at v3.1-rc2 2293 lines 64 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/dmaengine.h> 31#include <linux/hrtimer.h> 32 33/* Don't change this without changing skb_csum_unnecessary! */ 34#define CHECKSUM_NONE 0 35#define CHECKSUM_UNNECESSARY 1 36#define CHECKSUM_COMPLETE 2 37#define CHECKSUM_PARTIAL 3 38 39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41#define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43#define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48/* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94struct net_device; 95struct scatterlist; 96struct pipe_inode_info; 97 98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99struct nf_conntrack { 100 atomic_t use; 101}; 102#endif 103 104#ifdef CONFIG_BRIDGE_NETFILTER 105struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111}; 112#endif 113 114struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121}; 122 123struct sk_buff; 124 125/* To allow 64K frame to be packed as single skb without frag_list. Since 126 * GRO uses frags we allocate at least 16 regardless of page size. 127 */ 128#if (65536/PAGE_SIZE + 2) < 16 129#define MAX_SKB_FRAGS 16UL 130#else 131#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 132#endif 133 134typedef struct skb_frag_struct skb_frag_t; 135 136struct skb_frag_struct { 137 struct page *page; 138#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 139 __u32 page_offset; 140 __u32 size; 141#else 142 __u16 page_offset; 143 __u16 size; 144#endif 145}; 146 147#define HAVE_HW_TIME_STAMP 148 149/** 150 * struct skb_shared_hwtstamps - hardware time stamps 151 * @hwtstamp: hardware time stamp transformed into duration 152 * since arbitrary point in time 153 * @syststamp: hwtstamp transformed to system time base 154 * 155 * Software time stamps generated by ktime_get_real() are stored in 156 * skb->tstamp. The relation between the different kinds of time 157 * stamps is as follows: 158 * 159 * syststamp and tstamp can be compared against each other in 160 * arbitrary combinations. The accuracy of a 161 * syststamp/tstamp/"syststamp from other device" comparison is 162 * limited by the accuracy of the transformation into system time 163 * base. This depends on the device driver and its underlying 164 * hardware. 165 * 166 * hwtstamps can only be compared against other hwtstamps from 167 * the same device. 168 * 169 * This structure is attached to packets as part of the 170 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 171 */ 172struct skb_shared_hwtstamps { 173 ktime_t hwtstamp; 174 ktime_t syststamp; 175}; 176 177/* Definitions for tx_flags in struct skb_shared_info */ 178enum { 179 /* generate hardware time stamp */ 180 SKBTX_HW_TSTAMP = 1 << 0, 181 182 /* generate software time stamp */ 183 SKBTX_SW_TSTAMP = 1 << 1, 184 185 /* device driver is going to provide hardware time stamp */ 186 SKBTX_IN_PROGRESS = 1 << 2, 187 188 /* ensure the originating sk reference is available on driver level */ 189 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 190 191 /* device driver supports TX zero-copy buffers */ 192 SKBTX_DEV_ZEROCOPY = 1 << 4, 193}; 194 195/* 196 * The callback notifies userspace to release buffers when skb DMA is done in 197 * lower device, the skb last reference should be 0 when calling this. 198 * The desc is used to track userspace buffer index. 199 */ 200struct ubuf_info { 201 void (*callback)(void *); 202 void *arg; 203 unsigned long desc; 204}; 205 206/* This data is invariant across clones and lives at 207 * the end of the header data, ie. at skb->end. 208 */ 209struct skb_shared_info { 210 unsigned short nr_frags; 211 unsigned short gso_size; 212 /* Warning: this field is not always filled in (UFO)! */ 213 unsigned short gso_segs; 214 unsigned short gso_type; 215 __be32 ip6_frag_id; 216 __u8 tx_flags; 217 struct sk_buff *frag_list; 218 struct skb_shared_hwtstamps hwtstamps; 219 220 /* 221 * Warning : all fields before dataref are cleared in __alloc_skb() 222 */ 223 atomic_t dataref; 224 225 /* Intermediate layers must ensure that destructor_arg 226 * remains valid until skb destructor */ 227 void * destructor_arg; 228 229 /* must be last field, see pskb_expand_head() */ 230 skb_frag_t frags[MAX_SKB_FRAGS]; 231}; 232 233/* We divide dataref into two halves. The higher 16 bits hold references 234 * to the payload part of skb->data. The lower 16 bits hold references to 235 * the entire skb->data. A clone of a headerless skb holds the length of 236 * the header in skb->hdr_len. 237 * 238 * All users must obey the rule that the skb->data reference count must be 239 * greater than or equal to the payload reference count. 240 * 241 * Holding a reference to the payload part means that the user does not 242 * care about modifications to the header part of skb->data. 243 */ 244#define SKB_DATAREF_SHIFT 16 245#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 246 247 248enum { 249 SKB_FCLONE_UNAVAILABLE, 250 SKB_FCLONE_ORIG, 251 SKB_FCLONE_CLONE, 252}; 253 254enum { 255 SKB_GSO_TCPV4 = 1 << 0, 256 SKB_GSO_UDP = 1 << 1, 257 258 /* This indicates the skb is from an untrusted source. */ 259 SKB_GSO_DODGY = 1 << 2, 260 261 /* This indicates the tcp segment has CWR set. */ 262 SKB_GSO_TCP_ECN = 1 << 3, 263 264 SKB_GSO_TCPV6 = 1 << 4, 265 266 SKB_GSO_FCOE = 1 << 5, 267}; 268 269#if BITS_PER_LONG > 32 270#define NET_SKBUFF_DATA_USES_OFFSET 1 271#endif 272 273#ifdef NET_SKBUFF_DATA_USES_OFFSET 274typedef unsigned int sk_buff_data_t; 275#else 276typedef unsigned char *sk_buff_data_t; 277#endif 278 279#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 280 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 281#define NET_SKBUFF_NF_DEFRAG_NEEDED 1 282#endif 283 284/** 285 * struct sk_buff - socket buffer 286 * @next: Next buffer in list 287 * @prev: Previous buffer in list 288 * @tstamp: Time we arrived 289 * @sk: Socket we are owned by 290 * @dev: Device we arrived on/are leaving by 291 * @cb: Control buffer. Free for use by every layer. Put private vars here 292 * @_skb_refdst: destination entry (with norefcount bit) 293 * @sp: the security path, used for xfrm 294 * @len: Length of actual data 295 * @data_len: Data length 296 * @mac_len: Length of link layer header 297 * @hdr_len: writable header length of cloned skb 298 * @csum: Checksum (must include start/offset pair) 299 * @csum_start: Offset from skb->head where checksumming should start 300 * @csum_offset: Offset from csum_start where checksum should be stored 301 * @priority: Packet queueing priority 302 * @local_df: allow local fragmentation 303 * @cloned: Head may be cloned (check refcnt to be sure) 304 * @ip_summed: Driver fed us an IP checksum 305 * @nohdr: Payload reference only, must not modify header 306 * @nfctinfo: Relationship of this skb to the connection 307 * @pkt_type: Packet class 308 * @fclone: skbuff clone status 309 * @ipvs_property: skbuff is owned by ipvs 310 * @peeked: this packet has been seen already, so stats have been 311 * done for it, don't do them again 312 * @nf_trace: netfilter packet trace flag 313 * @protocol: Packet protocol from driver 314 * @destructor: Destruct function 315 * @nfct: Associated connection, if any 316 * @nfct_reasm: netfilter conntrack re-assembly pointer 317 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 318 * @skb_iif: ifindex of device we arrived on 319 * @tc_index: Traffic control index 320 * @tc_verd: traffic control verdict 321 * @rxhash: the packet hash computed on receive 322 * @queue_mapping: Queue mapping for multiqueue devices 323 * @ndisc_nodetype: router type (from link layer) 324 * @ooo_okay: allow the mapping of a socket to a queue to be changed 325 * @dma_cookie: a cookie to one of several possible DMA operations 326 * done by skb DMA functions 327 * @secmark: security marking 328 * @mark: Generic packet mark 329 * @dropcount: total number of sk_receive_queue overflows 330 * @vlan_tci: vlan tag control information 331 * @transport_header: Transport layer header 332 * @network_header: Network layer header 333 * @mac_header: Link layer header 334 * @tail: Tail pointer 335 * @end: End pointer 336 * @head: Head of buffer 337 * @data: Data head pointer 338 * @truesize: Buffer size 339 * @users: User count - see {datagram,tcp}.c 340 */ 341 342struct sk_buff { 343 /* These two members must be first. */ 344 struct sk_buff *next; 345 struct sk_buff *prev; 346 347 ktime_t tstamp; 348 349 struct sock *sk; 350 struct net_device *dev; 351 352 /* 353 * This is the control buffer. It is free to use for every 354 * layer. Please put your private variables there. If you 355 * want to keep them across layers you have to do a skb_clone() 356 * first. This is owned by whoever has the skb queued ATM. 357 */ 358 char cb[48] __aligned(8); 359 360 unsigned long _skb_refdst; 361#ifdef CONFIG_XFRM 362 struct sec_path *sp; 363#endif 364 unsigned int len, 365 data_len; 366 __u16 mac_len, 367 hdr_len; 368 union { 369 __wsum csum; 370 struct { 371 __u16 csum_start; 372 __u16 csum_offset; 373 }; 374 }; 375 __u32 priority; 376 kmemcheck_bitfield_begin(flags1); 377 __u8 local_df:1, 378 cloned:1, 379 ip_summed:2, 380 nohdr:1, 381 nfctinfo:3; 382 __u8 pkt_type:3, 383 fclone:2, 384 ipvs_property:1, 385 peeked:1, 386 nf_trace:1; 387 kmemcheck_bitfield_end(flags1); 388 __be16 protocol; 389 390 void (*destructor)(struct sk_buff *skb); 391#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 392 struct nf_conntrack *nfct; 393#endif 394#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 395 struct sk_buff *nfct_reasm; 396#endif 397#ifdef CONFIG_BRIDGE_NETFILTER 398 struct nf_bridge_info *nf_bridge; 399#endif 400 401 int skb_iif; 402#ifdef CONFIG_NET_SCHED 403 __u16 tc_index; /* traffic control index */ 404#ifdef CONFIG_NET_CLS_ACT 405 __u16 tc_verd; /* traffic control verdict */ 406#endif 407#endif 408 409 __u32 rxhash; 410 411 __u16 queue_mapping; 412 kmemcheck_bitfield_begin(flags2); 413#ifdef CONFIG_IPV6_NDISC_NODETYPE 414 __u8 ndisc_nodetype:2; 415#endif 416 __u8 ooo_okay:1; 417 kmemcheck_bitfield_end(flags2); 418 419 /* 0/13 bit hole */ 420 421#ifdef CONFIG_NET_DMA 422 dma_cookie_t dma_cookie; 423#endif 424#ifdef CONFIG_NETWORK_SECMARK 425 __u32 secmark; 426#endif 427 union { 428 __u32 mark; 429 __u32 dropcount; 430 }; 431 432 __u16 vlan_tci; 433 434 sk_buff_data_t transport_header; 435 sk_buff_data_t network_header; 436 sk_buff_data_t mac_header; 437 /* These elements must be at the end, see alloc_skb() for details. */ 438 sk_buff_data_t tail; 439 sk_buff_data_t end; 440 unsigned char *head, 441 *data; 442 unsigned int truesize; 443 atomic_t users; 444}; 445 446#ifdef __KERNEL__ 447/* 448 * Handling routines are only of interest to the kernel 449 */ 450#include <linux/slab.h> 451 452#include <asm/system.h> 453 454/* 455 * skb might have a dst pointer attached, refcounted or not. 456 * _skb_refdst low order bit is set if refcount was _not_ taken 457 */ 458#define SKB_DST_NOREF 1UL 459#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 460 461/** 462 * skb_dst - returns skb dst_entry 463 * @skb: buffer 464 * 465 * Returns skb dst_entry, regardless of reference taken or not. 466 */ 467static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 468{ 469 /* If refdst was not refcounted, check we still are in a 470 * rcu_read_lock section 471 */ 472 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 473 !rcu_read_lock_held() && 474 !rcu_read_lock_bh_held()); 475 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 476} 477 478/** 479 * skb_dst_set - sets skb dst 480 * @skb: buffer 481 * @dst: dst entry 482 * 483 * Sets skb dst, assuming a reference was taken on dst and should 484 * be released by skb_dst_drop() 485 */ 486static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 487{ 488 skb->_skb_refdst = (unsigned long)dst; 489} 490 491extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 492 493/** 494 * skb_dst_is_noref - Test if skb dst isn't refcounted 495 * @skb: buffer 496 */ 497static inline bool skb_dst_is_noref(const struct sk_buff *skb) 498{ 499 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 500} 501 502static inline struct rtable *skb_rtable(const struct sk_buff *skb) 503{ 504 return (struct rtable *)skb_dst(skb); 505} 506 507extern void kfree_skb(struct sk_buff *skb); 508extern void consume_skb(struct sk_buff *skb); 509extern void __kfree_skb(struct sk_buff *skb); 510extern struct sk_buff *__alloc_skb(unsigned int size, 511 gfp_t priority, int fclone, int node); 512static inline struct sk_buff *alloc_skb(unsigned int size, 513 gfp_t priority) 514{ 515 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 516} 517 518static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 519 gfp_t priority) 520{ 521 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 522} 523 524extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 525 526extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 527extern struct sk_buff *skb_clone(struct sk_buff *skb, 528 gfp_t priority); 529extern struct sk_buff *skb_copy(const struct sk_buff *skb, 530 gfp_t priority); 531extern struct sk_buff *pskb_copy(struct sk_buff *skb, 532 gfp_t gfp_mask); 533extern int pskb_expand_head(struct sk_buff *skb, 534 int nhead, int ntail, 535 gfp_t gfp_mask); 536extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 537 unsigned int headroom); 538extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 539 int newheadroom, int newtailroom, 540 gfp_t priority); 541extern int skb_to_sgvec(struct sk_buff *skb, 542 struct scatterlist *sg, int offset, 543 int len); 544extern int skb_cow_data(struct sk_buff *skb, int tailbits, 545 struct sk_buff **trailer); 546extern int skb_pad(struct sk_buff *skb, int pad); 547#define dev_kfree_skb(a) consume_skb(a) 548 549extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 550 int getfrag(void *from, char *to, int offset, 551 int len,int odd, struct sk_buff *skb), 552 void *from, int length); 553 554struct skb_seq_state { 555 __u32 lower_offset; 556 __u32 upper_offset; 557 __u32 frag_idx; 558 __u32 stepped_offset; 559 struct sk_buff *root_skb; 560 struct sk_buff *cur_skb; 561 __u8 *frag_data; 562}; 563 564extern void skb_prepare_seq_read(struct sk_buff *skb, 565 unsigned int from, unsigned int to, 566 struct skb_seq_state *st); 567extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 568 struct skb_seq_state *st); 569extern void skb_abort_seq_read(struct skb_seq_state *st); 570 571extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 572 unsigned int to, struct ts_config *config, 573 struct ts_state *state); 574 575extern __u32 __skb_get_rxhash(struct sk_buff *skb); 576static inline __u32 skb_get_rxhash(struct sk_buff *skb) 577{ 578 if (!skb->rxhash) 579 skb->rxhash = __skb_get_rxhash(skb); 580 581 return skb->rxhash; 582} 583 584#ifdef NET_SKBUFF_DATA_USES_OFFSET 585static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 586{ 587 return skb->head + skb->end; 588} 589#else 590static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 591{ 592 return skb->end; 593} 594#endif 595 596/* Internal */ 597#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 598 599static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 600{ 601 return &skb_shinfo(skb)->hwtstamps; 602} 603 604/** 605 * skb_queue_empty - check if a queue is empty 606 * @list: queue head 607 * 608 * Returns true if the queue is empty, false otherwise. 609 */ 610static inline int skb_queue_empty(const struct sk_buff_head *list) 611{ 612 return list->next == (struct sk_buff *)list; 613} 614 615/** 616 * skb_queue_is_last - check if skb is the last entry in the queue 617 * @list: queue head 618 * @skb: buffer 619 * 620 * Returns true if @skb is the last buffer on the list. 621 */ 622static inline bool skb_queue_is_last(const struct sk_buff_head *list, 623 const struct sk_buff *skb) 624{ 625 return skb->next == (struct sk_buff *)list; 626} 627 628/** 629 * skb_queue_is_first - check if skb is the first entry in the queue 630 * @list: queue head 631 * @skb: buffer 632 * 633 * Returns true if @skb is the first buffer on the list. 634 */ 635static inline bool skb_queue_is_first(const struct sk_buff_head *list, 636 const struct sk_buff *skb) 637{ 638 return skb->prev == (struct sk_buff *)list; 639} 640 641/** 642 * skb_queue_next - return the next packet in the queue 643 * @list: queue head 644 * @skb: current buffer 645 * 646 * Return the next packet in @list after @skb. It is only valid to 647 * call this if skb_queue_is_last() evaluates to false. 