at v3.1-rc2 11 kB view raw
1/* flow.c: Generic flow cache. 2 * 3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru) 4 * Copyright (C) 2003 David S. Miller (davem@redhat.com) 5 */ 6 7#include <linux/kernel.h> 8#include <linux/module.h> 9#include <linux/list.h> 10#include <linux/jhash.h> 11#include <linux/interrupt.h> 12#include <linux/mm.h> 13#include <linux/random.h> 14#include <linux/init.h> 15#include <linux/slab.h> 16#include <linux/smp.h> 17#include <linux/completion.h> 18#include <linux/percpu.h> 19#include <linux/bitops.h> 20#include <linux/notifier.h> 21#include <linux/cpu.h> 22#include <linux/cpumask.h> 23#include <linux/mutex.h> 24#include <net/flow.h> 25#include <linux/atomic.h> 26#include <linux/security.h> 27 28struct flow_cache_entry { 29 union { 30 struct hlist_node hlist; 31 struct list_head gc_list; 32 } u; 33 u16 family; 34 u8 dir; 35 u32 genid; 36 struct flowi key; 37 struct flow_cache_object *object; 38}; 39 40struct flow_cache_percpu { 41 struct hlist_head *hash_table; 42 int hash_count; 43 u32 hash_rnd; 44 int hash_rnd_recalc; 45 struct tasklet_struct flush_tasklet; 46}; 47 48struct flow_flush_info { 49 struct flow_cache *cache; 50 atomic_t cpuleft; 51 struct completion completion; 52}; 53 54struct flow_cache { 55 u32 hash_shift; 56 struct flow_cache_percpu __percpu *percpu; 57 struct notifier_block hotcpu_notifier; 58 int low_watermark; 59 int high_watermark; 60 struct timer_list rnd_timer; 61}; 62 63atomic_t flow_cache_genid = ATOMIC_INIT(0); 64EXPORT_SYMBOL(flow_cache_genid); 65static struct flow_cache flow_cache_global; 66static struct kmem_cache *flow_cachep __read_mostly; 67 68static DEFINE_SPINLOCK(flow_cache_gc_lock); 69static LIST_HEAD(flow_cache_gc_list); 70 71#define flow_cache_hash_size(cache) (1 << (cache)->hash_shift) 72#define FLOW_HASH_RND_PERIOD (10 * 60 * HZ) 73 74static void flow_cache_new_hashrnd(unsigned long arg) 75{ 76 struct flow_cache *fc = (void *) arg; 77 int i; 78 79 for_each_possible_cpu(i) 80 per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1; 81 82 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 83 add_timer(&fc->rnd_timer); 84} 85 86static int flow_entry_valid(struct flow_cache_entry *fle) 87{ 88 if (atomic_read(&flow_cache_genid) != fle->genid) 89 return 0; 90 if (fle->object && !fle->object->ops->check(fle->object)) 91 return 0; 92 return 1; 93} 94 95static void flow_entry_kill(struct flow_cache_entry *fle) 96{ 97 if (fle->object) 98 fle->object->ops->delete(fle->object); 99 kmem_cache_free(flow_cachep, fle); 100} 101 102static void flow_cache_gc_task(struct work_struct *work) 103{ 104 struct list_head gc_list; 105 struct flow_cache_entry *fce, *n; 106 107 INIT_LIST_HEAD(&gc_list); 108 spin_lock_bh(&flow_cache_gc_lock); 109 list_splice_tail_init(&flow_cache_gc_list, &gc_list); 110 spin_unlock_bh(&flow_cache_gc_lock); 111 112 list_for_each_entry_safe(fce, n, &gc_list, u.gc_list) 113 flow_entry_kill(fce); 114} 115static DECLARE_WORK(flow_cache_gc_work, flow_cache_gc_task); 116 117static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp, 118 int deleted, struct list_head *gc_list) 119{ 120 if (deleted) { 121 fcp->hash_count -= deleted; 122 spin_lock_bh(&flow_cache_gc_lock); 123 list_splice_tail(gc_list, &flow_cache_gc_list); 124 spin_unlock_bh(&flow_cache_gc_lock); 125 schedule_work(&flow_cache_gc_work); 126 } 127} 128 129static void __flow_cache_shrink(struct flow_cache *fc, 130 struct flow_cache_percpu *fcp, 131 int shrink_to) 132{ 133 struct flow_cache_entry *fle; 134 struct hlist_node *entry, *tmp; 135 LIST_HEAD(gc_list); 136 int i, deleted = 0; 137 138 for (i = 0; i < flow_cache_hash_size(fc); i++) { 139 int saved = 0; 140 141 hlist_for_each_entry_safe(fle, entry, tmp, 142 &fcp->hash_table[i], u.hlist) { 143 if (saved < shrink_to && 144 flow_entry_valid(fle)) { 145 saved++; 