at v3.1-rc4 27 kB view raw
1/* 2 * Copyright (C) 2010 IBM Corporation 3 * Copyright (C) 2010 Politecnico di Torino, Italy 4 * TORSEC group -- http://security.polito.it 5 * 6 * Authors: 7 * Mimi Zohar <zohar@us.ibm.com> 8 * Roberto Sassu <roberto.sassu@polito.it> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, version 2 of the License. 13 * 14 * See Documentation/security/keys-trusted-encrypted.txt 15 */ 16 17#include <linux/uaccess.h> 18#include <linux/module.h> 19#include <linux/init.h> 20#include <linux/slab.h> 21#include <linux/parser.h> 22#include <linux/string.h> 23#include <linux/err.h> 24#include <keys/user-type.h> 25#include <keys/trusted-type.h> 26#include <keys/encrypted-type.h> 27#include <linux/key-type.h> 28#include <linux/random.h> 29#include <linux/rcupdate.h> 30#include <linux/scatterlist.h> 31#include <linux/crypto.h> 32#include <linux/ctype.h> 33#include <crypto/hash.h> 34#include <crypto/sha.h> 35#include <crypto/aes.h> 36 37#include "encrypted.h" 38#include "ecryptfs_format.h" 39 40static const char KEY_TRUSTED_PREFIX[] = "trusted:"; 41static const char KEY_USER_PREFIX[] = "user:"; 42static const char hash_alg[] = "sha256"; 43static const char hmac_alg[] = "hmac(sha256)"; 44static const char blkcipher_alg[] = "cbc(aes)"; 45static const char key_format_default[] = "default"; 46static const char key_format_ecryptfs[] = "ecryptfs"; 47static unsigned int ivsize; 48static int blksize; 49 50#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) 51#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) 52#define KEY_ECRYPTFS_DESC_LEN 16 53#define HASH_SIZE SHA256_DIGEST_SIZE 54#define MAX_DATA_SIZE 4096 55#define MIN_DATA_SIZE 20 56 57struct sdesc { 58 struct shash_desc shash; 59 char ctx[]; 60}; 61 62static struct crypto_shash *hashalg; 63static struct crypto_shash *hmacalg; 64 65enum { 66 Opt_err = -1, Opt_new, Opt_load, Opt_update 67}; 68 69enum { 70 Opt_error = -1, Opt_default, Opt_ecryptfs 71}; 72 73static const match_table_t key_format_tokens = { 74 {Opt_default, "default"}, 75 {Opt_ecryptfs, "ecryptfs"}, 76 {Opt_error, NULL} 77}; 78 79static const match_table_t key_tokens = { 80 {Opt_new, "new"}, 81 {Opt_load, "load"}, 82 {Opt_update, "update"}, 83 {Opt_err, NULL} 84}; 85 86static int aes_get_sizes(void) 87{ 88 struct crypto_blkcipher *tfm; 89 90 tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); 91 if (IS_ERR(tfm)) { 92 pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", 93 PTR_ERR(tfm)); 94 return PTR_ERR(tfm); 95 } 96 ivsize = crypto_blkcipher_ivsize(tfm); 97 blksize = crypto_blkcipher_blocksize(tfm); 98 crypto_free_blkcipher(tfm); 99 return 0; 100} 101 102/* 103 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key 104 * 105 * The description of a encrypted key with format 'ecryptfs' must contain 106 * exactly 16 hexadecimal characters. 107 * 108 */ 109static int valid_ecryptfs_desc(const char *ecryptfs_desc) 110{ 111 int i; 112 113 if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) { 114 pr_err("encrypted_key: key description must be %d hexadecimal " 115 "characters long\n", KEY_ECRYPTFS_DESC_LEN); 116 return -EINVAL; 117 } 118 119 for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) { 120 if (!isxdigit(ecryptfs_desc[i])) { 121 pr_err("encrypted_key: key description must contain " 122 "only hexadecimal characters\n"); 123 return -EINVAL; 124 } 125 } 126 127 return 0; 128} 129 130/* 131 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key 132 * 133 * key-type:= "trusted:" | "user:" 134 * desc:= master-key description 135 * 136 * Verify that 'key-type' is valid and that 'desc' exists. On key update, 137 * only the master key description is permitted to change, not the key-type. 138 * The key-type remains constant. 