 return 0; 2089} 2090 2091static inline int security_inode_rename(struct inode *old_dir, 2092 struct dentry *old_dentry, 2093 struct inode *new_dir, 2094 struct dentry *new_dentry) 2095{ 2096 return 0; 2097} 2098 2099static inline int security_inode_readlink(struct dentry *dentry) 2100{ 2101 return 0; 2102} 2103 2104static inline int security_inode_follow_link(struct dentry *dentry, 2105 struct nameidata *nd) 2106{ 2107 return 0; 2108} 2109 2110static inline int security_inode_permission(struct inode *inode, int mask) 2111{ 2112 return 0; 2113} 2114 2115static inline int security_inode_setattr(struct dentry *dentry, 2116 struct iattr *attr) 2117{ 2118 return 0; 2119} 2120 2121static inline int security_inode_getattr(struct vfsmount *mnt, 2122 struct dentry *dentry) 2123{ 2124 return 0; 2125} 2126 2127static inline int security_inode_setxattr(struct dentry *dentry, 2128 const char *name, const void *value, size_t size, int flags) 2129{ 2130 return cap_inode_setxattr(dentry, name, value, size, flags); 2131} 2132 2133static inline void security_inode_post_setxattr(struct dentry *dentry, 2134 const char *name, const void *value, size_t size, int flags) 2135{ } 2136 2137static inline int security_inode_getxattr(struct dentry *dentry, 2138 const char *name) 2139{ 2140 return 0; 2141} 2142 2143static inline int security_inode_listxattr(struct dentry *dentry) 2144{ 2145 return 0; 2146} 2147 2148static inline int security_inode_removexattr(struct dentry *dentry, 2149 const char *name) 2150{ 2151 return cap_inode_removexattr(dentry, name); 2152} 2153 2154static inline int security_inode_need_killpriv(struct dentry *dentry) 2155{ 2156 return cap_inode_need_killpriv(dentry); 2157} 2158 2159static inline int security_inode_killpriv(struct dentry *dentry) 2160{ 2161 return cap_inode_killpriv(dentry); 2162} 2163 2164static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2165{ 2166 return -EOPNOTSUPP; 2167} 2168 2169static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 2170{ 2171 return -EOPNOTSUPP; 2172} 2173 2174static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2175{ 2176 return 0; 2177} 2178 2179static inline void security_inode_getsecid(const struct inode *inode, u32 *secid) 2180{ 2181 *secid = 0; 2182} 2183 2184static inline int security_file_permission(struct file *file, int mask) 2185{ 2186 return 0; 2187} 2188 2189static inline int security_file_alloc(struct file *file) 2190{ 2191 return 0; 2192} 2193 2194static inline void security_file_free(struct file *file) 2195{ } 2196 2197static inline int security_file_ioctl(struct file *file, unsigned int cmd, 2198 unsigned long arg) 2199{ 2200 return 0; 2201} 2202 2203static inline int security_file_mmap(struct file *file, unsigned long reqprot, 2204 unsigned long prot, 2205 unsigned long flags, 2206 unsigned long addr, 2207 unsigned long addr_only) 2208{ 2209 return cap_file_mmap(file, reqprot, prot, flags, addr, addr_only); 2210} 2211 2212static inline int security_file_mprotect(struct vm_area_struct *vma, 2213 unsigned long reqprot, 2214 unsigned long prot) 2215{ 2216 return 0; 2217} 2218 2219static inline int security_file_lock(struct file *file, unsigned int cmd) 2220{ 2221 return 0; 2222} 2223 2224static inline int security_file_fcntl(struct file *file, unsigned int cmd, 2225 unsigned long arg) 2226{ 2227 return 0; 2228} 2229 2230static inline int security_file_set_fowner(struct file *file) 2231{ 2232 return 0; 2233} 2234 2235static inline int security_file_send_sigiotask(struct task_struct *tsk, 2236 struct fown_struct *fown, 2237 int sig) 2238{ 2239 return 0; 2240} 2241 2242static inline int security_file_receive(struct file *file) 2243{ 2244 return 0; 2245} 2246 2247static inline int security_dentry_open(struct file *file, 2248 const struct cred *cred) 2249{ 2250 return 0; 2251} 2252 2253static inline int security_task_create(unsigned long clone_flags) 2254{ 2255 return 0; 2256} 2257 2258static inline int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 2259{ 2260 return 0; 2261} 