146 } else { 147 deleted++; 148 hlist_del(&fle->u.hlist); 149 list_add_tail(&fle->u.gc_list, &gc_list); 150 } 151 } 152 } 153 154 flow_cache_queue_garbage(fcp, deleted, &gc_list); 155} 156 157static void flow_cache_shrink(struct flow_cache *fc, 158 struct flow_cache_percpu *fcp) 159{ 160 int shrink_to = fc->low_watermark / flow_cache_hash_size(fc); 161 162 __flow_cache_shrink(fc, fcp, shrink_to); 163} 164 165static void flow_new_hash_rnd(struct flow_cache *fc, 166 struct flow_cache_percpu *fcp) 167{ 168 get_random_bytes(&fcp->hash_rnd, sizeof(u32)); 169 fcp->hash_rnd_recalc = 0; 170 __flow_cache_shrink(fc, fcp, 0); 171} 172 173static u32 flow_hash_code(struct flow_cache *fc, 174 struct flow_cache_percpu *fcp, 175 const struct flowi *key) 176{ 177 const u32 *k = (const u32 *) key; 178 179 return jhash2(k, (sizeof(*key) / sizeof(u32)), fcp->hash_rnd) 180 & (flow_cache_hash_size(fc) - 1); 181} 182 183typedef unsigned long flow_compare_t; 184 185/* I hear what you're saying, use memcmp. But memcmp cannot make 186 * important assumptions that we can here, such as alignment and 187 * constant size. 188 */ 189static int flow_key_compare(const struct flowi *key1, const struct flowi *key2) 190{ 191 const flow_compare_t *k1, *k1_lim, *k2; 192 const int n_elem = sizeof(struct flowi) / sizeof(flow_compare_t); 193 194 BUILD_BUG_ON(sizeof(struct flowi) % sizeof(flow_compare_t)); 195 196 k1 = (const flow_compare_t *) key1; 197 k1_lim = k1 + n_elem; 198 199 k2 = (const flow_compare_t *) key2; 200 201 do { 202 if (*k1++ != *k2++) 203 return 1; 204 } while (k1 < k1_lim); 205 206 return 0; 207} 208 209struct flow_cache_object * 210flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir, 211 flow_resolve_t resolver, void *ctx) 212{ 213 struct flow_cache *fc = &flow_cache_global; 214 struct flow_cache_percpu *fcp; 215 struct flow_cache_entry *fle, *tfle; 216 struct hlist_node *entry; 217 struct flow_cache_object *flo; 218 unsigned int hash; 219 220 local_bh_disable(); 221 fcp = this_cpu_ptr(fc->percpu); 222 223 fle = NULL; 224 flo = NULL; 225 /* Packet really early in init? Making flow_cache_init a 226 * pre-smp initcall would solve this. --RR */ 227 if (!fcp->hash_table) 228 goto nocache; 229 230 if (fcp->hash_rnd_recalc) 231 flow_new_hash_rnd(fc, fcp); 232 233 hash = flow_hash_code(fc, fcp, key); 234 hlist_for_each_entry(tfle, entry, &fcp->hash_table[hash], u.hlist) { 235 if (tfle->family == family && 236 tfle->dir == dir && 237 flow_key_compare(key, &tfle->key) == 0) { 238 fle = tfle; 239 break; 240 } 241 } 242 243 if (unlikely(!fle)) { 244 if (fcp->hash_count > fc->high_watermark) 245 flow_cache_shrink(fc, fcp); 246 247 fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC); 248 if (fle) { 249 fle->family = family; 250 fle->dir = dir; 251 memcpy(&fle->key, key, sizeof(*key)); 252 fle->object = NULL; 253 hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]); 254 fcp->hash_count++; 255 } 256 } else if (likely(fle->genid == atomic_read(&flow_cache_genid))) { 257 flo = fle->object; 258 if (!flo) 259 goto ret_object; 260 flo = flo->ops->get(flo); 261 if (flo) 262 goto ret_object; 263 } else if (fle->object) { 264 flo = fle->object; 265 flo->ops->delete(flo); 266 fle->object = NULL; 267 } 268 269nocache: 270 flo = NULL; 271 if (fle) { 272 flo = fle->object; 273 fle->object = NULL; 274 } 275 flo = resolver(net, key, family, dir, flo, ctx); 276 if (fle) { 277 fle->genid = atomic_read(&flow_cache_genid); 278 if (!IS_ERR(flo)) 279 fle->object = flo; 280 else 281 fle->genid--; 282 } else { 283 if (flo && !IS_ERR(flo)) 284 flo->ops->delete(flo); 285 } 286ret_object: 287 local_bh_enable(); 288 return flo; 289} 290EXPORT_SYMBOL(flow_cache_lookup); 291 292static void flow_cache_flush_tasklet(unsigned long data) 293{ 294 struct flow_flush_info *info = (void *)data; 295 