at v3.0 194 kB view raw
1/* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62#include <linux/types.h> 63#include <linux/kernel.h> 64#include <linux/wait.h> 65#include <linux/time.h> 66#include <linux/ip.h> 67#include <linux/capability.h> 68#include <linux/fcntl.h> 69#include <linux/poll.h> 70#include <linux/init.h> 71#include <linux/crypto.h> 72#include <linux/slab.h> 73 74#include <net/ip.h> 75#include <net/icmp.h> 76#include <net/route.h> 77#include <net/ipv6.h> 78#include <net/inet_common.h> 79 80#include <linux/socket.h> /* for sa_family_t */ 81#include <net/sock.h> 82#include <net/sctp/sctp.h> 83#include <net/sctp/sm.h> 84 85/* WARNING: Please do not remove the SCTP_STATIC attribute to 86 * any of the functions below as they are used to export functions 87 * used by a project regression testsuite. 88 */ 89 90/* Forward declarations for internal helper functions. */ 91static int sctp_writeable(struct sock *sk); 92static void sctp_wfree(struct sk_buff *skb); 93static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 94 size_t msg_len); 95static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 96static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 97static int sctp_wait_for_accept(struct sock *sk, long timeo); 98static void sctp_wait_for_close(struct sock *sk, long timeo); 99static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 100 union sctp_addr *addr, int len); 101static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 102static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 103static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 104static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 105static int sctp_send_asconf(struct sctp_association *asoc, 106 struct sctp_chunk *chunk); 107static int sctp_do_bind(struct sock *, union sctp_addr *, int); 108static int sctp_autobind(struct sock *sk); 109static void sctp_sock_migrate(struct sock *, struct sock *, 110 struct sctp_association *, sctp_socket_type_t); 111static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 112 113extern struct kmem_cache *sctp_bucket_cachep; 114extern long sysctl_sctp_mem[3]; 115extern int sysctl_sctp_rmem[3]; 116extern int sysctl_sctp_wmem[3]; 117 118static int sctp_memory_pressure; 119static atomic_long_t sctp_memory_allocated; 120struct percpu_counter sctp_sockets_allocated; 121 122static void sctp_enter_memory_pressure(struct sock *sk) 123{ 124 sctp_memory_pressure = 1; 125} 126 127 128/* Get the sndbuf space available at the time on the association. */ 129static inline int sctp_wspace(struct sctp_association *asoc) 130{ 131 int amt; 132 133 if (asoc->ep->sndbuf_policy) 134 amt = asoc->sndbuf_used; 135 else 136 amt = sk_wmem_alloc_get(asoc->base.sk); 137 138 if (amt >= asoc->base.sk->sk_sndbuf) { 139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 140 amt = 0; 141 else { 142 amt = sk_stream_wspace(asoc->base.sk); 143 if (amt < 0) 144 amt = 0; 145 } 146 } else { 147 amt = asoc->base.sk->sk_sndbuf - amt; 148 } 149 return amt; 150} 151 152/* Increment the used sndbuf space count of the corresponding association by 153 * the size of the outgoing data chunk. 154 * Also, set the skb destructor for sndbuf accounting later. 155 * 156 * Since it is always 1-1 between chunk and skb, and also a new skb is always 157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 158 * destructor in the data chunk skb for the purpose of the sndbuf space 159 * tracking. 160 */ 161static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 162{ 163 struct sctp_association *asoc = chunk->asoc; 164 struct sock *sk = asoc->base.sk; 165 166 /* The sndbuf space is tracked per association. */ 167 sctp_association_hold(asoc); 168 169 skb_set_owner_w(chunk->skb, sk); 170 171 chunk->skb->destructor = sctp_wfree; 172 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 174 175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 176 sizeof(struct sk_buff) + 177 sizeof(struct sctp_chunk); 178 179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 180 sk->sk_wmem_queued += chunk->skb->truesize; 181 sk_mem_charge(sk, chunk->skb->truesize); 182} 183 184/* Verify that this is a valid address. */ 185static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 186 int len) 187{ 188 struct sctp_af *af; 189 190 /* Verify basic sockaddr. */ 191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 192 if (!af) 193 return -EINVAL; 194 195 /* Is this a valid SCTP address? */ 196 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 197 return -EINVAL; 198 199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 200 return -EINVAL; 201 202 return 0; 203} 204 205/* Look up the association by its id. If this is not a UDP-style 206 * socket, the ID field is always ignored. 207 */ 208struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 209{ 210 struct sctp_association *asoc = NULL; 211 212 /* If this is not a UDP-style socket, assoc id should be ignored. */ 213 if (!sctp_style(sk, UDP)) { 214 /* Return NULL if the socket state is not ESTABLISHED. It 215 * could be a TCP-style listening socket or a socket which 216 * hasn't yet called connect() to establish an association. 217 */ 218 if (!sctp_sstate(sk, ESTABLISHED)) 219 return NULL; 220 221 /* Get the first and the only association from the list. */ 222 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 224 struct sctp_association, asocs); 225 return asoc; 226 } 227 228 /* Otherwise this is a UDP-style socket. */ 229 if (!id || (id == (sctp_assoc_t)-1)) 230 return NULL; 231 232 spin_lock_bh(&sctp_assocs_id_lock); 233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 234 spin_unlock_bh(&sctp_assocs_id_lock); 235 236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 237 return NULL; 238 239 return asoc; 240} 241 242/* Look up the transport from an address and an assoc id. If both address and 243 * id are specified, the associations matching the address and the id should be 244 * the same. 245 */ 246static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 247 struct sockaddr_storage *addr, 248 sctp_assoc_t id) 249{ 250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 251 struct sctp_transport *transport; 252 union sctp_addr *laddr = (union sctp_addr *)addr; 253 254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 255 laddr, 256 &transport); 257 258 if (!addr_asoc) 259 return NULL; 260 261 id_asoc = sctp_id2assoc(sk, id); 262 if (id_asoc && (id_asoc != addr_asoc)) 263 return NULL; 264 265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 266 (union sctp_addr *)addr); 267 268 return transport; 269} 270 271/* API 3.1.2 bind() - UDP Style Syntax 272 * The syntax of bind() is, 273 * 274 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 275 * 276 * sd - the socket descriptor returned by socket(). 277 * addr - the address structure (struct sockaddr_in or struct 278 * sockaddr_in6 [RFC 2553]), 279 * addr_len - the size of the address structure. 280 */ 281SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 282{ 283 int retval = 0; 284 285 sctp_lock_sock(sk); 286 287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 288 sk, addr, addr_len); 289 290 /* Disallow binding twice. */ 291 if (!sctp_sk(sk)->ep->base.bind_addr.port) 292 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 293 addr_len); 294 else 295 retval = -EINVAL; 296 297 sctp_release_sock(sk); 298 299 return retval; 300} 301 302static long sctp_get_port_local(struct sock *, union sctp_addr *); 303 304/* Verify this is a valid sockaddr. */ 305static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 306 union sctp_addr *addr, int len) 307{ 308 struct sctp_af *af; 309 310 /* Check minimum size. */ 311 if (len < sizeof (struct sockaddr)) 312 return NULL; 313 314 /* V4 mapped address are really of AF_INET family */ 315 if (addr->sa.sa_family == AF_INET6 && 316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 317 if (!opt->pf->af_supported(AF_INET, opt)) 318 return NULL; 319 } else { 320 /* Does this PF support this AF? */ 321 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 322 return NULL; 323 } 324 325 /* If we get this far, af is valid. */ 326 af = sctp_get_af_specific(addr->sa.sa_family); 327 328 if (len < af->sockaddr_len) 329 return NULL; 330 331 return af; 332} 333 334/* Bind a local address either to an endpoint or to an association. */ 335SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 336{ 337 struct sctp_sock *sp = sctp_sk(sk); 338 struct sctp_endpoint *ep = sp->ep; 339 struct sctp_bind_addr *bp = &ep->base.bind_addr; 340 struct sctp_af *af; 341 unsigned short snum; 342 int ret = 0; 343 344 /* Common sockaddr verification. */ 345 af = sctp_sockaddr_af(sp, addr, len); 346 if (!af) { 347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 348 sk, addr, len); 349 return -EINVAL; 350 } 351 352 snum = ntohs(addr->v4.sin_port); 353 354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 355 ", port: %d, new port: %d, len: %d)\n", 356 sk, 357 addr, 358 bp->port, snum, 359 len); 360 361 /* PF specific bind() address verification. */ 362 if (!sp->pf->bind_verify(sp, addr)) 363 return -EADDRNOTAVAIL; 364 365 /* We must either be unbound, or bind to the same port. 366 * It's OK to allow 0 ports if we are already bound. 367 * We'll just inhert an already bound port in this case 368 */ 369 if (bp->port) { 370 if (!snum) 371 snum = bp->port; 372 else if (snum != bp->port) { 373 SCTP_DEBUG_PRINTK("sctp_do_bind:" 374 " New port %d does not match existing port " 375 "%d.\n", snum, bp->port); 376 return -EINVAL; 377 } 378 } 379 380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 381 return -EACCES; 382 383 /* See if the address matches any of the addresses we may have 384 * already bound before checking against other endpoints. 385 */ 386 if (sctp_bind_addr_match(bp, addr, sp)) 387 return -EINVAL; 388 389 /* Make sure we are allowed to bind here. 390 * The function sctp_get_port_local() does duplicate address 391 * detection. 392 */ 393 addr->v4.sin_port = htons(snum); 394 if ((ret = sctp_get_port_local(sk, addr))) { 395 return -EADDRINUSE; 396 } 397 398 /* Refresh ephemeral port. */ 399 if (!bp->port) 400 bp->port = inet_sk(sk)->inet_num; 401 402 /* Add the address to the bind address list. 403 * Use GFP_ATOMIC since BHs will be disabled. 404 */ 405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 406 407 /* Copy back into socket for getsockname() use. */ 408 if (!ret) { 409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 410 af->to_sk_saddr(addr, sk); 411 } 412 413 return ret; 414} 415 416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 417 * 418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 419 * at any one time. If a sender, after sending an ASCONF chunk, decides 420 * it needs to transfer another ASCONF Chunk, it MUST wait until the 421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 422 * subsequent ASCONF. Note this restriction binds each side, so at any 423 * time two ASCONF may be in-transit on any given association (one sent 424 * from each endpoint). 425 */ 426static int sctp_send_asconf(struct sctp_association *asoc, 427 struct sctp_chunk *chunk) 428{ 429 int retval = 0; 430 431 /* If there is an outstanding ASCONF chunk, queue it for later 432 * transmission. 433 */ 434 if (asoc->addip_last_asconf) { 435 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 436 goto out; 437 } 438 439 /* Hold the chunk until an ASCONF_ACK is received. */ 440 sctp_chunk_hold(chunk); 441 retval = sctp_primitive_ASCONF(asoc, chunk); 442 if (retval) 443 sctp_chunk_free(chunk); 444 else 445 asoc->addip_last_asconf = chunk; 446 447out: 448 return retval; 449} 450 451/* Add a list of addresses as bind addresses to local endpoint or 452 * association. 453 * 454 * Basically run through each address specified in the addrs/addrcnt 455 * array/length pair, determine if it is IPv6 or IPv4 and call 456 * sctp_do_bind() on it. 457 * 458 * If any of them fails, then the operation will be reversed and the 459 * ones that were added will be removed. 460 * 461 * Only sctp_setsockopt_bindx() is supposed to call this function. 462 */ 463static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 464{ 465 int cnt; 466 int retval = 0; 467 void *addr_buf; 468 struct sockaddr *sa_addr; 469 struct sctp_af *af; 470 471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 472 sk, addrs, addrcnt); 473 474 addr_buf = addrs; 475 for (cnt = 0; cnt < addrcnt; cnt++) { 476 /* The list may contain either IPv4 or IPv6 address; 477 * determine the address length for walking thru the list. 478 */ 479 sa_addr = (struct sockaddr *)addr_buf; 480 af = sctp_get_af_specific(sa_addr->sa_family); 481 if (!af) { 482 retval = -EINVAL; 483 goto err_bindx_add; 484 } 485 486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 487 af->sockaddr_len); 488 489 addr_buf += af->sockaddr_len; 490 491err_bindx_add: 492 if (retval < 0) { 493 /* Failed. Cleanup the ones that have been added */ 494 if (cnt > 0) 495 sctp_bindx_rem(sk, addrs, cnt); 496 return retval; 497 } 498 } 499 500 return retval; 501} 502 503/* Send an ASCONF chunk with Add IP address parameters to all the peers of the 504 * associations that are part of the endpoint indicating that a list of local 505 * addresses are added to the endpoint. 506 * 507 * If any of the addresses is already in the bind address list of the 508 * association, we do not send the chunk for that association. But it will not 509 * affect other associations. 510 * 511 * Only sctp_setsockopt_bindx() is supposed to call this function. 512 */ 513static int sctp_send_asconf_add_ip(struct sock *sk, 514 struct sockaddr *addrs, 515 int addrcnt) 516{ 517 struct sctp_sock *sp; 518 struct sctp_endpoint *ep; 519 struct sctp_association *asoc; 520 struct sctp_bind_addr *bp; 521 struct sctp_chunk *chunk; 522 struct sctp_sockaddr_entry *laddr; 523 union sctp_addr *addr; 524 union sctp_addr saveaddr; 525 void *addr_buf; 526 struct sctp_af *af; 527 struct list_head *p; 528 int i; 529 int retval = 0; 530 531 if (!sctp_addip_enable) 532 return retval; 533 534 sp = sctp_sk(sk); 535 ep = sp->ep; 536 537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 538 __func__, sk, addrs, addrcnt); 539 540 list_for_each_entry(asoc, &ep->asocs, asocs) { 541 542 if (!asoc->peer.asconf_capable) 543 continue; 544 545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 546 continue; 547 548 if (!sctp_state(asoc, ESTABLISHED)) 549 continue; 550 551 /* Check if any address in the packed array of addresses is 552 * in the bind address list of the association. If so, 553 * do not send the asconf chunk to its peer, but continue with 554 * other associations. 555 */ 556 addr_buf = addrs; 557 for (i = 0; i < addrcnt; i++) { 558 addr = (union sctp_addr *)addr_buf; 559 af = sctp_get_af_specific(addr->v4.sin_family); 560 if (!af) { 561 retval = -EINVAL; 562 goto out; 563 } 564 565 if (sctp_assoc_lookup_laddr(asoc, addr)) 566 break; 567 568 addr_buf += af->sockaddr_len; 569 } 570 if (i < addrcnt) 571 continue; 572 573 /* Use the first valid address in bind addr list of 574 * association as Address Parameter of ASCONF CHUNK. 575 */ 576 bp = &asoc->base.bind_addr; 577 p = bp->address_list.next; 578 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 580 addrcnt, SCTP_PARAM_ADD_IP); 581 if (!chunk) { 582 retval = -ENOMEM; 583 goto out; 584 } 585 586 retval = sctp_send_asconf(asoc, chunk); 587 if (retval) 588 goto out; 589 590 /* Add the new addresses to the bind address list with 591 * use_as_src set to 0. 592 */ 593 addr_buf = addrs; 594 for (i = 0; i < addrcnt; i++) { 595 addr = (union sctp_addr *)addr_buf; 596 af = sctp_get_af_specific(addr->v4.sin_family); 597 memcpy(&saveaddr, addr, af->sockaddr_len); 598 retval = sctp_add_bind_addr(bp, &saveaddr, 599 SCTP_ADDR_NEW, GFP_ATOMIC); 600 addr_buf += af->sockaddr_len; 601 } 602 } 603 604out: 605 return retval; 606} 607 608/* Remove a list of addresses from bind addresses list. Do not remove the 609 * last address. 610 * 611 * Basically run through each address specified in the addrs/addrcnt 612 * array/length pair, determine if it is IPv6 or IPv4 and call 613 * sctp_del_bind() on it. 614 * 615 * If any of them fails, then the operation will be reversed and the 616 * ones that were removed will be added back. 617 * 618 * At least one address has to be left; if only one address is 619 * available, the operation will return -EBUSY. 620 * 621 * Only sctp_setsockopt_bindx() is supposed to call this function. 622 */ 623static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 624{ 625 struct sctp_sock *sp = sctp_sk(sk); 626 struct sctp_endpoint *ep = sp->ep; 627 int cnt; 628 struct sctp_bind_addr *bp = &ep->base.bind_addr; 629 int retval = 0; 630 void *addr_buf; 631 union sctp_addr *sa_addr; 632 struct sctp_af *af; 633 634 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 635 sk, addrs, addrcnt); 636 637 addr_buf = addrs; 638 for (cnt = 0; cnt < addrcnt; cnt++) { 639 /* If the bind address list is empty or if there is only one 640 * bind address, there is nothing more to be removed (we need 641 * at least one address here). 642 */ 643 if (list_empty(&bp->address_list) || 644 (sctp_list_single_entry(&bp->address_list))) { 645 retval = -EBUSY; 646 goto err_bindx_rem; 647 } 648 649 sa_addr = (union sctp_addr *)addr_buf; 650 af = sctp_get_af_specific(sa_addr->sa.sa_family); 651 if (!af) { 652 retval = -EINVAL; 653 goto err_bindx_rem; 654 } 655 656 if (!af->addr_valid(sa_addr, sp, NULL)) { 657 retval = -EADDRNOTAVAIL; 658 goto err_bindx_rem; 659 } 660 661 if (sa_addr->v4.sin_port && 662 sa_addr->v4.sin_port != htons(bp->port)) { 663 retval = -EINVAL; 664 goto err_bindx_rem; 665 } 666 667 if (!sa_addr->v4.sin_port) 668 sa_addr->v4.sin_port = htons(bp->port); 669 670 /* FIXME - There is probably a need to check if sk->sk_saddr and 671 * sk->sk_rcv_addr are currently set to one of the addresses to 672 * be removed. This is something which needs to be looked into 673 * when we are fixing the outstanding issues with multi-homing 674 * socket routing and failover schemes. Refer to comments in 675 * sctp_do_bind(). -daisy 676 */ 677 retval = sctp_del_bind_addr(bp, sa_addr); 678 679 addr_buf += af->sockaddr_len; 680err_bindx_rem: 681 if (retval < 0) { 682 /* Failed. Add the ones that has been removed back */ 683 if (cnt > 0) 684 sctp_bindx_add(sk, addrs, cnt); 685 return retval; 686 } 687 } 688 689 return retval; 690} 691 692/* Send an ASCONF chunk with Delete IP address parameters to all the peers of 693 * the associations that are part of the endpoint indicating that a list of 694 * local addresses are removed from the endpoint. 