2262 2263static inline void security_cred_free(struct cred *cred) 2264{ } 2265 2266static inline int security_prepare_creds(struct cred *new, 2267 const struct cred *old, 2268 gfp_t gfp) 2269{ 2270 return 0; 2271} 2272 2273static inline void security_transfer_creds(struct cred *new, 2274 const struct cred *old) 2275{ 2276} 2277 2278static inline int security_kernel_act_as(struct cred *cred, u32 secid) 2279{ 2280 return 0; 2281} 2282 2283static inline int security_kernel_create_files_as(struct cred *cred, 2284 struct inode *inode) 2285{ 2286 return 0; 2287} 2288 2289static inline int security_kernel_module_request(char *kmod_name) 2290{ 2291 return 0; 2292} 2293 2294static inline int security_task_fix_setuid(struct cred *new, 2295 const struct cred *old, 2296 int flags) 2297{ 2298 return cap_task_fix_setuid(new, old, flags); 2299} 2300 2301static inline int security_task_setpgid(struct task_struct *p, pid_t pgid) 2302{ 2303 return 0; 2304} 2305 2306static inline int security_task_getpgid(struct task_struct *p) 2307{ 2308 return 0; 2309} 2310 2311static inline int security_task_getsid(struct task_struct *p) 2312{ 2313 return 0; 2314} 2315 2316static inline void security_task_getsecid(struct task_struct *p, u32 *secid) 2317{ 2318 *secid = 0; 2319} 2320 2321static inline int security_task_setnice(struct task_struct *p, int nice) 2322{ 2323 return cap_task_setnice(p, nice); 2324} 2325 2326static inline int security_task_setioprio(struct task_struct *p, int ioprio) 2327{ 2328 return cap_task_setioprio(p, ioprio); 2329} 2330 2331static inline int security_task_getioprio(struct task_struct *p) 2332{ 2333 return 0; 2334} 2335 2336static inline int security_task_setrlimit(struct task_struct *p, 2337 unsigned int resource, 2338 struct rlimit *new_rlim) 2339{ 2340 return 0; 2341} 2342 2343static inline int security_task_setscheduler(struct task_struct *p) 2344{ 2345 return cap_task_setscheduler(p); 2346} 2347 2348static inline int security_task_getscheduler(struct task_struct *p) 2349{ 2350 return 0; 2351} 2352 2353static inline int security_task_movememory(struct task_struct *p) 2354{ 2355 return 0; 2356} 2357 2358static inline int security_task_kill(struct task_struct *p, 2359 struct siginfo *info, int sig, 2360 u32 secid) 2361{ 2362 return 0; 2363} 2364 2365static inline int security_task_wait(struct task_struct *p) 2366{ 2367 return 0; 2368} 2369 2370static inline int security_task_prctl(int option, unsigned long arg2, 2371 unsigned long arg3, 2372 unsigned long arg4, 2373 unsigned long arg5) 2374{ 2375 return cap_task_prctl(option, arg2, arg3, arg3, arg5); 2376} 2377 2378static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) 2379{ } 2380 2381static inline int security_ipc_permission(struct kern_ipc_perm *ipcp, 2382 short flag) 2383{ 2384 return 0; 2385} 2386 2387static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 2388{ 2389 *secid = 0; 2390} 2391 2392static inline int security_msg_msg_alloc(struct msg_msg *msg) 2393{ 2394 return 0; 2395} 2396 2397static inline void security_msg_msg_free(struct msg_msg *msg) 2398{ } 2399 2400static inline int security_msg_queue_alloc(struct msg_queue *msq) 2401{ 2402 return 0; 2403} 2404 2405static inline void security_msg_queue_free(struct msg_queue *msq) 2406{ } 2407 2408static inline int security_msg_queue_associate(struct msg_queue *msq, 2409 int msqflg) 2410{ 2411 return 0; 2412} 2413 2414static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 2415{ 2416 return 0; 2417} 2418 2419static inline int security_msg_queue_msgsnd(struct msg_queue *msq, 2420 struct msg_msg *msg, int msqflg) 2421{ 2422 return 0; 2423} 2424 2425static inline int security_msg_queue_msgrcv(struct msg_queue *msq, 2426 struct msg_msg *msg, 2427 struct task_struct *target, 2428 long type, int mode) 2429{ 2430 return 0; 2431} 2432 2433static inline int security_shm_alloc(struct shmid_kernel *shp) 2434{ 2435 return 0; 2436} 2437 2438static inline void security_shm_free(struct shmid_kernel *shp) 2439{ } 2440 2441static inline int