648 */ 649static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 650 const struct sk_buff *skb) 651{ 652 /* This BUG_ON may seem severe, but if we just return then we 653 * are going to dereference garbage. 654 */ 655 BUG_ON(skb_queue_is_last(list, skb)); 656 return skb->next; 657} 658 659/** 660 * skb_queue_prev - return the prev packet in the queue 661 * @list: queue head 662 * @skb: current buffer 663 * 664 * Return the prev packet in @list before @skb. It is only valid to 665 * call this if skb_queue_is_first() evaluates to false. 666 */ 667static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 668 const struct sk_buff *skb) 669{ 670 /* This BUG_ON may seem severe, but if we just return then we 671 * are going to dereference garbage. 672 */ 673 BUG_ON(skb_queue_is_first(list, skb)); 674 return skb->prev; 675} 676 677/** 678 * skb_get - reference buffer 679 * @skb: buffer to reference 680 * 681 * Makes another reference to a socket buffer and returns a pointer 682 * to the buffer. 683 */ 684static inline struct sk_buff *skb_get(struct sk_buff *skb) 685{ 686 atomic_inc(&skb->users); 687 return skb; 688} 689 690/* 691 * If users == 1, we are the only owner and are can avoid redundant 692 * atomic change. 693 */ 694 695/** 696 * skb_cloned - is the buffer a clone 697 * @skb: buffer to check 698 * 699 * Returns true if the buffer was generated with skb_clone() and is 700 * one of multiple shared copies of the buffer. Cloned buffers are 701 * shared data so must not be written to under normal circumstances. 702 */ 703static inline int skb_cloned(const struct sk_buff *skb) 704{ 705 return skb->cloned && 706 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 707} 708 709/** 710 * skb_header_cloned - is the header a clone 711 * @skb: buffer to check 712 * 713 * Returns true if modifying the header part of the buffer requires 714 * the data to be copied. 715 */ 716static inline int skb_header_cloned(const struct sk_buff *skb) 717{ 718 int dataref; 719 720 if (!skb->cloned) 721 return 0; 722 723 dataref = atomic_read(&skb_shinfo(skb)->dataref); 724 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 725 return dataref != 1; 726} 727 728/** 729 * skb_header_release - release reference to header 730 * @skb: buffer to operate on 731 * 732 * Drop a reference to the header part of the buffer. This is done 733 * by acquiring a payload reference. You must not read from the header 734 * part of skb->data after this. 735 */ 736static inline void skb_header_release(struct sk_buff *skb) 737{ 738 BUG_ON(skb->nohdr); 739 skb->nohdr = 1; 740 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 741} 742 743/** 744 * skb_shared - is the buffer shared 745 * @skb: buffer to check 746 * 747 * Returns true if more than one person has a reference to this 748 * buffer. 749 */ 750static inline int skb_shared(const struct sk_buff *skb) 751{ 752 return atomic_read(&skb->users) != 1; 753} 754 755/** 756 * skb_share_check - check if buffer is shared and if so clone it 757 * @skb: buffer to check 758 * @pri: priority for memory allocation 759 * 760 * If the buffer is shared the buffer is cloned and the old copy 761 * drops a reference. A new clone with a single reference is returned. 762 * If the buffer is not shared the original buffer is returned. When 763 * being called from interrupt status or with spinlocks held pri must 764 * be GFP_ATOMIC. 765 * 766 * NULL is returned on a memory allocation failure. 767 */ 768static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 769 gfp_t pri) 770{ 771 might_sleep_if(pri & __GFP_WAIT); 772 if (skb_shared(skb)) { 773 struct sk_buff *nskb = skb_clone(skb, pri); 774 kfree_skb(skb); 775 skb = nskb; 776 } 777 return skb; 778} 779 780/* 781 * Copy shared buffers into a new sk_buff. We effectively do COW on 782 * packets to handle cases where we have a local reader and forward 783 * and a couple of other messy ones. The normal one is tcpdumping 784 * a packet thats being forwarded. 785 */ 786 787/** 788 * skb_unshare - make a copy of a shared buffer 789 * @skb: buffer to check 790 * @pri: priority for memory allocation 791 * 792 * If the socket buffer is a clone then this function creates a new 793 * copy of the data, drops a reference count on the old copy and returns 794 * the new copy with the reference count at 1. If the buffer is not a clone 795 * the original buffer is returned. When called with a spinlock held or 796 * from interrupt state @pri must be %GFP_ATOMIC 797 * 798 * %NULL is returned on a memory allocation failure. 799 */ 800static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 801 gfp_t pri) 802{ 803 might_sleep_if(pri & __GFP_WAIT); 804 if (skb_cloned(skb)) { 805 struct sk_buff *nskb = skb_copy(skb, pri); 806 kfree_skb(skb); /* Free our shared copy */ 807 skb = nskb; 808 } 809 return skb; 810} 811 812/** 813 * skb_peek - peek at the head of an &sk_buff_head 814 * @list_: list to peek at 815 * 816 * Peek an &sk_buff. Unlike most other operations you _MUST_ 817 * be careful with this one. A peek leaves the buffer on the 818 * list and someone else may run off with it. You must hold 819 * the appropriate locks or have a private queue to do this. 820 * 821 * Returns %NULL for an empty list or a pointer to the head element. 822 * The reference count is not incremented and the reference is therefore 823 * volatile. Use with caution. 824 */ 825static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 826{ 827 struct sk_buff *list = ((struct sk_buff *)list_)->next; 828 if (list == (struct sk_buff *)list_) 829 list = NULL; 830 return list; 831} 832 833/** 834 * skb_peek_tail - peek at the tail of an &sk_buff_head 835 * @list_: list to peek at 836 * 837 * Peek an &sk_buff. Unlike most other operations you _MUST_ 838 * be careful with this one. A peek leaves the buffer on the 839 * list and someone else may run off with it. You must hold 840 * the appropriate locks or have a private queue to do this. 841 * 842 * Returns %NULL for an empty list or a pointer to the tail element. 843 * The reference count is not incremented and the reference is therefore 844 * volatile. Use with caution. 845 */ 846static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 847{ 848 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 849 if (list == (struct sk_buff *)list_) 850 list = NULL; 851 return list; 852} 853 854/** 855 * skb_queue_len - get queue length 856 * @list_: list to measure 857 * 858 * Return the length of an &sk_buff queue. 859 */ 860static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 861{ 862 return list_->qlen; 863} 864 865/** 866 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 867 * @list: queue to initialize 868 * 869 * This initializes only the list and queue length aspects of 870 * an sk_buff_head object. This allows to initialize the list 871 * aspects of an sk_buff_head without reinitializing things like 872 * the spinlock. It can also be used for on-stack sk_buff_head 873 * objects where the spinlock is known to not be used. 874 */ 875static inline void __skb_queue_head_init(struct sk_buff_head *list) 876{ 877 list->prev = list->next = (struct sk_buff *)list; 878 list->qlen = 0; 879} 880 881/* 882 * This function creates a split out lock class for each invocation; 883 * this is needed for now since a whole lot of users of the skb-queue 884 * infrastructure in drivers have different locking usage (in hardirq) 885 * than the networking core (in softirq only). In the long run either the 886 * network layer or drivers should need annotation to consolidate the 887 * main types of usage into 3 classes. 888 */ 889static inline void skb_queue_head_init(struct sk_buff_head *list) 890{ 891 spin_lock_init(&list->lock); 892 __skb_queue_head_init(list); 893} 894 895static inline void skb_queue_head_init_class(struct sk_buff_head *list, 896 struct lock_class_key *class) 897{ 898 skb_queue_head_init(list); 899 lockdep_set_class(&list->lock, class); 900} 901 902/* 903 * Insert an sk_buff on a list. 904 * 905 * The "__skb_xxxx()" functions are the non-atomic ones that 906 * can only be called with interrupts disabled. 