695 * 696 * If any of the addresses is already in the bind address list of the 697 * association, we do not send the chunk for that association. But it will not 698 * affect other associations. 699 * 700 * Only sctp_setsockopt_bindx() is supposed to call this function. 701 */ 702static int sctp_send_asconf_del_ip(struct sock *sk, 703 struct sockaddr *addrs, 704 int addrcnt) 705{ 706 struct sctp_sock *sp; 707 struct sctp_endpoint *ep; 708 struct sctp_association *asoc; 709 struct sctp_transport *transport; 710 struct sctp_bind_addr *bp; 711 struct sctp_chunk *chunk; 712 union sctp_addr *laddr; 713 void *addr_buf; 714 struct sctp_af *af; 715 struct sctp_sockaddr_entry *saddr; 716 int i; 717 int retval = 0; 718 719 if (!sctp_addip_enable) 720 return retval; 721 722 sp = sctp_sk(sk); 723 ep = sp->ep; 724 725 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 726 __func__, sk, addrs, addrcnt); 727 728 list_for_each_entry(asoc, &ep->asocs, asocs) { 729 730 if (!asoc->peer.asconf_capable) 731 continue; 732 733 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 734 continue; 735 736 if (!sctp_state(asoc, ESTABLISHED)) 737 continue; 738 739 /* Check if any address in the packed array of addresses is 740 * not present in the bind address list of the association. 741 * If so, do not send the asconf chunk to its peer, but 742 * continue with other associations. 743 */ 744 addr_buf = addrs; 745 for (i = 0; i < addrcnt; i++) { 746 laddr = (union sctp_addr *)addr_buf; 747 af = sctp_get_af_specific(laddr->v4.sin_family); 748 if (!af) { 749 retval = -EINVAL; 750 goto out; 751 } 752 753 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 754 break; 755 756 addr_buf += af->sockaddr_len; 757 } 758 if (i < addrcnt) 759 continue; 760 761 /* Find one address in the association's bind address list 762 * that is not in the packed array of addresses. This is to 763 * make sure that we do not delete all the addresses in the 764 * association. 765 */ 766 bp = &asoc->base.bind_addr; 767 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 768 addrcnt, sp); 769 if (!laddr) 770 continue; 771 772 /* We do not need RCU protection throughout this loop 773 * because this is done under a socket lock from the 774 * setsockopt call. 775 */ 776 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 777 SCTP_PARAM_DEL_IP); 778 if (!chunk) { 779 retval = -ENOMEM; 780 goto out; 781 } 782 783 /* Reset use_as_src flag for the addresses in the bind address 784 * list that are to be deleted. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = (union sctp_addr *)addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 list_for_each_entry(saddr, &bp->address_list, list) { 791 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 792 saddr->state = SCTP_ADDR_DEL; 793 } 794 addr_buf += af->sockaddr_len; 795 } 796 797 /* Update the route and saddr entries for all the transports 798 * as some of the addresses in the bind address list are 799 * about to be deleted and cannot be used as source addresses. 800 */ 801 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 802 transports) { 803 dst_release(transport->dst); 804 sctp_transport_route(transport, NULL, 805 sctp_sk(asoc->base.sk)); 806 } 807 808 retval = sctp_send_asconf(asoc, chunk); 809 } 810out: 811 return retval; 812} 813 814/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 815 * 816 * API 8.1 817 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 818 * int flags); 819 * 820 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 821 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 822 * or IPv6 addresses. 823 * 824 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 825 * Section 3.1.2 for this usage. 826 * 827 * addrs is a pointer to an array of one or more socket addresses. Each 828 * address is contained in its appropriate structure (i.e. struct 829 * sockaddr_in or struct sockaddr_in6) the family of the address type 830 * must be used to distinguish the address length (note that this 831 * representation is termed a "packed array" of addresses). The caller 832 * specifies the number of addresses in the array with addrcnt. 833 * 834 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 835 * -1, and sets errno to the appropriate error code. 836 * 837 * For SCTP, the port given in each socket address must be the same, or 838 * sctp_bindx() will fail, setting errno to EINVAL. 839 * 840 * The flags parameter is formed from the bitwise OR of zero or more of 841 * the following currently defined flags: 842 * 843 * SCTP_BINDX_ADD_ADDR 844 * 845 * SCTP_BINDX_REM_ADDR 846 * 847 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 848 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 849 * addresses from the association. The two flags are mutually exclusive; 850 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 851 * not remove all addresses from an association; sctp_bindx() will 852 * reject such an attempt with EINVAL. 853 * 854 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 855 * additional addresses with an endpoint after calling bind(). Or use 856 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 857 * socket is associated with so that no new association accepted will be 858 * associated with those addresses. If the endpoint supports dynamic 859 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 860 * endpoint to send the appropriate message to the peer to change the 861 * peers address lists. 862 * 863 * Adding and removing addresses from a connected association is 864 * optional functionality. Implementations that do not support this 865 * functionality should return EOPNOTSUPP. 866 * 867 * Basically do nothing but copying the addresses from user to kernel 868 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 869 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 870 * from userspace. 871 * 872 * We don't use copy_from_user() for optimization: we first do the 873 * sanity checks (buffer size -fast- and access check-healthy 874 * pointer); if all of those succeed, then we can alloc the memory 875 * (expensive operation) needed to copy the data to kernel. Then we do 876 * the copying without checking the user space area 877 * (__copy_from_user()). 878 * 879 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 880 * it. 881 * 882 * sk The sk of the socket 883 * addrs The pointer to the addresses in user land 884 * addrssize Size of the addrs buffer 885 * op Operation to perform (add or remove, see the flags of 886 * sctp_bindx) 887 * 888 * Returns 0 if ok, <0 errno code on error. 889 */ 890SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 891 struct sockaddr __user *addrs, 892 int addrs_size, int op) 893{ 894 struct sockaddr *kaddrs; 895 int err; 896 int addrcnt = 0; 897 int walk_size = 0; 898 struct sockaddr *sa_addr; 899 void *addr_buf; 900 struct sctp_af *af; 901 902 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 903 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 904 905 if (unlikely(addrs_size <= 0)) 906 return -EINVAL; 907 908 /* Check the user passed a healthy pointer. */ 909 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 910 return -EFAULT; 911 912 /* Alloc space for the address array in kernel memory. */ 913 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 914 if (unlikely(!kaddrs)) 915 return -ENOMEM; 916 917 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 918 kfree(kaddrs); 919 return -EFAULT; 920 } 921 922 /* Walk through the addrs buffer and count the number of addresses. */ 923 addr_buf = kaddrs; 924 while (walk_size < addrs_size) { 925 if (walk_size + sizeof(sa_family_t) > addrs_size) { 926 kfree(kaddrs); 927 return -EINVAL; 928 } 929 930 sa_addr = (struct sockaddr *)addr_buf; 931 af = sctp_get_af_specific(sa_addr->sa_family); 932 933 /* If the address family is not supported or if this address 934 * causes the address buffer to overflow return EINVAL. 935 */ 936 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 937 kfree(kaddrs); 938 return -EINVAL; 939 } 940 addrcnt++; 941 addr_buf += af->sockaddr_len; 942 walk_size += af->sockaddr_len; 943 } 944 945 /* Do the work. */ 946 switch (op) { 947 case SCTP_BINDX_ADD_ADDR: 948 err = sctp_bindx_add(sk, kaddrs, addrcnt); 949 if (err) 950 goto out; 951 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 952 break; 953 954 case SCTP_BINDX_REM_ADDR: 955 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 956 if (err) 957 goto out; 958 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 959 break; 960 961 default: 962 err = -EINVAL; 963 break; 964 } 965 966out: 967 kfree(kaddrs); 968 969 return err; 970} 971 972/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 973 * 974 * Common routine for handling connect() and sctp_connectx(). 975 * Connect will come in with just a single address. 976 */ 977static int __sctp_connect(struct sock* sk, 978 struct sockaddr *kaddrs, 979 int addrs_size, 980 sctp_assoc_t *assoc_id) 981{ 982 struct sctp_sock *sp; 983 struct sctp_endpoint *ep; 984 struct sctp_association *asoc = NULL; 985 struct sctp_association *asoc2; 986 struct sctp_transport *transport; 987 union sctp_addr to; 988 struct sctp_af *af; 989 sctp_scope_t scope; 990 long timeo; 991 int err = 0; 992 int addrcnt = 0; 993 int walk_size = 0; 994 union sctp_addr *sa_addr = NULL; 995 void *addr_buf; 996 unsigned short port; 997 unsigned int f_flags = 0; 998 999 sp = sctp_sk(sk); 1000 ep = sp->ep; 1001 1002 /* connect() cannot be done on a socket that is already in ESTABLISHED 1003 * state - UDP-style peeled off socket or a TCP-style socket that 1004 * is already connected. 1005 * It cannot be done even on a TCP-style listening socket. 1006 */ 1007 if (sctp_sstate(sk, ESTABLISHED) || 1008 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1009 err = -EISCONN; 1010 goto out_free; 1011 } 1012 1013 /* Walk through the addrs buffer and count the number of addresses. */ 1014 addr_buf = kaddrs; 1015 while (walk_size < addrs_size) { 1016 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1017 err = -EINVAL; 1018 goto out_free; 1019 } 1020 1021 sa_addr = (union sctp_addr *)addr_buf; 1022 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1023 1024 /* If the address family is not supported or if this address 1025 * causes the address buffer to overflow return EINVAL. 1026 */ 1027 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1028 err = -EINVAL; 1029 goto out_free; 1030 } 1031 1032 port = ntohs(sa_addr->v4.sin_port); 1033 1034 /* Save current address so we can work with it */ 1035 memcpy(&to, sa_addr, af->sockaddr_len); 1036 1037 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1038 if (err) 1039 goto out_free; 1040 1041 /* Make sure the destination port is correctly set 1042 * in all addresses. 1043 */ 1044 if (asoc && asoc->peer.port && asoc->peer.port != port) 1045 goto out_free; 1046 1047 1048 /* Check if there already is a matching association on the 1049 * endpoint (other than the one created here). 1050 */ 1051 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1052 if (asoc2 && asoc2 != asoc) { 1053 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1054 err = -EISCONN; 1055 else 1056 err = -EALREADY; 1057 goto out_free; 1058 } 1059 1060 /* If we could not find a matching association on the endpoint, 1061 * make sure that there is no peeled-off association matching 1062 * the peer address even on another socket. 1063 */ 1064 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1065 err = -EADDRNOTAVAIL; 1066 goto out_free; 1067 } 1068 1069 if (!asoc) { 1070 /* If a bind() or sctp_bindx() is not called prior to 1071 * an sctp_connectx() call, the system picks an 1072 * ephemeral port and will choose an address set 1073 * equivalent to binding with a wildcard address. 1074 */ 1075 if (!ep->base.bind_addr.port) { 1076 if (sctp_autobind(sk)) { 1077 err = -EAGAIN; 1078 goto out_free; 1079 } 1080 } else { 1081 /* 1082 * If an unprivileged user inherits a 1-many 1083 * style socket with open associations on a 1084 * privileged port, it MAY be permitted to 1085 * accept new associations, but it SHOULD NOT 1086 * be permitted to open new associations. 1087 */ 1088 if (ep->base.bind_addr.port < PROT_SOCK && 1089 !capable(CAP_NET_BIND_SERVICE)) { 1090 err = -EACCES; 1091 goto out_free; 1092 } 1093 } 1094 1095 scope = sctp_scope(&to); 1096 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1097 if (!asoc) { 1098 err = -ENOMEM; 1099 goto out_free; 1100 } 1101 1102 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1103 GFP_KERNEL); 1104 if (err < 0) { 1105 goto out_free; 1106 } 1107 1108 } 1109 1110 /* Prime the peer's transport structures. */ 1111 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1112 SCTP_UNKNOWN); 1113 if (!transport) { 1114 err = -ENOMEM; 1115 goto out_free; 1116 } 1117 1118 addrcnt++; 1119 addr_buf += af->sockaddr_len; 1120 walk_size += af->sockaddr_len; 1121 } 1122 1123 /* In case the user of sctp_connectx() wants an association 1124 * id back, assign one now. 1125 */ 1126 if (assoc_id) { 1127 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1128 if (err < 0) 1129 goto out_free; 1130 } 1131 1132 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1133 if (err < 0) { 1134 goto out_free; 1135 } 1136 1137 /* Initialize sk's dport and daddr for getpeername() */ 1138 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1139 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1140 af->to_sk_daddr(sa_addr, sk); 1141 sk->sk_err = 0; 1142 1143 /* in-kernel sockets don't generally have a file allocated to them 1144 * if all they do is call sock_create_kern(). 1145 */ 1146 if (sk->sk_socket->file) 1147 f_flags = sk->sk_socket->file->f_flags; 1148 1149 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1150 1151 err = sctp_wait_for_connect(asoc, &timeo); 1152 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1153 *assoc_id = asoc->assoc_id; 1154 1155 /* Don't free association on exit. */ 1156 asoc = NULL; 1157 1158out_free: 1159 1160 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1161 " kaddrs: %p err: %d\n", 1162 asoc, kaddrs, err); 1163 if (asoc) 1164 sctp_association_free(asoc); 1165 return err; 1166} 1167 1168/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1169 * 1170 * API 8.9 1171 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1172 * sctp_assoc_t *asoc); 1173 * 1174 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1175 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1176 * or IPv6 addresses. 1177 * 1178 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1179 * Section 3.1.2 for this usage. 1180 * 1181 * addrs is a pointer to an array of one or more socket addresses. Each 1182 * address is contained in its appropriate structure (i.e. struct 1183 * sockaddr_in or struct sockaddr_in6) the family of the address type 1184 * must be used to distengish the address length (note that this 1185 * representation is termed a "packed array" of addresses). The caller 1186 * specifies the number of addresses in the array with addrcnt. 1187 * 1188 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1189 * the association id of the new association. On failure, sctp_connectx() 1190 * returns -1, and sets errno to the appropriate error code. The assoc_id 1191 * is not touched by the kernel. 1192 * 1193 * For SCTP, the port given in each socket address must be the same, or 1194 * sctp_connectx() will fail, setting errno to EINVAL. 1195 * 1196 * An application can use sctp_connectx to initiate an association with 1197 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1198 * allows a caller to specify multiple addresses at which a peer can be 1199 * reached. The way the SCTP stack uses the list of addresses to set up 1200 * the association is implementation dependent. This function only 1201 * specifies that the stack will try to make use of all the addresses in 1202 * the list when needed. 1203 * 1204 * Note that the list of addresses passed in is only used for setting up 1205 * the association. It does not necessarily equal the set of addresses 1206 * the peer uses for the resulting association. If the caller wants to 1207 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1208 * retrieve them after the association has been set up. 1209 * 1210 * Basically do nothing but copying the addresses from user to kernel 1211 * land and invoking either sctp_connectx(). This is used for tunneling 1212 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1213 * 1214 * We don't use copy_from_user() for optimization: we first do the 1215 * sanity checks (buffer size -fast- and access check-healthy 1216 * pointer); if all of those succeed, then we can alloc the memory 1217 * (expensive operation) needed to copy the data to kernel. Then we do 1218 * the copying without checking the user space area 1219 * (__copy_from_user()). 1220 * 1221 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1222 * it. 1223 * 1224 * sk The sk of the socket 1225 * addrs The pointer to the addresses in user land 1226 * addrssize Size of the addrs buffer 1227 * 1228 * Returns >=0 if ok, <0 errno code on error. 1229 */ 1230SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1231 struct sockaddr __user *addrs, 1232 int addrs_size, 1233 sctp_assoc_t *assoc_id) 1234{ 1235 int err = 0; 1236 struct sockaddr *kaddrs; 1237 1238 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1239 __func__, sk, addrs, addrs_size); 1240 1241 if (unlikely(addrs_size <= 0)) 1242 return -EINVAL; 1243 1244 /* Check the user passed a healthy pointer. */ 1245 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1246 return -EFAULT; 1247 1248 /* Alloc space for the address array in kernel memory. */ 1249 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1250 if (unlikely(!kaddrs)) 1251 return -ENOMEM; 1252 1253 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1254 err = -EFAULT; 1255 } else { 1256 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1257 } 1258 1259 kfree(kaddrs); 1260 1261 return err; 1262} 1263 1264/* 1265 * This is an older interface. It's kept for backward compatibility 1266 * to the option that doesn't provide association id. 1267 */ 1268SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1269 struct sockaddr __user *addrs, 1270 int addrs_size) 1271{ 1272 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1273} 1274 1275/* 1276 * New interface for the API. The since the API is done with a socket 1277 * option, to make it simple we feed back the association id is as a return 1278 * indication to the call. Error is always negative and association id is 1279 * always positive. 