Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/kmemcheck.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/cache.h>
22
23#include <linux/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/net.h>
27#include <linux/textsearch.h>
28#include <net/checksum.h>
29#include <linux/rcupdate.h>
30#include <linux/dmaengine.h>
31#include <linux/hrtimer.h>
32
33/* Don't change this without changing skb_csum_unnecessary! */
34#define CHECKSUM_NONE 0
35#define CHECKSUM_UNNECESSARY 1
36#define CHECKSUM_COMPLETE 2
37#define CHECKSUM_PARTIAL 3
38
39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41#define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43#define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47
48/* A. Checksumming of received packets by device.
49 *
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
52 *
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
58 *
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
63 * not UNNECESSARY.
64 *
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
71 *
72 * B. Checksumming on output.
73 *
74 * NONE: skb is checksummed by protocol or csum is not required.
75 *
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
79 *
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
83 * everything.
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90 *
91 * Any questions? No questions, good. --ANK
92 */
93
94struct net_device;
95struct scatterlist;
96struct pipe_inode_info;
97
98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99struct nf_conntrack {
100 atomic_t use;
101};
102#endif
103
104#ifdef CONFIG_BRIDGE_NETFILTER
105struct nf_bridge_info {
106 atomic_t use;
107 struct net_device *physindev;
108 struct net_device *physoutdev;
109 unsigned int mask;
110 unsigned long data[32 / sizeof(unsigned long)];
111};
112#endif
113
114struct sk_buff_head {
115 /* These two members must be first. */
116 struct sk_buff *next;
117 struct sk_buff *prev;
118
119 __u32 qlen;
120 spinlock_t lock;
121};
122
123struct sk_buff;
124
125/* To allow 64K frame to be packed as single skb without frag_list. Since
126 * GRO uses frags we allocate at least 16 regardless of page size.
127 */
128#if (65536/PAGE_SIZE + 2) < 16
129#define MAX_SKB_FRAGS 16UL
130#else
131#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132#endif
133
134typedef struct skb_frag_struct skb_frag_t;
135
136struct skb_frag_struct {
137 struct page *page;
138#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
139 __u32 page_offset;
140 __u32 size;
141#else
142 __u16 page_offset;
143 __u16 size;
144#endif
145};
146
147#define HAVE_HW_TIME_STAMP
148
149/**
150 * struct skb_shared_hwtstamps - hardware time stamps
151 * @hwtstamp: hardware time stamp transformed into duration
152 * since arbitrary point in time
153 * @syststamp: hwtstamp transformed to system time base
154 *
155 * Software time stamps generated by ktime_get_real() are stored in
156 * skb->tstamp. The relation between the different kinds of time
157 * stamps is as follows:
158 *
159 * syststamp and tstamp can be compared against each other in
160 * arbitrary combinations. The accuracy of a
161 * syststamp/tstamp/"syststamp from other device" comparison is
162 * limited by the accuracy of the transformation into system time
163 * base. This depends on the device driver and its underlying
164 * hardware.
165 *
166 * hwtstamps can only be compared against other hwtstamps from
167 * the same device.
168 *
169 * This structure is attached to packets as part of the
170 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
171 */
172struct skb_shared_hwtstamps {
173 ktime_t hwtstamp;
174 ktime_t syststamp;
175};
176
177/* Definitions for tx_flags in struct skb_shared_info */
178enum {
179 /* generate hardware time stamp */
180 SKBTX_HW_TSTAMP = 1 << 0,
181
182 /* generate software time stamp */
183 SKBTX_SW_TSTAMP = 1 << 1,
184
185 /* device driver is going to provide hardware time stamp */
186 SKBTX_IN_PROGRESS = 1 << 2,
187
188 /* ensure the originating sk reference is available on driver level */
189 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
190
191 /* device driver supports TX zero-copy buffers */
192 SKBTX_DEV_ZEROCOPY = 1 << 4,
193};
194
195/*
196 * The callback notifies userspace to release buffers when skb DMA is done in
197 * lower device, the skb last reference should be 0 when calling this.
198 * The desc is used to track userspace buffer index.
199 */
200struct ubuf_info {
201 void (*callback)(void *);
202 void *arg;
203 unsigned long desc;
204};
205
206/* This data is invariant across clones and lives at
207 * the end of the header data, ie. at skb->end.
208 */
209struct skb_shared_info {
210 unsigned short nr_frags;
211 unsigned short gso_size;
212 /* Warning: this field is not always filled in (UFO)! */
213 unsigned short gso_segs;
214 unsigned short gso_type;
215 __be32 ip6_frag_id;
216 __u8 tx_flags;
217 struct sk_buff *frag_list;
218 struct skb_shared_hwtstamps hwtstamps;
219
220 /*
221 * Warning : all fields before dataref are cleared in __alloc_skb()
222 */
223 atomic_t dataref;
224
225 /* Intermediate layers must ensure that destructor_arg
226 * remains valid until skb destructor */
227 void * destructor_arg;
228
229 /* must be last field, see pskb_expand_head() */
230 skb_frag_t frags[MAX_SKB_FRAGS];
231};
232
233/* We divide dataref into two halves. The higher 16 bits hold references
234 * to the payload part of skb->data. The lower 16 bits hold references to
235 * the entire skb->data. A clone of a headerless skb holds the length of
236 * the header in skb->hdr_len.
237 *
238 * All users must obey the rule that the skb->data reference count must be
239 * greater than or equal to the payload reference count.
240 *
241 * Holding a reference to the payload part means that the user does not
242 * care about modifications to the header part of skb->data.
243 */
244#define SKB_DATAREF_SHIFT 16
245#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
246
247
248enum {
249 SKB_FCLONE_UNAVAILABLE,
250 SKB_FCLONE_ORIG,
251 SKB_FCLONE_CLONE,
252};
253
254enum {
255 SKB_GSO_TCPV4 = 1 << 0,
256 SKB_GSO_UDP = 1 << 1,
257
258 /* This indicates the skb is from an untrusted source. */
259 SKB_GSO_DODGY = 1 << 2,
260
261 /* This indicates the tcp segment has CWR set. */
262 SKB_GSO_TCP_ECN = 1 << 3,
263
264 SKB_GSO_TCPV6 = 1 << 4,
265
266 SKB_GSO_FCOE = 1 << 5,
267};
268
269#if BITS_PER_LONG > 32
270#define NET_SKBUFF_DATA_USES_OFFSET 1
271#endif
272
273#ifdef NET_SKBUFF_DATA_USES_OFFSET
274typedef unsigned int sk_buff_data_t;
275#else
276typedef unsigned char *sk_buff_data_t;
277#endif
278
279#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
280 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
281#define NET_SKBUFF_NF_DEFRAG_NEEDED 1
282#endif
283
284/**
285 * struct sk_buff - socket buffer
286 * @next: Next buffer in list
287 * @prev: Previous buffer in list
288 * @tstamp: Time we arrived
289 * @sk: Socket we are owned by
290 * @dev: Device we arrived on/are leaving by
291 * @cb: Control buffer. Free for use by every layer. Put private vars here
292 * @_skb_refdst: destination entry (with norefcount bit)
293 * @sp: the security path, used for xfrm
294 * @len: Length of actual data
295 * @data_len: Data length
296 * @mac_len: Length of link layer header
297 * @hdr_len: writable header length of cloned skb
298 * @csum: Checksum (must include start/offset pair)
299 * @csum_start: Offset from skb->head where checksumming should start
300 * @csum_offset: Offset from csum_start where checksum should be stored
301 * @priority: Packet queueing priority
302 * @local_df: allow local fragmentation
303 * @cloned: Head may be cloned (check refcnt to be sure)
304 * @ip_summed: Driver fed us an IP checksum
305 * @nohdr: Payload reference only, must not modify header
306 * @nfctinfo: Relationship of this skb to the connection
307 * @pkt_type: Packet class
308 * @fclone: skbuff clone status
309 * @ipvs_property: skbuff is owned by ipvs
310 * @peeked: this packet has been seen already, so stats have been
311 * done for it, don't do them again
312 * @nf_trace: netfilter packet trace flag
313 * @protocol: Packet protocol from driver
314 * @destructor: Destruct function
315 * @nfct: Associated connection, if any
316 * @nfct_reasm: netfilter conntrack re-assembly pointer
317 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
318 * @skb_iif: ifindex of device we arrived on
319 * @tc_index: Traffic control index
320 * @tc_verd: traffic control verdict
321 * @rxhash: the packet hash computed on receive
322 * @queue_mapping: Queue mapping for multiqueue devices
323 * @ndisc_nodetype: router type (from link layer)
324 * @ooo_okay: allow the mapping of a socket to a queue to be changed
325 * @dma_cookie: a cookie to one of several possible DMA operations
326 * done by skb DMA functions
327 * @secmark: security marking
328 * @mark: Generic packet mark
329 * @dropcount: total number of sk_receive_queue overflows
330 * @vlan_tci: vlan tag control information
331 * @transport_header: Transport layer header
332 * @network_header: Network layer header
333 * @mac_header: Link layer header
334 * @tail: Tail pointer
335 * @end: End pointer
336 * @head: Head of buffer
337 * @data: Data head pointer
338 * @truesize: Buffer size
339 * @users: User count - see {datagram,tcp}.c
340 */
341
342struct sk_buff {
343 /* These two members must be first. */
344 struct sk_buff *next;
345 struct sk_buff *prev;
346
347 ktime_t tstamp;
348
349 struct sock *sk;
350 struct net_device *dev;
351
352 /*
353 * This is the control buffer. It is free to use for every
354 * layer. Please put your private variables there. If you
355 * want to keep them across layers you have to do a skb_clone()
356 * first. This is owned by whoever has the skb queued ATM.