907 */ 908extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 909static inline void __skb_insert(struct sk_buff *newsk, 910 struct sk_buff *prev, struct sk_buff *next, 911 struct sk_buff_head *list) 912{ 913 newsk->next = next; 914 newsk->prev = prev; 915 next->prev = prev->next = newsk; 916 list->qlen++; 917} 918 919static inline void __skb_queue_splice(const struct sk_buff_head *list, 920 struct sk_buff *prev, 921 struct sk_buff *next) 922{ 923 struct sk_buff *first = list->next; 924 struct sk_buff *last = list->prev; 925 926 first->prev = prev; 927 prev->next = first; 928 929 last->next = next; 930 next->prev = last; 931} 932 933/** 934 * skb_queue_splice - join two skb lists, this is designed for stacks 935 * @list: the new list to add 936 * @head: the place to add it in the first list 937 */ 938static inline void skb_queue_splice(const struct sk_buff_head *list, 939 struct sk_buff_head *head) 940{ 941 if (!skb_queue_empty(list)) { 942 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 943 head->qlen += list->qlen; 944 } 945} 946 947/** 948 * skb_queue_splice - join two skb lists and reinitialise the emptied list 949 * @list: the new list to add 950 * @head: the place to add it in the first list 951 * 952 * The list at @list is reinitialised 953 */ 954static inline void skb_queue_splice_init(struct sk_buff_head *list, 955 struct sk_buff_head *head) 956{ 957 if (!skb_queue_empty(list)) { 958 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 959 head->qlen += list->qlen; 960 __skb_queue_head_init(list); 961 } 962} 963 964/** 965 * skb_queue_splice_tail - join two skb lists, each list being a queue 966 * @list: the new list to add 967 * @head: the place to add it in the first list 968 */ 969static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 970 struct sk_buff_head *head) 971{ 972 if (!skb_queue_empty(list)) { 973 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 974 head->qlen += list->qlen; 975 } 976} 977 978/** 979 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 980 * @list: the new list to add 981 * @head: the place to add it in the first list 982 * 983 * Each of the lists is a queue. 984 * The list at @list is reinitialised 985 */ 986static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 987 struct sk_buff_head *head) 988{ 989 if (!skb_queue_empty(list)) { 990 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 991 head->qlen += list->qlen; 992 __skb_queue_head_init(list); 993 } 994} 995 996/** 997 * __skb_queue_after - queue a buffer at the list head 998 * @list: list to use 999 * @prev: place after this buffer 1000 * @newsk: buffer to queue 1001 * 1002 * Queue a buffer int the middle of a list. This function takes no locks 1003 * and you must therefore hold required locks before calling it. 1004 * 1005 * A buffer cannot be placed on two lists at the same time. 1006 */ 1007static inline void __skb_queue_after(struct sk_buff_head *list, 1008 struct sk_buff *prev, 1009 struct sk_buff *newsk) 1010{ 1011 __skb_insert(newsk, prev, prev->next, list); 1012} 1013 1014extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1015 struct sk_buff_head *list); 1016 1017static inline void __skb_queue_before(struct sk_buff_head *list, 1018 struct sk_buff *next, 1019 struct sk_buff *newsk) 1020{ 1021 __skb_insert(newsk, next->prev, next, list); 1022} 1023 1024/** 1025 * __skb_queue_head - queue a buffer at the list head 1026 * @list: list to use 1027 * @newsk: buffer to queue 1028 * 1029 * Queue a buffer at the start of a list. This function takes no locks 1030 * and you must therefore hold required locks before calling it. 1031 * 1032 * A buffer cannot be placed on two lists at the same time. 1033 */ 1034extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1035static inline void __skb_queue_head(struct sk_buff_head *list, 1036 struct sk_buff *newsk) 1037{ 1038 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1039} 1040 1041/** 1042 * __skb_queue_tail - queue a buffer at the list tail 1043 * @list: list to use 1044 * @newsk: buffer to queue 1045 * 1046 * Queue a buffer at the end of a list. This function takes no locks 1047 * and you must therefore hold required locks before calling it. 1048 * 1049 * A buffer cannot be placed on two lists at the same time. 1050 */ 1051extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1052static inline void __skb_queue_tail(struct sk_buff_head *list, 1053 struct sk_buff *newsk) 1054{ 1055 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1056} 1057 1058/* 1059 * remove sk_buff from list. _Must_ be called atomically, and with 1060 * the list known.. 1061 */ 1062extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1063static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1064{ 1065 struct sk_buff *next, *prev; 1066 1067 list->qlen--; 1068 next = skb->next; 1069 prev = skb->prev; 1070 skb->next = skb->prev = NULL; 1071 next->prev = prev; 1072 prev->next = next; 1073} 1074 1075/** 1076 * __skb_dequeue - remove from the head of the queue 1077 * @list: list to dequeue from 1078 * 1079 * Remove the head of the list. This function does not take any locks 1080 * so must be used with appropriate locks held only. The head item is 1081 * returned or %NULL if the list is empty. 1082 */ 1083extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1084static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1085{ 1086 struct sk_buff *skb = skb_peek(list); 1087 if (skb) 1088 __skb_unlink(skb, list); 1089 return skb; 1090} 1091 1092/** 1093 * __skb_dequeue_tail - remove from the tail of the queue 1094 * @list: list to dequeue from 1095 * 1096 * Remove the tail of the list. This function does not take any locks 1097 * so must be used with appropriate locks held only. The tail item is 1098 * returned or %NULL if the list is empty. 1099 */ 1100extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1101static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1102{ 1103 struct sk_buff *skb = skb_peek_tail(list); 1104 if (skb) 1105 __skb_unlink(skb, list); 1106 return skb; 1107} 1108 1109 1110static inline int skb_is_nonlinear(const struct sk_buff *skb) 1111{ 1112 return skb->data_len; 1113} 1114 1115static inline unsigned int skb_headlen(const struct sk_buff *skb) 1116{ 1117 return skb->len - skb->data_len; 1118} 1119 1120static inline int skb_pagelen(const struct sk_buff *skb) 1121{ 1122 int i, len = 0; 1123 1124 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1125 len += skb_shinfo(skb)->frags[i].size; 1126 return len + skb_headlen(skb); 1127} 1128 1129static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1130 struct page *page, int off, int size) 1131{ 1132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1133 1134 frag->page = page; 1135 frag->page_offset = off; 1136 frag->size = size; 1137 skb_shinfo(skb)->nr_frags = i + 1; 1138} 1139 1140extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1141 int off, int size); 1142 1143#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1144#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1145#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1146 1147#ifdef NET_SKBUFF_DATA_USES_OFFSET 1148static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1149{ 1150 return skb->head + skb->tail; 1151} 1152 1153static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1154{ 1155 skb->tail = skb->data - skb->head; 1156} 1157 1158static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1159{ 1160 skb_reset_tail_pointer(skb); 1161 skb->tail += offset; 1162} 1163#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1164static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1165{ 1166 return skb->tail; 1167} 1168 1169static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1170{ 1171 skb->tail = skb->data; 1172} 1173 1174static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1175{ 1176 skb->tail = skb->data + offset; 1177} 1178 1179#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1180 1181/* 1182 * Add data to an sk_buff 1183 */ 1184extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1185static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1186{ 1187 unsigned char *tmp = skb_tail_pointer(skb); 1188 SKB_LINEAR_ASSERT(skb); 1189 skb->tail += len; 1190 skb->len += len; 1191 return tmp; 1192} 1193 