1280 */ 1281SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1282 struct sockaddr __user *addrs, 1283 int addrs_size) 1284{ 1285 sctp_assoc_t assoc_id = 0; 1286 int err = 0; 1287 1288 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1289 1290 if (err) 1291 return err; 1292 else 1293 return assoc_id; 1294} 1295 1296/* 1297 * New (hopefully final) interface for the API. 1298 * We use the sctp_getaddrs_old structure so that use-space library 1299 * can avoid any unnecessary allocations. The only defferent part 1300 * is that we store the actual length of the address buffer into the 1301 * addrs_num structure member. That way we can re-use the existing 1302 * code. 1303 */ 1304SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1305 char __user *optval, 1306 int __user *optlen) 1307{ 1308 struct sctp_getaddrs_old param; 1309 sctp_assoc_t assoc_id = 0; 1310 int err = 0; 1311 1312 if (len < sizeof(param)) 1313 return -EINVAL; 1314 1315 if (copy_from_user(&param, optval, sizeof(param))) 1316 return -EFAULT; 1317 1318 err = __sctp_setsockopt_connectx(sk, 1319 (struct sockaddr __user *)param.addrs, 1320 param.addr_num, &assoc_id); 1321 1322 if (err == 0 || err == -EINPROGRESS) { 1323 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1324 return -EFAULT; 1325 if (put_user(sizeof(assoc_id), optlen)) 1326 return -EFAULT; 1327 } 1328 1329 return err; 1330} 1331 1332/* API 3.1.4 close() - UDP Style Syntax 1333 * Applications use close() to perform graceful shutdown (as described in 1334 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1335 * by a UDP-style socket. 1336 * 1337 * The syntax is 1338 * 1339 * ret = close(int sd); 1340 * 1341 * sd - the socket descriptor of the associations to be closed. 1342 * 1343 * To gracefully shutdown a specific association represented by the 1344 * UDP-style socket, an application should use the sendmsg() call, 1345 * passing no user data, but including the appropriate flag in the 1346 * ancillary data (see Section xxxx). 1347 * 1348 * If sd in the close() call is a branched-off socket representing only 1349 * one association, the shutdown is performed on that association only. 1350 * 1351 * 4.1.6 close() - TCP Style Syntax 1352 * 1353 * Applications use close() to gracefully close down an association. 1354 * 1355 * The syntax is: 1356 * 1357 * int close(int sd); 1358 * 1359 * sd - the socket descriptor of the association to be closed. 1360 * 1361 * After an application calls close() on a socket descriptor, no further 1362 * socket operations will succeed on that descriptor. 1363 * 1364 * API 7.1.4 SO_LINGER 1365 * 1366 * An application using the TCP-style socket can use this option to 1367 * perform the SCTP ABORT primitive. The linger option structure is: 1368 * 1369 * struct linger { 1370 * int l_onoff; // option on/off 1371 * int l_linger; // linger time 1372 * }; 1373 * 1374 * To enable the option, set l_onoff to 1. If the l_linger value is set 1375 * to 0, calling close() is the same as the ABORT primitive. If the 1376 * value is set to a negative value, the setsockopt() call will return 1377 * an error. If the value is set to a positive value linger_time, the 1378 * close() can be blocked for at most linger_time ms. If the graceful 1379 * shutdown phase does not finish during this period, close() will 1380 * return but the graceful shutdown phase continues in the system. 1381 */ 1382SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1383{ 1384 struct sctp_endpoint *ep; 1385 struct sctp_association *asoc; 1386 struct list_head *pos, *temp; 1387 unsigned int data_was_unread; 1388 1389 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1390 1391 sctp_lock_sock(sk); 1392 sk->sk_shutdown = SHUTDOWN_MASK; 1393 sk->sk_state = SCTP_SS_CLOSING; 1394 1395 ep = sctp_sk(sk)->ep; 1396 1397 /* Clean up any skbs sitting on the receive queue. */ 1398 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1399 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1400 1401 /* Walk all associations on an endpoint. */ 1402 list_for_each_safe(pos, temp, &ep->asocs) { 1403 asoc = list_entry(pos, struct sctp_association, asocs); 1404 1405 if (sctp_style(sk, TCP)) { 1406 /* A closed association can still be in the list if 1407 * it belongs to a TCP-style listening socket that is 1408 * not yet accepted. If so, free it. If not, send an 1409 * ABORT or SHUTDOWN based on the linger options. 1410 */ 1411 if (sctp_state(asoc, CLOSED)) { 1412 sctp_unhash_established(asoc); 1413 sctp_association_free(asoc); 1414 continue; 1415 } 1416 } 1417 1418 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1419 !skb_queue_empty(&asoc->ulpq.reasm) || 1420 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1421 struct sctp_chunk *chunk; 1422 1423 chunk = sctp_make_abort_user(asoc, NULL, 0); 1424 if (chunk) 1425 sctp_primitive_ABORT(asoc, chunk); 1426 } else 1427 sctp_primitive_SHUTDOWN(asoc, NULL); 1428 } 1429 1430 /* On a TCP-style socket, block for at most linger_time if set. */ 1431 if (sctp_style(sk, TCP) && timeout) 1432 sctp_wait_for_close(sk, timeout); 1433 1434 /* This will run the backlog queue. */ 1435 sctp_release_sock(sk); 1436 1437 /* Supposedly, no process has access to the socket, but 1438 * the net layers still may. 1439 */ 1440 sctp_local_bh_disable(); 1441 sctp_bh_lock_sock(sk); 1442 1443 /* Hold the sock, since sk_common_release() will put sock_put() 1444 * and we have just a little more cleanup. 1445 */ 1446 sock_hold(sk); 1447 sk_common_release(sk); 1448 1449 sctp_bh_unlock_sock(sk); 1450 sctp_local_bh_enable(); 1451 1452 sock_put(sk); 1453 1454 SCTP_DBG_OBJCNT_DEC(sock); 1455} 1456 1457/* Handle EPIPE error. */ 1458static int sctp_error(struct sock *sk, int flags, int err) 1459{ 1460 if (err == -EPIPE) 1461 err = sock_error(sk) ? : -EPIPE; 1462 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1463 send_sig(SIGPIPE, current, 0); 1464 return err; 1465} 1466 1467/* API 3.1.3 sendmsg() - UDP Style Syntax 1468 * 1469 * An application uses sendmsg() and recvmsg() calls to transmit data to 1470 * and receive data from its peer. 1471 * 1472 * ssize_t sendmsg(int socket, const struct msghdr *message, 1473 * int flags); 1474 * 1475 * socket - the socket descriptor of the endpoint. 1476 * message - pointer to the msghdr structure which contains a single 1477 * user message and possibly some ancillary data. 1478 * 1479 * See Section 5 for complete description of the data 1480 * structures. 1481 * 1482 * flags - flags sent or received with the user message, see Section 1483 * 5 for complete description of the flags. 1484 * 1485 * Note: This function could use a rewrite especially when explicit 1486 * connect support comes in. 1487 */ 1488/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1489 1490SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1491 1492SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1493 struct msghdr *msg, size_t msg_len) 1494{ 1495 struct sctp_sock *sp; 1496 struct sctp_endpoint *ep; 1497 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1498 struct sctp_transport *transport, *chunk_tp; 1499 struct sctp_chunk *chunk; 1500 union sctp_addr to; 1501 struct sockaddr *msg_name = NULL; 1502 struct sctp_sndrcvinfo default_sinfo; 1503 struct sctp_sndrcvinfo *sinfo; 1504 struct sctp_initmsg *sinit; 1505 sctp_assoc_t associd = 0; 1506 sctp_cmsgs_t cmsgs = { NULL }; 1507 int err; 1508 sctp_scope_t scope; 1509 long timeo; 1510 __u16 sinfo_flags = 0; 1511 struct sctp_datamsg *datamsg; 1512 int msg_flags = msg->msg_flags; 1513 1514 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1515 sk, msg, msg_len); 1516 1517 err = 0; 1518 sp = sctp_sk(sk); 1519 ep = sp->ep; 1520 1521 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1522 1523 /* We cannot send a message over a TCP-style listening socket. */ 1524 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1525 err = -EPIPE; 1526 goto out_nounlock; 1527 } 1528 1529 /* Parse out the SCTP CMSGs. */ 1530 err = sctp_msghdr_parse(msg, &cmsgs); 1531 1532 if (err) { 1533 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1534 goto out_nounlock; 1535 } 1536 1537 /* Fetch the destination address for this packet. This 1538 * address only selects the association--it is not necessarily 1539 * the address we will send to. 1540 * For a peeled-off socket, msg_name is ignored. 1541 */ 1542 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1543 int msg_namelen = msg->msg_namelen; 1544 1545 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1546 msg_namelen); 1547 if (err) 1548 return err; 1549 1550 if (msg_namelen > sizeof(to)) 1551 msg_namelen = sizeof(to); 1552 memcpy(&to, msg->msg_name, msg_namelen); 1553 msg_name = msg->msg_name; 1554 } 1555 1556 sinfo = cmsgs.info; 1557 sinit = cmsgs.init; 1558 1559 /* Did the user specify SNDRCVINFO? */ 1560 if (sinfo) { 1561 sinfo_flags = sinfo->sinfo_flags; 1562 associd = sinfo->sinfo_assoc_id; 1563 } 1564 1565 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1566 msg_len, sinfo_flags); 1567 1568 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1569 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1570 err = -EINVAL; 1571 goto out_nounlock; 1572 } 1573 1574 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1575 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1576 * If SCTP_ABORT is set, the message length could be non zero with 1577 * the msg_iov set to the user abort reason. 1578 */ 1579 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1580 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1581 err = -EINVAL; 1582 goto out_nounlock; 1583 } 1584 1585 /* If SCTP_ADDR_OVER is set, there must be an address 1586 * specified in msg_name. 1587 */ 1588 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1589 err = -EINVAL; 1590 goto out_nounlock; 1591 } 1592 1593 transport = NULL; 1594 1595 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1596 1597 sctp_lock_sock(sk); 1598 1599 /* If a msg_name has been specified, assume this is to be used. */ 1600 if (msg_name) { 1601 /* Look for a matching association on the endpoint. */ 1602 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1603 if (!asoc) { 1604 /* If we could not find a matching association on the 1605 * endpoint, make sure that it is not a TCP-style 1606 * socket that already has an association or there is 1607 * no peeled-off association on another socket. 1608 */ 1609 if ((sctp_style(sk, TCP) && 1610 sctp_sstate(sk, ESTABLISHED)) || 1611 sctp_endpoint_is_peeled_off(ep, &to)) { 1612 err = -EADDRNOTAVAIL; 1613 goto out_unlock; 1614 } 1615 } 1616 } else { 1617 asoc = sctp_id2assoc(sk, associd); 1618 if (!asoc) { 1619 err = -EPIPE; 1620 goto out_unlock; 1621 } 1622 } 1623 1624 if (asoc) { 1625 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1626 1627 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1628 * socket that has an association in CLOSED state. This can 1629 * happen when an accepted socket has an association that is 1630 * already CLOSED. 1631 */ 1632 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1633 err = -EPIPE; 1634 goto out_unlock; 1635 } 1636 1637 if (sinfo_flags & SCTP_EOF) { 1638 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1639 asoc); 1640 sctp_primitive_SHUTDOWN(asoc, NULL); 1641 err = 0; 1642 goto out_unlock; 1643 } 1644 if (sinfo_flags & SCTP_ABORT) { 1645 1646 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1647 if (!chunk) { 1648 err = -ENOMEM; 1649 goto out_unlock; 1650 } 1651 1652 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1653 sctp_primitive_ABORT(asoc, chunk); 1654 err = 0; 1655 goto out_unlock; 1656 } 1657 } 1658 1659 /* Do we need to create the association? */ 1660 if (!asoc) { 1661 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1662 1663 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1664 err = -EINVAL; 1665 goto out_unlock; 1666 } 1667 1668 /* Check for invalid stream against the stream counts, 1669 * either the default or the user specified stream counts. 1670 */ 1671 if (sinfo) { 1672 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1673 /* Check against the defaults. */ 1674 if (sinfo->sinfo_stream >= 1675 sp->initmsg.sinit_num_ostreams) { 1676 err = -EINVAL; 1677 goto out_unlock; 1678 } 1679 } else { 1680 /* Check against the requested. */ 1681 if (sinfo->sinfo_stream >= 1682 sinit->sinit_num_ostreams) { 1683 err = -EINVAL; 1684 goto out_unlock; 1685 } 1686 } 1687 } 1688 1689 /* 1690 * API 3.1.2 bind() - UDP Style Syntax 1691 * If a bind() or sctp_bindx() is not called prior to a 1692 * sendmsg() call that initiates a new association, the 1693 * system picks an ephemeral port and will choose an address 1694 * set equivalent to binding with a wildcard address. 1695 */ 1696 if (!ep->base.bind_addr.port) { 1697 if (sctp_autobind(sk)) { 1698 err = -EAGAIN; 1699 goto out_unlock; 1700 } 1701 } else { 1702 /* 1703 * If an unprivileged user inherits a one-to-many 1704 * style socket with open associations on a privileged 1705 * port, it MAY be permitted to accept new associations, 1706 * but it SHOULD NOT be permitted to open new 1707 * associations. 1708 */ 1709 if (ep->base.bind_addr.port < PROT_SOCK && 1710 !capable(CAP_NET_BIND_SERVICE)) { 1711 err = -EACCES; 1712 goto out_unlock; 1713 } 1714 } 1715 1716 scope = sctp_scope(&to); 1717 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1718 if (!new_asoc) { 1719 err = -ENOMEM; 1720 goto out_unlock; 1721 } 1722 asoc = new_asoc; 1723 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1724 if (err < 0) { 1725 err = -ENOMEM; 1726 goto out_free; 1727 } 1728 1729 /* If the SCTP_INIT ancillary data is specified, set all 1730 * the association init values accordingly. 1731 */ 1732 if (sinit) { 1733 if (sinit->sinit_num_ostreams) { 1734 asoc->c.sinit_num_ostreams = 1735 sinit->sinit_num_ostreams; 1736 } 1737 if (sinit->sinit_max_instreams) { 1738 asoc->c.sinit_max_instreams = 1739 sinit->sinit_max_instreams; 1740 } 1741 if (sinit->sinit_max_attempts) { 1742 asoc->max_init_attempts 1743 = sinit->sinit_max_attempts; 1744 } 1745 if (sinit->sinit_max_init_timeo) { 1746 asoc->max_init_timeo = 1747 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1748 } 1749 } 1750 1751 /* Prime the peer's transport structures. */ 1752 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1753 if (!transport) { 1754 err = -ENOMEM; 1755 goto out_free; 1756 } 1757 } 1758 1759 /* ASSERT: we have a valid association at this point. */ 1760 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1761 1762 if (!sinfo) { 1763 /* If the user didn't specify SNDRCVINFO, make up one with 1764 * some defaults. 1765 */ 1766 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1767 default_sinfo.sinfo_stream = asoc->default_stream; 1768 default_sinfo.sinfo_flags = asoc->default_flags; 1769 default_sinfo.sinfo_ppid = asoc->default_ppid; 1770 default_sinfo.sinfo_context = asoc->default_context; 1771 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1772 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1773 sinfo = &default_sinfo; 1774 } 1775 1776 /* API 7.1.7, the sndbuf size per association bounds the 1777 * maximum size of data that can be sent in a single send call. 1778 */ 1779 if (msg_len > sk->sk_sndbuf) { 1780 err = -EMSGSIZE; 1781 goto out_free; 1782 } 1783 1784 if (asoc->pmtu_pending) 1785 sctp_assoc_pending_pmtu(asoc); 1786 1787 /* If fragmentation is disabled and the message length exceeds the 1788 * association fragmentation point, return EMSGSIZE. The I-D 1789 * does not specify what this error is, but this looks like 1790 * a great fit. 1791 */ 1792 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1793 err = -EMSGSIZE; 1794 goto out_free; 1795 } 1796 1797 /* Check for invalid stream. */ 1798 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1799 err = -EINVAL; 1800 goto out_free; 1801 } 1802 1803 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1804 if (!sctp_wspace(asoc)) { 1805 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1806 if (err) 1807 goto out_free; 1808 } 1809 1810 /* If an address is passed with the sendto/sendmsg call, it is used 1811 * to override the primary destination address in the TCP model, or 1812 * when SCTP_ADDR_OVER flag is set in the UDP model. 1813 */ 1814 if ((sctp_style(sk, TCP) && msg_name) || 1815 (sinfo_flags & SCTP_ADDR_OVER)) { 1816 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1817 if (!chunk_tp) { 1818 err = -EINVAL; 1819 goto out_free; 1820 } 1821 } else 1822 chunk_tp = NULL; 1823 1824 /* Auto-connect, if we aren't connected already. */ 1825 if (sctp_state(asoc, CLOSED)) { 1826 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1827 if (err < 0) 1828 goto out_free; 1829 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1830 } 1831 1832 /* Break the message into multiple chunks of maximum size. */ 1833 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1834 if (!datamsg) { 1835 err = -ENOMEM; 1836 goto out_free; 1837 } 1838 1839 /* Now send the (possibly) fragmented message. */ 1840 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1841 sctp_chunk_hold(chunk); 1842 1843 /* Do accounting for the write space. */ 1844 sctp_set_owner_w(chunk); 1845 1846 chunk->transport = chunk_tp; 1847 } 1848 1849 /* Send it to the lower layers. Note: all chunks 1850 * must either fail or succeed. The lower layer 1851 * works that way today. Keep it that way or this 1852 * breaks. 1853 */ 1854 err = sctp_primitive_SEND(asoc, datamsg); 1855 /* Did the lower layer accept the chunk? */ 1856 if (err) 1857 sctp_datamsg_free(datamsg); 1858 else 1859 sctp_datamsg_put(datamsg); 1860 1861 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1862 1863 if (err) 1864 goto out_free; 1865 else 1866 err = msg_len; 1867 1868 /* If we are already past ASSOCIATE, the lower 1869 * layers are responsible for association cleanup. 