357 */
358 char cb[48] __aligned(8);
359
360 unsigned long _skb_refdst;
361#ifdef CONFIG_XFRM
362 struct sec_path *sp;
363#endif
364 unsigned int len,
365 data_len;
366 __u16 mac_len,
367 hdr_len;
368 union {
369 __wsum csum;
370 struct {
371 __u16 csum_start;
372 __u16 csum_offset;
373 };
374 };
375 __u32 priority;
376 kmemcheck_bitfield_begin(flags1);
377 __u8 local_df:1,
378 cloned:1,
379 ip_summed:2,
380 nohdr:1,
381 nfctinfo:3;
382 __u8 pkt_type:3,
383 fclone:2,
384 ipvs_property:1,
385 peeked:1,
386 nf_trace:1;
387 kmemcheck_bitfield_end(flags1);
388 __be16 protocol;
389
390 void (*destructor)(struct sk_buff *skb);
391#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
392 struct nf_conntrack *nfct;
393#endif
394#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
395 struct sk_buff *nfct_reasm;
396#endif
397#ifdef CONFIG_BRIDGE_NETFILTER
398 struct nf_bridge_info *nf_bridge;
399#endif
400
401 int skb_iif;
402#ifdef CONFIG_NET_SCHED
403 __u16 tc_index; /* traffic control index */
404#ifdef CONFIG_NET_CLS_ACT
405 __u16 tc_verd; /* traffic control verdict */
406#endif
407#endif
408
409 __u32 rxhash;
410
411 __u16 queue_mapping;
412 kmemcheck_bitfield_begin(flags2);
413#ifdef CONFIG_IPV6_NDISC_NODETYPE
414 __u8 ndisc_nodetype:2;
415#endif
416 __u8 ooo_okay:1;
417 kmemcheck_bitfield_end(flags2);
418
419 /* 0/13 bit hole */
420
421#ifdef CONFIG_NET_DMA
422 dma_cookie_t dma_cookie;
423#endif
424#ifdef CONFIG_NETWORK_SECMARK
425 __u32 secmark;
426#endif
427 union {
428 __u32 mark;
429 __u32 dropcount;
430 };
431
432 __u16 vlan_tci;
433
434 sk_buff_data_t transport_header;
435 sk_buff_data_t network_header;
436 sk_buff_data_t mac_header;
437 /* These elements must be at the end, see alloc_skb() for details. */
438 sk_buff_data_t tail;
439 sk_buff_data_t end;
440 unsigned char *head,
441 *data;
442 unsigned int truesize;
443 atomic_t users;
444};
445
446#ifdef __KERNEL__
447/*
448 * Handling routines are only of interest to the kernel
449 */
450#include <linux/slab.h>
451
452#include <asm/system.h>
453
454/*
455 * skb might have a dst pointer attached, refcounted or not.
456 * _skb_refdst low order bit is set if refcount was _not_ taken
457 */
458#define SKB_DST_NOREF 1UL
459#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
460
461/**
462 * skb_dst - returns skb dst_entry
463 * @skb: buffer
464 *
465 * Returns skb dst_entry, regardless of reference taken or not.
466 */
467static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
468{
469 /* If refdst was not refcounted, check we still are in a
470 * rcu_read_lock section
471 */
472 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
473 !rcu_read_lock_held() &&
474 !rcu_read_lock_bh_held());
475 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
476}
477
478/**
479 * skb_dst_set - sets skb dst
480 * @skb: buffer
481 * @dst: dst entry
482 *
483 * Sets skb dst, assuming a reference was taken on dst and should
484 * be released by skb_dst_drop()
485 */
486static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
487{
488 skb->_skb_refdst = (unsigned long)dst;
489}
490
491extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
492
493/**
494 * skb_dst_is_noref - Test if skb dst isn't refcounted
495 * @skb: buffer
496 */
497static inline bool skb_dst_is_noref(const struct sk_buff *skb)
498{
499 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
500}
501
502static inline struct rtable *skb_rtable(const struct sk_buff *skb)
503{
504 return (struct rtable *)skb_dst(skb);
505}
506
507extern void kfree_skb(struct sk_buff *skb);
508extern void consume_skb(struct sk_buff *skb);
509extern void __kfree_skb(struct sk_buff *skb);
510extern struct sk_buff *__alloc_skb(unsigned int size,
511 gfp_t priority, int fclone, int node);
512static inline struct sk_buff *alloc_skb(unsigned int size,
513 gfp_t priority)
514{
515 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
516}
517
518static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
519 gfp_t priority)
520{
521 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
522}
523
524extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
525
526extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
527extern struct sk_buff *skb_clone(struct sk_buff *skb,
528 gfp_t priority);
529extern struct sk_buff *skb_copy(const struct sk_buff *skb,
530 gfp_t priority);
531extern struct sk_buff *pskb_copy(struct sk_buff *skb,
532 gfp_t gfp_mask);
533extern int pskb_expand_head(struct sk_buff *skb,
534 int nhead, int ntail,
535 gfp_t gfp_mask);
536extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
537 unsigned int headroom);
538extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
539 int newheadroom, int newtailroom,
540 gfp_t priority);
541extern int skb_to_sgvec(struct sk_buff *skb,
542 struct scatterlist *sg, int offset,
543 int len);
544extern int skb_cow_data(struct sk_buff *skb, int tailbits,
545 struct sk_buff **trailer);
546extern int skb_pad(struct sk_buff *skb, int pad);
547#define dev_kfree_skb(a) consume_skb(a)
548
549extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
550 int getfrag(void *from, char *to, int offset,
551 int len,int odd, struct sk_buff *skb),
552 void *from, int length);
553
554struct skb_seq_state {
555 __u32 lower_offset;
556 __u32 upper_offset;
557 __u32 frag_idx;
558 __u32 stepped_offset;
559 struct sk_buff *root_skb;
560 struct sk_buff *cur_skb;
561 __u8 *frag_data;
562};
563
564extern void skb_prepare_seq_read(struct sk_buff *skb,
565 unsigned int from, unsigned int to,
566 struct skb_seq_state *st);
567extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
568 struct skb_seq_state *st);
569extern void skb_abort_seq_read(struct skb_seq_state *st);
570
571extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
572 unsigned int to, struct ts_config *config,
573 struct ts_state *state);
574
575extern __u32 __skb_get_rxhash(struct sk_buff *skb);
576static inline __u32 skb_get_rxhash(struct sk_buff *skb)
577{
578 if (!skb->rxhash)
579 skb->rxhash = __skb_get_rxhash(skb);
580
581 return skb->rxhash;
582}
583
584#ifdef NET_SKBUFF_DATA_USES_OFFSET
585static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
586{
587 return skb->head + skb->end;
588}
589#else
590static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
591{
592 return skb->end;
593}
594#endif
595
596/* Internal */
597#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
598
599static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
600{
601 return &skb_shinfo(skb)->hwtstamps;
602}
603
604/**
605 * skb_queue_empty - check if a queue is empty
606 * @list: queue head
607 *
608 * Returns true if the queue is empty, false otherwise.