struct flow_cache *fc = info->cache; 296 struct flow_cache_percpu *fcp; 297 struct flow_cache_entry *fle; 298 struct hlist_node *entry, *tmp; 299 LIST_HEAD(gc_list); 300 int i, deleted = 0; 301 302 fcp = this_cpu_ptr(fc->percpu); 303 for (i = 0; i < flow_cache_hash_size(fc); i++) { 304 hlist_for_each_entry_safe(fle, entry, tmp, 305 &fcp->hash_table[i], u.hlist) { 306 if (flow_entry_valid(fle)) 307 continue; 308 309 deleted++; 310 hlist_del(&fle->u.hlist); 311 list_add_tail(&fle->u.gc_list, &gc_list); 312 } 313 } 314 315 flow_cache_queue_garbage(fcp, deleted, &gc_list); 316 317 if (atomic_dec_and_test(&info->cpuleft)) 318 complete(&info->completion); 319} 320 321static void flow_cache_flush_per_cpu(void *data) 322{ 323 struct flow_flush_info *info = data; 324 int cpu; 325 struct tasklet_struct *tasklet; 326 327 cpu = smp_processor_id(); 328 tasklet = &per_cpu_ptr(info->cache->percpu, cpu)->flush_tasklet; 329 tasklet->data = (unsigned long)info; 330 tasklet_schedule(tasklet); 331} 332 333void flow_cache_flush(void) 334{ 335 struct flow_flush_info info; 336 static DEFINE_MUTEX(flow_flush_sem); 337 338 /* Don't want cpus going down or up during this. */ 339 get_online_cpus(); 340 mutex_lock(&flow_flush_sem); 341 info.cache = &flow_cache_global; 342 atomic_set(&info.cpuleft, num_online_cpus()); 343 init_completion(&info.completion); 344 345 local_bh_disable(); 346 smp_call_function(flow_cache_flush_per_cpu, &info, 0); 347 flow_cache_flush_tasklet((unsigned long)&info); 348 local_bh_enable(); 349 350 wait_for_completion(&info.completion); 351 mutex_unlock(&flow_flush_sem); 352 put_online_cpus(); 353} 354 355static int __cpuinit flow_cache_cpu_prepare(struct flow_cache *fc, int cpu) 356{ 357 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 358 size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc); 359 360 if (!fcp->hash_table) { 361 fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); 362 if (!fcp->hash_table) { 363 pr_err("NET: failed to allocate flow cache sz %zu\n", sz); 364 return -ENOMEM; 365 } 366 fcp->hash_rnd_recalc = 1; 367 fcp->hash_count = 0; 368 tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0); 369 } 370 return 0; 371} 372 373static int __cpuinit flow_cache_cpu(struct notifier_block *nfb, 374 unsigned long action, 375 void *hcpu) 376{ 377 struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier); 378 int res, cpu = (unsigned long) hcpu; 379 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 380 381 switch (action) { 382 case CPU_UP_PREPARE: 383 case CPU_UP_PREPARE_FROZEN: 384 res = flow_cache_cpu_prepare(fc, cpu); 385 if (res) 386 return notifier_from_errno(res); 387 break; 388 case CPU_DEAD: 389 case CPU_DEAD_FROZEN: 390 __flow_cache_shrink(fc, fcp, 0); 391 break; 392 } 393 return NOTIFY_OK; 394} 395 396static int __init flow_cache_init(struct flow_cache *fc) 397{ 398 int i; 399 400 fc->hash_shift = 10; 401 fc->low_watermark = 2 * flow_cache_hash_size(fc); 402 fc->high_watermark = 4 * flow_cache_hash_size(fc); 403 404 fc->percpu = alloc_percpu(struct flow_cache_percpu); 405 if (!fc->percpu) 406 return -ENOMEM; 407 408 for_each_online_cpu(i) { 409 if (flow_cache_cpu_prepare(fc, i)) 410 return -ENOMEM; 411 } 412 fc->hotcpu_notifier = (struct notifier_block){ 413 .notifier_call = flow_cache_cpu, 414 }; 415 register_hotcpu_notifier(&fc->hotcpu_notifier); 416 417 setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd, 418 (unsigned long) fc); 419 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 420 add_timer(&fc->rnd_timer); 421 422 return 0; 423} 424 425static int __init flow_cache_init_global(void) 426{ 427 flow_cachep = kmem_cache_create("flow_cache", 428 sizeof(struct flow_cache_entry), 429 0, SLAB_PANIC, NULL); 430 431 return flow_cache_init(&flow_cache_global); 432} 433 434module_init(flow_cache_init_global);