1194extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1195static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1196{ 1197 skb->data -= len; 1198 skb->len += len; 1199 return skb->data; 1200} 1201 1202extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1203static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1204{ 1205 skb->len -= len; 1206 BUG_ON(skb->len < skb->data_len); 1207 return skb->data += len; 1208} 1209 1210static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1211{ 1212 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1213} 1214 1215extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1216 1217static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1218{ 1219 if (len > skb_headlen(skb) && 1220 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1221 return NULL; 1222 skb->len -= len; 1223 return skb->data += len; 1224} 1225 1226static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1227{ 1228 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1229} 1230 1231static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1232{ 1233 if (likely(len <= skb_headlen(skb))) 1234 return 1; 1235 if (unlikely(len > skb->len)) 1236 return 0; 1237 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1238} 1239 1240/** 1241 * skb_headroom - bytes at buffer head 1242 * @skb: buffer to check 1243 * 1244 * Return the number of bytes of free space at the head of an &sk_buff. 1245 */ 1246static inline unsigned int skb_headroom(const struct sk_buff *skb) 1247{ 1248 return skb->data - skb->head; 1249} 1250 1251/** 1252 * skb_tailroom - bytes at buffer end 1253 * @skb: buffer to check 1254 * 1255 * Return the number of bytes of free space at the tail of an sk_buff 1256 */ 1257static inline int skb_tailroom(const struct sk_buff *skb) 1258{ 1259 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1260} 1261 1262/** 1263 * skb_reserve - adjust headroom 1264 * @skb: buffer to alter 1265 * @len: bytes to move 1266 * 1267 * Increase the headroom of an empty &sk_buff by reducing the tail 1268 * room. This is only allowed for an empty buffer. 1269 */ 1270static inline void skb_reserve(struct sk_buff *skb, int len) 1271{ 1272 skb->data += len; 1273 skb->tail += len; 1274} 1275 1276static inline void skb_reset_mac_len(struct sk_buff *skb) 1277{ 1278 skb->mac_len = skb->network_header - skb->mac_header; 1279} 1280 1281#ifdef NET_SKBUFF_DATA_USES_OFFSET 1282static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1283{ 1284 return skb->head + skb->transport_header; 1285} 1286 1287static inline void skb_reset_transport_header(struct sk_buff *skb) 1288{ 1289 skb->transport_header = skb->data - skb->head; 1290} 1291 1292static inline void skb_set_transport_header(struct sk_buff *skb, 1293 const int offset) 1294{ 1295 skb_reset_transport_header(skb); 1296 skb->transport_header += offset; 1297} 1298 1299static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1300{ 1301 return skb->head + skb->network_header; 1302} 1303 1304static inline void skb_reset_network_header(struct sk_buff *skb) 1305{ 1306 skb->network_header = skb->data - skb->head; 1307} 1308 1309static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1310{ 1311 skb_reset_network_header(skb); 1312 skb->network_header += offset; 1313} 1314 1315static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1316{ 1317 return skb->head + skb->mac_header; 1318} 1319 1320static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1321{ 1322 return skb->mac_header != ~0U; 1323} 1324 1325static inline void skb_reset_mac_header(struct sk_buff *skb) 1326{ 1327 skb->mac_header = skb->data - skb->head; 1328} 1329 1330static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1331{ 1332 skb_reset_mac_header(skb); 1333 skb->mac_header += offset; 1334} 1335 1336#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1337 1338static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1339{ 1340 return skb->transport_header; 1341} 1342 1343static inline void skb_reset_transport_header(struct sk_buff *skb) 1344{ 1345 skb->transport_header = skb->data; 1346} 1347 1348static inline void skb_set_transport_header(struct sk_buff *skb, 1349 const int offset) 1350{ 1351 skb->transport_header = skb->data + offset; 1352} 1353 1354static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1355{ 1356 return skb->network_header; 1357} 1358 1359static inline void skb_reset_network_header(struct sk_buff *skb) 1360{ 1361 skb->network_header = skb->data; 1362} 1363 1364static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1365{ 1366 skb->network_header = skb->data + offset; 1367} 1368 1369static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1370{ 1371 return skb->mac_header; 1372} 1373 1374static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1375{ 1376 return skb->mac_header != NULL; 1377} 1378 1379static inline void skb_reset_mac_header(struct sk_buff *skb) 1380{ 1381 skb->mac_header = skb->data; 1382} 1383 1384static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1385{ 1386 skb->mac_header = skb->data + offset; 1387} 1388#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1389 1390static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1391{ 1392 return skb->csum_start - skb_headroom(skb); 1393} 1394 1395static inline int skb_transport_offset(const struct sk_buff *skb) 1396{ 1397 return skb_transport_header(skb) - skb->data; 1398} 1399 1400static inline u32 skb_network_header_len(const struct sk_buff *skb) 1401{ 1402 return skb->transport_header - skb->network_header; 1403} 1404 1405static inline int skb_network_offset(const struct sk_buff *skb) 1406{ 1407 return skb_network_header(skb) - skb->data; 1408} 1409 1410static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1411{ 1412 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1413} 1414 1415/* 1416 * CPUs often take a performance hit when accessing unaligned memory 1417 * locations. The actual performance hit varies, it can be small if the 1418 * hardware handles it or large if we have to take an exception and fix it 1419 * in software. 1420 * 1421 * Since an ethernet header is 14 bytes network drivers often end up with 1422 * the IP header at an unaligned offset. The IP header can be aligned by 1423 * shifting the start of the packet by 2 bytes. Drivers should do this 1424 * with: 1425 * 1426 * skb_reserve(skb, NET_IP_ALIGN); 1427 * 1428 * The downside to this alignment of the IP header is that the DMA is now 1429 * unaligned. On some architectures the cost of an unaligned DMA is high 1430 * and this cost outweighs the gains made by aligning the IP header. 1431 * 1432 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1433 * to be overridden. 1434 */ 1435#ifndef NET_IP_ALIGN 1436#define NET_IP_ALIGN 2 1437#endif 1438 1439/* 1440 * The networking layer reserves some headroom in skb data (via 1441 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1442 * the header has to grow. In the default case, if the header has to grow 1443 * 32 bytes or less we avoid the reallocation. 1444 * 1445 * Unfortunately this headroom changes the DMA alignment of the resulting 1446 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1447 * on some architectures. An architecture can override this value, 1448 * perhaps setting it to a cacheline in size (since that will maintain 1449 * cacheline alignment of the DMA). It must be a power of 2. 1450 * 1451 * Various parts of the networking layer expect at least 32 bytes of 1452 * headroom, you should not reduce this. 1453 * 1454 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1455 * to reduce average number of cache lines per packet. 1456 * get_rps_cpus() for example only access one 64 bytes aligned block : 1457 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1458 */ 1459#ifndef NET_SKB_PAD 1460#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1461#endif 1462 1463extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1464 1465static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1466{ 1467 if (unlikely(skb_is_nonlinear(skb))) { 1468 WARN_ON(1); 1469 return; 1470 } 1471 skb->len = len; 1472 skb_set_tail_pointer(skb, len); 1473} 1474 1475extern void skb_trim(struct sk_buff *skb, unsigned int len); 1476 1477static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1478{ 1479 if (skb->data_len) 1480 return ___pskb_trim(skb, len); 1481 __skb_trim(skb, len); 1482 return 0; 1483} 1484 1485static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1486{ 1487 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1488} 1489 1490/** 1491 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1492 * @skb: buffer to alter 1493 * @len: new length 1494 * 1495 * This is identical to pskb_trim except that the caller knows that 1496 * the skb is not cloned so we should never get an error due to out- 1497 * of-memory. 