609 */
610static inline int skb_queue_empty(const struct sk_buff_head *list)
611{
612 return list->next == (struct sk_buff *)list;
613}
614
615/**
616 * skb_queue_is_last - check if skb is the last entry in the queue
617 * @list: queue head
618 * @skb: buffer
619 *
620 * Returns true if @skb is the last buffer on the list.
621 */
622static inline bool skb_queue_is_last(const struct sk_buff_head *list,
623 const struct sk_buff *skb)
624{
625 return skb->next == (struct sk_buff *)list;
626}
627
628/**
629 * skb_queue_is_first - check if skb is the first entry in the queue
630 * @list: queue head
631 * @skb: buffer
632 *
633 * Returns true if @skb is the first buffer on the list.
634 */
635static inline bool skb_queue_is_first(const struct sk_buff_head *list,
636 const struct sk_buff *skb)
637{
638 return skb->prev == (struct sk_buff *)list;
639}
640
641/**
642 * skb_queue_next - return the next packet in the queue
643 * @list: queue head
644 * @skb: current buffer
645 *
646 * Return the next packet in @list after @skb. It is only valid to
647 * call this if skb_queue_is_last() evaluates to false.
648 */
649static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
650 const struct sk_buff *skb)
651{
652 /* This BUG_ON may seem severe, but if we just return then we
653 * are going to dereference garbage.
654 */
655 BUG_ON(skb_queue_is_last(list, skb));
656 return skb->next;
657}
658
659/**
660 * skb_queue_prev - return the prev packet in the queue
661 * @list: queue head
662 * @skb: current buffer
663 *
664 * Return the prev packet in @list before @skb. It is only valid to
665 * call this if skb_queue_is_first() evaluates to false.
666 */
667static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
668 const struct sk_buff *skb)
669{
670 /* This BUG_ON may seem severe, but if we just return then we
671 * are going to dereference garbage.
672 */
673 BUG_ON(skb_queue_is_first(list, skb));
674 return skb->prev;
675}
676
677/**
678 * skb_get - reference buffer
679 * @skb: buffer to reference
680 *
681 * Makes another reference to a socket buffer and returns a pointer
682 * to the buffer.
683 */
684static inline struct sk_buff *skb_get(struct sk_buff *skb)
685{
686 atomic_inc(&skb->users);
687 return skb;
688}
689
690/*
691 * If users == 1, we are the only owner and are can avoid redundant
692 * atomic change.
693 */
694
695/**
696 * skb_cloned - is the buffer a clone
697 * @skb: buffer to check
698 *
699 * Returns true if the buffer was generated with skb_clone() and is
700 * one of multiple shared copies of the buffer. Cloned buffers are
701 * shared data so must not be written to under normal circumstances.
702 */
703static inline int skb_cloned(const struct sk_buff *skb)
704{
705 return skb->cloned &&
706 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
707}
708
709/**
710 * skb_header_cloned - is the header a clone
711 * @skb: buffer to check
712 *
713 * Returns true if modifying the header part of the buffer requires
714 * the data to be copied.
715 */
716static inline int skb_header_cloned(const struct sk_buff *skb)
717{
718 int dataref;
719
720 if (!skb->cloned)
721 return 0;
722
723 dataref = atomic_read(&skb_shinfo(skb)->dataref);
724 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
725 return dataref != 1;
726}
727
728/**
729 * skb_header_release - release reference to header
730 * @skb: buffer to operate on
731 *
732 * Drop a reference to the header part of the buffer. This is done
733 * by acquiring a payload reference. You must not read from the header
734 * part of skb->data after this.
735 */
736static inline void skb_header_release(struct sk_buff *skb)
737{
738 BUG_ON(skb->nohdr);
739 skb->nohdr = 1;
740 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
741}
742
743/**
744 * skb_shared - is the buffer shared
745 * @skb: buffer to check
746 *
747 * Returns true if more than one person has a reference to this
748 * buffer.
749 */
750static inline int skb_shared(const struct sk_buff *skb)
751{
752 return atomic_read(&skb->users) != 1;
753}
754
755/**
756 * skb_share_check - check if buffer is shared and if so clone it
757 * @skb: buffer to check
758 * @pri: priority for memory allocation
759 *
760 * If the buffer is shared the buffer is cloned and the old copy
761 * drops a reference. A new clone with a single reference is returned.
762 * If the buffer is not shared the original buffer is returned. When
763 * being called from interrupt status or with spinlocks held pri must
764 * be GFP_ATOMIC.
765 *
766 * NULL is returned on a memory allocation failure.
767 */
768static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
769 gfp_t pri)
770{
771 might_sleep_if(pri & __GFP_WAIT);
772 if (skb_shared(skb)) {
773 struct sk_buff *nskb = skb_clone(skb, pri);
774 kfree_skb(skb);
775 skb = nskb;
776 }
777 return skb;
778}
779
780/*
781 * Copy shared buffers into a new sk_buff. We effectively do COW on
782 * packets to handle cases where we have a local reader and forward
783 * and a couple of other messy ones. The normal one is tcpdumping
784 * a packet thats being forwarded.
785 */
786
787/**
788 * skb_unshare - make a copy of a shared buffer
789 * @skb: buffer to check
790 * @pri: priority for memory allocation
791 *
792 * If the socket buffer is a clone then this function creates a new
793 * copy of the data, drops a reference count on the old copy and returns
794 * the new copy with the reference count at 1. If the buffer is not a clone
795 * the original buffer is returned. When called with a spinlock held or
796 * from interrupt state @pri must be %GFP_ATOMIC
797 *
798 * %NULL is returned on a memory allocation failure.
799 */
800static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
801 gfp_t pri)
802{
803 might_sleep_if(pri & __GFP_WAIT);
804 if (skb_cloned(skb)) {
805 struct sk_buff *nskb = skb_copy(skb, pri);
806 kfree_skb(skb); /* Free our shared copy */
807 skb = nskb;
808 }
809 return skb;
810}
811
812/**
813 * skb_peek - peek at the head of an &sk_buff_head
814 * @list_: list to peek at
815 *
816 * Peek an &sk_buff. Unlike most other operations you _MUST_
817 * be careful with this one. A peek leaves the buffer on the
818 * list and someone else may run off with it. You must hold
819 * the appropriate locks or have a private queue to do this.
820 *
821 * Returns %NULL for an empty list or a pointer to the head element.
822 * The reference count is not incremented and the reference is therefore
823 * volatile. Use with caution.