security_shm_associate(struct shmid_kernel *shp, 2442 int shmflg) 2443{ 2444 return 0; 2445} 2446 2447static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 2448{ 2449 return 0; 2450} 2451 2452static inline int security_shm_shmat(struct shmid_kernel *shp, 2453 char __user *shmaddr, int shmflg) 2454{ 2455 return 0; 2456} 2457 2458static inline int security_sem_alloc(struct sem_array *sma) 2459{ 2460 return 0; 2461} 2462 2463static inline void security_sem_free(struct sem_array *sma) 2464{ } 2465 2466static inline int security_sem_associate(struct sem_array *sma, int semflg) 2467{ 2468 return 0; 2469} 2470 2471static inline int security_sem_semctl(struct sem_array *sma, int cmd) 2472{ 2473 return 0; 2474} 2475 2476static inline int security_sem_semop(struct sem_array *sma, 2477 struct sembuf *sops, unsigned nsops, 2478 int alter) 2479{ 2480 return 0; 2481} 2482 2483static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2484{ } 2485 2486static inline int security_getprocattr(struct task_struct *p, char *name, char **value) 2487{ 2488 return -EINVAL; 2489} 2490 2491static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 2492{ 2493 return -EINVAL; 2494} 2495 2496static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2497{ 2498 return cap_netlink_send(sk, skb); 2499} 2500 2501static inline int security_netlink_recv(struct sk_buff *skb, int cap) 2502{ 2503 return cap_netlink_recv(skb, cap); 2504} 2505 2506static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2507{ 2508 return -EOPNOTSUPP; 2509} 2510 2511static inline int security_secctx_to_secid(const char *secdata, 2512 u32 seclen, 2513 u32 *secid) 2514{ 2515 return -EOPNOTSUPP; 2516} 2517 2518static inline void security_release_secctx(char *secdata, u32 seclen) 2519{ 2520} 2521 2522static inline int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2523{ 2524 return -EOPNOTSUPP; 2525} 2526static inline int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2527{ 2528 return -EOPNOTSUPP; 2529} 2530static inline int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2531{ 2532 return -EOPNOTSUPP; 2533} 2534#endif /* CONFIG_SECURITY */ 2535 2536#ifdef CONFIG_SECURITY_NETWORK 2537 2538int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk); 2539int security_unix_may_send(struct socket *sock, struct socket *other); 2540int security_socket_create(int family, int type, int protocol, int kern); 2541int security_socket_post_create(struct socket *sock, int family, 2542 int type, int protocol, int kern); 2543int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen); 2544int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen); 2545int security_socket_listen(struct socket *sock, int backlog); 2546int security_socket_accept(struct socket *sock, struct socket *newsock); 2547int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size); 2548int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2549 int size, int flags); 2550int security_socket_getsockname(struct socket *sock); 2551int security_socket_getpeername(struct socket *sock); 2552int security_socket_getsockopt(struct socket *sock, int level, int optname); 2553int security_socket_setsockopt(struct socket *sock, int level, int optname); 2554int security_socket_shutdown(struct socket *sock, int how); 2555int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb); 2556int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2557 int __user *optlen, unsigned len); 2558int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid); 2559int security_sk_alloc(struct sock *sk, int family, gfp_t priority); 2560void security_sk_free(struct sock *sk); 2561void security_sk_clone(const struct sock *sk, struct sock *newsk); 2562void security_sk_classify_flow(struct sock *sk, struct flowi *fl); 2563void security_req_classify_flow(const struct request_sock *req, struct flowi *fl); 2564void security_sock_graft(struct sock*sk, struct socket *parent); 2565int security_inet_conn_request(struct sock *sk, 2566 struct sk_buff *skb, struct request_sock *req); 