1498 */ 1499static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1500{ 1501 int err = pskb_trim(skb, len); 1502 BUG_ON(err); 1503} 1504 1505/** 1506 * skb_orphan - orphan a buffer 1507 * @skb: buffer to orphan 1508 * 1509 * If a buffer currently has an owner then we call the owner's 1510 * destructor function and make the @skb unowned. The buffer continues 1511 * to exist but is no longer charged to its former owner. 1512 */ 1513static inline void skb_orphan(struct sk_buff *skb) 1514{ 1515 if (skb->destructor) 1516 skb->destructor(skb); 1517 skb->destructor = NULL; 1518 skb->sk = NULL; 1519} 1520 1521/** 1522 * __skb_queue_purge - empty a list 1523 * @list: list to empty 1524 * 1525 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1526 * the list and one reference dropped. This function does not take the 1527 * list lock and the caller must hold the relevant locks to use it. 1528 */ 1529extern void skb_queue_purge(struct sk_buff_head *list); 1530static inline void __skb_queue_purge(struct sk_buff_head *list) 1531{ 1532 struct sk_buff *skb; 1533 while ((skb = __skb_dequeue(list)) != NULL) 1534 kfree_skb(skb); 1535} 1536 1537/** 1538 * __dev_alloc_skb - allocate an skbuff for receiving 1539 * @length: length to allocate 1540 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1541 * 1542 * Allocate a new &sk_buff and assign it a usage count of one. The 1543 * buffer has unspecified headroom built in. Users should allocate 1544 * the headroom they think they need without accounting for the 1545 * built in space. The built in space is used for optimisations. 1546 * 1547 * %NULL is returned if there is no free memory. 1548 */ 1549static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1550 gfp_t gfp_mask) 1551{ 1552 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1553 if (likely(skb)) 1554 skb_reserve(skb, NET_SKB_PAD); 1555 return skb; 1556} 1557 1558extern struct sk_buff *dev_alloc_skb(unsigned int length); 1559 1560extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1561 unsigned int length, gfp_t gfp_mask); 1562 1563/** 1564 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1565 * @dev: network device to receive on 1566 * @length: length to allocate 1567 * 1568 * Allocate a new &sk_buff and assign it a usage count of one. The 1569 * buffer has unspecified headroom built in. Users should allocate 1570 * the headroom they think they need without accounting for the 1571 * built in space. The built in space is used for optimisations. 1572 * 1573 * %NULL is returned if there is no free memory. Although this function 1574 * allocates memory it can be called from an interrupt. 1575 */ 1576static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1577 unsigned int length) 1578{ 1579 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1580} 1581 1582static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1583 unsigned int length, gfp_t gfp) 1584{ 1585 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1586 1587 if (NET_IP_ALIGN && skb) 1588 skb_reserve(skb, NET_IP_ALIGN); 1589 return skb; 1590} 1591 1592static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1593 unsigned int length) 1594{ 1595 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1596} 1597 1598/** 1599 * __netdev_alloc_page - allocate a page for ps-rx on a specific device 1600 * @dev: network device to receive on 1601 * @gfp_mask: alloc_pages_node mask 1602 * 1603 * Allocate a new page. dev currently unused. 1604 * 1605 * %NULL is returned if there is no free memory. 1606 */ 1607static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 1608{ 1609 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0); 1610} 1611 1612/** 1613 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1614 * @dev: network device to receive on 1615 * 1616 * Allocate a new page. dev currently unused. 1617 * 1618 * %NULL is returned if there is no free memory. 1619 */ 1620static inline struct page *netdev_alloc_page(struct net_device *dev) 1621{ 1622 return __netdev_alloc_page(dev, GFP_ATOMIC); 1623} 1624 1625static inline void netdev_free_page(struct net_device *dev, struct page *page) 1626{ 1627 __free_page(page); 1628} 1629 1630/** 1631 * skb_clone_writable - is the header of a clone writable 1632 * @skb: buffer to check 1633 * @len: length up to which to write 1634 * 1635 * Returns true if modifying the header part of the cloned buffer 1636 * does not requires the data to be copied. 1637 */ 1638static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1639{ 1640 return !skb_header_cloned(skb) && 1641 skb_headroom(skb) + len <= skb->hdr_len; 1642} 1643 1644static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1645 int cloned) 1646{ 1647 int delta = 0; 1648 1649 if (headroom < NET_SKB_PAD) 1650 headroom = NET_SKB_PAD; 1651 if (headroom > skb_headroom(skb)) 1652 delta = headroom - skb_headroom(skb); 1653 1654 if (delta || cloned) 1655 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1656 GFP_ATOMIC); 1657 return 0; 1658} 1659 1660/** 1661 * skb_cow - copy header of skb when it is required 1662 * @skb: buffer to cow 1663 * @headroom: needed headroom 1664 * 1665 * If the skb passed lacks sufficient headroom or its data part 1666 * is shared, data is reallocated. If reallocation fails, an error 1667 * is returned and original skb is not changed. 1668 * 1669 * The result is skb with writable area skb->head...skb->tail 1670 * and at least @headroom of space at head. 1671 */ 1672static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1673{ 1674 return __skb_cow(skb, headroom, skb_cloned(skb)); 1675} 1676 1677/** 1678 * skb_cow_head - skb_cow but only making the head writable 1679 * @skb: buffer to cow 1680 * @headroom: needed headroom 1681 * 1682 * This function is identical to skb_cow except that we replace the 1683 * skb_cloned check by skb_header_cloned. It should be used when 1684 * you only need to push on some header and do not need to modify 1685 * the data. 1686 */ 1687static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1688{ 1689 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1690} 1691 1692/** 1693 * skb_padto - pad an skbuff up to a minimal size 1694 * @skb: buffer to pad 1695 * @len: minimal length 1696 * 1697 * Pads up a buffer to ensure the trailing bytes exist and are 1698 * blanked. If the buffer already contains sufficient data it 1699 * is untouched. Otherwise it is extended. Returns zero on 1700 * success. The skb is freed on error. 1701 */ 1702 1703static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1704{ 1705 unsigned int size = skb->len; 1706 if (likely(size >= len)) 1707 return 0; 1708 return skb_pad(skb, len - size); 1709} 1710 1711static inline int skb_add_data(struct sk_buff *skb, 1712 char __user *from, int copy) 1713{ 1714 const int off = skb->len; 1715 1716 if (skb->ip_summed == CHECKSUM_NONE) { 1717 int err = 0; 1718 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1719 copy, 0, &err); 1720 if (!err) { 1721 skb->csum = csum_block_add(skb->csum, csum, off); 1722 return 0; 1723 } 1724 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1725 return 0; 1726 1727 __skb_trim(skb, off); 1728 return -EFAULT; 1729} 1730 1731static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1732 struct page *page, int off) 1733{ 1734 if (i) { 1735 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1736 1737 return page == frag->page && 1738 off == frag->page_offset + frag->size; 1739 } 1740 return 0; 1741} 1742 1743static inline int __skb_linearize(struct sk_buff *skb) 1744{ 1745 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1746} 1747 1748/** 1749 * skb_linearize - convert paged skb to linear one 1750 * @skb: buffer to linarize 1751 * 1752 * If there is no free memory -ENOMEM is returned, otherwise zero 1753 * is returned and the old skb data released. 