1870 */ 1871 goto out_unlock; 1872 1873out_free: 1874 if (new_asoc) 1875 sctp_association_free(asoc); 1876out_unlock: 1877 sctp_release_sock(sk); 1878 1879out_nounlock: 1880 return sctp_error(sk, msg_flags, err); 1881 1882#if 0 1883do_sock_err: 1884 if (msg_len) 1885 err = msg_len; 1886 else 1887 err = sock_error(sk); 1888 goto out; 1889 1890do_interrupted: 1891 if (msg_len) 1892 err = msg_len; 1893 goto out; 1894#endif /* 0 */ 1895} 1896 1897/* This is an extended version of skb_pull() that removes the data from the 1898 * start of a skb even when data is spread across the list of skb's in the 1899 * frag_list. len specifies the total amount of data that needs to be removed. 1900 * when 'len' bytes could be removed from the skb, it returns 0. 1901 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1902 * could not be removed. 1903 */ 1904static int sctp_skb_pull(struct sk_buff *skb, int len) 1905{ 1906 struct sk_buff *list; 1907 int skb_len = skb_headlen(skb); 1908 int rlen; 1909 1910 if (len <= skb_len) { 1911 __skb_pull(skb, len); 1912 return 0; 1913 } 1914 len -= skb_len; 1915 __skb_pull(skb, skb_len); 1916 1917 skb_walk_frags(skb, list) { 1918 rlen = sctp_skb_pull(list, len); 1919 skb->len -= (len-rlen); 1920 skb->data_len -= (len-rlen); 1921 1922 if (!rlen) 1923 return 0; 1924 1925 len = rlen; 1926 } 1927 1928 return len; 1929} 1930 1931/* API 3.1.3 recvmsg() - UDP Style Syntax 1932 * 1933 * ssize_t recvmsg(int socket, struct msghdr *message, 1934 * int flags); 1935 * 1936 * socket - the socket descriptor of the endpoint. 1937 * message - pointer to the msghdr structure which contains a single 1938 * user message and possibly some ancillary data. 1939 * 1940 * See Section 5 for complete description of the data 1941 * structures. 1942 * 1943 * flags - flags sent or received with the user message, see Section 1944 * 5 for complete description of the flags. 1945 */ 1946static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1947 1948SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1949 struct msghdr *msg, size_t len, int noblock, 1950 int flags, int *addr_len) 1951{ 1952 struct sctp_ulpevent *event = NULL; 1953 struct sctp_sock *sp = sctp_sk(sk); 1954 struct sk_buff *skb; 1955 int copied; 1956 int err = 0; 1957 int skb_len; 1958 1959 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1960 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1961 "len", len, "knoblauch", noblock, 1962 "flags", flags, "addr_len", addr_len); 1963 1964 sctp_lock_sock(sk); 1965 1966 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1967 err = -ENOTCONN; 1968 goto out; 1969 } 1970 1971 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1972 if (!skb) 1973 goto out; 1974 1975 /* Get the total length of the skb including any skb's in the 1976 * frag_list. 1977 */ 1978 skb_len = skb->len; 1979 1980 copied = skb_len; 1981 if (copied > len) 1982 copied = len; 1983 1984 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1985 1986 event = sctp_skb2event(skb); 1987 1988 if (err) 1989 goto out_free; 1990 1991 sock_recv_ts_and_drops(msg, sk, skb); 1992 if (sctp_ulpevent_is_notification(event)) { 1993 msg->msg_flags |= MSG_NOTIFICATION; 1994 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1995 } else { 1996 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1997 } 1998 1999 /* Check if we allow SCTP_SNDRCVINFO. */ 2000 if (sp->subscribe.sctp_data_io_event) 2001 sctp_ulpevent_read_sndrcvinfo(event, msg); 2002#if 0 2003 /* FIXME: we should be calling IP/IPv6 layers. */ 2004 if (sk->sk_protinfo.af_inet.cmsg_flags) 2005 ip_cmsg_recv(msg, skb); 2006#endif 2007 2008 err = copied; 2009 2010 /* If skb's length exceeds the user's buffer, update the skb and 2011 * push it back to the receive_queue so that the next call to 2012 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2013 */ 2014 if (skb_len > copied) { 2015 msg->msg_flags &= ~MSG_EOR; 2016 if (flags & MSG_PEEK) 2017 goto out_free; 2018 sctp_skb_pull(skb, copied); 2019 skb_queue_head(&sk->sk_receive_queue, skb); 2020 2021 /* When only partial message is copied to the user, increase 2022 * rwnd by that amount. If all the data in the skb is read, 2023 * rwnd is updated when the event is freed. 2024 */ 2025 if (!sctp_ulpevent_is_notification(event)) 2026 sctp_assoc_rwnd_increase(event->asoc, copied); 2027 goto out; 2028 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2029 (event->msg_flags & MSG_EOR)) 2030 msg->msg_flags |= MSG_EOR; 2031 else 2032 msg->msg_flags &= ~MSG_EOR; 2033 2034out_free: 2035 if (flags & MSG_PEEK) { 2036 /* Release the skb reference acquired after peeking the skb in 2037 * sctp_skb_recv_datagram(). 2038 */ 2039 kfree_skb(skb); 2040 } else { 2041 /* Free the event which includes releasing the reference to 2042 * the owner of the skb, freeing the skb and updating the 2043 * rwnd. 2044 */ 2045 sctp_ulpevent_free(event); 2046 } 2047out: 2048 sctp_release_sock(sk); 2049 return err; 2050} 2051 2052/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2053 * 2054 * This option is a on/off flag. If enabled no SCTP message 2055 * fragmentation will be performed. Instead if a message being sent 2056 * exceeds the current PMTU size, the message will NOT be sent and 2057 * instead a error will be indicated to the user. 2058 */ 2059static int sctp_setsockopt_disable_fragments(struct sock *sk, 2060 char __user *optval, 2061 unsigned int optlen) 2062{ 2063 int val; 2064 2065 if (optlen < sizeof(int)) 2066 return -EINVAL; 2067 2068 if (get_user(val, (int __user *)optval)) 2069 return -EFAULT; 2070 2071 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2072 2073 return 0; 2074} 2075 2076static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2077 unsigned int optlen) 2078{ 2079 struct sctp_association *asoc; 2080 struct sctp_ulpevent *event; 2081 2082 if (optlen > sizeof(struct sctp_event_subscribe)) 2083 return -EINVAL; 2084 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2085 return -EFAULT; 2086 2087 /* 2088 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2089 * if there is no data to be sent or retransmit, the stack will 2090 * immediately send up this notification. 2091 */ 2092 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2093 &sctp_sk(sk)->subscribe)) { 2094 asoc = sctp_id2assoc(sk, 0); 2095 2096 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2097 event = sctp_ulpevent_make_sender_dry_event(asoc, 2098 GFP_ATOMIC); 2099 if (!event) 2100 return -ENOMEM; 2101 2102 sctp_ulpq_tail_event(&asoc->ulpq, event); 2103 } 2104 } 2105 2106 return 0; 2107} 2108 2109/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2110 * 2111 * This socket option is applicable to the UDP-style socket only. When 2112 * set it will cause associations that are idle for more than the 2113 * specified number of seconds to automatically close. An association 2114 * being idle is defined an association that has NOT sent or received 2115 * user data. The special value of '0' indicates that no automatic 2116 * close of any associations should be performed. The option expects an 2117 * integer defining the number of seconds of idle time before an 2118 * association is closed. 2119 */ 2120static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2121 unsigned int optlen) 2122{ 2123 struct sctp_sock *sp = sctp_sk(sk); 2124 2125 /* Applicable to UDP-style socket only */ 2126 if (sctp_style(sk, TCP)) 2127 return -EOPNOTSUPP; 2128 if (optlen != sizeof(int)) 2129 return -EINVAL; 2130 if (copy_from_user(&sp->autoclose, optval, optlen)) 2131 return -EFAULT; 2132 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */ 2133 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ); 2134 2135 return 0; 2136} 2137 2138/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2139 * 2140 * Applications can enable or disable heartbeats for any peer address of 2141 * an association, modify an address's heartbeat interval, force a 2142 * heartbeat to be sent immediately, and adjust the address's maximum 2143 * number of retransmissions sent before an address is considered 2144 * unreachable. The following structure is used to access and modify an 2145 * address's parameters: 2146 * 2147 * struct sctp_paddrparams { 2148 * sctp_assoc_t spp_assoc_id; 2149 * struct sockaddr_storage spp_address; 2150 * uint32_t spp_hbinterval; 2151 * uint16_t spp_pathmaxrxt; 2152 * uint32_t spp_pathmtu; 2153 * uint32_t spp_sackdelay; 2154 * uint32_t spp_flags; 2155 * }; 2156 * 2157 * spp_assoc_id - (one-to-many style socket) This is filled in the 2158 * application, and identifies the association for 2159 * this query. 2160 * spp_address - This specifies which address is of interest. 2161 * spp_hbinterval - This contains the value of the heartbeat interval, 2162 * in milliseconds. If a value of zero 2163 * is present in this field then no changes are to 2164 * be made to this parameter. 2165 * spp_pathmaxrxt - This contains the maximum number of 2166 * retransmissions before this address shall be 2167 * considered unreachable. If a value of zero 2168 * is present in this field then no changes are to 2169 * be made to this parameter. 2170 * spp_pathmtu - When Path MTU discovery is disabled the value 2171 * specified here will be the "fixed" path mtu. 2172 * Note that if the spp_address field is empty 2173 * then all associations on this address will 2174 * have this fixed path mtu set upon them. 2175 * 2176 * spp_sackdelay - When delayed sack is enabled, this value specifies 2177 * the number of milliseconds that sacks will be delayed 2178 * for. This value will apply to all addresses of an 2179 * association if the spp_address field is empty. Note 2180 * also, that if delayed sack is enabled and this 2181 * value is set to 0, no change is made to the last 2182 * recorded delayed sack timer value. 2183 * 2184 * spp_flags - These flags are used to control various features 2185 * on an association. The flag field may contain 2186 * zero or more of the following options. 2187 * 2188 * SPP_HB_ENABLE - Enable heartbeats on the 2189 * specified address. Note that if the address 2190 * field is empty all addresses for the association 2191 * have heartbeats enabled upon them. 2192 * 2193 * SPP_HB_DISABLE - Disable heartbeats on the 2194 * speicifed address. Note that if the address 2195 * field is empty all addresses for the association 2196 * will have their heartbeats disabled. Note also 2197 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2198 * mutually exclusive, only one of these two should 2199 * be specified. Enabling both fields will have 2200 * undetermined results. 2201 * 2202 * SPP_HB_DEMAND - Request a user initiated heartbeat 2203 * to be made immediately. 2204 * 2205 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2206 * heartbeat delayis to be set to the value of 0 2207 * milliseconds. 2208 * 2209 * SPP_PMTUD_ENABLE - This field will enable PMTU 2210 * discovery upon the specified address. Note that 2211 * if the address feild is empty then all addresses 2212 * on the association are effected. 2213 * 2214 * SPP_PMTUD_DISABLE - This field will disable PMTU 2215 * discovery upon the specified address. Note that 2216 * if the address feild is empty then all addresses 2217 * on the association are effected. Not also that 2218 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2219 * exclusive. Enabling both will have undetermined 2220 * results. 2221 * 2222 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2223 * on delayed sack. The time specified in spp_sackdelay 2224 * is used to specify the sack delay for this address. Note 2225 * that if spp_address is empty then all addresses will 2226 * enable delayed sack and take on the sack delay 2227 * value specified in spp_sackdelay. 2228 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2229 * off delayed sack. If the spp_address field is blank then 2230 * delayed sack is disabled for the entire association. Note 2231 * also that this field is mutually exclusive to 2232 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2233 * results. 2234 */ 2235static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2236 struct sctp_transport *trans, 2237 struct sctp_association *asoc, 2238 struct sctp_sock *sp, 2239 int hb_change, 2240 int pmtud_change, 2241 int sackdelay_change) 2242{ 2243 int error; 2244 2245 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2246 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2247 if (error) 2248 return error; 2249 } 2250 2251 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2252 * this field is ignored. Note also that a value of zero indicates 2253 * the current setting should be left unchanged. 2254 */ 2255 if (params->spp_flags & SPP_HB_ENABLE) { 2256 2257 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2258 * set. This lets us use 0 value when this flag 2259 * is set. 2260 */ 2261 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2262 params->spp_hbinterval = 0; 2263 2264 if (params->spp_hbinterval || 2265 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2266 if (trans) { 2267 trans->hbinterval = 2268 msecs_to_jiffies(params->spp_hbinterval); 2269 } else if (asoc) { 2270 asoc->hbinterval = 2271 msecs_to_jiffies(params->spp_hbinterval); 2272 } else { 2273 sp->hbinterval = params->spp_hbinterval; 2274 } 2275 } 2276 } 2277 2278 if (hb_change) { 2279 if (trans) { 2280 trans->param_flags = 2281 (trans->param_flags & ~SPP_HB) | hb_change; 2282 } else if (asoc) { 2283 asoc->param_flags = 2284 (asoc->param_flags & ~SPP_HB) | hb_change; 2285 } else { 2286 sp->param_flags = 2287 (sp->param_flags & ~SPP_HB) | hb_change; 2288 } 2289 } 2290 2291 /* When Path MTU discovery is disabled the value specified here will 2292 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2293 * include the flag SPP_PMTUD_DISABLE for this field to have any 2294 * effect). 2295 */ 2296 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2297 if (trans) { 2298 trans->pathmtu = params->spp_pathmtu; 2299 sctp_assoc_sync_pmtu(asoc); 2300 } else if (asoc) { 2301 asoc->pathmtu = params->spp_pathmtu; 2302 sctp_frag_point(asoc, params->spp_pathmtu); 2303 } else { 2304 sp->pathmtu = params->spp_pathmtu; 2305 } 2306 } 2307 2308 if (pmtud_change) { 2309 if (trans) { 2310 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2311 (params->spp_flags & SPP_PMTUD_ENABLE); 2312 trans->param_flags = 2313 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2314 if (update) { 2315 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2316 sctp_assoc_sync_pmtu(asoc); 2317 } 2318 } else if (asoc) { 2319 asoc->param_flags = 2320 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2321 } else { 2322 sp->param_flags = 2323 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2324 } 2325 } 2326 2327 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2328 * value of this field is ignored. Note also that a value of zero 2329 * indicates the current setting should be left unchanged. 2330 */ 2331 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2332 if (trans) { 2333 trans->sackdelay = 2334 msecs_to_jiffies(params->spp_sackdelay); 2335 } else if (asoc) { 2336 asoc->sackdelay = 2337 msecs_to_jiffies(params->spp_sackdelay); 2338 } else { 2339 sp->sackdelay = params->spp_sackdelay; 2340 } 2341 } 2342 2343 if (sackdelay_change) { 2344 if (trans) { 2345 trans->param_flags = 2346 (trans->param_flags & ~SPP_SACKDELAY) | 2347 sackdelay_change; 2348 } else if (asoc) { 2349 asoc->param_flags = 2350 (asoc->param_flags & ~SPP_SACKDELAY) | 2351 sackdelay_change; 2352 } else { 2353 sp->param_flags = 2354 (sp->param_flags & ~SPP_SACKDELAY) | 2355 sackdelay_change; 2356 } 2357 } 2358 2359 /* Note that a value of zero indicates the current setting should be 2360 left unchanged. 2361 */ 2362 if (params->spp_pathmaxrxt) { 2363 if (trans) { 2364 trans->pathmaxrxt = params->spp_pathmaxrxt; 2365 } else if (asoc) { 2366 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2367 } else { 2368 sp->pathmaxrxt = params->spp_pathmaxrxt; 2369 } 2370 } 2371 2372 return 0; 2373} 2374 2375static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2376 char __user *optval, 2377 unsigned int optlen) 2378{ 2379 struct sctp_paddrparams params; 2380 struct sctp_transport *trans = NULL; 2381 struct sctp_association *asoc = NULL; 2382 struct sctp_sock *sp = sctp_sk(sk); 2383 int error; 2384 int hb_change, pmtud_change, sackdelay_change; 2385 2386 if (optlen != sizeof(struct sctp_paddrparams)) 2387 return - EINVAL; 2388 2389 if (copy_from_user(&params, optval, optlen)) 2390 return -EFAULT; 2391 2392 /* Validate flags and value parameters. */ 2393 hb_change = params.spp_flags & SPP_HB; 2394 pmtud_change = params.spp_flags & SPP_PMTUD; 2395 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2396 2397 if (hb_change == SPP_HB || 2398 pmtud_change == SPP_PMTUD || 2399 sackdelay_change == SPP_SACKDELAY || 2400 params.spp_sackdelay > 500 || 2401 (params.spp_pathmtu && 2402 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2403 return -EINVAL; 2404 2405 /* If an address other than INADDR_ANY is specified, and 2406 * no transport is found, then the request is invalid. 2407 */ 2408 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) { 2409 trans = sctp_addr_id2transport(sk, &params.spp_address, 2410 params.spp_assoc_id); 2411 if (!trans) 2412 return -EINVAL; 2413 } 2414 2415 /* Get association, if assoc_id != 0 and the socket is a one 2416 * to many style socket, and an association was not found, then 2417 * the id was invalid. 2418 */ 2419 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2420 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2421 return -EINVAL; 2422 2423 /* Heartbeat demand can only be sent on a transport or 2424 * association, but not a socket. 2425 */ 2426 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2427 return -EINVAL; 2428 2429 /* Process parameters. */ 2430 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp, 2431 hb_change, pmtud_change, 2432 sackdelay_change); 2433 2434 if (error) 2435 return error; 2436 2437 /* If changes are for association, also apply parameters to each 2438 * transport. 2439 */ 2440 if (!trans && asoc) { 2441 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2442 transports) { 2443 sctp_apply_peer_addr_params(&params, trans, asoc, sp, 2444 hb_change, pmtud_change, 2445 sackdelay_change); 2446 } 2447 } 2448 2449 return 0; 2450} 2451 2452/* 2453 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2454 * 2455 * This option will effect the way delayed acks are performed. This 2456 * option allows you to get or set the delayed ack time, in 2457 * milliseconds. It also allows changing the delayed ack frequency. 