824 */
825static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
826{
827 struct sk_buff *list = ((struct sk_buff *)list_)->next;
828 if (list == (struct sk_buff *)list_)
829 list = NULL;
830 return list;
831}
832
833/**
834 * skb_peek_tail - peek at the tail of an &sk_buff_head
835 * @list_: list to peek at
836 *
837 * Peek an &sk_buff. Unlike most other operations you _MUST_
838 * be careful with this one. A peek leaves the buffer on the
839 * list and someone else may run off with it. You must hold
840 * the appropriate locks or have a private queue to do this.
841 *
842 * Returns %NULL for an empty list or a pointer to the tail element.
843 * The reference count is not incremented and the reference is therefore
844 * volatile. Use with caution.
845 */
846static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
847{
848 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
849 if (list == (struct sk_buff *)list_)
850 list = NULL;
851 return list;
852}
853
854/**
855 * skb_queue_len - get queue length
856 * @list_: list to measure
857 *
858 * Return the length of an &sk_buff queue.
859 */
860static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
861{
862 return list_->qlen;
863}
864
865/**
866 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
867 * @list: queue to initialize
868 *
869 * This initializes only the list and queue length aspects of
870 * an sk_buff_head object. This allows to initialize the list
871 * aspects of an sk_buff_head without reinitializing things like
872 * the spinlock. It can also be used for on-stack sk_buff_head
873 * objects where the spinlock is known to not be used.
874 */
875static inline void __skb_queue_head_init(struct sk_buff_head *list)
876{
877 list->prev = list->next = (struct sk_buff *)list;
878 list->qlen = 0;
879}
880
881/*
882 * This function creates a split out lock class for each invocation;
883 * this is needed for now since a whole lot of users of the skb-queue
884 * infrastructure in drivers have different locking usage (in hardirq)
885 * than the networking core (in softirq only). In the long run either the
886 * network layer or drivers should need annotation to consolidate the
887 * main types of usage into 3 classes.
888 */
889static inline void skb_queue_head_init(struct sk_buff_head *list)
890{
891 spin_lock_init(&list->lock);
892 __skb_queue_head_init(list);
893}
894
895static inline void skb_queue_head_init_class(struct sk_buff_head *list,
896 struct lock_class_key *class)
897{
898 skb_queue_head_init(list);
899 lockdep_set_class(&list->lock, class);
900}
901
902/*
903 * Insert an sk_buff on a list.
904 *
905 * The "__skb_xxxx()" functions are the non-atomic ones that
906 * can only be called with interrupts disabled.
907 */
908extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
909static inline void __skb_insert(struct sk_buff *newsk,
910 struct sk_buff *prev, struct sk_buff *next,
911 struct sk_buff_head *list)
912{
913 newsk->next = next;
914 newsk->prev = prev;
915 next->prev = prev->next = newsk;
916 list->qlen++;
917}
918
919static inline void __skb_queue_splice(const struct sk_buff_head *list,
920 struct sk_buff *prev,
921 struct sk_buff *next)
922{
923 struct sk_buff *first = list->next;
924 struct sk_buff *last = list->prev;
925
926 first->prev = prev;
927 prev->next = first;
928
929 last->next = next;
930 next->prev = last;
931}
932
933/**
934 * skb_queue_splice - join two skb lists, this is designed for stacks
935 * @list: the new list to add
936 * @head: the place to add it in the first list
937 */
938static inline void skb_queue_splice(const struct sk_buff_head *list,
939 struct sk_buff_head *head)
940{
941 if (!skb_queue_empty(list)) {
942 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
943 head->qlen += list->qlen;
944 }
945}
946
947/**
948 * skb_queue_splice - join two skb lists and reinitialise the emptied list
949 * @list: the new list to add
950 * @head: the place to add it in the first list
951 *
952 * The list at @list is reinitialised
953 */
954static inline void skb_queue_splice_init(struct sk_buff_head *list,
955 struct sk_buff_head *head)
956{
957 if (!skb_queue_empty(list)) {
958 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
959 head->qlen += list->qlen;
960 __skb_queue_head_init(list);
961 }
962}
963
964/**
965 * skb_queue_splice_tail - join two skb lists, each list being a queue
966 * @list: the new list to add
967 * @head: the place to add it in the first list
968 */
969static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
970 struct sk_buff_head *head)
971{
972 if (!skb_queue_empty(list)) {
973 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
974 head->qlen += list->qlen;
975 }
976}
977
978/**
979 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
980 * @list: the new list to add
981 * @head: the place to add it in the first list
982 *
983 * Each of the lists is a queue.
984 * The list at @list is reinitialised
985 */
986static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
987 struct sk_buff_head *head)
988{
989 if (!skb_queue_empty(list)) {
990 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
991 head->qlen += list->qlen;
992 __skb_queue_head_init(list);
993 }
994}
995
996/**
997 * __skb_queue_after - queue a buffer at the list head
998 * @list: list to use
999 * @prev: place after this buffer
1000 * @newsk: buffer to queue
1001 *
1002 * Queue a buffer int the middle of a list. This function takes no locks
1003 * and you must therefore hold required locks before calling it.
1004 *
1005 * A buffer cannot be placed on two lists at the same time.
1006 */
1007static inline void __skb_queue_after(struct sk_buff_head *list,
1008 struct sk_buff *prev,
1009 struct sk_buff *newsk)
1010{
1011 __skb_insert(newsk, prev, prev->next, list);
1012}
1013
1014extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1015 struct sk_buff_head *list);
1016
1017static inline void __skb_queue_before(struct sk_buff_head *list,
1018 struct sk_buff *next,
1019 struct sk_buff *newsk)
1020{
1021 __skb_insert(newsk, next->prev, next, list);
1022}
1023
1024/**
1025 * __skb_queue_head - queue a buffer at the list head
1026 * @list: list to use
1027 * @newsk: buffer to queue
1028 *
1029 * Queue a buffer at the start of a list. This function takes no locks
1030 * and you must therefore hold required locks before calling it.
1031 *
1032 * A buffer cannot be placed on two lists at the same time.
1033 */
1034extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1035static inline void __skb_queue_head(struct sk_buff_head *list,
1036 struct sk_buff *newsk)
1037{
1038 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1039}
1040
1041/**
1042 * __skb_queue_tail - queue a buffer at the list tail
1043 * @list: list to use
1044 * @newsk: buffer to queue
1045 *
1046 * Queue a buffer at the end of a list. This function takes no locks
1047 * and you must therefore hold required locks before calling it.
1048 *
1049 * A buffer cannot be placed on two lists at the same time.
1050 */
1051extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1052static inline void __skb_queue_tail(struct sk_buff_head *list,
1053 struct sk_buff *newsk)
1054{
1055 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1056}
1057
1058/*
1059 * remove sk_buff from list. _Must_ be called atomically, and with
1060 * the list known..
1061 */
1062extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1063static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1064{
1065 struct sk_buff *next, *prev;
1066
1067 list->qlen--;
1068 next = skb->next;
1069 prev = skb->prev;
1070 skb->next = skb->prev = NULL;
1071 next->prev = prev;
1072 prev->next = next;
1073}
1074
1075/**
1076 * __skb_dequeue - remove from the head of the queue
1077 * @list: list to dequeue from
1078 *
1079 * Remove the head of the list. This function does not take any locks
1080 * so must be used with appropriate locks held only. The head item is
1081 * returned or %NULL if the list is empty.
1082 */
1083extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1084static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1085{
1086 struct sk_buff *skb = skb_peek(list);
1087 if (skb)
1088 __skb_unlink(skb, list);
1089 return skb;
1090}
1091
1092/**
1093 * __skb_dequeue_tail - remove from the tail of the queue
1094 * @list: list to dequeue from
1095 *
1096 * Remove the tail of the list. This function does not take any locks
1097 * so must be used with appropriate locks held only. The tail item is
1098 * returned or %NULL if the list is empty.