139 * 140 * On success returns 0, otherwise -EINVAL. 141 */ 142static int valid_master_desc(const char *new_desc, const char *orig_desc) 143{ 144 if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) { 145 if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN) 146 goto out; 147 if (orig_desc) 148 if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN)) 149 goto out; 150 } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) { 151 if (strlen(new_desc) == KEY_USER_PREFIX_LEN) 152 goto out; 153 if (orig_desc) 154 if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN)) 155 goto out; 156 } else 157 goto out; 158 return 0; 159out: 160 return -EINVAL; 161} 162 163/* 164 * datablob_parse - parse the keyctl data 165 * 166 * datablob format: 167 * new [<format>] <master-key name> <decrypted data length> 168 * load [<format>] <master-key name> <decrypted data length> 169 * <encrypted iv + data> 170 * update <new-master-key name> 171 * 172 * Tokenizes a copy of the keyctl data, returning a pointer to each token, 173 * which is null terminated. 174 * 175 * On success returns 0, otherwise -EINVAL. 176 */ 177static int datablob_parse(char *datablob, const char **format, 178 char **master_desc, char **decrypted_datalen, 179 char **hex_encoded_iv) 180{ 181 substring_t args[MAX_OPT_ARGS]; 182 int ret = -EINVAL; 183 int key_cmd; 184 int key_format; 185 char *p, *keyword; 186 187 keyword = strsep(&datablob, " \t"); 188 if (!keyword) { 189 pr_info("encrypted_key: insufficient parameters specified\n"); 190 return ret; 191 } 192 key_cmd = match_token(keyword, key_tokens, args); 193 194 /* Get optional format: default | ecryptfs */ 195 p = strsep(&datablob, " \t"); 196 if (!p) { 197 pr_err("encrypted_key: insufficient parameters specified\n"); 198 return ret; 199 } 200 201 key_format = match_token(p, key_format_tokens, args); 202 switch (key_format) { 203 case Opt_ecryptfs: 204 case Opt_default: 205 *format = p; 206 *master_desc = strsep(&datablob, " \t"); 207 break; 208 case Opt_error: 209 *master_desc = p; 210 break; 211 } 212 213 if (!*master_desc) { 214 pr_info("encrypted_key: master key parameter is missing\n"); 215 goto out; 216 } 217 218 if (valid_master_desc(*master_desc, NULL) < 0) { 219 pr_info("encrypted_key: master key parameter \'%s\' " 220 "is invalid\n", *master_desc); 221 goto out; 222 } 223 224 if (decrypted_datalen) { 225 *decrypted_datalen = strsep(&datablob, " \t"); 226 if (!*decrypted_datalen) { 227 pr_info("encrypted_key: keylen parameter is missing\n"); 228 goto out; 229 } 230 } 231 232 switch (key_cmd) { 233 case Opt_new: 234 if (!decrypted_datalen) { 235 pr_info("encrypted_key: keyword \'%s\' not allowed " 236 "when called from .update method\n", keyword); 237 break; 238 } 239 ret = 0; 240 break; 241 case Opt_load: 242 if (!decrypted_datalen) { 243 pr_info("encrypted_key: keyword \'%s\' not allowed " 244 "when called from .update method\n", keyword); 245 break; 246 } 247 *hex_encoded_iv = strsep(&datablob, " \t"); 248 if (!