at v3.1-rc10 431 lines 11 kB view raw
1/* 2 * apb_timer.c: Driver for Langwell APB timers 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * Author: Jacob Pan (jacob.jun.pan@intel.com) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 * 12 * Note: 13 * Langwell is the south complex of Intel Moorestown MID platform. There are 14 * eight external timers in total that can be used by the operating system. 15 * The timer information, such as frequency and addresses, is provided to the 16 * OS via SFI tables. 17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via 18 * individual redirection table entries (RTE). 19 * Unlike HPET, there is no master counter, therefore one of the timers are 20 * used as clocksource. The overall allocation looks like: 21 * - timer 0 - NR_CPUs for per cpu timer 22 * - one timer for clocksource 23 * - one timer for watchdog driver. 24 * It is also worth notice that APB timer does not support true one-shot mode, 25 * free-running mode will be used here to emulate one-shot mode. 26 * APB timer can also be used as broadcast timer along with per cpu local APIC 27 * timer, but by default APB timer has higher rating than local APIC timers. 28 */ 29 30#include <linux/delay.h> 31#include <linux/dw_apb_timer.h> 32#include <linux/errno.h> 33#include <linux/init.h> 34#include <linux/slab.h> 35#include <linux/pm.h> 36#include <linux/sfi.h> 37#include <linux/interrupt.h> 38#include <linux/cpu.h> 39#include <linux/irq.h> 40 41#include <asm/fixmap.h> 42#include <asm/apb_timer.h> 43#include <asm/mrst.h> 44#include <asm/time.h> 45 46#define APBT_CLOCKEVENT_RATING 110 47#define APBT_CLOCKSOURCE_RATING 250 48 49#define APBT_CLOCKEVENT0_NUM (0) 50#define APBT_CLOCKSOURCE_NUM (2) 51 52static phys_addr_t apbt_address; 53static int apb_timer_block_enabled; 54static void __iomem *apbt_virt_address; 55 56/* 57 * Common DW APB timer info 58 */ 59static unsigned long apbt_freq; 60 61struct apbt_dev { 62 struct dw_apb_clock_event_device *timer; 63 unsigned int num; 64 int cpu; 65 unsigned int irq; 66 char name[10]; 67}; 68 69static struct dw_apb_clocksource *clocksource_apbt; 70 71static inline void __iomem *adev_virt_addr(struct apbt_dev *adev) 72{ 73 return apbt_virt_address + adev->num * APBTMRS_REG_SIZE; 74} 75 76static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); 77 78#ifdef CONFIG_SMP 79static unsigned int apbt_num_timers_used; 80#endif 81 82static inline void apbt_set_mapping(void) 83{ 84 struct sfi_timer_table_entry *mtmr; 85 int phy_cs_timer_id = 0; 86 87 if (apbt_virt_address) { 88 pr_debug("APBT base already mapped\n"); 89 return; 90 } 91 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); 92 if (mtmr == NULL) { 93 printk(KERN_ERR "Failed to get MTMR %d from SFI\n", 94 APBT_CLOCKEVENT0_NUM); 95 return; 96 } 97 apbt_address = (phys_addr_t)mtmr->phys_addr; 98 if (!apbt_address) { 99 printk(KERN_WARNING "No timer base from SFI, use default\n"); 100 apbt_address = APBT_DEFAULT_BASE; 101 } 102 apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); 103 if (!apbt_virt_address) { 104 pr_debug("Failed mapping APBT phy address at %lu\n",\ 105 (unsigned long)apbt_address); 106 goto panic_noapbt; 107 } 108 apbt_freq = mtmr->freq_hz; 109 sfi_free_mtmr(mtmr); 110 111 /* Now figure out the physical timer id for clocksource device */ 112 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); 113 if (mtmr == NULL) 114 goto panic_noapbt; 115 116 /* Now figure out the physical timer id */ 117 pr_debug("Use timer %d for clocksource\n", 118 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE); 119 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) / 120 APBTMRS_REG_SIZE; 121 122 clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING, 123 "apbt0", apbt_virt_address + phy_cs_timer_id * 124 APBTMRS_REG_SIZE, apbt_freq); 125 return; 126 127panic_noapbt: 128 panic("Failed to setup APB system timer\n"); 129 130} 131 132static inline void apbt_clear_mapping(void) 133{ 134 iounmap(apbt_virt_address); 135 apbt_virt_address = NULL; 136} 137 138/* 139 * APBT timer interrupt enable / disable 140 */ 141static inline int is_apbt_capable(void) 142{ 143 return apbt_virt_address ? 