1099 */
1100extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1101static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1102{
1103 struct sk_buff *skb = skb_peek_tail(list);
1104 if (skb)
1105 __skb_unlink(skb, list);
1106 return skb;
1107}
1108
1109
1110static inline int skb_is_nonlinear(const struct sk_buff *skb)
1111{
1112 return skb->data_len;
1113}
1114
1115static inline unsigned int skb_headlen(const struct sk_buff *skb)
1116{
1117 return skb->len - skb->data_len;
1118}
1119
1120static inline int skb_pagelen(const struct sk_buff *skb)
1121{
1122 int i, len = 0;
1123
1124 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1125 len += skb_shinfo(skb)->frags[i].size;
1126 return len + skb_headlen(skb);
1127}
1128
1129static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1130 struct page *page, int off, int size)
1131{
1132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133
1134 frag->page = page;
1135 frag->page_offset = off;
1136 frag->size = size;
1137 skb_shinfo(skb)->nr_frags = i + 1;
1138}
1139
1140extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1141 int off, int size);
1142
1143#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1144#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1145#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1146
1147#ifdef NET_SKBUFF_DATA_USES_OFFSET
1148static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1149{
1150 return skb->head + skb->tail;
1151}
1152
1153static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1154{
1155 skb->tail = skb->data - skb->head;
1156}
1157
1158static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1159{
1160 skb_reset_tail_pointer(skb);
1161 skb->tail += offset;
1162}
1163#else /* NET_SKBUFF_DATA_USES_OFFSET */
1164static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1165{
1166 return skb->tail;
1167}
1168
1169static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1170{
1171 skb->tail = skb->data;
1172}
1173
1174static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1175{
1176 skb->tail = skb->data + offset;
1177}
1178
1179#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1180
1181/*
1182 * Add data to an sk_buff
1183 */
1184extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1185static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1186{
1187 unsigned char *tmp = skb_tail_pointer(skb);
1188 SKB_LINEAR_ASSERT(skb);
1189 skb->tail += len;
1190 skb->len += len;
1191 return tmp;
1192}
1193
1194extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1195static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1196{
1197 skb->data -= len;
1198 skb->len += len;
1199 return skb->data;
1200}
1201
1202extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1203static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1204{
1205 skb->len -= len;
1206 BUG_ON(skb->len < skb->data_len);
1207 return skb->data += len;
1208}
1209
1210static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1211{
1212 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1213}
1214
1215extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1216
1217static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1218{
1219 if (len > skb_headlen(skb) &&
1220 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1221 return NULL;
1222 skb->len -= len;
1223 return skb->data += len;
1224}
1225
1226static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1227{
1228 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1229}
1230
1231static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1232{
1233 if (likely(len <= skb_headlen(skb)))
1234 return 1;
1235 if (unlikely(len > skb->len))
1236 return 0;
1237 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1238}
1239
1240/**
1241 * skb_headroom - bytes at buffer head
1242 * @skb: buffer to check
1243 *
1244 * Return the number of bytes of free space at the head of an &sk_buff.
1245 */
1246static inline unsigned int skb_headroom(const struct sk_buff *skb)
1247{
1248 return skb->data - skb->head;
1249}
1250
1251/**
1252 * skb_tailroom - bytes at buffer end
1253 * @skb: buffer to check
1254 *
1255 * Return the number of bytes of free space at the tail of an sk_buff
1256 */
1257static inline int skb_tailroom(const struct sk_buff *skb)
1258{
1259 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1260}
1261
1262/**
1263 * skb_reserve - adjust headroom
1264 * @skb: buffer to alter
1265 * @len: bytes to move
1266 *
1267 * Increase the headroom of an empty &sk_buff by reducing the tail
1268 * room. This is only allowed for an empty buffer.
1269 */
1270static inline void skb_reserve(struct sk_buff *skb, int len)
1271{
1272 skb->data += len;
1273 skb->tail += len;
1274}
1275
1276static inline void skb_reset_mac_len(struct sk_buff *skb)
1277{
1278 skb->mac_len = skb->network_header - skb->mac_header;
1279}
1280
1281#ifdef NET_SKBUFF_DATA_USES_OFFSET
1282static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1283{
1284 return skb->head + skb->transport_header;
1285}
1286
1287static inline void skb_reset_transport_header(struct sk_buff *skb)
1288{
1289 skb->transport_header = skb->data - skb->head;
1290}
1291
1292static inline void skb_set_transport_header(struct sk_buff *skb,
1293 const int offset)
1294{
1295 skb_reset_transport_header(skb);
1296 skb->transport_header += offset;
1297}
1298
1299static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1300{
1301 return skb->head + skb->network_header;
1302}
1303
1304static inline void skb_reset_network_header(struct sk_buff *skb)
1305{
1306 skb->network_header = skb->data - skb->head;
1307}
1308
1309static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1310{
1311 skb_reset_network_header(skb);
1312 skb->network_header += offset;
1313}
1314
1315static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1316{
1317 return skb->head + skb->mac_header;
1318}
1319
1320static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1321{
1322 return skb->mac_header != ~0U;
1323}
1324
1325static inline void skb_reset_mac_header(struct sk_buff *skb)
1326{
1327 skb->mac_header = skb->data - skb->head;
1328}
1329
1330static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1331{
1332 skb_reset_mac_header(skb);
1333 skb->mac_header += offset;
1334}
1335
1336#else /* NET_SKBUFF_DATA_USES_OFFSET */
1337
1338static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1339{
1340 return skb->transport_header;
1341}
1342
1343static inline void skb_reset_transport_header(struct sk_buff *skb)
1344{
1345 skb->transport_header = skb->data;
1346}
1347
1348static inline void skb_set_transport_header(struct sk_buff *skb,
1349 const int offset)
1350{
1351 skb->transport_header = skb->data + offset;
1352}
1353
1354static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1355{
1356 return skb->network_header;
1357}
1358
1359static inline void skb_reset_network_header(struct sk_buff *skb)
1360{
1361 skb->network_header = skb->data;
1362}
1363
1364static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1365{
1366 skb->network_header = skb->data + offset;
1367}
1368
1369static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1370{
1371 return skb->mac_header;
1372}
1373
1374static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1375{
1376 return skb->mac_header != NULL;
1377}
1378
1379static inline void skb_reset_mac_header(struct sk_buff *skb)
1380{
1381 skb->mac_header = skb->data;
1382}
1383
1384static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1385{
1386 skb->mac_header = skb->data + offset;
1387}
1388#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1389
1390static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1391{
1392 return skb->csum_start - skb_headroom(skb);
1393}
1394
1395static inline int skb_transport_offset(const struct sk_buff *skb)
1396{
1397 return skb_transport_header(skb) - skb->data;
1398}
1399
1400static inline u32 skb_network_header_len(const struct sk_buff *skb)
1401{
1402 return skb->transport_header - skb->network_header;
1403}
1404
1405static inline int skb_network_offset(const struct sk_buff *skb)
1406{
1407 return skb_network_header(skb) - skb->data;
1408}
1409
1410static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1411{
1412 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1413}
1414
1415/*
1416 * CPUs often take a performance hit when accessing unaligned memory
1417 * locations. The actual performance hit varies, it can be small if the
1418 * hardware handles it or large if we have to take an exception and fix it
1419 * in software.
1420 *
1421 * Since an ethernet header is 14 bytes network drivers often end up with
1422 * the IP header at an unaligned offset. The IP header can be aligned by
1423 * shifting the start of the packet by 2 bytes. Drivers should do this
1424 * with:
1425 *
1426 * skb_reserve(skb, NET_IP_ALIGN);
1427 *
1428 * The downside to this alignment of the IP header is that the DMA is now
1429 * unaligned. On some architectures the cost of an unaligned DMA is high
1430 * and this cost outweighs the gains made by aligning the IP header.
1431 *
1432 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1433 * to be overridden.