*hex_encoded_iv) { 249 pr_info("encrypted_key: hex blob is missing\n"); 250 break; 251 } 252 ret = 0; 253 break; 254 case Opt_update: 255 if (decrypted_datalen) { 256 pr_info("encrypted_key: keyword \'%s\' not allowed " 257 "when called from .instantiate method\n", 258 keyword); 259 break; 260 } 261 ret = 0; 262 break; 263 case Opt_err: 264 pr_info("encrypted_key: keyword \'%s\' not recognized\n", 265 keyword); 266 break; 267 } 268out: 269 return ret; 270} 271 272/* 273 * datablob_format - format as an ascii string, before copying to userspace 274 */ 275static char *datablob_format(struct encrypted_key_payload *epayload, 276 size_t asciiblob_len) 277{ 278 char *ascii_buf, *bufp; 279 u8 *iv = epayload->iv; 280 int len; 281 int i; 282 283 ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); 284 if (!ascii_buf) 285 goto out; 286 287 ascii_buf[asciiblob_len] = '\0'; 288 289 /* copy datablob master_desc and datalen strings */ 290 len = sprintf(ascii_buf, "%s %s %s ", epayload->format, 291 epayload->master_desc, epayload->datalen); 292 293 /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ 294 bufp = &ascii_buf[len]; 295 for (i = 0; i < (asciiblob_len - len) / 2; i++) 296 bufp = pack_hex_byte(bufp, iv[i]); 297out: 298 return ascii_buf; 299} 300 301/* 302 * request_trusted_key - request the trusted key 303 * 304 * Trusted keys are sealed to PCRs and other metadata. Although userspace 305 * manages both trusted/encrypted key-types, like the encrypted key type 306 * data, trusted key type data is not visible decrypted from userspace. 307 */ 308static struct key *request_trusted_key(const char *trusted_desc, 309 u8 **master_key, size_t *master_keylen) 310{ 311 struct trusted_key_payload *tpayload; 312 struct key *tkey; 313 314 tkey = request_key(&key_type_trusted, trusted_desc, NULL); 315 if (IS_ERR(tkey)) 316 goto error; 317 318 down_read(&tkey->sem); 319 tpayload = rcu_dereference(tkey->payload.data); 320 *master_key = tpayload->key; 321 *master_keylen = tpayload->key_len; 322error: 323 return tkey; 324} 325 326/* 327 * request_user_key - request the user key 328 * 329 * Use a user provided key to encrypt/decrypt an encrypted-key. 330 */ 331static struct key *request_user_key(const char *master_desc, u8 **master_key, 332 size_t *master_keylen) 333{ 334 struct user_key_payload *upayload; 335 struct key *ukey; 336 337 ukey = request_key(&key_type_user, master_desc, NULL); 338 if (IS_ERR(ukey)) 339 goto error; 340 341 down_read(&ukey->sem); 342 upayload = rcu_dereference(ukey->payload.data); 343 *master_key = upayload->data; 344 *master_keylen = upayload->datalen; 345error: 346 return ukey; 347} 348 349static struct sdesc *alloc_sdesc(struct crypto_shash *alg) 350{ 351 struct sdesc *sdesc; 352 int size; 353 354 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); 355 sdesc = kmalloc(size, GFP_KERNEL); 356 if (!sdesc) 357 return ERR_PTR(-ENOMEM); 358 sdesc->shash.tfm = alg; 359 sdesc->shash.flags = 0x0; 360 return sdesc; 361} 362 363static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen, 364 const u8 *buf, unsigned int buflen) 365{ 366 struct sdesc *sdesc; 367 int ret; 368 369 sdesc = alloc_sdesc(hmacalg); 370 if (IS_ERR(sdesc)) { 371 pr_info("encrypted_key: can't alloc %s\n", hmac_alg); 372 return PTR_ERR(sdesc); 373 } 374 375 ret = crypto_shash_setkey(hmacalg, key, keylen); 376 if (!ret) 377 ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); 378 kfree(sdesc); 379 return ret; 380} 381 382static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen) 383{ 384 struct sdesc *sdesc; 385 int ret; 386 387 sdesc = alloc_sdesc(hashalg); 388 if (IS_ERR(sdesc)) { 389 pr_info("encrypted_key: can't alloc %s\n", hash_alg); 390 return PTR_ERR(sdesc); 391 } 392 393 ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); 394 kfree(sdesc); 395 return ret; 396} 397 398enum derived_key_type { ENC_KEY, AUTH_KEY }; 399 400/* Derive authentication/encryption key from trusted key */ 401static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, 402 const u8 *master_key, size_t master_keylen) 403{ 404 u8 *derived_buf; 405 unsigned int derived_buf_len; 406 int ret; 407 408 derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; 409 if (derived_buf_len < HASH_SIZE) 410 derived_buf_len = HASH_SIZE; 411 412 derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); 413 if (!derived_buf) { 414 pr_err("encrypted_key: out of memory\n"); 415 return -ENOMEM; 416 } 417 if (key_type) 418 strcpy(derived_buf, "AUTH_KEY"); 419 else 420 strcpy(derived_buf, "ENC_KEY"); 421 422 memcpy(derived_buf + strlen(derived_buf) + 1, master_key, 423 master_keylen); 424 ret = calc_hash(derived_key, derived_buf, derived_buf_len); 425 kfree(derived_buf); 426 return ret; 427} 428 429static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key, 430 unsigned int key_len, const u8 *iv, 431 unsigned int ivsize) 432{ 433 int ret; 434 435 desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); 436 if (IS_ERR(desc->tfm)) { 437 pr_err("encrypted_key: failed to load %s transform (%ld)\n", 438 blkcipher_alg, PTR_ERR(desc->tfm)); 439 return PTR_ERR(desc->tfm); 440 } 441 desc->flags = 0; 442 443 ret = crypto_blkcipher_setkey(desc->tfm, key, key_len); 444 if (ret < 0) { 445 pr_err("encrypted_key: failed to setkey (%d)\n", ret); 446 crypto_free_blkcipher(desc->tfm); 447 return ret; 448 } 449 crypto_blkcipher_set_iv(desc->tfm, iv, ivsize); 450 return 0; 451} 452 453static struct key *request_master_key(struct encrypted_key_payload *epayload, 454 u8 **master_key, size_t *master_keylen) 455{ 456 struct key *mkey = NULL; 457 458 if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, 459 KEY_TRUSTED_PREFIX_LEN)) { 460 mkey = request_trusted_key(epayload->master_desc + 461 KEY_TRUSTED_PREFIX_LEN, 462 master_key, master_keylen); 463 } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, 464 KEY_USER_PREFIX_LEN)) { 465 mkey = request_user_key(epayload->master_desc + 466 KEY_USER_PREFIX_LEN, 467 master_key, master_keylen); 468 } else 469 goto out; 470 471 if (IS_ERR(mkey)) { 472 pr_info("encrypted_key: key %s not found", 473 epayload->master_desc); 474 goto out; 475 } 476 477 dump_master_key(*master_key, *master_keylen); 478out: 479 return mkey; 480} 481 482/* Before returning data to userspace, encrypt decrypted data. */ 483static int derived_key_encrypt(struct encrypted_key_payload *epayload, 484 const u8 *derived_key, 485 unsigned int derived_keylen) 486{ 487 struct scatterlist sg_in[2]; 488 struct scatterlist sg_out[1]; 489 struct blkcipher_desc desc; 490 unsigned int encrypted_datalen; 491 unsigned int padlen; 492 char pad[16]; 493 int ret; 494 495 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); 496 padlen = encrypted_datalen - epayload->decrypted_datalen; 497 498 ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, 499 epayload->iv, ivsize); 500 if (ret < 0) 501 goto out; 502 dump_decrypted_data(epayload); 503 504 memset(pad, 0, sizeof pad); 505 sg_init_table(sg_in, 2); 506 sg_set_buf(&sg_in[0], epayload->decrypted_data, 507 epayload->decrypted_datalen); 508 sg_set_buf(&sg_in[1], pad, padlen); 509 510 sg_init_table(sg_out, 1); 511 sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); 512 513 ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen); 514 crypto_free_blkcipher(desc.tfm); 515 if (ret < 0) 516 pr_err("encrypted_key: failed to encrypt (%d)\n", ret); 517 else 518 dump_encrypted_data(epayload, encrypted_datalen); 519out: 520 return ret; 521} 522 523static int datablob_hmac_append(struct encrypted_key_payload *epayload, 524 const u8 *master_key, size_t master_keylen) 525{ 526 u8 derived_key[HASH_SIZE]; 527 u8 *digest; 528 int ret; 529 530 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); 531 if (ret < 0) 532 goto out; 533 534 digest = epayload->format + epayload->datablob_len; 535 ret = calc_hmac(digest, derived_key, sizeof derived_key, 536 epayload->format, epayload->datablob_len); 537 if (!ret) 538 dump_hmac(NULL, digest, HASH_SIZE); 539out: 540 return ret; 541} 542 543/* verify HMAC before decrypting encrypted key */ 544static int datablob_hmac_verify(struct encrypted_key_payload *epayload, 545 const u8 *format, const u8 *master_key, 546 size_t master_keylen) 547{ 548 u8 derived_key[HASH_SIZE]; 549 u8 digest[HASH_SIZE]; 550 int ret; 551 char *p; 552 unsigned short len; 553 554 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); 555 if (ret < 0) 556 goto out; 557 558 len = epayload->datablob_len; 559 if (!format) { 560 p = epayload->master_desc; 561 len -= strlen(epayload->format) + 1; 562 } else 563 p = epayload->format; 564 565 ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len); 566 if (ret < 0) 567 goto out; 568 ret = memcmp(digest, epayload->format + epayload->datablob_len, 569 sizeof digest); 570 if (ret) { 571 ret = -EINVAL; 572 dump_hmac("datablob", 573 epayload->format + epayload->datablob_len, 574 HASH_SIZE); 575 dump_hmac("calc", digest, HASH_SIZE); 576 } 577out: 578 return ret; 579} 580 581static int derived_key_decrypt(struct encrypted_key_payload *epayload, 582 const u8 *derived_key, 583 unsigned int derived_keylen) 584{ 585 struct scatterlist sg_in[1]; 586 struct scatterlist sg_out[2]; 587 struct blkcipher_desc desc; 588 unsigned int encrypted_datalen; 589 char pad[16]; 590 int ret; 591 592 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); 593 ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, 594 epayload->iv, ivsize); 595 if (ret < 0) 596 goto out; 597 dump_encrypted_data(epayload, encrypted_datalen); 598 599 memset(pad, 0, sizeof pad); 600 sg_init_table(sg_in, 1); 601 sg_init_table(sg_out, 2); 602 sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); 603 sg_set_buf(&sg_out[0], epayload->decrypted_data, 604 epayload->decrypted_datalen); 605 sg_set_buf(&sg_out[1], pad, sizeof pad); 606 607 ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen); 608 crypto_free_blkcipher(desc.tfm); 609 if (ret < 0) 610 goto out; 611 dump_decrypted_data(epayload); 612out: 613 return ret; 614} 615 616/* Allocate memory for decrypted key and datablob. */ 617static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, 618 const char *format, 619 const char *master_desc, 620 const char *datalen) 621{ 622 struct encrypted_key_payload *epayload = NULL; 623 unsigned short datablob_len; 624 unsigned short decrypted_datalen; 625 unsigned short payload_datalen; 626 unsigned int encrypted_datalen; 627 unsigned int format_len; 628 long dlen; 629 int ret; 630 631 ret = strict_strtol(datalen, 10, &dlen); 632 if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) 633 return ERR_PTR(-EINVAL); 634 635 format_len = (!format) ? strlen(key_format_default) : strlen(format); 636 decrypted_datalen = dlen; 637 payload_datalen = decrypted_datalen; 638 if (format && !strcmp(format, key_format_ecryptfs)) { 639 if (dlen != ECRYPTFS_MAX_KEY_BYTES) { 640 pr_err("encrypted_key: keylen for the ecryptfs format " 641 "must be equal to %d bytes\n", 642 ECRYPTFS_MAX_KEY_BYTES); 643 return ERR_PTR(-EINVAL); 644 } 645 decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES; 646 payload_datalen = sizeof(struct ecryptfs_auth_tok); 647 } 648 649 encrypted_datalen = roundup(decrypted_datalen, blksize); 650 651 datablob_len = format_len + 1 + strlen(master_desc) + 1 652 + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen; 653 654 ret = key_payload_reserve(key, payload_datalen + datablob_len 655 + HASH_SIZE + 1); 656 if (ret < 0) 657 return ERR_PTR(ret); 658 659 epayload = kzalloc(sizeof(*epayload) + payload_datalen + 660 datablob_len + HASH_SIZE + 1, GFP_KERNEL); 661 if (!epayload) 662 return ERR_PTR(-ENOMEM); 663 664 epayload->payload_datalen = payload_datalen; 665 epayload->decrypted_datalen = decrypted_datalen; 666 epayload->datablob_len = datablob_len; 667 return epayload; 668} 669 670static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, 671 const char *format, const char *hex_encoded_iv) 672{ 673 struct key *mkey; 674 u8 derived_key[HASH_SIZE]; 675 u8 *master_key; 676 u8 *hmac; 677 const char *hex_encoded_data; 678 unsigned int encrypted_datalen; 679 size_t master_keylen; 680 size_t asciilen; 681 int ret; 682 683 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); 684 asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; 685 if (strlen(hex_encoded_iv) != asciilen) 686 return -EINVAL; 687 688 hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; 689 hex2bin(epayload->iv, hex_encoded_iv, ivsize); 690 hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen); 691 692 hmac = epayload->format + epayload->datablob_len; 693 hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE); 694 695 mkey = request_master_key(epayload, &master_key, &master_keylen); 696 if (IS_ERR(mkey)) 697 return PTR_ERR(mkey); 698 699 ret = datablob_hmac_verify(epayload, format, master_key, master_keylen); 700 if (ret < 0) { 701 pr_err("encrypted_key: bad hmac (%d)\n", ret); 702 goto out; 703 } 704 705 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); 706 if (ret < 0) 707 goto out; 708 709 ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); 710 if (ret < 0) 711 pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); 712out: 713 up_read(&mkey->sem); 714 key_put(mkey); 715 return ret; 716} 717 718static void __ekey_init(struct encrypted_key_payload *epayload, 719 const char *format, const char *master_desc, 720 const char *datalen) 721{ 722 unsigned int format_len; 723 724 format_len = (!format) ? strlen(key_format_default) : strlen(format); 725 epayload->format = epayload->payload_data + epayload->payload_datalen; 726 epayload->master_desc = epayload->format + format_len + 1; 727 epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; 728 epayload->iv = epayload->datalen + strlen(datalen) + 1; 729 epayload->encrypted_data = epayload->iv + ivsize + 1; 730 epayload->decrypted_data = epayload->payload_data; 731 732 if (!format) 733 memcpy(epayload->format, key_format_default, format_len); 734 else { 735 if (!strcmp(format, key_format_ecryptfs)) 736 epayload->decrypted_data = 737 ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data); 738 739 memcpy(epayload->format, format, format_len); 740 } 741 742 memcpy(epayload->master_desc, master_desc, strlen(master_desc)); 743 memcpy(epayload->datalen, datalen, strlen(datalen)); 744} 745 746/* 747 * encrypted_init - initialize an encrypted key 748 * 749 * For a new key, use a random number for both the iv and data 750 * itself. For an old key, decrypt the hex encoded data. 751 */ 752static int encrypted_init(struct encrypted_key_payload *epayload, 753 const char *key_desc, const char *format, 754 const char *master_desc, const char *datalen, 755 const char *hex_encoded_iv) 756{ 757 int ret = 0; 758 759 if (format && !strcmp(format, key_format_ecryptfs)) { 760 ret = valid_ecryptfs_desc(key_desc); 761 if (ret < 0) 762 return ret; 763 764 ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data, 765 key_desc); 766 } 767 768 __ekey_init(epayload, format, master_desc, datalen); 769 if (!hex_encoded_iv) { 770 get_random_bytes(epayload->iv, ivsize); 771 772 get_random_bytes(epayload->decrypted_data, 773 epayload->decrypted_datalen); 774 } else 775 ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv); 776 return ret; 777} 778 779/* 780 * encrypted_instantiate - instantiate an encrypted key 781 * 782 * Decrypt an existing encrypted datablob or create a new encrypted key 783 * based on a kernel random number. 