1 : 0; 144} 145 146static int __init apbt_clockevent_register(void) 147{ 148 struct sfi_timer_table_entry *mtmr; 149 struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); 150 151 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); 152 if (mtmr == NULL) { 153 printk(KERN_ERR "Failed to get MTMR %d from SFI\n", 154 APBT_CLOCKEVENT0_NUM); 155 return -ENODEV; 156 } 157 158 adev->num = smp_processor_id(); 159 adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0", 160 mrst_timer_options == MRST_TIMER_LAPIC_APBT ? 161 APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING, 162 adev_virt_addr(adev), 0, apbt_freq); 163 /* Firmware does EOI handling for us. */ 164 adev->timer->eoi = NULL; 165 166 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) { 167 global_clock_event = &adev->timer->ced; 168 printk(KERN_DEBUG "%s clockevent registered as global\n", 169 global_clock_event->name); 170 } 171 172 dw_apb_clockevent_register(adev->timer); 173 174 sfi_free_mtmr(mtmr); 175 return 0; 176} 177 178#ifdef CONFIG_SMP 179 180static void apbt_setup_irq(struct apbt_dev *adev) 181{ 182 /* timer0 irq has been setup early */ 183 if (adev->irq == 0) 184 return; 185 186 irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT); 187 irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); 188 /* APB timer irqs are set up as mp_irqs, timer is edge type */ 189 __irq_set_handler(adev->irq, handle_edge_irq, 0, "edge"); 190} 191 192/* Should be called with per cpu */ 193void apbt_setup_secondary_clock(void) 194{ 195 struct apbt_dev *adev; 196 int cpu; 197 198 /* Don't register boot CPU clockevent */ 199 cpu = smp_processor_id(); 200 if (!cpu) 201 return; 202 203 adev = &__get_cpu_var(cpu_apbt_dev); 204 if (!adev->timer) { 205 adev->timer = dw_apb_clockevent_init(cpu, adev->name, 206 APBT_CLOCKEVENT_RATING, adev_virt_addr(adev), 207 adev->irq, apbt_freq); 208 adev->timer->eoi = NULL; 209 } else { 210 dw_apb_clockevent_resume(adev->timer); 211 } 212 213 printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n", 214 cpu, adev->name, adev->cpu); 215 216 apbt_setup_irq(adev); 217 dw_apb_clockevent_register(adev->timer); 218 219 return; 220} 221 222/* 223 * this notify handler process CPU hotplug events. in case of S0i3, nonboot 224 * cpus are disabled/enabled frequently, for performance reasons, we keep the 225 * per cpu timer irq registered so that we do need to do free_irq/request_irq. 226 * 227 * TODO: it might be more reliable to directly disable percpu clockevent device 228 * without the notifier chain. currently, cpu 0 may get interrupts from other 229 * cpu timers during the offline process due to the ordering of notification. 230 * the extra interrupt is harmless. 231 */ 232static int apbt_cpuhp_notify(struct notifier_block *n, 233 unsigned long action, void *hcpu) 234{ 235 unsigned long cpu = (unsigned long)hcpu; 236 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); 237 238 switch (action & 0xf) { 239 case CPU_DEAD: 240 dw_apb_clockevent_pause(adev->timer); 241 if (system_state == SYSTEM_RUNNING) { 242 pr_debug("skipping APBT CPU %lu offline\n", cpu); 243 } else if (adev) { 244 pr_debug("APBT clockevent for cpu %lu offline\n", cpu); 245 dw_apb_clockevent_stop(adev->timer); 246 } 247 break; 248 default: 249 pr_debug("APBT notified %lu, no action\n", action); 250 } 251 return NOTIFY_OK; 252} 253 254static __init int apbt_late_init(void) 255{ 256 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT || 257 !apb_timer_block_enabled) 258 return 0; 259 /* This notifier should be called after workqueue is ready */ 260 hotcpu_notifier(apbt_cpuhp_notify, -20); 261 return 0; 262} 263fs_initcall(apbt_late_init); 264#else 265 266void apbt_setup_secondary_clock(void) {} 267 268#endif /* CONFIG_SMP */ 269 270static int apbt_clocksource_register(void) 271{ 272 u64 start, now; 273 cycle_t t1; 274 275 /* Start the counter, use timer 2 as source, timer 0/1 for event */ 276 dw_apb_clocksource_start(clocksource_apbt); 277 278 /* Verify whether apbt counter works */ 279 t1 = dw_apb_clocksource_read(clocksource_apbt); 