1434 */
1435#ifndef NET_IP_ALIGN
1436#define NET_IP_ALIGN 2
1437#endif
1438
1439/*
1440 * The networking layer reserves some headroom in skb data (via
1441 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1442 * the header has to grow. In the default case, if the header has to grow
1443 * 32 bytes or less we avoid the reallocation.
1444 *
1445 * Unfortunately this headroom changes the DMA alignment of the resulting
1446 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1447 * on some architectures. An architecture can override this value,
1448 * perhaps setting it to a cacheline in size (since that will maintain
1449 * cacheline alignment of the DMA). It must be a power of 2.
1450 *
1451 * Various parts of the networking layer expect at least 32 bytes of
1452 * headroom, you should not reduce this.
1453 *
1454 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1455 * to reduce average number of cache lines per packet.
1456 * get_rps_cpus() for example only access one 64 bytes aligned block :
1457 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1458 */
1459#ifndef NET_SKB_PAD
1460#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1461#endif
1462
1463extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1464
1465static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1466{
1467 if (unlikely(skb_is_nonlinear(skb))) {
1468 WARN_ON(1);
1469 return;
1470 }
1471 skb->len = len;
1472 skb_set_tail_pointer(skb, len);
1473}
1474
1475extern void skb_trim(struct sk_buff *skb, unsigned int len);
1476
1477static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1478{
1479 if (skb->data_len)
1480 return ___pskb_trim(skb, len);
1481 __skb_trim(skb, len);
1482 return 0;
1483}
1484
1485static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1486{
1487 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1488}
1489
1490/**
1491 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1492 * @skb: buffer to alter
1493 * @len: new length
1494 *
1495 * This is identical to pskb_trim except that the caller knows that
1496 * the skb is not cloned so we should never get an error due to out-
1497 * of-memory.
1498 */
1499static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1500{
1501 int err = pskb_trim(skb, len);
1502 BUG_ON(err);
1503}
1504
1505/**
1506 * skb_orphan - orphan a buffer
1507 * @skb: buffer to orphan
1508 *
1509 * If a buffer currently has an owner then we call the owner's
1510 * destructor function and make the @skb unowned. The buffer continues
1511 * to exist but is no longer charged to its former owner.
1512 */
1513static inline void skb_orphan(struct sk_buff *skb)
1514{
1515 if (skb->destructor)
1516 skb->destructor(skb);
1517 skb->destructor = NULL;
1518 skb->sk = NULL;
1519}
1520
1521/**
1522 * __skb_queue_purge - empty a list
1523 * @list: list to empty
1524 *
1525 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1526 * the list and one reference dropped. This function does not take the
1527 * list lock and the caller must hold the relevant locks to use it.
1528 */
1529extern void skb_queue_purge(struct sk_buff_head *list);
1530static inline void __skb_queue_purge(struct sk_buff_head *list)
1531{
1532 struct sk_buff *skb;
1533 while ((skb = __skb_dequeue(list)) != NULL)
1534 kfree_skb(skb);
1535}
1536
1537/**
1538 * __dev_alloc_skb - allocate an skbuff for receiving
1539 * @length: length to allocate
1540 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1541 *
1542 * Allocate a new &sk_buff and assign it a usage count of one. The
1543 * buffer has unspecified headroom built in. Users should allocate
1544 * the headroom they think they need without accounting for the
1545 * built in space. The built in space is used for optimisations.
1546 *
1547 * %NULL is returned if there is no free memory.
1548 */
1549static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1550 gfp_t gfp_mask)
1551{
1552 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1553 if (likely(skb))
1554 skb_reserve(skb, NET_SKB_PAD);
1555 return skb;
1556}
1557
1558extern struct sk_buff *dev_alloc_skb(unsigned int length);
1559
1560extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1561 unsigned int length, gfp_t gfp_mask);
1562
1563/**
1564 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1565 * @dev: network device to receive on
1566 * @length: length to allocate
1567 *
1568 * Allocate a new &sk_buff and assign it a usage count of one. The
1569 * buffer has unspecified headroom built in. Users should allocate
1570 * the headroom they think they need without accounting for the
1571 * built in space. The built in space is used for optimisations.
1572 *
1573 * %NULL is returned if there is no free memory. Although this function
1574 * allocates memory it can be called from an interrupt.
1575 */
1576static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1577 unsigned int length)
1578{
1579 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1580}
1581
1582static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1583 unsigned int length, gfp_t gfp)
1584{
1585 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1586
1587 if (NET_IP_ALIGN && skb)
1588 skb_reserve(skb, NET_IP_ALIGN);
1589 return skb;
1590}
1591
1592static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1593 unsigned int length)
1594{
1595 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1596}
1597
1598/**
1599 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1600 * @dev: network device to receive on
1601 * @gfp_mask: alloc_pages_node mask
1602 *
1603 * Allocate a new page. dev currently unused.
1604 *
1605 * %NULL is returned if there is no free memory.
1606 */
1607static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1608{
1609 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1610}
1611
1612/**
1613 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1614 * @dev: network device to receive on
1615 *
1616 * Allocate a new page. dev currently unused.
1617 *
1618 * %NULL is returned if there is no free memory.
1619 */
1620static inline struct page *netdev_alloc_page(struct net_device *dev)
1621{
1622 return __netdev_alloc_page(dev, GFP_ATOMIC);
1623}
1624
1625static inline void netdev_free_page(struct net_device *dev, struct page *page)
1626{
1627 __free_page(page);
1628}
1629
1630/**
1631 * skb_clone_writable - is the header of a clone writable
1632 * @skb: buffer to check
1633 * @len: length up to which to write
1634 *
1635 * Returns true if modifying the header part of the cloned buffer
1636 * does not requires the data to be copied.
1637 */
1638static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1639{
1640 return !skb_header_cloned(skb) &&
1641 skb_headroom(skb) + len <= skb->hdr_len;
1642}
1643
1644static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1645 int cloned)
1646{
1647 int delta = 0;
1648
1649 if (headroom < NET_SKB_PAD)
1650 headroom = NET_SKB_PAD;
1651 if (headroom > skb_headroom(skb))
1652 delta = headroom - skb_headroom(skb);
1653
1654 if (delta || cloned)
1655 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1656 GFP_ATOMIC);
1657 return 0;
1658}
1659
1660/**
1661 * skb_cow - copy header of skb when it is required
1662 * @skb: buffer to cow
1663 * @headroom: needed headroom
1664 *
1665 * If the skb passed lacks sufficient headroom or its data part
1666 * is shared, data is reallocated. If reallocation fails, an error
1667 * is returned and original skb is not changed.
1668 *
1669 * The result is skb with writable area skb->head...skb->tail
1670 * and at least @headroom of space at head.
1671 */
1672static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1673{
1674 return __skb_cow(skb, headroom, skb_cloned(skb));
1675}
1676
1677/**
1678 * skb_cow_head - skb_cow but only making the head writable
1679 * @skb: buffer to cow
1680 * @headroom: needed headroom
1681 *
1682 * This function is identical to skb_cow except that we replace the
1683 * skb_cloned check by skb_header_cloned. It should be used when
1684 * you only need to push on some header and do not need to modify
1685 * the data.
1686 */
1687static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1688{
1689 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1690}
1691
1692/**
1693 * skb_padto - pad an skbuff up to a minimal size
1694 * @skb: buffer to pad
1695 * @len: minimal length
1696 *
1697 * Pads up a buffer to ensure the trailing bytes exist and are
1698 * blanked. If the buffer already contains sufficient data it
1699 * is untouched. Otherwise it is extended. Returns zero on
1700 * success. The skb is freed on error.