1754 */ 1755static inline int skb_linearize(struct sk_buff *skb) 1756{ 1757 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1758} 1759 1760/** 1761 * skb_linearize_cow - make sure skb is linear and writable 1762 * @skb: buffer to process 1763 * 1764 * If there is no free memory -ENOMEM is returned, otherwise zero 1765 * is returned and the old skb data released. 1766 */ 1767static inline int skb_linearize_cow(struct sk_buff *skb) 1768{ 1769 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1770 __skb_linearize(skb) : 0; 1771} 1772 1773/** 1774 * skb_postpull_rcsum - update checksum for received skb after pull 1775 * @skb: buffer to update 1776 * @start: start of data before pull 1777 * @len: length of data pulled 1778 * 1779 * After doing a pull on a received packet, you need to call this to 1780 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1781 * CHECKSUM_NONE so that it can be recomputed from scratch. 1782 */ 1783 1784static inline void skb_postpull_rcsum(struct sk_buff *skb, 1785 const void *start, unsigned int len) 1786{ 1787 if (skb->ip_summed == CHECKSUM_COMPLETE) 1788 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1789} 1790 1791unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1792 1793/** 1794 * pskb_trim_rcsum - trim received skb and update checksum 1795 * @skb: buffer to trim 1796 * @len: new length 1797 * 1798 * This is exactly the same as pskb_trim except that it ensures the 1799 * checksum of received packets are still valid after the operation. 1800 */ 1801 1802static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1803{ 1804 if (likely(len >= skb->len)) 1805 return 0; 1806 if (skb->ip_summed == CHECKSUM_COMPLETE) 1807 skb->ip_summed = CHECKSUM_NONE; 1808 return __pskb_trim(skb, len); 1809} 1810 1811#define skb_queue_walk(queue, skb) \ 1812 for (skb = (queue)->next; \ 1813 skb != (struct sk_buff *)(queue); \ 1814 skb = skb->next) 1815 1816#define skb_queue_walk_safe(queue, skb, tmp) \ 1817 for (skb = (queue)->next, tmp = skb->next; \ 1818 skb != (struct sk_buff *)(queue); \ 1819 skb = tmp, tmp = skb->next) 1820 1821#define skb_queue_walk_from(queue, skb) \ 1822 for (; skb != (struct sk_buff *)(queue); \ 1823 skb = skb->next) 1824 1825#define skb_queue_walk_from_safe(queue, skb, tmp) \ 1826 for (tmp = skb->next; \ 1827 skb != (struct sk_buff *)(queue); \ 1828 skb = tmp, tmp = skb->next) 1829 1830#define skb_queue_reverse_walk(queue, skb) \ 1831 for (skb = (queue)->prev; \ 1832 skb != (struct sk_buff *)(queue); \ 1833 skb = skb->prev) 1834 1835#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 1836 for (skb = (queue)->prev, tmp = skb->prev; \ 1837 skb != (struct sk_buff *)(queue); \ 1838 skb = tmp, tmp = skb->prev) 1839 1840#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 1841 for (tmp = skb->prev; \ 1842 skb != (struct sk_buff *)(queue); \ 1843 skb = tmp, tmp = skb->prev) 1844 1845static inline bool skb_has_frag_list(const struct sk_buff *skb) 1846{ 1847 return skb_shinfo(skb)->frag_list != NULL; 1848} 1849 1850static inline void skb_frag_list_init(struct sk_buff *skb) 1851{ 1852 skb_shinfo(skb)->frag_list = NULL; 1853} 1854 1855static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1856{ 1857 frag->next = skb_shinfo(skb)->frag_list; 1858 skb_shinfo(skb)->frag_list = frag; 1859} 1860 1861#define skb_walk_frags(skb, iter) \ 1862 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1863 1864extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1865 int *peeked, int *err); 1866extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1867 int noblock, int *err); 1868extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1869 struct poll_table_struct *wait); 1870extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1871 int offset, struct iovec *to, 1872 int size); 1873extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1874 int hlen, 1875 struct iovec *iov); 1876extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1877 int offset, 1878 const struct iovec *from, 1879 int from_offset, 1880 int len); 1881extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1882 int offset, 1883 const struct iovec *to, 1884 int to_offset, 1885 int size); 1886extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1887extern void skb_free_datagram_locked(struct sock *sk, 1888 struct sk_buff *skb); 1889extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1890 unsigned int flags); 1891extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1892 int len, __wsum csum); 1893extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1894 void *to, int len); 1895extern int skb_store_bits(struct sk_buff *skb, int offset, 1896 const void *from, int len); 1897extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1898 int offset, u8 *to, int len, 1899 __wsum csum); 1900extern int skb_splice_bits(struct sk_buff *skb, 1901 unsigned int offset, 1902 struct pipe_inode_info *pipe, 1903 unsigned int len, 1904 unsigned int flags); 1905extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1906extern void skb_split(struct sk_buff *skb, 1907 struct sk_buff *skb1, const u32 len); 1908extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1909 int shiftlen); 1910 1911extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features); 1912 1913static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1914 int len, void *buffer) 1915{ 1916 int hlen = skb_headlen(skb); 1917 1918 if (hlen - offset >= len) 1919 return skb->data + offset; 1920 1921 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1922 return NULL; 1923 1924 return buffer; 1925} 1926 1927static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1928 void *to, 1929 const unsigned int len) 1930{ 1931 memcpy(to, skb->data, len); 1932} 1933 1934static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1935 const int offset, void *to, 1936 const unsigned int len) 1937{ 1938 memcpy(to, skb->data + offset, len); 1939} 1940 1941static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1942 const void *from, 1943 const unsigned int len) 1944{ 1945 memcpy(skb->data, from, len); 1946} 1947 1948static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1949 const int offset, 1950 const void *from, 1951 const unsigned int len) 1952{ 1953 memcpy(skb->data + offset, from, len); 1954} 1955 1956extern void skb_init(void); 1957 1958static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1959{ 1960 return skb->tstamp; 1961} 1962 1963/** 1964 * skb_get_timestamp - get timestamp from a skb 1965 * @skb: skb to get stamp from 1966 * @stamp: pointer to struct timeval to store stamp in 1967 * 1968 * Timestamps are stored in the skb as offsets to a base timestamp. 1969 * This function converts the offset back to a struct timeval and stores 1970 * it in stamp. 1971 */ 1972static inline void skb_get_timestamp(const struct sk_buff *skb, 1973 struct timeval *stamp) 1974{ 1975 *stamp = ktime_to_timeval(skb->tstamp); 1976} 1977 1978static inline void skb_get_timestampns(const struct sk_buff *skb, 1979 struct timespec *stamp) 1980{ 1981 *stamp = ktime_to_timespec(skb->tstamp); 1982} 1983 1984static inline void __net_timestamp(struct sk_buff *skb) 1985{ 1986 skb->tstamp = ktime_get_real(); 1987} 1988 1989static inline ktime_t net_timedelta(ktime_t t) 1990{ 1991 return ktime_sub(ktime_get_real(), t); 1992} 1993 1994static inline ktime_t net_invalid_timestamp(void) 1995{ 1996 return ktime_set(0, 0); 1997} 1998 1999extern void skb_timestamping_init(void); 2000 2001#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2002 2003extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2004extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2005 2006#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2007 2008static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2009{ 2010} 2011 2012static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2013{ 2014 return false; 2015} 2016 2017#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2018 2019/** 2020 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2021 * 2022 * @skb: clone of the the original outgoing packet 2023 * @hwtstamps: hardware time stamps 2024 * 2025 */ 2026void skb_complete_tx_timestamp(struct sk_buff *skb, 2027 struct skb_shared_hwtstamps *hwtstamps); 2028 2029/** 2030 * skb_tstamp_tx - queue clone of skb with send time stamps 2031 * @orig_skb: the original outgoing packet 2032 * @hwtstamps: hardware time stamps, may be NULL if not available 2033 * 2034 * If the skb has a socket associated, then this function clones the 2035 * skb (thus sharing the actual data and optional structures), stores 2036 * the optional hardware time stamping information (if non NULL) or 2037 * generates a software time stamp (otherwise), then queues the clone 2038 * to the error queue of the socket. Errors are silently ignored. 