2458 * Changing the frequency to 1 disables the delayed sack algorithm. If 2459 * the assoc_id is 0, then this sets or gets the endpoints default 2460 * values. If the assoc_id field is non-zero, then the set or get 2461 * effects the specified association for the one to many model (the 2462 * assoc_id field is ignored by the one to one model). Note that if 2463 * sack_delay or sack_freq are 0 when setting this option, then the 2464 * current values will remain unchanged. 2465 * 2466 * struct sctp_sack_info { 2467 * sctp_assoc_t sack_assoc_id; 2468 * uint32_t sack_delay; 2469 * uint32_t sack_freq; 2470 * }; 2471 * 2472 * sack_assoc_id - This parameter, indicates which association the user 2473 * is performing an action upon. Note that if this field's value is 2474 * zero then the endpoints default value is changed (effecting future 2475 * associations only). 2476 * 2477 * sack_delay - This parameter contains the number of milliseconds that 2478 * the user is requesting the delayed ACK timer be set to. Note that 2479 * this value is defined in the standard to be between 200 and 500 2480 * milliseconds. 2481 * 2482 * sack_freq - This parameter contains the number of packets that must 2483 * be received before a sack is sent without waiting for the delay 2484 * timer to expire. The default value for this is 2, setting this 2485 * value to 1 will disable the delayed sack algorithm. 2486 */ 2487 2488static int sctp_setsockopt_delayed_ack(struct sock *sk, 2489 char __user *optval, unsigned int optlen) 2490{ 2491 struct sctp_sack_info params; 2492 struct sctp_transport *trans = NULL; 2493 struct sctp_association *asoc = NULL; 2494 struct sctp_sock *sp = sctp_sk(sk); 2495 2496 if (optlen == sizeof(struct sctp_sack_info)) { 2497 if (copy_from_user(&params, optval, optlen)) 2498 return -EFAULT; 2499 2500 if (params.sack_delay == 0 && params.sack_freq == 0) 2501 return 0; 2502 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2503 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2504 pr_warn("Use struct sctp_sack_info instead\n"); 2505 if (copy_from_user(&params, optval, optlen)) 2506 return -EFAULT; 2507 2508 if (params.sack_delay == 0) 2509 params.sack_freq = 1; 2510 else 2511 params.sack_freq = 0; 2512 } else 2513 return - EINVAL; 2514 2515 /* Validate value parameter. */ 2516 if (params.sack_delay > 500) 2517 return -EINVAL; 2518 2519 /* Get association, if sack_assoc_id != 0 and the socket is a one 2520 * to many style socket, and an association was not found, then 2521 * the id was invalid. 2522 */ 2523 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2524 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2525 return -EINVAL; 2526 2527 if (params.sack_delay) { 2528 if (asoc) { 2529 asoc->sackdelay = 2530 msecs_to_jiffies(params.sack_delay); 2531 asoc->param_flags = 2532 (asoc->param_flags & ~SPP_SACKDELAY) | 2533 SPP_SACKDELAY_ENABLE; 2534 } else { 2535 sp->sackdelay = params.sack_delay; 2536 sp->param_flags = 2537 (sp->param_flags & ~SPP_SACKDELAY) | 2538 SPP_SACKDELAY_ENABLE; 2539 } 2540 } 2541 2542 if (params.sack_freq == 1) { 2543 if (asoc) { 2544 asoc->param_flags = 2545 (asoc->param_flags & ~SPP_SACKDELAY) | 2546 SPP_SACKDELAY_DISABLE; 2547 } else { 2548 sp->param_flags = 2549 (sp->param_flags & ~SPP_SACKDELAY) | 2550 SPP_SACKDELAY_DISABLE; 2551 } 2552 } else if (params.sack_freq > 1) { 2553 if (asoc) { 2554 asoc->sackfreq = params.sack_freq; 2555 asoc->param_flags = 2556 (asoc->param_flags & ~SPP_SACKDELAY) | 2557 SPP_SACKDELAY_ENABLE; 2558 } else { 2559 sp->sackfreq = params.sack_freq; 2560 sp->param_flags = 2561 (sp->param_flags & ~SPP_SACKDELAY) | 2562 SPP_SACKDELAY_ENABLE; 2563 } 2564 } 2565 2566 /* If change is for association, also apply to each transport. */ 2567 if (asoc) { 2568 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2569 transports) { 2570 if (params.sack_delay) { 2571 trans->sackdelay = 2572 msecs_to_jiffies(params.sack_delay); 2573 trans->param_flags = 2574 (trans->param_flags & ~SPP_SACKDELAY) | 2575 SPP_SACKDELAY_ENABLE; 2576 } 2577 if (params.sack_freq == 1) { 2578 trans->param_flags = 2579 (trans->param_flags & ~SPP_SACKDELAY) | 2580 SPP_SACKDELAY_DISABLE; 2581 } else if (params.sack_freq > 1) { 2582 trans->sackfreq = params.sack_freq; 2583 trans->param_flags = 2584 (trans->param_flags & ~SPP_SACKDELAY) | 2585 SPP_SACKDELAY_ENABLE; 2586 } 2587 } 2588 } 2589 2590 return 0; 2591} 2592 2593/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2594 * 2595 * Applications can specify protocol parameters for the default association 2596 * initialization. The option name argument to setsockopt() and getsockopt() 2597 * is SCTP_INITMSG. 2598 * 2599 * Setting initialization parameters is effective only on an unconnected 2600 * socket (for UDP-style sockets only future associations are effected 2601 * by the change). With TCP-style sockets, this option is inherited by 2602 * sockets derived from a listener socket. 2603 */ 2604static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2605{ 2606 struct sctp_initmsg sinit; 2607 struct sctp_sock *sp = sctp_sk(sk); 2608 2609 if (optlen != sizeof(struct sctp_initmsg)) 2610 return -EINVAL; 2611 if (copy_from_user(&sinit, optval, optlen)) 2612 return -EFAULT; 2613 2614 if (sinit.sinit_num_ostreams) 2615 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2616 if (sinit.sinit_max_instreams) 2617 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2618 if (sinit.sinit_max_attempts) 2619 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2620 if (sinit.sinit_max_init_timeo) 2621 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2622 2623 return 0; 2624} 2625 2626/* 2627 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2628 * 2629 * Applications that wish to use the sendto() system call may wish to 2630 * specify a default set of parameters that would normally be supplied 2631 * through the inclusion of ancillary data. This socket option allows 2632 * such an application to set the default sctp_sndrcvinfo structure. 2633 * The application that wishes to use this socket option simply passes 2634 * in to this call the sctp_sndrcvinfo structure defined in Section 2635 * 5.2.2) The input parameters accepted by this call include 2636 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2637 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2638 * to this call if the caller is using the UDP model. 2639 */ 2640static int sctp_setsockopt_default_send_param(struct sock *sk, 2641 char __user *optval, 2642 unsigned int optlen) 2643{ 2644 struct sctp_sndrcvinfo info; 2645 struct sctp_association *asoc; 2646 struct sctp_sock *sp = sctp_sk(sk); 2647 2648 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2649 return -EINVAL; 2650 if (copy_from_user(&info, optval, optlen)) 2651 return -EFAULT; 2652 2653 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2654 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2655 return -EINVAL; 2656 2657 if (asoc) { 2658 asoc->default_stream = info.sinfo_stream; 2659 asoc->default_flags = info.sinfo_flags; 2660 asoc->default_ppid = info.sinfo_ppid; 2661 asoc->default_context = info.sinfo_context; 2662 asoc->default_timetolive = info.sinfo_timetolive; 2663 } else { 2664 sp->default_stream = info.sinfo_stream; 2665 sp->default_flags = info.sinfo_flags; 2666 sp->default_ppid = info.sinfo_ppid; 2667 sp->default_context = info.sinfo_context; 2668 sp->default_timetolive = info.sinfo_timetolive; 2669 } 2670 2671 return 0; 2672} 2673 2674/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2675 * 2676 * Requests that the local SCTP stack use the enclosed peer address as 2677 * the association primary. The enclosed address must be one of the 2678 * association peer's addresses. 2679 */ 2680static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2681 unsigned int optlen) 2682{ 2683 struct sctp_prim prim; 2684 struct sctp_transport *trans; 2685 2686 if (optlen != sizeof(struct sctp_prim)) 2687 return -EINVAL; 2688 2689 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2690 return -EFAULT; 2691 2692 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2693 if (!trans) 2694 return -EINVAL; 2695 2696 sctp_assoc_set_primary(trans->asoc, trans); 2697 2698 return 0; 2699} 2700 2701/* 2702 * 7.1.5 SCTP_NODELAY 2703 * 2704 * Turn on/off any Nagle-like algorithm. This means that packets are 2705 * generally sent as soon as possible and no unnecessary delays are 2706 * introduced, at the cost of more packets in the network. Expects an 2707 * integer boolean flag. 2708 */ 2709static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2710 unsigned int optlen) 2711{ 2712 int val; 2713 2714 if (optlen < sizeof(int)) 2715 return -EINVAL; 2716 if (get_user(val, (int __user *)optval)) 2717 return -EFAULT; 2718 2719 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2720 return 0; 2721} 2722 2723/* 2724 * 2725 * 7.1.1 SCTP_RTOINFO 2726 * 2727 * The protocol parameters used to initialize and bound retransmission 2728 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2729 * and modify these parameters. 2730 * All parameters are time values, in milliseconds. A value of 0, when 2731 * modifying the parameters, indicates that the current value should not 2732 * be changed. 2733 * 2734 */ 2735static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2736{ 2737 struct sctp_rtoinfo rtoinfo; 2738 struct sctp_association *asoc; 2739 2740 if (optlen != sizeof (struct sctp_rtoinfo)) 2741 return -EINVAL; 2742 2743 if (copy_from_user(&rtoinfo, optval, optlen)) 2744 return -EFAULT; 2745 2746 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2747 2748 /* Set the values to the specific association */ 2749 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2750 return -EINVAL; 2751 2752 if (asoc) { 2753 if (rtoinfo.srto_initial != 0) 2754 asoc->rto_initial = 2755 msecs_to_jiffies(rtoinfo.srto_initial); 2756 if (rtoinfo.srto_max != 0) 2757 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2758 if (rtoinfo.srto_min != 0) 2759 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2760 } else { 2761 /* If there is no association or the association-id = 0 2762 * set the values to the endpoint. 2763 */ 2764 struct sctp_sock *sp = sctp_sk(sk); 2765 2766 if (rtoinfo.srto_initial != 0) 2767 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2768 if (rtoinfo.srto_max != 0) 2769 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2770 if (rtoinfo.srto_min != 0) 2771 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2772 } 2773 2774 return 0; 2775} 2776 2777/* 2778 * 2779 * 7.1.2 SCTP_ASSOCINFO 2780 * 2781 * This option is used to tune the maximum retransmission attempts 2782 * of the association. 2783 * Returns an error if the new association retransmission value is 2784 * greater than the sum of the retransmission value of the peer. 2785 * See [SCTP] for more information. 2786 * 2787 */ 2788static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2789{ 2790 2791 struct sctp_assocparams assocparams; 2792 struct sctp_association *asoc; 2793 2794 if (optlen != sizeof(struct sctp_assocparams)) 2795 return -EINVAL; 2796 if (copy_from_user(&assocparams, optval, optlen)) 2797 return -EFAULT; 2798 2799 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2800 2801 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2802 return -EINVAL; 2803 2804 /* Set the values to the specific association */ 2805 if (asoc) { 2806 if (assocparams.sasoc_asocmaxrxt != 0) { 2807 __u32 path_sum = 0; 2808 int paths = 0; 2809 struct sctp_transport *peer_addr; 2810 2811 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2812 transports) { 2813 path_sum += peer_addr->pathmaxrxt; 2814 paths++; 2815 } 2816 2817 /* Only validate asocmaxrxt if we have more than 2818 * one path/transport. We do this because path 2819 * retransmissions are only counted when we have more 2820 * then one path. 2821 */ 2822 if (paths > 1 && 2823 assocparams.sasoc_asocmaxrxt > path_sum) 2824 return -EINVAL; 2825 2826 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2827 } 2828 2829 if (assocparams.sasoc_cookie_life != 0) { 2830 asoc->cookie_life.tv_sec = 2831 assocparams.sasoc_cookie_life / 1000; 2832 asoc->cookie_life.tv_usec = 2833 (assocparams.sasoc_cookie_life % 1000) 2834 * 1000; 2835 } 2836 } else { 2837 /* Set the values to the endpoint */ 2838 struct sctp_sock *sp = sctp_sk(sk); 2839 2840 if (assocparams.sasoc_asocmaxrxt != 0) 2841 sp->assocparams.sasoc_asocmaxrxt = 2842 assocparams.sasoc_asocmaxrxt; 2843 if (assocparams.sasoc_cookie_life != 0) 2844 sp->assocparams.sasoc_cookie_life = 2845 assocparams.sasoc_cookie_life; 2846 } 2847 return 0; 2848} 2849 2850/* 2851 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2852 * 2853 * This socket option is a boolean flag which turns on or off mapped V4 2854 * addresses. If this option is turned on and the socket is type 2855 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2856 * If this option is turned off, then no mapping will be done of V4 2857 * addresses and a user will receive both PF_INET6 and PF_INET type 2858 * addresses on the socket. 2859 */ 2860static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2861{ 2862 int val; 2863 struct sctp_sock *sp = sctp_sk(sk); 2864 2865 if (optlen < sizeof(int)) 2866 return -EINVAL; 2867 if (get_user(val, (int __user *)optval)) 2868 return -EFAULT; 2869 if (val) 2870 sp->v4mapped = 1; 2871 else 2872 sp->v4mapped = 0; 2873 2874 return 0; 2875} 2876 2877/* 2878 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2879 * This option will get or set the maximum size to put in any outgoing 2880 * SCTP DATA chunk. If a message is larger than this size it will be 2881 * fragmented by SCTP into the specified size. Note that the underlying 2882 * SCTP implementation may fragment into smaller sized chunks when the 2883 * PMTU of the underlying association is smaller than the value set by 2884 * the user. The default value for this option is '0' which indicates 2885 * the user is NOT limiting fragmentation and only the PMTU will effect 2886 * SCTP's choice of DATA chunk size. Note also that values set larger 2887 * than the maximum size of an IP datagram will effectively let SCTP 2888 * control fragmentation (i.e. the same as setting this option to 0). 2889 * 2890 * The following structure is used to access and modify this parameter: 2891 * 2892 * struct sctp_assoc_value { 2893 * sctp_assoc_t assoc_id; 2894 * uint32_t assoc_value; 2895 * }; 2896 * 2897 * assoc_id: This parameter is ignored for one-to-one style sockets. 2898 * For one-to-many style sockets this parameter indicates which 2899 * association the user is performing an action upon. Note that if 2900 * this field's value is zero then the endpoints default value is 2901 * changed (effecting future associations only). 2902 * assoc_value: This parameter specifies the maximum size in bytes. 2903 */ 2904static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2905{ 2906 struct sctp_assoc_value params; 2907 struct sctp_association *asoc; 2908 struct sctp_sock *sp = sctp_sk(sk); 2909 int val; 2910 2911 if (optlen == sizeof(int)) { 2912 pr_warn("Use of int in maxseg socket option deprecated\n"); 2913 pr_warn("Use struct sctp_assoc_value instead\n"); 2914 if (copy_from_user(&val, optval, optlen)) 2915 return -EFAULT; 2916 params.assoc_id = 0; 2917 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2918 if (copy_from_user(&params, optval, optlen)) 2919 return -EFAULT; 2920 val = params.assoc_value; 2921 } else 2922 return -EINVAL; 2923 2924 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2925 return -EINVAL; 2926 2927 asoc = sctp_id2assoc(sk, params.assoc_id); 2928 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2929 return -EINVAL; 2930 2931 if (asoc) { 2932 if (val == 0) { 2933 val = asoc->pathmtu; 2934 val -= sp->pf->af->net_header_len; 2935 val -= sizeof(struct sctphdr) + 2936 sizeof(struct sctp_data_chunk); 2937 } 2938 asoc->user_frag = val; 2939 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 2940 } else { 2941 sp->user_frag = val; 2942 } 2943 2944 return 0; 2945} 2946 2947 2948/* 2949 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2950 * 2951 * Requests that the peer mark the enclosed address as the association 2952 * primary. The enclosed address must be one of the association's 2953 * locally bound addresses. The following structure is used to make a 2954 * set primary request: 2955 */ 2956static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2957 unsigned int optlen) 2958{ 2959 struct sctp_sock *sp; 2960 struct sctp_association *asoc = NULL; 2961 struct sctp_setpeerprim prim; 2962 struct sctp_chunk *chunk; 2963 struct sctp_af *af; 2964 int err; 2965 2966 sp = sctp_sk(sk); 2967 2968 if (!sctp_addip_enable) 2969 return -EPERM; 2970 2971 if (optlen != sizeof(struct sctp_setpeerprim)) 2972 return -EINVAL; 2973 2974 if (copy_from_user(&prim, optval, optlen)) 2975 return -EFAULT; 2976 2977 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2978 if (!asoc) 2979 return -EINVAL; 2980 2981 if (!asoc->peer.asconf_capable) 2982 return -EPERM; 2983 2984 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2985 return -EPERM; 2986 2987 if (!sctp_state(asoc, ESTABLISHED)) 2988 return -ENOTCONN; 2989 2990 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 2991 if (!af) 2992 return -EINVAL; 2993 2994 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 2995 return -EADDRNOTAVAIL; 2996 2997 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2998 return -EADDRNOTAVAIL; 2999 3000 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3001 chunk = sctp_make_asconf_set_prim(asoc, 3002 (union sctp_addr *)&prim.sspp_addr); 3003 if (!chunk) 3004 return -ENOMEM; 3005 3006 err = sctp_send_asconf(asoc, chunk); 3007 3008 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 3009 3010 return err; 3011} 3012 3013static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3014 unsigned int optlen) 3015{ 3016 struct sctp_setadaptation adaptation; 3017 3018 if (optlen != sizeof(struct sctp_setadaptation)) 3019 return -EINVAL; 3020 if (copy_from_user(&adaptation, optval, optlen)) 3021 return -EFAULT; 3022 3023 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3024 3025 return 0; 3026} 3027 3028/* 3029 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3030 * 3031 * The context field in the sctp_sndrcvinfo structure is normally only 3032 * used when a failed message is retrieved holding the value that was 3033 * sent down on the actual send call. This option allows the setting of 3034 * a default context on an association basis that will be received on 3035 * reading messages from the peer. This is especially helpful in the 3036 * one-2-many model for an application to keep some reference to an 3037 * internal state machine that is processing messages on the 3038 * association. Note that the setting of this value only effects 3039 * received messages from the peer and does not effect the value that is 3040 * saved with outbound messages. 