1701 */
1702
1703static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1704{
1705 unsigned int size = skb->len;
1706 if (likely(size >= len))
1707 return 0;
1708 return skb_pad(skb, len - size);
1709}
1710
1711static inline int skb_add_data(struct sk_buff *skb,
1712 char __user *from, int copy)
1713{
1714 const int off = skb->len;
1715
1716 if (skb->ip_summed == CHECKSUM_NONE) {
1717 int err = 0;
1718 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1719 copy, 0, &err);
1720 if (!err) {
1721 skb->csum = csum_block_add(skb->csum, csum, off);
1722 return 0;
1723 }
1724 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1725 return 0;
1726
1727 __skb_trim(skb, off);
1728 return -EFAULT;
1729}
1730
1731static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1732 struct page *page, int off)
1733{
1734 if (i) {
1735 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1736
1737 return page == frag->page &&
1738 off == frag->page_offset + frag->size;
1739 }
1740 return 0;
1741}
1742
1743static inline int __skb_linearize(struct sk_buff *skb)
1744{
1745 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1746}
1747
1748/**
1749 * skb_linearize - convert paged skb to linear one
1750 * @skb: buffer to linarize
1751 *
1752 * If there is no free memory -ENOMEM is returned, otherwise zero
1753 * is returned and the old skb data released.
1754 */
1755static inline int skb_linearize(struct sk_buff *skb)
1756{
1757 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1758}
1759
1760/**
1761 * skb_linearize_cow - make sure skb is linear and writable
1762 * @skb: buffer to process
1763 *
1764 * If there is no free memory -ENOMEM is returned, otherwise zero
1765 * is returned and the old skb data released.
1766 */
1767static inline int skb_linearize_cow(struct sk_buff *skb)
1768{
1769 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1770 __skb_linearize(skb) : 0;
1771}
1772
1773/**
1774 * skb_postpull_rcsum - update checksum for received skb after pull
1775 * @skb: buffer to update
1776 * @start: start of data before pull
1777 * @len: length of data pulled
1778 *
1779 * After doing a pull on a received packet, you need to call this to
1780 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1781 * CHECKSUM_NONE so that it can be recomputed from scratch.
1782 */
1783
1784static inline void skb_postpull_rcsum(struct sk_buff *skb,
1785 const void *start, unsigned int len)
1786{
1787 if (skb->ip_summed == CHECKSUM_COMPLETE)
1788 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1789}
1790
1791unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1792
1793/**
1794 * pskb_trim_rcsum - trim received skb and update checksum
1795 * @skb: buffer to trim
1796 * @len: new length
1797 *
1798 * This is exactly the same as pskb_trim except that it ensures the
1799 * checksum of received packets are still valid after the operation.
1800 */
1801
1802static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1803{
1804 if (likely(len >= skb->len))
1805 return 0;
1806 if (skb->ip_summed == CHECKSUM_COMPLETE)
1807 skb->ip_summed = CHECKSUM_NONE;
1808 return __pskb_trim(skb, len);
1809}
1810
1811#define skb_queue_walk(queue, skb) \
1812 for (skb = (queue)->next; \
1813 skb != (struct sk_buff *)(queue); \
1814 skb = skb->next)
1815
1816#define skb_queue_walk_safe(queue, skb, tmp) \
1817 for (skb = (queue)->next, tmp = skb->next; \
1818 skb != (struct sk_buff *)(queue); \
1819 skb = tmp, tmp = skb->next)
1820
1821#define skb_queue_walk_from(queue, skb) \
1822 for (; skb != (struct sk_buff *)(queue); \
1823 skb = skb->next)
1824
1825#define skb_queue_walk_from_safe(queue, skb, tmp) \
1826 for (tmp = skb->next; \
1827 skb != (struct sk_buff *)(queue); \
1828 skb = tmp, tmp = skb->next)
1829
1830#define skb_queue_reverse_walk(queue, skb) \
1831 for (skb = (queue)->prev; \
1832 skb != (struct sk_buff *)(queue); \
1833 skb = skb->prev)
1834
1835#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
1836 for (skb = (queue)->prev, tmp = skb->prev; \
1837 skb != (struct sk_buff *)(queue); \
1838 skb = tmp, tmp = skb->prev)
1839
1840#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
1841 for (tmp = skb->prev; \
1842 skb != (struct sk_buff *)(queue); \
1843 skb = tmp, tmp = skb->prev)
1844
1845static inline bool skb_has_frag_list(const struct sk_buff *skb)
1846{
1847 return skb_shinfo(skb)->frag_list != NULL;
1848}
1849
1850static inline void skb_frag_list_init(struct sk_buff *skb)
1851{
1852 skb_shinfo(skb)->frag_list = NULL;
1853}
1854
1855static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1856{
1857 frag->next = skb_shinfo(skb)->frag_list;
1858 skb_shinfo(skb)->frag_list = frag;
1859}
1860
1861#define skb_walk_frags(skb, iter) \
1862 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1863
1864extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1865 int *peeked, int *err);
1866extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1867 int noblock, int *err);
1868extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1869 struct poll_table_struct *wait);
1870extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1871 int offset, struct iovec *to,
1872 int size);
1873extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1874 int hlen,
1875 struct iovec *iov);
1876extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1877 int offset,
1878 const struct iovec *from,
1879 int from_offset,
1880 int len);
1881extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1882 int offset,
1883 const struct iovec *to,
1884 int to_offset,
1885 int size);
1886extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1887extern void skb_free_datagram_locked(struct sock *sk,
1888 struct sk_buff *skb);
1889extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1890 unsigned int flags);
1891extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1892 int len, __wsum csum);
1893extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1894 void *to, int len);
1895extern int skb_store_bits(struct sk_buff *skb, int offset,
1896 const void *from, int len);
1897extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1898 int offset, u8 *to, int len,
1899 __wsum csum);
1900extern int skb_splice_bits(struct sk_buff *skb,
1901 unsigned int offset,
1902 struct pipe_inode_info *pipe,
1903 unsigned int len,
1904 unsigned int flags);
1905extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1906extern void skb_split(struct sk_buff *skb,
1907 struct sk_buff *skb1, const u32 len);
1908extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1909 int shiftlen);
1910
1911extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
1912
1913static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1914 int len, void *buffer)
1915{
1916 int hlen = skb_headlen(skb);
1917
1918 if (hlen - offset >= len)
1919 return skb->data + offset;
1920
1921 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1922 return NULL;
1923
1924 return buffer;
1925}
1926
1927static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1928 void *to,
1929 const unsigned int len)
1930{
1931 memcpy(to, skb->data, len);
1932}
1933
1934static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1935 const int offset, void *to,
1936 const unsigned int len)
1937{
1938 memcpy(to, skb->data + offset, len);
1939}
1940
1941static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1942 const void *from,
1943 const unsigned int len)
1944{
1945 memcpy(skb->data, from, len);
1946}
1947
1948static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1949 const int offset,
1950 const void *from,
1951 const unsigned int len)
1952{
1953 memcpy(skb->data + offset, from, len);
1954}
1955
1956extern void skb_init(void);
1957
1958static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1959{
1960 return skb->tstamp;
1961}
1962
1963/**
1964 * skb_get_timestamp - get timestamp from a skb
1965 * @skb: skb to get stamp from
1966 * @stamp: pointer to struct timeval to store stamp in
1967 *
1968 * Timestamps are stored in the skb as offsets to a base timestamp.
1969 * This function converts the offset back to a struct timeval and stores
1970 * it in stamp.