2567void security_inet_csk_clone(struct sock *newsk, 2568 const struct request_sock *req); 2569void security_inet_conn_established(struct sock *sk, 2570 struct sk_buff *skb); 2571int security_secmark_relabel_packet(u32 secid); 2572void security_secmark_refcount_inc(void); 2573void security_secmark_refcount_dec(void); 2574int security_tun_dev_create(void); 2575void security_tun_dev_post_create(struct sock *sk); 2576int security_tun_dev_attach(struct sock *sk); 2577 2578#else /* CONFIG_SECURITY_NETWORK */ 2579static inline int security_unix_stream_connect(struct sock *sock, 2580 struct sock *other, 2581 struct sock *newsk) 2582{ 2583 return 0; 2584} 2585 2586static inline int security_unix_may_send(struct socket *sock, 2587 struct socket *other) 2588{ 2589 return 0; 2590} 2591 2592static inline int security_socket_create(int family, int type, 2593 int protocol, int kern) 2594{ 2595 return 0; 2596} 2597 2598static inline int security_socket_post_create(struct socket *sock, 2599 int family, 2600 int type, 2601 int protocol, int kern) 2602{ 2603 return 0; 2604} 2605 2606static inline int security_socket_bind(struct socket *sock, 2607 struct sockaddr *address, 2608 int addrlen) 2609{ 2610 return 0; 2611} 2612 2613static inline int security_socket_connect(struct socket *sock, 2614 struct sockaddr *address, 2615 int addrlen) 2616{ 2617 return 0; 2618} 2619 2620static inline int security_socket_listen(struct socket *sock, int backlog) 2621{ 2622 return 0; 2623} 2624 2625static inline int security_socket_accept(struct socket *sock, 2626 struct socket *newsock) 2627{ 2628 return 0; 2629} 2630 2631static inline int security_socket_sendmsg(struct socket *sock, 2632 struct msghdr *msg, int size) 2633{ 2634 return 0; 2635} 2636 2637static inline int security_socket_recvmsg(struct socket *sock, 2638 struct msghdr *msg, int size, 2639 int flags) 2640{ 2641 return 0; 2642} 2643 2644static inline int security_socket_getsockname(struct socket *sock) 2645{ 2646 return 0; 2647} 2648 2649static inline int security_socket_getpeername(struct socket *sock) 2650{ 2651 return 0; 2652} 2653 2654static inline int security_socket_getsockopt(struct socket *sock, 2655 int level, int optname) 2656{ 2657 return 0; 2658} 2659 2660static inline int security_socket_setsockopt(struct socket *sock, 2661 int level, int optname) 2662{ 2663 return 0; 2664} 2665 2666static inline int security_socket_shutdown(struct socket *sock, int how) 2667{ 2668 return 0; 2669} 2670static inline int security_sock_rcv_skb(struct sock *sk, 2671 struct sk_buff *skb) 2672{ 2673 return 0; 2674} 2675 2676static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2677 int __user *optlen, unsigned len) 2678{ 2679 return -ENOPROTOOPT; 2680} 2681 2682static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2683{ 2684 return -ENOPROTOOPT; 2685} 2686 2687static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2688{ 2689 return 0; 2690} 2691 2692static inline void security_sk_free(struct sock *sk) 2693{ 2694} 2695 2696static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) 2697{ 2698} 2699 2700static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2701{ 2702} 2703 2704static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2705{ 2706} 2707 2708static inline void security_sock_graft(struct sock *sk, struct socket *parent) 2709{ 2710} 2711 2712static inline int security_inet_conn_request(struct sock *sk, 2713 struct sk_buff *skb, struct request_sock *req) 2714{ 2715 return 0; 2716} 2717 2718static inline void security_inet_csk_clone(struct sock *newsk, 2719 const struct request_sock *req) 2720{ 2721} 2722 2723static inline void security_inet_conn_established(struct sock *sk, 2724 struct sk_buff *skb) 2725{ 2726} 2727 2728static inline int security_secmark_relabel_packet(u32 secid) 2729{ 2730 return 0; 2731} 2732 2733static inline void security_secmark_refcount_inc(void) 2734{ 2735} 2736 2737static inline void security_secmark_refcount_dec(void) 2738{ 2739} 2740 2741static inline int security_tun_dev_create(void) 