3041 */ 3042static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3043 unsigned int optlen) 3044{ 3045 struct sctp_assoc_value params; 3046 struct sctp_sock *sp; 3047 struct sctp_association *asoc; 3048 3049 if (optlen != sizeof(struct sctp_assoc_value)) 3050 return -EINVAL; 3051 if (copy_from_user(&params, optval, optlen)) 3052 return -EFAULT; 3053 3054 sp = sctp_sk(sk); 3055 3056 if (params.assoc_id != 0) { 3057 asoc = sctp_id2assoc(sk, params.assoc_id); 3058 if (!asoc) 3059 return -EINVAL; 3060 asoc->default_rcv_context = params.assoc_value; 3061 } else { 3062 sp->default_rcv_context = params.assoc_value; 3063 } 3064 3065 return 0; 3066} 3067 3068/* 3069 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3070 * 3071 * This options will at a minimum specify if the implementation is doing 3072 * fragmented interleave. Fragmented interleave, for a one to many 3073 * socket, is when subsequent calls to receive a message may return 3074 * parts of messages from different associations. Some implementations 3075 * may allow you to turn this value on or off. If so, when turned off, 3076 * no fragment interleave will occur (which will cause a head of line 3077 * blocking amongst multiple associations sharing the same one to many 3078 * socket). When this option is turned on, then each receive call may 3079 * come from a different association (thus the user must receive data 3080 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3081 * association each receive belongs to. 3082 * 3083 * This option takes a boolean value. A non-zero value indicates that 3084 * fragmented interleave is on. A value of zero indicates that 3085 * fragmented interleave is off. 3086 * 3087 * Note that it is important that an implementation that allows this 3088 * option to be turned on, have it off by default. Otherwise an unaware 3089 * application using the one to many model may become confused and act 3090 * incorrectly. 3091 */ 3092static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3093 char __user *optval, 3094 unsigned int optlen) 3095{ 3096 int val; 3097 3098 if (optlen != sizeof(int)) 3099 return -EINVAL; 3100 if (get_user(val, (int __user *)optval)) 3101 return -EFAULT; 3102 3103 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3104 3105 return 0; 3106} 3107 3108/* 3109 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3110 * (SCTP_PARTIAL_DELIVERY_POINT) 3111 * 3112 * This option will set or get the SCTP partial delivery point. This 3113 * point is the size of a message where the partial delivery API will be 3114 * invoked to help free up rwnd space for the peer. Setting this to a 3115 * lower value will cause partial deliveries to happen more often. The 3116 * calls argument is an integer that sets or gets the partial delivery 3117 * point. Note also that the call will fail if the user attempts to set 3118 * this value larger than the socket receive buffer size. 3119 * 3120 * Note that any single message having a length smaller than or equal to 3121 * the SCTP partial delivery point will be delivered in one single read 3122 * call as long as the user provided buffer is large enough to hold the 3123 * message. 3124 */ 3125static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3126 char __user *optval, 3127 unsigned int optlen) 3128{ 3129 u32 val; 3130 3131 if (optlen != sizeof(u32)) 3132 return -EINVAL; 3133 if (get_user(val, (int __user *)optval)) 3134 return -EFAULT; 3135 3136 /* Note: We double the receive buffer from what the user sets 3137 * it to be, also initial rwnd is based on rcvbuf/2. 3138 */ 3139 if (val > (sk->sk_rcvbuf >> 1)) 3140 return -EINVAL; 3141 3142 sctp_sk(sk)->pd_point = val; 3143 3144 return 0; /* is this the right error code? */ 3145} 3146 3147/* 3148 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3149 * 3150 * This option will allow a user to change the maximum burst of packets 3151 * that can be emitted by this association. Note that the default value 3152 * is 4, and some implementations may restrict this setting so that it 3153 * can only be lowered. 3154 * 3155 * NOTE: This text doesn't seem right. Do this on a socket basis with 3156 * future associations inheriting the socket value. 3157 */ 3158static int sctp_setsockopt_maxburst(struct sock *sk, 3159 char __user *optval, 3160 unsigned int optlen) 3161{ 3162 struct sctp_assoc_value params; 3163 struct sctp_sock *sp; 3164 struct sctp_association *asoc; 3165 int val; 3166 int assoc_id = 0; 3167 3168 if (optlen == sizeof(int)) { 3169 pr_warn("Use of int in max_burst socket option deprecated\n"); 3170 pr_warn("Use struct sctp_assoc_value instead\n"); 3171 if (copy_from_user(&val, optval, optlen)) 3172 return -EFAULT; 3173 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3174 if (copy_from_user(&params, optval, optlen)) 3175 return -EFAULT; 3176 val = params.assoc_value; 3177 assoc_id = params.assoc_id; 3178 } else 3179 return -EINVAL; 3180 3181 sp = sctp_sk(sk); 3182 3183 if (assoc_id != 0) { 3184 asoc = sctp_id2assoc(sk, assoc_id); 3185 if (!asoc) 3186 return -EINVAL; 3187 asoc->max_burst = val; 3188 } else 3189 sp->max_burst = val; 3190 3191 return 0; 3192} 3193 3194/* 3195 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3196 * 3197 * This set option adds a chunk type that the user is requesting to be 3198 * received only in an authenticated way. Changes to the list of chunks 3199 * will only effect future associations on the socket. 3200 */ 3201static int sctp_setsockopt_auth_chunk(struct sock *sk, 3202 char __user *optval, 3203 unsigned int optlen) 3204{ 3205 struct sctp_authchunk val; 3206 3207 if (!sctp_auth_enable) 3208 return -EACCES; 3209 3210 if (optlen != sizeof(struct sctp_authchunk)) 3211 return -EINVAL; 3212 if (copy_from_user(&val, optval, optlen)) 3213 return -EFAULT; 3214 3215 switch (val.sauth_chunk) { 3216 case SCTP_CID_INIT: 3217 case SCTP_CID_INIT_ACK: 3218 case SCTP_CID_SHUTDOWN_COMPLETE: 3219 case SCTP_CID_AUTH: 3220 return -EINVAL; 3221 } 3222 3223 /* add this chunk id to the endpoint */ 3224 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3225} 3226 3227/* 3228 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3229 * 3230 * This option gets or sets the list of HMAC algorithms that the local 3231 * endpoint requires the peer to use. 3232 */ 3233static int sctp_setsockopt_hmac_ident(struct sock *sk, 3234 char __user *optval, 3235 unsigned int optlen) 3236{ 3237 struct sctp_hmacalgo *hmacs; 3238 u32 idents; 3239 int err; 3240 3241 if (!sctp_auth_enable) 3242 return -EACCES; 3243 3244 if (optlen < sizeof(struct sctp_hmacalgo)) 3245 return -EINVAL; 3246 3247 hmacs= memdup_user(optval, optlen); 3248 if (IS_ERR(hmacs)) 3249 return PTR_ERR(hmacs); 3250 3251 idents = hmacs->shmac_num_idents; 3252 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3253 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3254 err = -EINVAL; 3255 goto out; 3256 } 3257 3258 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3259out: 3260 kfree(hmacs); 3261 return err; 3262} 3263 3264/* 3265 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3266 * 3267 * This option will set a shared secret key which is used to build an 3268 * association shared key. 3269 */ 3270static int sctp_setsockopt_auth_key(struct sock *sk, 3271 char __user *optval, 3272 unsigned int optlen) 3273{ 3274 struct sctp_authkey *authkey; 3275 struct sctp_association *asoc; 3276 int ret; 3277 3278 if (!sctp_auth_enable) 3279 return -EACCES; 3280 3281 if (optlen <= sizeof(struct sctp_authkey)) 3282 return -EINVAL; 3283 3284 authkey= memdup_user(optval, optlen); 3285 if (IS_ERR(authkey)) 3286 return PTR_ERR(authkey); 3287 3288 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3289 ret = -EINVAL; 3290 goto out; 3291 } 3292 3293 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3294 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3295 ret = -EINVAL; 3296 goto out; 3297 } 3298 3299 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3300out: 3301 kfree(authkey); 3302 return ret; 3303} 3304 3305/* 3306 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3307 * 3308 * This option will get or set the active shared key to be used to build 3309 * the association shared key. 3310 */ 3311static int sctp_setsockopt_active_key(struct sock *sk, 3312 char __user *optval, 3313 unsigned int optlen) 3314{ 3315 struct sctp_authkeyid val; 3316 struct sctp_association *asoc; 3317 3318 if (!sctp_auth_enable) 3319 return -EACCES; 3320 3321 if (optlen != sizeof(struct sctp_authkeyid)) 3322 return -EINVAL; 3323 if (copy_from_user(&val, optval, optlen)) 3324 return -EFAULT; 3325 3326 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3327 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3328 return -EINVAL; 3329 3330 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3331 val.scact_keynumber); 3332} 3333 3334/* 3335 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3336 * 3337 * This set option will delete a shared secret key from use. 3338 */ 3339static int sctp_setsockopt_del_key(struct sock *sk, 3340 char __user *optval, 3341 unsigned int optlen) 3342{ 3343 struct sctp_authkeyid val; 3344 struct sctp_association *asoc; 3345 3346 if (!sctp_auth_enable) 3347 return -EACCES; 3348 3349 if (optlen != sizeof(struct sctp_authkeyid)) 3350 return -EINVAL; 3351 if (copy_from_user(&val, optval, optlen)) 3352 return -EFAULT; 3353 3354 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3355 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3356 return -EINVAL; 3357 3358 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3359 val.scact_keynumber); 3360 3361} 3362 3363 3364/* API 6.2 setsockopt(), getsockopt() 3365 * 3366 * Applications use setsockopt() and getsockopt() to set or retrieve 3367 * socket options. Socket options are used to change the default 3368 * behavior of sockets calls. They are described in Section 7. 3369 * 3370 * The syntax is: 3371 * 3372 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3373 * int __user *optlen); 3374 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3375 * int optlen); 3376 * 3377 * sd - the socket descript. 3378 * level - set to IPPROTO_SCTP for all SCTP options. 3379 * optname - the option name. 3380 * optval - the buffer to store the value of the option. 3381 * optlen - the size of the buffer. 3382 */ 3383SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3384 char __user *optval, unsigned int optlen) 3385{ 3386 int retval = 0; 3387 3388 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3389 sk, optname); 3390 3391 /* I can hardly begin to describe how wrong this is. This is 3392 * so broken as to be worse than useless. The API draft 3393 * REALLY is NOT helpful here... I am not convinced that the 3394 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3395 * are at all well-founded. 3396 */ 3397 if (level != SOL_SCTP) { 3398 struct sctp_af *af = sctp_sk(sk)->pf->af; 3399 retval = af->setsockopt(sk, level, optname, optval, optlen); 3400 goto out_nounlock; 3401 } 3402 3403 sctp_lock_sock(sk); 3404 3405 switch (optname) { 3406 case SCTP_SOCKOPT_BINDX_ADD: 3407 /* 'optlen' is the size of the addresses buffer. */ 3408 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3409 optlen, SCTP_BINDX_ADD_ADDR); 3410 break; 3411 3412 case SCTP_SOCKOPT_BINDX_REM: 3413 /* 'optlen' is the size of the addresses buffer. */ 3414 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3415 optlen, SCTP_BINDX_REM_ADDR); 3416 break; 3417 3418 case SCTP_SOCKOPT_CONNECTX_OLD: 3419 /* 'optlen' is the size of the addresses buffer. */ 3420 retval = sctp_setsockopt_connectx_old(sk, 3421 (struct sockaddr __user *)optval, 3422 optlen); 3423 break; 3424 3425 case SCTP_SOCKOPT_CONNECTX: 3426 /* 'optlen' is the size of the addresses buffer. */ 3427 retval = sctp_setsockopt_connectx(sk, 3428 (struct sockaddr __user *)optval, 3429 optlen); 3430 break; 3431 3432 case SCTP_DISABLE_FRAGMENTS: 3433 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3434 break; 3435 3436 case SCTP_EVENTS: 3437 retval = sctp_setsockopt_events(sk, optval, optlen); 3438 break; 3439 3440 case SCTP_AUTOCLOSE: 3441 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3442 break; 3443 3444 case SCTP_PEER_ADDR_PARAMS: 3445 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3446 break; 3447 3448 case SCTP_DELAYED_SACK: 3449 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3450 break; 3451 case SCTP_PARTIAL_DELIVERY_POINT: 3452 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3453 break; 3454 3455 case SCTP_INITMSG: 3456 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3457 break; 3458 case SCTP_DEFAULT_SEND_PARAM: 3459 retval = sctp_setsockopt_default_send_param(sk, optval, 3460 optlen); 3461 break; 3462 case SCTP_PRIMARY_ADDR: 3463 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3464 break; 3465 case SCTP_SET_PEER_PRIMARY_ADDR: 3466 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3467 break; 3468 case SCTP_NODELAY: 3469 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3470 break; 3471 case SCTP_RTOINFO: 3472 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3473 break; 3474 case SCTP_ASSOCINFO: 3475 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3476 break; 3477 case SCTP_I_WANT_MAPPED_V4_ADDR: 3478 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3479 break; 3480 case SCTP_MAXSEG: 3481 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3482 break; 3483 case SCTP_ADAPTATION_LAYER: 3484 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3485 break; 3486 case SCTP_CONTEXT: 3487 retval = sctp_setsockopt_context(sk, optval, optlen); 3488 break; 3489 case SCTP_FRAGMENT_INTERLEAVE: 3490 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3491 break; 3492 case SCTP_MAX_BURST: 3493 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3494 break; 3495 case SCTP_AUTH_CHUNK: 3496 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3497 break; 3498 case SCTP_HMAC_IDENT: 3499 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3500 break; 3501 case SCTP_AUTH_KEY: 3502 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3503 break; 3504 case SCTP_AUTH_ACTIVE_KEY: 3505 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3506 break; 3507 case SCTP_AUTH_DELETE_KEY: 3508 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3509 break; 3510 default: 3511 retval = -ENOPROTOOPT; 3512 break; 3513 } 3514 3515 sctp_release_sock(sk); 3516 3517out_nounlock: 3518 return retval; 3519} 3520 3521/* API 3.1.6 connect() - UDP Style Syntax 3522 * 3523 * An application may use the connect() call in the UDP model to initiate an 3524 * association without sending data. 3525 * 3526 * The syntax is: 3527 * 3528 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3529 * 3530 * sd: the socket descriptor to have a new association added to. 3531 * 3532 * nam: the address structure (either struct sockaddr_in or struct 3533 * sockaddr_in6 defined in RFC2553 [7]). 3534 * 3535 * len: the size of the address. 3536 */ 3537SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3538 int addr_len) 3539{ 3540 int err = 0; 3541 struct sctp_af *af; 3542 3543 sctp_lock_sock(sk); 3544 3545 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3546 __func__, sk, addr, addr_len); 3547 3548 /* Validate addr_len before calling common connect/connectx routine. */ 3549 af = sctp_get_af_specific(addr->sa_family); 3550 if (!af || addr_len < af->sockaddr_len) { 3551 err = -EINVAL; 3552 } else { 3553 /* Pass correct addr len to common routine (so it knows there 3554 * is only one address being passed. 3555 */ 3556 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3557 } 3558 3559 sctp_release_sock(sk); 3560 return err; 3561} 3562 3563/* FIXME: Write comments. */ 3564SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3565{ 3566 return -EOPNOTSUPP; /* STUB */ 3567} 3568 3569/* 4.1.4 accept() - TCP Style Syntax 3570 * 3571 * Applications use accept() call to remove an established SCTP 3572 * association from the accept queue of the endpoint. A new socket 3573 * descriptor will be returned from accept() to represent the newly 3574 * formed association. 3575 */ 3576SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3577{ 3578 struct sctp_sock *sp; 3579 struct sctp_endpoint *ep; 3580 struct sock *newsk = NULL; 3581 struct sctp_association *asoc; 3582 long timeo; 3583 int error = 0; 3584 3585 sctp_lock_sock(sk); 3586 3587 sp = sctp_sk(sk); 3588 ep = sp->ep; 3589 3590 if (!sctp_style(sk, TCP)) { 3591 error = -EOPNOTSUPP; 3592 goto out; 3593 } 3594 3595 if (!sctp_sstate(sk, LISTENING)) { 3596 error = -EINVAL; 3597 goto out; 3598 } 3599 3600 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3601 3602 error = sctp_wait_for_accept(sk, timeo); 3603 if (error) 3604 goto out; 3605 3606 /* We treat the list of associations on the endpoint as the accept 3607 * queue and pick the first association on the list. 3608 */ 3609 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3610 3611 newsk = sp->pf->create_accept_sk(sk, asoc); 3612 if (!newsk) { 3613 error = -ENOMEM; 3614 goto out; 3615 } 3616 3617 /* Populate the fields of the newsk from the oldsk and migrate the 3618 * asoc to the newsk. 3619 */ 3620 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3621 3622out: 3623 sctp_release_sock(sk); 3624 *err = error; 3625 return newsk; 3626} 3627 3628/* The SCTP ioctl handler. */ 3629SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3630{ 3631 int rc = -ENOTCONN; 3632 3633 sctp_lock_sock(sk); 3634 3635 /* 3636 * SEQPACKET-style sockets in LISTENING state are valid, for 3637 * SCTP, so only discard TCP-style sockets in LISTENING state. 