1971 */
1972static inline void skb_get_timestamp(const struct sk_buff *skb,
1973 struct timeval *stamp)
1974{
1975 *stamp = ktime_to_timeval(skb->tstamp);
1976}
1977
1978static inline void skb_get_timestampns(const struct sk_buff *skb,
1979 struct timespec *stamp)
1980{
1981 *stamp = ktime_to_timespec(skb->tstamp);
1982}
1983
1984static inline void __net_timestamp(struct sk_buff *skb)
1985{
1986 skb->tstamp = ktime_get_real();
1987}
1988
1989static inline ktime_t net_timedelta(ktime_t t)
1990{
1991 return ktime_sub(ktime_get_real(), t);
1992}
1993
1994static inline ktime_t net_invalid_timestamp(void)
1995{
1996 return ktime_set(0, 0);
1997}
1998
1999extern void skb_timestamping_init(void);
2000
2001#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2002
2003extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2004extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2005
2006#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2007
2008static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2009{
2010}
2011
2012static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2013{
2014 return false;
2015}
2016
2017#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2018
2019/**
2020 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2021 *
2022 * @skb: clone of the the original outgoing packet
2023 * @hwtstamps: hardware time stamps
2024 *
2025 */
2026void skb_complete_tx_timestamp(struct sk_buff *skb,
2027 struct skb_shared_hwtstamps *hwtstamps);
2028
2029/**
2030 * skb_tstamp_tx - queue clone of skb with send time stamps
2031 * @orig_skb: the original outgoing packet
2032 * @hwtstamps: hardware time stamps, may be NULL if not available
2033 *
2034 * If the skb has a socket associated, then this function clones the
2035 * skb (thus sharing the actual data and optional structures), stores
2036 * the optional hardware time stamping information (if non NULL) or
2037 * generates a software time stamp (otherwise), then queues the clone
2038 * to the error queue of the socket. Errors are silently ignored.
2039 */
2040extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2041 struct skb_shared_hwtstamps *hwtstamps);
2042
2043static inline void sw_tx_timestamp(struct sk_buff *skb)
2044{
2045 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2046 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2047 skb_tstamp_tx(skb, NULL);
2048}
2049
2050/**
2051 * skb_tx_timestamp() - Driver hook for transmit timestamping
2052 *
2053 * Ethernet MAC Drivers should call this function in their hard_xmit()
2054 * function immediately before giving the sk_buff to the MAC hardware.
2055 *
2056 * @skb: A socket buffer.
2057 */
2058static inline void skb_tx_timestamp(struct sk_buff *skb)
2059{
2060 skb_clone_tx_timestamp(skb);
2061 sw_tx_timestamp(skb);
2062}
2063
2064extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2065extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2066
2067static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2068{
2069 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2070}
2071
2072/**
2073 * skb_checksum_complete - Calculate checksum of an entire packet
2074 * @skb: packet to process
2075 *
2076 * This function calculates the checksum over the entire packet plus
2077 * the value of skb->csum. The latter can be used to supply the
2078 * checksum of a pseudo header as used by TCP/UDP. It returns the
2079 * checksum.
2080 *
2081 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2082 * this function can be used to verify that checksum on received
2083 * packets. In that case the function should return zero if the
2084 * checksum is correct. In particular, this function will return zero
2085 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2086 * hardware has already verified the correctness of the checksum.
2087 */
2088static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2089{
2090 return skb_csum_unnecessary(skb) ?
2091 0 : __skb_checksum_complete(skb);
2092}
2093
2094#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2095extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2096static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2097{
2098 if (nfct && atomic_dec_and_test(&nfct->use))
2099 nf_conntrack_destroy(nfct);
2100}
2101static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2102{
2103 if (nfct)
2104 atomic_inc(&nfct->use);
2105}
2106#endif
2107#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2108static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2109{
2110 if (skb)
2111 atomic_inc(&skb->users);
2112}
2113static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2114{
2115 if (skb)
2116 kfree_skb(skb);
2117}
2118#endif
2119#ifdef CONFIG_BRIDGE_NETFILTER
2120static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2121{
2122 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2123 kfree(nf_bridge);
2124}
2125static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2126{
2127 if (nf_bridge)
2128 atomic_inc(&nf_bridge->use);
2129}
2130#endif /* CONFIG_BRIDGE_NETFILTER */
2131static inline void nf_reset(struct sk_buff *skb)
2132{
2133#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2134 nf_conntrack_put(skb->nfct);
2135 skb->nfct = NULL;
2136#endif
2137#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2138 nf_conntrack_put_reasm(skb->nfct_reasm);
2139 skb->nfct_reasm = NULL;
2140#endif
2141#ifdef CONFIG_BRIDGE_NETFILTER
2142 nf_bridge_put(skb->nf_bridge);
2143 skb->nf_bridge = NULL;
2144#endif
2145}
2146
2147/* Note: This doesn't put any conntrack and bridge info in dst. */
2148static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2149{
2150#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2151 dst->nfct = src->nfct;
2152 nf_conntrack_get(src->nfct);
2153 dst->nfctinfo = src->nfctinfo;
2154#endif
2155#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2156 dst->nfct_reasm = src->nfct_reasm;
2157 nf_conntrack_get_reasm(src->nfct_reasm);
2158#endif
2159#ifdef CONFIG_BRIDGE_NETFILTER
2160 dst->nf_bridge = src->nf_bridge;
2161 nf_bridge_get(src->nf_bridge);
2162#endif
2163}
2164
2165static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2166{
2167#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2168 nf_conntrack_put(dst->nfct);
2169#endif
2170#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2171 nf_conntrack_put_reasm(dst->nfct_reasm);
2172#endif
2173#ifdef CONFIG_BRIDGE_NETFILTER
2174 nf_bridge_put(dst->nf_bridge);
2175#endif
2176 __nf_copy(dst, src);
2177}
2178
2179#ifdef CONFIG_NETWORK_SECMARK
2180static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2181{
2182 to->secmark = from->secmark;
2183}
2184
2185static inline void skb_init_secmark(struct sk_buff *skb)
2186{
2187 skb->secmark = 0;
2188}
2189#else
2190static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2191{ }
2192
2193static inline void skb_init_secmark(struct sk_buff *skb)
2194{ }
2195#endif
2196
2197static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2198{
2199 skb->queue_mapping = queue_mapping;
2200}
2201
2202static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2203{
2204 return skb->queue_mapping;
2205}
2206
2207static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2208{
2209 to->queue_mapping = from->queue_mapping;
2210}
2211
2212static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2213{
2214 skb->queue_mapping = rx_queue + 1;
2215}
2216
2217static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2218{
2219 return skb->queue_mapping - 1;
2220}
2221
2222static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2223{
2224 return skb->queue_mapping != 0;
2225}
2226
2227extern u16 __skb_tx_hash(const struct net_device *dev,
2228 const struct sk_buff *skb,
2229 unsigned int num_tx_queues);
2230
2231#ifdef CONFIG_XFRM
2232static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2233{
2234 return skb->sp;
2235}
2236#else
2237static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2238{
2239 return NULL;
2240}
2241#endif
2242
2243static inline int skb_is_gso(const struct sk_buff *skb)
2244{
2245 return skb_shinfo(skb)->gso_size;
2246}
2247
2248static inline int skb_is_gso_v6(const struct sk_buff *skb)
2249{
2250 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2251}
2252
2253extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2254
2255static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2256{
2257 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2258 * wanted then gso_type will be set. */
2259 struct skb_shared_info *shinfo = skb_shinfo(skb);
2260 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2261 unlikely(shinfo->gso_type == 0)) {
2262 __skb_warn_lro_forwarding(skb);
2263 return true;
2264 }
2265 return false;
2266}
2267
2268static inline void skb_forward_csum(struct sk_buff *skb)
2269{
2270 /* Unfortunately we don't support this one. Any brave souls? */
2271 if (skb->ip_summed == CHECKSUM_COMPLETE)
2272 skb->ip_summed = CHECKSUM_NONE;
2273}
2274
2275/**
2276 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2277 * @skb: skb to check
2278 *
2279 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2280 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2281 * use this helper, to document places where we make this assertion.
2282 */
2283static inline void skb_checksum_none_assert(struct sk_buff *skb)
2284{
2285#ifdef DEBUG
2286 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2287#endif
2288}
2289
2290bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2291
2292#endif /* __KERNEL__ */
2293#endif /* _LINUX_SKBUFF_H */