2039 */ 2040extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2041 struct skb_shared_hwtstamps *hwtstamps); 2042 2043static inline void sw_tx_timestamp(struct sk_buff *skb) 2044{ 2045 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2046 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2047 skb_tstamp_tx(skb, NULL); 2048} 2049 2050/** 2051 * skb_tx_timestamp() - Driver hook for transmit timestamping 2052 * 2053 * Ethernet MAC Drivers should call this function in their hard_xmit() 2054 * function immediately before giving the sk_buff to the MAC hardware. 2055 * 2056 * @skb: A socket buffer. 2057 */ 2058static inline void skb_tx_timestamp(struct sk_buff *skb) 2059{ 2060 skb_clone_tx_timestamp(skb); 2061 sw_tx_timestamp(skb); 2062} 2063 2064extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2065extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2066 2067static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2068{ 2069 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2070} 2071 2072/** 2073 * skb_checksum_complete - Calculate checksum of an entire packet 2074 * @skb: packet to process 2075 * 2076 * This function calculates the checksum over the entire packet plus 2077 * the value of skb->csum. The latter can be used to supply the 2078 * checksum of a pseudo header as used by TCP/UDP. It returns the 2079 * checksum. 2080 * 2081 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2082 * this function can be used to verify that checksum on received 2083 * packets. In that case the function should return zero if the 2084 * checksum is correct. In particular, this function will return zero 2085 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2086 * hardware has already verified the correctness of the checksum. 2087 */ 2088static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2089{ 2090 return skb_csum_unnecessary(skb) ? 2091 0 : __skb_checksum_complete(skb); 2092} 2093 2094#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2095extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2096static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2097{ 2098 if (nfct && atomic_dec_and_test(&nfct->use)) 2099 nf_conntrack_destroy(nfct); 2100} 2101static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2102{ 2103 if (nfct) 2104 atomic_inc(&nfct->use); 2105} 2106#endif 2107#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2108static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2109{ 2110 if (skb) 2111 atomic_inc(&skb->users); 2112} 2113static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2114{ 2115 if (skb) 2116 kfree_skb(skb); 2117} 2118#endif 2119#ifdef CONFIG_BRIDGE_NETFILTER 2120static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2121{ 2122 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2123 kfree(nf_bridge); 2124} 2125static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2126{ 2127 if (nf_bridge) 2128 atomic_inc(&nf_bridge->use); 2129} 2130#endif /* CONFIG_BRIDGE_NETFILTER */ 2131static inline void nf_reset(struct sk_buff *skb) 2132{ 2133#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2134 nf_conntrack_put(skb->nfct); 2135 skb->nfct = NULL; 2136#endif 2137#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2138 nf_conntrack_put_reasm(skb->nfct_reasm); 2139 skb->nfct_reasm = NULL; 2140#endif 2141#ifdef CONFIG_BRIDGE_NETFILTER 2142 nf_bridge_put(skb->nf_bridge); 2143 skb->nf_bridge = NULL; 2144#endif 2145} 2146 2147/* Note: This doesn't put any conntrack and bridge info in dst. */ 2148static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2149{ 2150#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2151 dst->nfct = src->nfct; 2152 nf_conntrack_get(src->nfct); 2153 dst->nfctinfo = src->nfctinfo; 2154#endif 2155#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2156 dst->nfct_reasm = src->nfct_reasm; 2157 nf_conntrack_get_reasm(src->nfct_reasm); 2158#endif 2159#ifdef CONFIG_BRIDGE_NETFILTER 2160 dst->nf_bridge = src->nf_bridge; 2161 nf_bridge_get(src->nf_bridge); 2162#endif 2163} 2164 2165static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2166{ 2167#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2168 nf_conntrack_put(dst->nfct); 2169#endif 2170#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2171 nf_conntrack_put_reasm(dst->nfct_reasm); 2172#endif 2173#ifdef CONFIG_BRIDGE_NETFILTER 2174 nf_bridge_put(dst->nf_bridge); 2175#endif 2176 __nf_copy(dst, src); 2177} 2178 2179#ifdef CONFIG_NETWORK_SECMARK 2180static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2181{ 2182 to->secmark = from->secmark; 2183} 2184 2185static inline void skb_init_secmark(struct sk_buff *skb) 2186{ 2187 skb->secmark = 0; 2188} 2189#else 2190static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2191{ } 2192 2193static inline void skb_init_secmark(struct sk_buff *skb) 2194{ } 2195#endif 2196 2197static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2198{ 2199 skb->queue_mapping = queue_mapping; 2200} 2201 2202static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2203{ 2204 return skb->queue_mapping; 2205} 2206 2207static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2208{ 2209 to->queue_mapping = from->queue_mapping; 2210} 2211 2212static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2213{ 2214 skb->queue_mapping = rx_queue + 1; 2215} 2216 2217static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2218{ 2219 return skb->queue_mapping - 1; 2220} 2221 2222static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2223{ 2224 return skb->queue_mapping != 0; 2225} 2226 2227extern u16 __skb_tx_hash(const struct net_device *dev, 2228 const struct sk_buff *skb, 2229 unsigned int num_tx_queues); 2230 2231#ifdef CONFIG_XFRM 2232static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2233{ 2234 return skb->sp; 2235} 2236#else 2237static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2238{ 2239 return NULL; 2240} 2241#endif 2242 2243static inline int skb_is_gso(const struct sk_buff *skb) 2244{ 2245 return skb_shinfo(skb)->gso_size; 2246} 2247 2248static inline int skb_is_gso_v6(const struct sk_buff *skb) 2249{ 2250 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2251} 2252 2253extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2254 2255static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2256{ 2257 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2258 * wanted then gso_type will be set. */ 2259 struct skb_shared_info *shinfo = skb_shinfo(skb); 2260 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2261 unlikely(shinfo->gso_type == 0)) { 2262 __skb_warn_lro_forwarding(skb); 2263 return true; 2264 } 2265 return false; 2266} 2267 2268static inline void skb_forward_csum(struct sk_buff *skb) 2269{ 2270 /* Unfortunately we don't support this one. Any brave souls? */ 2271 if (skb->ip_summed == CHECKSUM_COMPLETE) 2272 skb->ip_summed = CHECKSUM_NONE; 2273} 2274 2275/** 2276 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2277 * @skb: skb to check 2278 * 2279 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2280 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2281 * use this helper, to document places where we make this assertion. 2282 */ 2283static inline void skb_checksum_none_assert(struct sk_buff *skb) 2284{ 2285#ifdef DEBUG 2286 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2287#endif 2288} 2289 2290bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2291 2292#endif /* __KERNEL__ */ 2293#endif /* _LINUX_SKBUFF_H */