784 * 785 * On success, return 0. Otherwise return errno. 786 */ 787static int encrypted_instantiate(struct key *key, const void *data, 788 size_t datalen) 789{ 790 struct encrypted_key_payload *epayload = NULL; 791 char *datablob = NULL; 792 const char *format = NULL; 793 char *master_desc = NULL; 794 char *decrypted_datalen = NULL; 795 char *hex_encoded_iv = NULL; 796 int ret; 797 798 if (datalen <= 0 || datalen > 32767 || !data) 799 return -EINVAL; 800 801 datablob = kmalloc(datalen + 1, GFP_KERNEL); 802 if (!datablob) 803 return -ENOMEM; 804 datablob[datalen] = 0; 805 memcpy(datablob, data, datalen); 806 ret = datablob_parse(datablob, &format, &master_desc, 807 &decrypted_datalen, &hex_encoded_iv); 808 if (ret < 0) 809 goto out; 810 811 epayload = encrypted_key_alloc(key, format, master_desc, 812 decrypted_datalen); 813 if (IS_ERR(epayload)) { 814 ret = PTR_ERR(epayload); 815 goto out; 816 } 817 ret = encrypted_init(epayload, key->description, format, master_desc, 818 decrypted_datalen, hex_encoded_iv); 819 if (ret < 0) { 820 kfree(epayload); 821 goto out; 822 } 823 824 rcu_assign_pointer(key->payload.data, epayload); 825out: 826 kfree(datablob); 827 return ret; 828} 829 830static void encrypted_rcu_free(struct rcu_head *rcu) 831{ 832 struct encrypted_key_payload *epayload; 833 834 epayload = container_of(rcu, struct encrypted_key_payload, rcu); 835 memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); 836 kfree(epayload); 837} 838 839/* 840 * encrypted_update - update the master key description 841 * 842 * Change the master key description for an existing encrypted key. 843 * The next read will return an encrypted datablob using the new 844 * master key description. 845 * 846 * On success, return 0. Otherwise return errno. 847 */ 848static int encrypted_update(struct key *key, const void *data, size_t datalen) 849{ 850 struct encrypted_key_payload *epayload = key->payload.data; 851 struct encrypted_key_payload *new_epayload; 852 char *buf; 853 char *new_master_desc = NULL; 854 const char *format = NULL; 855 int ret = 0; 856 857 if (datalen <= 0 || datalen > 32767 || !data) 858 return -EINVAL; 859 860 buf = kmalloc(datalen + 1, GFP_KERNEL); 861 if (!buf) 862 return -ENOMEM; 863 864 buf[datalen] = 0; 865 memcpy(buf, data, datalen); 866 ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL); 867 if (ret < 0) 868 goto out; 869 870 ret = valid_master_desc(new_master_desc, epayload->master_desc); 871 if (ret < 0) 872 goto out; 873 874 new_epayload = encrypted_key_alloc(key, epayload->format, 875 new_master_desc, epayload->datalen); 876 if (IS_ERR(new_epayload)) { 877 ret = PTR_ERR(new_epayload); 878 goto out; 879 } 880 881 __ekey_init(new_epayload, epayload->format, new_master_desc, 882 epayload->datalen); 883 884 memcpy(new_epayload->iv, epayload->iv, ivsize); 885 memcpy(new_epayload->payload_data, epayload->payload_data, 886 epayload->payload_datalen); 887 888 rcu_assign_pointer(key->payload.data, new_epayload); 889 call_rcu(&epayload->rcu, encrypted_rcu_free); 890out: 891 kfree(buf); 892 return ret; 893} 894 895/* 896 * encrypted_read - format and copy the encrypted data to userspace 897 * 898 * The resulting datablob format is: 899 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> 