280 rdtscll(start); 281 282 /* 283 * We don't know the TSC frequency yet, but waiting for 284 * 200000 TSC cycles is safe: 285 * 4 GHz == 50us 286 * 1 GHz == 200us 287 */ 288 do { 289 rep_nop(); 290 rdtscll(now); 291 } while ((now - start) < 200000UL); 292 293 /* APBT is the only always on clocksource, it has to work! */ 294 if (t1 == dw_apb_clocksource_read(clocksource_apbt)) 295 panic("APBT counter not counting. APBT disabled\n"); 296 297 dw_apb_clocksource_register(clocksource_apbt); 298 299 return 0; 300} 301 302/* 303 * Early setup the APBT timer, only use timer 0 for booting then switch to 304 * per CPU timer if possible. 305 * returns 1 if per cpu apbt is setup 306 * returns 0 if no per cpu apbt is chosen 307 * panic if set up failed, this is the only platform timer on Moorestown. 308 */ 309void __init apbt_time_init(void) 310{ 311#ifdef CONFIG_SMP 312 int i; 313 struct sfi_timer_table_entry *p_mtmr; 314 unsigned int percpu_timer; 315 struct apbt_dev *adev; 316#endif 317 318 if (apb_timer_block_enabled) 319 return; 320 apbt_set_mapping(); 321 if (!apbt_virt_address) 322 goto out_noapbt; 323 /* 324 * Read the frequency and check for a sane value, for ESL model 325 * we extend the possible clock range to allow time scaling. 326 */ 327 328 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { 329 pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq); 330 goto out_noapbt; 331 } 332 if (apbt_clocksource_register()) { 333 pr_debug("APBT has failed to register clocksource\n"); 334 goto out_noapbt; 335 } 336 if (!apbt_clockevent_register()) 337 apb_timer_block_enabled = 1; 338 else { 339 pr_debug("APBT has failed to register clockevent\n"); 340 goto out_noapbt; 341 } 342#ifdef CONFIG_SMP 343 /* kernel cmdline disable apb timer, so we will use lapic timers */ 344 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) { 345 printk(KERN_INFO "apbt: disabled per cpu timer\n"); 346 return; 347 } 348 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); 349 if (num_possible_cpus() <= sfi_mtimer_num) { 350 percpu_timer = 1; 351 apbt_num_timers_used = num_possible_cpus(); 352 } else { 353 percpu_timer = 0; 354 apbt_num_timers_used = 1; 355 } 356 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); 357 358 /* here we set up per CPU timer data structure */ 359 for (i = 0; i < apbt_num_timers_used; i++) { 360 adev = &per_cpu(cpu_apbt_dev, i); 361 adev->num = i; 362 adev->cpu = i; 363 p_mtmr = sfi_get_mtmr(i); 364 if (p_mtmr) 365 adev->irq = p_mtmr->irq; 366 else 367 printk(KERN_ERR "Failed to get timer for cpu %d\n", i); 368 snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i); 369 } 370#endif 371 372 return; 373 374out_noapbt: 375 apbt_clear_mapping(); 376 apb_timer_block_enabled = 0; 377 panic("failed to enable APB timer\n"); 378} 379 380/* called before apb_timer_enable, use early map */ 381unsigned long apbt_quick_calibrate(void) 382{ 383 int i, scale; 384 u64 old, new; 385 cycle_t t1, t2; 386 unsigned long khz = 0; 387 u32 loop, shift; 388 389 apbt_set_mapping(); 390 dw_apb_clocksource_start(clocksource_apbt); 391 392 /* check if the timer can count down, otherwise return */ 393 old = dw_apb_clocksource_read(clocksource_apbt); 394 i = 10000; 395 while (--i) { 396 if (old != dw_apb_clocksource_read(clocksource_apbt)) 397 break; 398 } 399 if (!i) 400 goto failed; 401 402 /* count 16 ms */ 403 loop = (apbt_freq / 1000) << 4; 404 405 /* restart the timer to ensure it won't get to 0 in the calibration */ 406 dw_apb_clocksource_start(clocksource_apbt); 407 408 old = dw_apb_clocksource_read(clocksource_apbt); 409 old += loop; 410 411 t1 = __native_read_tsc(); 412 413 do { 414 new = dw_apb_clocksource_read(clocksource_apbt); 415 } while (new < old); 416 417 t2 = __native_read_tsc(); 418 419 shift = 5; 420 if (unlikely(loop >> shift == 0)) { 421 printk(KERN_INFO 422 "APBT TSC calibration failed, not enough resolution\n"); 423 return 0; 424 } 425 scale = (int)div_u64((t2 - t1), loop >> shift); 426 khz = (scale * (apbt_freq / 1000)) >> shift; 427 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); 428 return khz; 429failed: 430 return 0; 431}