2742{ 2743 return 0; 2744} 2745 2746static inline void security_tun_dev_post_create(struct sock *sk) 2747{ 2748} 2749 2750static inline int security_tun_dev_attach(struct sock *sk) 2751{ 2752 return 0; 2753} 2754#endif /* CONFIG_SECURITY_NETWORK */ 2755 2756#ifdef CONFIG_SECURITY_NETWORK_XFRM 2757 2758int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx); 2759int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp); 2760void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx); 2761int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx); 2762int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); 2763int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2764 struct xfrm_sec_ctx *polsec, u32 secid); 2765int security_xfrm_state_delete(struct xfrm_state *x); 2766void security_xfrm_state_free(struct xfrm_state *x); 2767int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); 2768int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2769 struct xfrm_policy *xp, 2770 const struct flowi *fl); 2771int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid); 2772void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl); 2773 2774#else /* CONFIG_SECURITY_NETWORK_XFRM */ 2775 2776static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 2777{ 2778 return 0; 2779} 2780 2781static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp) 2782{ 2783 return 0; 2784} 2785 2786static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2787{ 2788} 2789 2790static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2791{ 2792 return 0; 2793} 2794 2795static inline int security_xfrm_state_alloc(struct xfrm_state *x, 2796 struct xfrm_user_sec_ctx *sec_ctx) 2797{ 2798 return 0; 2799} 2800 2801static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2802 struct xfrm_sec_ctx *polsec, u32 secid) 2803{ 2804 return 0; 2805} 2806 2807static inline void security_xfrm_state_free(struct xfrm_state *x) 2808{ 2809} 2810 2811static inline int security_xfrm_state_delete(struct xfrm_state *x) 2812{ 2813 return 0; 2814} 2815 2816static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2817{ 2818 return 0; 2819} 2820 2821static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2822 struct xfrm_policy *xp, const struct flowi *fl) 2823{ 2824 return 1; 2825} 2826 2827static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2828{ 2829 return 0; 2830} 2831 2832static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2833{ 2834} 2835 2836#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2837 2838#ifdef CONFIG_SECURITY_PATH 2839int security_path_unlink(struct path *dir, struct dentry *dentry); 2840int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode); 2841int security_path_rmdir(struct path *dir, struct dentry *dentry); 2842int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 2843 unsigned int dev); 2844int security_path_truncate(struct path *path); 2845int security_path_symlink(struct path *dir, struct dentry *dentry, 2846 const char *old_name); 2847int security_path_link(struct dentry *old_dentry, struct path *new_dir, 2848 struct dentry *new_dentry); 2849int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 2850 struct path *new_dir, struct dentry *new_dentry); 2851int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 2852 mode_t mode); 2853int security_path_chown(struct path *path, uid_t uid, gid_t gid); 2854int security_path_chroot(struct path *path); 2855#else /* CONFIG_SECURITY_PATH */ 2856static inline int security_path_unlink(struct path *dir, struct dentry *dentry) 2857{ 2858 return 0; 2859} 2860 2861static inline int security_path_mkdir(struct path *dir, struct dentry *dentry, 2862 int mode) 2863{ 2864 return 0; 2865} 2866 2867static inline int security_path_rmdir(struct path *dir, struct dentry *dentry) 2868{ 2869 return 0; 2870} 2871 2872static inline int security_path_mknod(struct path *dir, struct dentry *dentry, 2873 int mode, unsigned int dev) 2874{ 2875 return 0; 2876} 2877 2878static inline int security_path_truncate(struct