900 * 901 * On success, return to userspace the encrypted key datablob size. 902 */ 903static long encrypted_read(const struct key *key, char __user *buffer, 904 size_t buflen) 905{ 906 struct encrypted_key_payload *epayload; 907 struct key *mkey; 908 u8 *master_key; 909 size_t master_keylen; 910 char derived_key[HASH_SIZE]; 911 char *ascii_buf; 912 size_t asciiblob_len; 913 int ret; 914 915 epayload = rcu_dereference_key(key); 916 917 /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ 918 asciiblob_len = epayload->datablob_len + ivsize + 1 919 + roundup(epayload->decrypted_datalen, blksize) 920 + (HASH_SIZE * 2); 921 922 if (!buffer || buflen < asciiblob_len) 923 return asciiblob_len; 924 925 mkey = request_master_key(epayload, &master_key, &master_keylen); 926 if (IS_ERR(mkey)) 927 return PTR_ERR(mkey); 928 929 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); 930 if (ret < 0) 931 goto out; 932 933 ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); 934 if (ret < 0) 935 goto out; 936 937 ret = datablob_hmac_append(epayload, master_key, master_keylen); 938 if (ret < 0) 939 goto out; 940 941 ascii_buf = datablob_format(epayload, asciiblob_len); 942 if (!ascii_buf) { 943 ret = -ENOMEM; 944 goto out; 945 } 946 947 up_read(&mkey->sem); 948 key_put(mkey); 949 950 if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0) 951 ret = -EFAULT; 952 kfree(ascii_buf); 953 954 return asciiblob_len; 955out: 956 up_read(&mkey->sem); 957 key_put(mkey); 958 return ret; 959} 960 961/* 962 * encrypted_destroy - before freeing the key, clear the decrypted data 963 * 964 * Before freeing the key, clear the memory containing the decrypted 965 * key data. 966 */ 967static void encrypted_destroy(struct key *key) 968{ 969 struct encrypted_key_payload *epayload = key->payload.data; 970 971 if (!epayload) 972 return; 973 974 memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); 975 kfree(key->payload.data); 976} 977 978struct key_type key_type_encrypted = { 979 .name = "encrypted", 980 .instantiate = encrypted_instantiate, 981 .update = encrypted_update, 982 .match = user_match, 983 .destroy = encrypted_destroy, 984 .describe = user_describe, 985 .read = encrypted_read, 986}; 987EXPORT_SYMBOL_GPL(key_type_encrypted); 988 989static void encrypted_shash_release(void) 990{ 991 if (hashalg) 992 crypto_free_shash(hashalg); 993 if (hmacalg) 994 crypto_free_shash(hmacalg); 995} 996 997static int __init encrypted_shash_alloc(void) 998{ 999 int ret; 1000 1001 hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC); 1002 if (IS_ERR(hmacalg)) { 1003 pr_info("encrypted_key: could not allocate crypto %s\n", 1004 hmac_alg); 1005 return PTR_ERR(hmacalg); 1006 } 1007 1008 hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC); 1009 if (IS_ERR(hashalg)) { 1010 pr_info("encrypted_key: could not allocate crypto %s\n", 1011 hash_alg); 1012 ret = PTR_ERR(hashalg); 1013 goto hashalg_fail; 1014 } 1015 1016 return 0; 1017 1018hashalg_fail: 1019 crypto_free_shash(hmacalg); 1020 return ret; 1021} 1022 1023static int __init init_encrypted(void) 1024{ 1025 int ret; 1026 1027 ret = encrypted_shash_alloc(); 1028 if (ret < 0) 1029 return ret; 1030 ret = register_key_type(&key_type_encrypted); 1031 if (ret < 0) 1032 goto out; 1033 return aes_get_sizes(); 1034out: 1035 encrypted_shash_release(); 1036 return ret; 1037 1038} 1039 1040static void __exit cleanup_encrypted(void) 1041{ 1042 encrypted_shash_release(); 1043 unregister_key_type(&key_type_encrypted); 1044} 1045 1046late_initcall(init_encrypted); 1047module_exit(cleanup_encrypted); 1048 1049MODULE_LICENSE("GPL");