3638 */ 3639 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3640 goto out; 3641 3642 switch (cmd) { 3643 case SIOCINQ: { 3644 struct sk_buff *skb; 3645 unsigned int amount = 0; 3646 3647 skb = skb_peek(&sk->sk_receive_queue); 3648 if (skb != NULL) { 3649 /* 3650 * We will only return the amount of this packet since 3651 * that is all that will be read. 3652 */ 3653 amount = skb->len; 3654 } 3655 rc = put_user(amount, (int __user *)arg); 3656 break; 3657 } 3658 default: 3659 rc = -ENOIOCTLCMD; 3660 break; 3661 } 3662out: 3663 sctp_release_sock(sk); 3664 return rc; 3665} 3666 3667/* This is the function which gets called during socket creation to 3668 * initialized the SCTP-specific portion of the sock. 3669 * The sock structure should already be zero-filled memory. 3670 */ 3671SCTP_STATIC int sctp_init_sock(struct sock *sk) 3672{ 3673 struct sctp_endpoint *ep; 3674 struct sctp_sock *sp; 3675 3676 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3677 3678 sp = sctp_sk(sk); 3679 3680 /* Initialize the SCTP per socket area. */ 3681 switch (sk->sk_type) { 3682 case SOCK_SEQPACKET: 3683 sp->type = SCTP_SOCKET_UDP; 3684 break; 3685 case SOCK_STREAM: 3686 sp->type = SCTP_SOCKET_TCP; 3687 break; 3688 default: 3689 return -ESOCKTNOSUPPORT; 3690 } 3691 3692 /* Initialize default send parameters. These parameters can be 3693 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3694 */ 3695 sp->default_stream = 0; 3696 sp->default_ppid = 0; 3697 sp->default_flags = 0; 3698 sp->default_context = 0; 3699 sp->default_timetolive = 0; 3700 3701 sp->default_rcv_context = 0; 3702 sp->max_burst = sctp_max_burst; 3703 3704 /* Initialize default setup parameters. These parameters 3705 * can be modified with the SCTP_INITMSG socket option or 3706 * overridden by the SCTP_INIT CMSG. 3707 */ 3708 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3709 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3710 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3711 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3712 3713 /* Initialize default RTO related parameters. These parameters can 3714 * be modified for with the SCTP_RTOINFO socket option. 3715 */ 3716 sp->rtoinfo.srto_initial = sctp_rto_initial; 3717 sp->rtoinfo.srto_max = sctp_rto_max; 3718 sp->rtoinfo.srto_min = sctp_rto_min; 3719 3720 /* Initialize default association related parameters. These parameters 3721 * can be modified with the SCTP_ASSOCINFO socket option. 3722 */ 3723 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3724 sp->assocparams.sasoc_number_peer_destinations = 0; 3725 sp->assocparams.sasoc_peer_rwnd = 0; 3726 sp->assocparams.sasoc_local_rwnd = 0; 3727 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3728 3729 /* Initialize default event subscriptions. By default, all the 3730 * options are off. 3731 */ 3732 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3733 3734 /* Default Peer Address Parameters. These defaults can 3735 * be modified via SCTP_PEER_ADDR_PARAMS 3736 */ 3737 sp->hbinterval = sctp_hb_interval; 3738 sp->pathmaxrxt = sctp_max_retrans_path; 3739 sp->pathmtu = 0; // allow default discovery 3740 sp->sackdelay = sctp_sack_timeout; 3741 sp->sackfreq = 2; 3742 sp->param_flags = SPP_HB_ENABLE | 3743 SPP_PMTUD_ENABLE | 3744 SPP_SACKDELAY_ENABLE; 3745 3746 /* If enabled no SCTP message fragmentation will be performed. 3747 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3748 */ 3749 sp->disable_fragments = 0; 3750 3751 /* Enable Nagle algorithm by default. */ 3752 sp->nodelay = 0; 3753 3754 /* Enable by default. */ 3755 sp->v4mapped = 1; 3756 3757 /* Auto-close idle associations after the configured 3758 * number of seconds. A value of 0 disables this 3759 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3760 * for UDP-style sockets only. 3761 */ 3762 sp->autoclose = 0; 3763 3764 /* User specified fragmentation limit. */ 3765 sp->user_frag = 0; 3766 3767 sp->adaptation_ind = 0; 3768 3769 sp->pf = sctp_get_pf_specific(sk->sk_family); 3770 3771 /* Control variables for partial data delivery. */ 3772 atomic_set(&sp->pd_mode, 0); 3773 skb_queue_head_init(&sp->pd_lobby); 3774 sp->frag_interleave = 0; 3775 3776 /* Create a per socket endpoint structure. Even if we 3777 * change the data structure relationships, this may still 3778 * be useful for storing pre-connect address information. 3779 */ 3780 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3781 if (!ep) 3782 return -ENOMEM; 3783 3784 sp->ep = ep; 3785 sp->hmac = NULL; 3786 3787 SCTP_DBG_OBJCNT_INC(sock); 3788 3789 local_bh_disable(); 3790 percpu_counter_inc(&sctp_sockets_allocated); 3791 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3792 local_bh_enable(); 3793 3794 return 0; 3795} 3796 3797/* Cleanup any SCTP per socket resources. */ 3798SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3799{ 3800 struct sctp_endpoint *ep; 3801 3802 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3803 3804 /* Release our hold on the endpoint. */ 3805 ep = sctp_sk(sk)->ep; 3806 sctp_endpoint_free(ep); 3807 local_bh_disable(); 3808 percpu_counter_dec(&sctp_sockets_allocated); 3809 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3810 local_bh_enable(); 3811} 3812 3813/* API 4.1.7 shutdown() - TCP Style Syntax 3814 * int shutdown(int socket, int how); 3815 * 3816 * sd - the socket descriptor of the association to be closed. 3817 * how - Specifies the type of shutdown. The values are 3818 * as follows: 3819 * SHUT_RD 3820 * Disables further receive operations. No SCTP 3821 * protocol action is taken. 3822 * SHUT_WR 3823 * Disables further send operations, and initiates 3824 * the SCTP shutdown sequence. 3825 * SHUT_RDWR 3826 * Disables further send and receive operations 3827 * and initiates the SCTP shutdown sequence. 3828 */ 3829SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3830{ 3831 struct sctp_endpoint *ep; 3832 struct sctp_association *asoc; 3833 3834 if (!sctp_style(sk, TCP)) 3835 return; 3836 3837 if (how & SEND_SHUTDOWN) { 3838 ep = sctp_sk(sk)->ep; 3839 if (!list_empty(&ep->asocs)) { 3840 asoc = list_entry(ep->asocs.next, 3841 struct sctp_association, asocs); 3842 sctp_primitive_SHUTDOWN(asoc, NULL); 3843 } 3844 } 3845} 3846 3847/* 7.2.1 Association Status (SCTP_STATUS) 3848 3849 * Applications can retrieve current status information about an 3850 * association, including association state, peer receiver window size, 3851 * number of unacked data chunks, and number of data chunks pending 3852 * receipt. This information is read-only. 3853 */ 3854static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3855 char __user *optval, 3856 int __user *optlen) 3857{ 3858 struct sctp_status status; 3859 struct sctp_association *asoc = NULL; 3860 struct sctp_transport *transport; 3861 sctp_assoc_t associd; 3862 int retval = 0; 3863 3864 if (len < sizeof(status)) { 3865 retval = -EINVAL; 3866 goto out; 3867 } 3868 3869 len = sizeof(status); 3870 if (copy_from_user(&status, optval, len)) { 3871 retval = -EFAULT; 3872 goto out; 3873 } 3874 3875 associd = status.sstat_assoc_id; 3876 asoc = sctp_id2assoc(sk, associd); 3877 if (!asoc) { 3878 retval = -EINVAL; 3879 goto out; 3880 } 3881 3882 transport = asoc->peer.primary_path; 3883 3884 status.sstat_assoc_id = sctp_assoc2id(asoc); 3885 status.sstat_state = asoc->state; 3886 status.sstat_rwnd = asoc->peer.rwnd; 3887 status.sstat_unackdata = asoc->unack_data; 3888 3889 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3890 status.sstat_instrms = asoc->c.sinit_max_instreams; 3891 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3892 status.sstat_fragmentation_point = asoc->frag_point; 3893 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3894 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3895 transport->af_specific->sockaddr_len); 3896 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3897 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3898 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3899 status.sstat_primary.spinfo_state = transport->state; 3900 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3901 status.sstat_primary.spinfo_srtt = transport->srtt; 3902 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3903 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3904 3905 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3906 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3907 3908 if (put_user(len, optlen)) { 3909 retval = -EFAULT; 3910 goto out; 3911 } 3912 3913 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3914 len, status.sstat_state, status.sstat_rwnd, 3915 status.sstat_assoc_id); 3916 3917 if (copy_to_user(optval, &status, len)) { 3918 retval = -EFAULT; 3919 goto out; 3920 } 3921 3922out: 3923 return retval; 3924} 3925 3926 3927/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3928 * 3929 * Applications can retrieve information about a specific peer address 3930 * of an association, including its reachability state, congestion 3931 * window, and retransmission timer values. This information is 3932 * read-only. 3933 */ 3934static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3935 char __user *optval, 3936 int __user *optlen) 3937{ 3938 struct sctp_paddrinfo pinfo; 3939 struct sctp_transport *transport; 3940 int retval = 0; 3941 3942 if (len < sizeof(pinfo)) { 3943 retval = -EINVAL; 3944 goto out; 3945 } 3946 3947 len = sizeof(pinfo); 3948 if (copy_from_user(&pinfo, optval, len)) { 3949 retval = -EFAULT; 3950 goto out; 3951 } 3952 3953 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3954 pinfo.spinfo_assoc_id); 3955 if (!transport) 3956 return -EINVAL; 3957 3958 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3959 pinfo.spinfo_state = transport->state; 3960 pinfo.spinfo_cwnd = transport->cwnd; 3961 pinfo.spinfo_srtt = transport->srtt; 3962 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3963 pinfo.spinfo_mtu = transport->pathmtu; 3964 3965 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3966 pinfo.spinfo_state = SCTP_ACTIVE; 3967 3968 if (put_user(len, optlen)) { 3969 retval = -EFAULT; 3970 goto out; 3971 } 3972 3973 if (copy_to_user(optval, &pinfo, len)) { 3974 retval = -EFAULT; 3975 goto out; 3976 } 3977 3978out: 3979 return retval; 3980} 3981 3982/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3983 * 3984 * This option is a on/off flag. If enabled no SCTP message 3985 * fragmentation will be performed. Instead if a message being sent 3986 * exceeds the current PMTU size, the message will NOT be sent and 3987 * instead a error will be indicated to the user. 3988 */ 3989static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3990 char __user *optval, int __user *optlen) 3991{ 3992 int val; 3993 3994 if (len < sizeof(int)) 3995 return -EINVAL; 3996 3997 len = sizeof(int); 3998 val = (sctp_sk(sk)->disable_fragments == 1); 3999 if (put_user(len, optlen)) 4000 return -EFAULT; 4001 if (copy_to_user(optval, &val, len)) 4002 return -EFAULT; 4003 return 0; 4004} 4005 4006/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4007 * 4008 * This socket option is used to specify various notifications and 4009 * ancillary data the user wishes to receive. 4010 */ 4011static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4012 int __user *optlen) 4013{ 4014 if (len < sizeof(struct sctp_event_subscribe)) 4015 return -EINVAL; 4016 len = sizeof(struct sctp_event_subscribe); 4017 if (put_user(len, optlen)) 4018 return -EFAULT; 4019 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4020 return -EFAULT; 4021 return 0; 4022} 4023 4024/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4025 * 4026 * This socket option is applicable to the UDP-style socket only. When 4027 * set it will cause associations that are idle for more than the 4028 * specified number of seconds to automatically close. An association 4029 * being idle is defined an association that has NOT sent or received 4030 * user data. The special value of '0' indicates that no automatic 4031 * close of any associations should be performed. The option expects an 4032 * integer defining the number of seconds of idle time before an 4033 * association is closed. 4034 */ 4035static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4036{ 4037 /* Applicable to UDP-style socket only */ 4038 if (sctp_style(sk, TCP)) 4039 return -EOPNOTSUPP; 4040 if (len < sizeof(int)) 4041 return -EINVAL; 4042 len = sizeof(int); 4043 if (put_user(len, optlen)) 4044 return -EFAULT; 4045 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4046 return -EFAULT; 4047 return 0; 4048} 4049 4050/* Helper routine to branch off an association to a new socket. */ 4051SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 4052 struct socket **sockp) 4053{ 4054 struct sock *sk = asoc->base.sk; 4055 struct socket *sock; 4056 struct sctp_af *af; 4057 int err = 0; 4058 4059 /* An association cannot be branched off from an already peeled-off 4060 * socket, nor is this supported for tcp style sockets. 4061 */ 4062 if (!sctp_style(sk, UDP)) 4063 return -EINVAL; 4064 4065 /* Create a new socket. */ 4066 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4067 if (err < 0) 4068 return err; 4069 4070 sctp_copy_sock(sock->sk, sk, asoc); 4071 4072 /* Make peeled-off sockets more like 1-1 accepted sockets. 4073 * Set the daddr and initialize id to something more random 4074 */ 4075 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4076 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4077 4078 /* Populate the fields of the newsk from the oldsk and migrate the 4079 * asoc to the newsk. 4080 */ 4081 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4082 4083 *sockp = sock; 4084 4085 return err; 4086} 4087 4088static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4089{ 4090 sctp_peeloff_arg_t peeloff; 4091 struct socket *newsock; 4092 int retval = 0; 4093 struct sctp_association *asoc; 4094 4095 if (len < sizeof(sctp_peeloff_arg_t)) 4096 return -EINVAL; 4097 len = sizeof(sctp_peeloff_arg_t); 4098 if (copy_from_user(&peeloff, optval, len)) 4099 return -EFAULT; 4100 4101 asoc = sctp_id2assoc(sk, peeloff.associd); 4102 if (!asoc) { 4103 retval = -EINVAL; 4104 goto out; 4105 } 4106 4107 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4108 4109 retval = sctp_do_peeloff(asoc, &newsock); 4110 if (retval < 0) 4111 goto out; 4112 4113 /* Map the socket to an unused fd that can be returned to the user. */ 4114 retval = sock_map_fd(newsock, 0); 4115 if (retval < 0) { 4116 sock_release(newsock); 4117 goto out; 4118 } 4119 4120 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4121 __func__, sk, asoc, newsock->sk, retval); 4122 4123 /* Return the fd mapped to the new socket. */ 4124 peeloff.sd = retval; 4125 if (put_user(len, optlen)) 4126 return -EFAULT; 4127 if (copy_to_user(optval, &peeloff, len)) 4128 retval = -EFAULT; 4129 4130out: 4131 return retval; 4132} 4133 4134/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4135 * 4136 * Applications can enable or disable heartbeats for any peer address of 4137 * an association, modify an address's heartbeat interval, force a 4138 * heartbeat to be sent immediately, and adjust the address's maximum 4139 * number of retransmissions sent before an address is considered 4140 * unreachable. The following structure is used to access and modify an 4141 * address's parameters: 4142 * 4143 * struct sctp_paddrparams { 4144 * sctp_assoc_t spp_assoc_id; 4145 * struct sockaddr_storage spp_address; 4146 * uint32_t spp_hbinterval; 4147 * uint16_t spp_pathmaxrxt; 4148 * uint32_t spp_pathmtu; 4149 * uint32_t spp_sackdelay; 4150 * uint32_t spp_flags; 4151 * }; 4152 * 4153 * spp_assoc_id - (one-to-many style socket) This is filled in the 4154 * application, and identifies the association for 4155 * this query. 4156 * spp_address - This specifies which address is of interest. 4157 * spp_hbinterval - This contains the value of the heartbeat interval, 4158 * in milliseconds. If a value of zero 4159 * is present in this field then no changes are to 4160 * be made to this parameter. 4161 * spp_pathmaxrxt - This contains the maximum number of 4162 * retransmissions before this address shall be 4163 * considered unreachable. If a value of zero 4164 * is present in this field then no changes are to 4165 * be made to this parameter. 4166 * spp_pathmtu - When Path MTU discovery is disabled the value 4167 * specified here will be the "fixed" path mtu. 4168 * Note that if the spp_address field is empty 4169 * then all associations on this address will 4170 * have this fixed path mtu set upon them. 4171 * 4172 * spp_sackdelay - When delayed sack is enabled, this value specifies 4173 * the number of milliseconds that sacks will be delayed 4174 * for. This value will apply to all addresses of an 4175 * association if the spp_address field is empty. Note 4176 * also, that if delayed sack is enabled and this 4177 * value is set to 0, no change is made to the last 4178 * recorded delayed sack timer value. 4179 * 4180 * spp_flags - These flags are used to control various features 4181 * on an association. The flag field may contain 4182 * zero or more of the following options. 4183 * 4184 * SPP_HB_ENABLE - Enable heartbeats on the 4185 * specified address. Note that if the address 4186 * field is empty all addresses for the association 4187 * have heartbeats enabled upon them. 4188 * 4189 * SPP_HB_DISABLE - Disable heartbeats on the 4190 * speicifed address. Note that if the address 4191 * field is empty all addresses for the association 4192 * will have their heartbeats disabled. Note also 4193 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4194 * mutually exclusive, only one of these two should 4195 * be specified. Enabling both fields will have 4196 * undetermined results. 4197 * 4198 * SPP_HB_DEMAND - Request a user initiated heartbeat 4199 * to be made immediately. 4200 * 4201 * SPP_PMTUD_ENABLE - This field will enable PMTU 4202 * discovery upon the specified address. Note that 4203 * if the address feild is empty then all addresses 4204 * on the association are effected. 4205 * 4206 * SPP_PMTUD_DISABLE - This field will disable PMTU 4207 * discovery upon the specified address. Note that 4208 * if the address feild is empty then all addresses 4209 * on the association are effected. Not also that 4210 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4211 * exclusive. Enabling both will have undetermined 4212 * results. 4213 * 4214 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4215 * on delayed sack. The time specified in spp_sackdelay 4216 * is used to specify the sack delay for this address. Note 4217 * that if spp_address is empty then all addresses will 4218 * enable delayed sack and take on the sack delay 4219 * value specified in spp_sackdelay. 