path *path) 2879{ 2880 return 0; 2881} 2882 2883static inline int security_path_symlink(struct path *dir, struct dentry *dentry, 2884 const char *old_name) 2885{ 2886 return 0; 2887} 2888 2889static inline int security_path_link(struct dentry *old_dentry, 2890 struct path *new_dir, 2891 struct dentry *new_dentry) 2892{ 2893 return 0; 2894} 2895 2896static inline int security_path_rename(struct path *old_dir, 2897 struct dentry *old_dentry, 2898 struct path *new_dir, 2899 struct dentry *new_dentry) 2900{ 2901 return 0; 2902} 2903 2904static inline int security_path_chmod(struct dentry *dentry, 2905 struct vfsmount *mnt, 2906 mode_t mode) 2907{ 2908 return 0; 2909} 2910 2911static inline int security_path_chown(struct path *path, uid_t uid, gid_t gid) 2912{ 2913 return 0; 2914} 2915 2916static inline int security_path_chroot(struct path *path) 2917{ 2918 return 0; 2919} 2920#endif /* CONFIG_SECURITY_PATH */ 2921 2922#ifdef CONFIG_KEYS 2923#ifdef CONFIG_SECURITY 2924 2925int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags); 2926void security_key_free(struct key *key); 2927int security_key_permission(key_ref_t key_ref, 2928 const struct cred *cred, key_perm_t perm); 2929int security_key_getsecurity(struct key *key, char **_buffer); 2930 2931#else 2932 2933static inline int security_key_alloc(struct key *key, 2934 const struct cred *cred, 2935 unsigned long flags) 2936{ 2937 return 0; 2938} 2939 2940static inline void security_key_free(struct key *key) 2941{ 2942} 2943 2944static inline int security_key_permission(key_ref_t key_ref, 2945 const struct cred *cred, 2946 key_perm_t perm) 2947{ 2948 return 0; 2949} 2950 2951static inline int security_key_getsecurity(struct key *key, char **_buffer) 2952{ 2953 *_buffer = NULL; 2954 return 0; 2955} 2956 2957#endif 2958#endif /* CONFIG_KEYS */ 2959 2960#ifdef CONFIG_AUDIT 2961#ifdef CONFIG_SECURITY 2962int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule); 2963int security_audit_rule_known(struct audit_krule *krule); 2964int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 2965 struct audit_context *actx); 2966void security_audit_rule_free(void *lsmrule); 2967 2968#else 2969 2970static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr, 2971 void **lsmrule) 2972{ 2973 return 0; 2974} 2975 2976static inline int security_audit_rule_known(struct audit_krule *krule) 2977{ 2978 return 0; 2979} 2980 2981static inline int security_audit_rule_match(u32 secid, u32 field, u32 op, 2982 void *lsmrule, struct audit_context *actx) 2983{ 2984 return 0; 2985} 2986 2987static inline void security_audit_rule_free(void *lsmrule) 2988{ } 2989 2990#endif /* CONFIG_SECURITY */ 2991#endif /* CONFIG_AUDIT */ 2992 2993#ifdef CONFIG_SECURITYFS 2994 2995extern struct dentry *securityfs_create_file(const char *name, mode_t mode, 2996 struct dentry *parent, void *data, 2997 const struct file_operations *fops); 2998extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); 2999extern void securityfs_remove(struct dentry *dentry); 3000 3001#else /* CONFIG_SECURITYFS */ 3002 3003static inline struct dentry *securityfs_create_dir(const char *name, 3004 struct dentry *parent) 3005{ 3006 return ERR_PTR(-ENODEV); 3007} 3008 3009static inline struct dentry *securityfs_create_file(const char *name, 3010 mode_t mode, 3011 struct dentry *parent, 3012 void *data, 3013 const struct file_operations *fops) 3014{ 3015 return ERR_PTR(-ENODEV); 3016} 3017 3018static inline void securityfs_remove(struct dentry *dentry) 3019{} 3020 3021#endif 3022 3023#ifdef CONFIG_SECURITY 3024 3025static inline char *alloc_secdata(void) 3026{ 3027 return (char *)get_zeroed_page(GFP_KERNEL); 3028} 3029 3030static inline void free_secdata(void *secdata) 3031{ 3032 free_page((unsigned long)secdata); 3033} 3034 3035#else 3036 3037static inline char *alloc_secdata(void) 3038{ 3039 return (char *)1; 3040} 3041 3042static inline void free_secdata(void *secdata) 3043{ } 3044#endif /* CONFIG_SECURITY */ 3045 3046#endif /* ! __LINUX_SECURITY_H */ 3047