4220 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4221 * off delayed sack. If the spp_address field is blank then 4222 * delayed sack is disabled for the entire association. Note 4223 * also that this field is mutually exclusive to 4224 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4225 * results. 4226 */ 4227static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4228 char __user *optval, int __user *optlen) 4229{ 4230 struct sctp_paddrparams params; 4231 struct sctp_transport *trans = NULL; 4232 struct sctp_association *asoc = NULL; 4233 struct sctp_sock *sp = sctp_sk(sk); 4234 4235 if (len < sizeof(struct sctp_paddrparams)) 4236 return -EINVAL; 4237 len = sizeof(struct sctp_paddrparams); 4238 if (copy_from_user(&params, optval, len)) 4239 return -EFAULT; 4240 4241 /* If an address other than INADDR_ANY is specified, and 4242 * no transport is found, then the request is invalid. 4243 */ 4244 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) { 4245 trans = sctp_addr_id2transport(sk, &params.spp_address, 4246 params.spp_assoc_id); 4247 if (!trans) { 4248 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4249 return -EINVAL; 4250 } 4251 } 4252 4253 /* Get association, if assoc_id != 0 and the socket is a one 4254 * to many style socket, and an association was not found, then 4255 * the id was invalid. 4256 */ 4257 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4258 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4259 SCTP_DEBUG_PRINTK("Failed no association\n"); 4260 return -EINVAL; 4261 } 4262 4263 if (trans) { 4264 /* Fetch transport values. */ 4265 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4266 params.spp_pathmtu = trans->pathmtu; 4267 params.spp_pathmaxrxt = trans->pathmaxrxt; 4268 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4269 4270 /*draft-11 doesn't say what to return in spp_flags*/ 4271 params.spp_flags = trans->param_flags; 4272 } else if (asoc) { 4273 /* Fetch association values. */ 4274 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4275 params.spp_pathmtu = asoc->pathmtu; 4276 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4277 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4278 4279 /*draft-11 doesn't say what to return in spp_flags*/ 4280 params.spp_flags = asoc->param_flags; 4281 } else { 4282 /* Fetch socket values. */ 4283 params.spp_hbinterval = sp->hbinterval; 4284 params.spp_pathmtu = sp->pathmtu; 4285 params.spp_sackdelay = sp->sackdelay; 4286 params.spp_pathmaxrxt = sp->pathmaxrxt; 4287 4288 /*draft-11 doesn't say what to return in spp_flags*/ 4289 params.spp_flags = sp->param_flags; 4290 } 4291 4292 if (copy_to_user(optval, &params, len)) 4293 return -EFAULT; 4294 4295 if (put_user(len, optlen)) 4296 return -EFAULT; 4297 4298 return 0; 4299} 4300 4301/* 4302 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4303 * 4304 * This option will effect the way delayed acks are performed. This 4305 * option allows you to get or set the delayed ack time, in 4306 * milliseconds. It also allows changing the delayed ack frequency. 4307 * Changing the frequency to 1 disables the delayed sack algorithm. If 4308 * the assoc_id is 0, then this sets or gets the endpoints default 4309 * values. If the assoc_id field is non-zero, then the set or get 4310 * effects the specified association for the one to many model (the 4311 * assoc_id field is ignored by the one to one model). Note that if 4312 * sack_delay or sack_freq are 0 when setting this option, then the 4313 * current values will remain unchanged. 4314 * 4315 * struct sctp_sack_info { 4316 * sctp_assoc_t sack_assoc_id; 4317 * uint32_t sack_delay; 4318 * uint32_t sack_freq; 4319 * }; 4320 * 4321 * sack_assoc_id - This parameter, indicates which association the user 4322 * is performing an action upon. Note that if this field's value is 4323 * zero then the endpoints default value is changed (effecting future 4324 * associations only). 4325 * 4326 * sack_delay - This parameter contains the number of milliseconds that 4327 * the user is requesting the delayed ACK timer be set to. Note that 4328 * this value is defined in the standard to be between 200 and 500 4329 * milliseconds. 4330 * 4331 * sack_freq - This parameter contains the number of packets that must 4332 * be received before a sack is sent without waiting for the delay 4333 * timer to expire. The default value for this is 2, setting this 4334 * value to 1 will disable the delayed sack algorithm. 4335 */ 4336static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4337 char __user *optval, 4338 int __user *optlen) 4339{ 4340 struct sctp_sack_info params; 4341 struct sctp_association *asoc = NULL; 4342 struct sctp_sock *sp = sctp_sk(sk); 4343 4344 if (len >= sizeof(struct sctp_sack_info)) { 4345 len = sizeof(struct sctp_sack_info); 4346 4347 if (copy_from_user(&params, optval, len)) 4348 return -EFAULT; 4349 } else if (len == sizeof(struct sctp_assoc_value)) { 4350 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4351 pr_warn("Use struct sctp_sack_info instead\n"); 4352 if (copy_from_user(&params, optval, len)) 4353 return -EFAULT; 4354 } else 4355 return - EINVAL; 4356 4357 /* Get association, if sack_assoc_id != 0 and the socket is a one 4358 * to many style socket, and an association was not found, then 4359 * the id was invalid. 4360 */ 4361 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4362 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4363 return -EINVAL; 4364 4365 if (asoc) { 4366 /* Fetch association values. */ 4367 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4368 params.sack_delay = jiffies_to_msecs( 4369 asoc->sackdelay); 4370 params.sack_freq = asoc->sackfreq; 4371 4372 } else { 4373 params.sack_delay = 0; 4374 params.sack_freq = 1; 4375 } 4376 } else { 4377 /* Fetch socket values. */ 4378 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4379 params.sack_delay = sp->sackdelay; 4380 params.sack_freq = sp->sackfreq; 4381 } else { 4382 params.sack_delay = 0; 4383 params.sack_freq = 1; 4384 } 4385 } 4386 4387 if (copy_to_user(optval, &params, len)) 4388 return -EFAULT; 4389 4390 if (put_user(len, optlen)) 4391 return -EFAULT; 4392 4393 return 0; 4394} 4395 4396/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4397 * 4398 * Applications can specify protocol parameters for the default association 4399 * initialization. The option name argument to setsockopt() and getsockopt() 4400 * is SCTP_INITMSG. 4401 * 4402 * Setting initialization parameters is effective only on an unconnected 4403 * socket (for UDP-style sockets only future associations are effected 4404 * by the change). With TCP-style sockets, this option is inherited by 4405 * sockets derived from a listener socket. 4406 */ 4407static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4408{ 4409 if (len < sizeof(struct sctp_initmsg)) 4410 return -EINVAL; 4411 len = sizeof(struct sctp_initmsg); 4412 if (put_user(len, optlen)) 4413 return -EFAULT; 4414 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4415 return -EFAULT; 4416 return 0; 4417} 4418 4419 4420static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4421 char __user *optval, int __user *optlen) 4422{ 4423 struct sctp_association *asoc; 4424 int cnt = 0; 4425 struct sctp_getaddrs getaddrs; 4426 struct sctp_transport *from; 4427 void __user *to; 4428 union sctp_addr temp; 4429 struct sctp_sock *sp = sctp_sk(sk); 4430 int addrlen; 4431 size_t space_left; 4432 int bytes_copied; 4433 4434 if (len < sizeof(struct sctp_getaddrs)) 4435 return -EINVAL; 4436 4437 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4438 return -EFAULT; 4439 4440 /* For UDP-style sockets, id specifies the association to query. */ 4441 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4442 if (!asoc) 4443 return -EINVAL; 4444 4445 to = optval + offsetof(struct sctp_getaddrs,addrs); 4446 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4447 4448 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4449 transports) { 4450 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4451 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4452 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4453 if (space_left < addrlen) 4454 return -ENOMEM; 4455 if (copy_to_user(to, &temp, addrlen)) 4456 return -EFAULT; 4457 to += addrlen; 4458 cnt++; 4459 space_left -= addrlen; 4460 } 4461 4462 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4463 return -EFAULT; 4464 bytes_copied = ((char __user *)to) - optval; 4465 if (put_user(bytes_copied, optlen)) 4466 return -EFAULT; 4467 4468 return 0; 4469} 4470 4471static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4472 size_t space_left, int *bytes_copied) 4473{ 4474 struct sctp_sockaddr_entry *addr; 4475 union sctp_addr temp; 4476 int cnt = 0; 4477 int addrlen; 4478 4479 rcu_read_lock(); 4480 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4481 if (!addr->valid) 4482 continue; 4483 4484 if ((PF_INET == sk->sk_family) && 4485 (AF_INET6 == addr->a.sa.sa_family)) 4486 continue; 4487 if ((PF_INET6 == sk->sk_family) && 4488 inet_v6_ipv6only(sk) && 4489 (AF_INET == addr->a.sa.sa_family)) 4490 continue; 4491 memcpy(&temp, &addr->a, sizeof(temp)); 4492 if (!temp.v4.sin_port) 4493 temp.v4.sin_port = htons(port); 4494 4495 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4496 &temp); 4497 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4498 if (space_left < addrlen) { 4499 cnt = -ENOMEM; 4500 break; 4501 } 4502 memcpy(to, &temp, addrlen); 4503 4504 to += addrlen; 4505 cnt ++; 4506 space_left -= addrlen; 4507 *bytes_copied += addrlen; 4508 } 4509 rcu_read_unlock(); 4510 4511 return cnt; 4512} 4513 4514 4515static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4516 char __user *optval, int __user *optlen) 4517{ 4518 struct sctp_bind_addr *bp; 4519 struct sctp_association *asoc; 4520 int cnt = 0; 4521 struct sctp_getaddrs getaddrs; 4522 struct sctp_sockaddr_entry *addr; 4523 void __user *to; 4524 union sctp_addr temp; 4525 struct sctp_sock *sp = sctp_sk(sk); 4526 int addrlen; 4527 int err = 0; 4528 size_t space_left; 4529 int bytes_copied = 0; 4530 void *addrs; 4531 void *buf; 4532 4533 if (len < sizeof(struct sctp_getaddrs)) 4534 return -EINVAL; 4535 4536 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4537 return -EFAULT; 4538 4539 /* 4540 * For UDP-style sockets, id specifies the association to query. 4541 * If the id field is set to the value '0' then the locally bound 4542 * addresses are returned without regard to any particular 4543 * association. 4544 */ 4545 if (0 == getaddrs.assoc_id) { 4546 bp = &sctp_sk(sk)->ep->base.bind_addr; 4547 } else { 4548 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4549 if (!asoc) 4550 return -EINVAL; 4551 bp = &asoc->base.bind_addr; 4552 } 4553 4554 to = optval + offsetof(struct sctp_getaddrs,addrs); 4555 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4556 4557 addrs = kmalloc(space_left, GFP_KERNEL); 4558 if (!addrs) 4559 return -ENOMEM; 4560 4561 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4562 * addresses from the global local address list. 4563 */ 4564 if (sctp_list_single_entry(&bp->address_list)) { 4565 addr = list_entry(bp->address_list.next, 4566 struct sctp_sockaddr_entry, list); 4567 if (sctp_is_any(sk, &addr->a)) { 4568 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4569 space_left, &bytes_copied); 4570 if (cnt < 0) { 4571 err = cnt; 4572 goto out; 4573 } 4574 goto copy_getaddrs; 4575 } 4576 } 4577 4578 buf = addrs; 4579 /* Protection on the bound address list is not needed since 4580 * in the socket option context we hold a socket lock and 4581 * thus the bound address list can't change. 4582 */ 4583 list_for_each_entry(addr, &bp->address_list, list) { 4584 memcpy(&temp, &addr->a, sizeof(temp)); 4585 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4586 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4587 if (space_left < addrlen) { 4588 err = -ENOMEM; /*fixme: right error?*/ 4589 goto out; 4590 } 4591 memcpy(buf, &temp, addrlen); 4592 buf += addrlen; 4593 bytes_copied += addrlen; 4594 cnt ++; 4595 space_left -= addrlen; 4596 } 4597 4598copy_getaddrs: 4599 if (copy_to_user(to, addrs, bytes_copied)) { 4600 err = -EFAULT; 4601 goto out; 4602 } 4603 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4604 err = -EFAULT; 4605 goto out; 4606 } 4607 if (put_user(bytes_copied, optlen)) 4608 err = -EFAULT; 4609out: 4610 kfree(addrs); 4611 return err; 4612} 4613 4614/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4615 * 4616 * Requests that the local SCTP stack use the enclosed peer address as 4617 * the association primary. The enclosed address must be one of the 4618 * association peer's addresses. 4619 */ 4620static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4621 char __user *optval, int __user *optlen) 4622{ 4623 struct sctp_prim prim; 4624 struct sctp_association *asoc; 4625 struct sctp_sock *sp = sctp_sk(sk); 4626 4627 if (len < sizeof(struct sctp_prim)) 4628 return -EINVAL; 4629 4630 len = sizeof(struct sctp_prim); 4631 4632 if (copy_from_user(&prim, optval, len)) 4633 return -EFAULT; 4634 4635 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4636 if (!asoc) 4637 return -EINVAL; 4638 4639 if (!asoc->peer.primary_path) 4640 return -ENOTCONN; 4641 4642 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4643 asoc->peer.primary_path->af_specific->sockaddr_len); 4644 4645 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4646 (union sctp_addr *)&prim.ssp_addr); 4647 4648 if (put_user(len, optlen)) 4649 return -EFAULT; 4650 if (copy_to_user(optval, &prim, len)) 4651 return -EFAULT; 4652 4653 return 0; 4654} 4655 4656/* 4657 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4658 * 4659 * Requests that the local endpoint set the specified Adaptation Layer 4660 * Indication parameter for all future INIT and INIT-ACK exchanges. 4661 */ 4662static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4663 char __user *optval, int __user *optlen) 4664{ 4665 struct sctp_setadaptation adaptation; 4666 4667 if (len < sizeof(struct sctp_setadaptation)) 4668 return -EINVAL; 4669 4670 len = sizeof(struct sctp_setadaptation); 4671 4672 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4673 4674 if (put_user(len, optlen)) 4675 return -EFAULT; 4676 if (copy_to_user(optval, &adaptation, len)) 4677 return -EFAULT; 4678 4679 return 0; 4680} 4681 4682/* 4683 * 4684 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4685 * 4686 * Applications that wish to use the sendto() system call may wish to 4687 * specify a default set of parameters that would normally be supplied 4688 * through the inclusion of ancillary data. This socket option allows 4689 * such an application to set the default sctp_sndrcvinfo structure. 4690 4691 4692 * The application that wishes to use this socket option simply passes 4693 * in to this call the sctp_sndrcvinfo structure defined in Section 4694 * 5.2.2) The input parameters accepted by this call include 4695 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4696 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4697 * to this call if the caller is using the UDP model. 4698 * 4699 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4700 */ 4701static int sctp_getsockopt_default_send_param(struct sock *sk, 4702 int len, char __user *optval, 4703 int __user *optlen) 4704{ 4705 struct sctp_sndrcvinfo info; 4706 struct sctp_association *asoc; 4707 struct sctp_sock *sp = sctp_sk(sk); 4708 4709 if (len < sizeof(struct sctp_sndrcvinfo)) 4710 return -EINVAL; 4711 4712 len = sizeof(struct sctp_sndrcvinfo); 4713 4714 if (copy_from_user(&info, optval, len)) 4715 return -EFAULT; 4716 4717 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4718 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4719 return -EINVAL; 4720 4721 if (asoc) { 4722 info.sinfo_stream = asoc->default_stream; 4723 info.sinfo_flags = asoc->default_flags; 4724 info.sinfo_ppid = asoc->default_ppid; 4725 info.sinfo_context = asoc->default_context; 4726 info.sinfo_timetolive = asoc->default_timetolive; 4727 } else { 4728 info.sinfo_stream = sp->default_stream; 4729 info.sinfo_flags = sp->default_flags; 4730 info.sinfo_ppid = sp->default_ppid; 4731 info.sinfo_context = sp->default_context; 4732 info.sinfo_timetolive = sp->default_timetolive; 4733 } 4734 4735 if (put_user(len, optlen)) 4736 return -EFAULT; 4737 if (copy_to_user(optval, &info, len)) 4738 return -EFAULT; 4739 4740 return 0; 4741} 4742 4743/* 4744 * 4745 * 7.1.5 SCTP_NODELAY 4746 * 4747 * Turn on/off any Nagle-like algorithm. This means that packets are 4748 * generally sent as soon as possible and no unnecessary delays are 4749 * introduced, at the cost of more packets in the network. Expects an 4750 * integer boolean flag. 4751 */ 4752 4753static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4754 char __user *optval, int __user *optlen) 4755{ 4756 int val; 4757 4758 if (len < sizeof(int)) 4759 return -EINVAL; 4760 4761 len = sizeof(int); 4762 val = (sctp_sk(sk)->nodelay == 1); 4763 if (put_user(len, optlen)) 4764 return -EFAULT; 4765 if (copy_to_user(optval, &val, len)) 4766 return -EFAULT; 4767 return 0; 4768} 4769 4770/* 4771 * 4772 * 7.1.1 SCTP_RTOINFO 4773 * 4774 * The protocol parameters used to initialize and bound retransmission 4775 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4776 * and modify these parameters. 4777 * All parameters are time values, in milliseconds. A value of 0, when 4778 * modifying the parameters, indicates that the current value should not 4779 * be changed. 4780 * 4781 */ 4782static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4783 char __user *optval, 4784 int __user *optlen) { 4785 struct sctp_rtoinfo rtoinfo; 4786 struct sctp_association *asoc; 4787 4788 if (len < sizeof (struct sctp_rtoinfo)) 4789 return -EINVAL; 4790 4791 len = sizeof(struct sctp_rtoinfo); 4792 4793 if (copy_from_user(&rtoinfo, optval, len)) 4794 return -EFAULT; 4795 4796 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4797 4798 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4799 return -EINVAL; 4800 4801 /* Values corresponding to the specific association. */ 4802 if (asoc) { 4803 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4804 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4805 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4806 } else { 4807 /* Values corresponding to the endpoint. */ 4808 struct sctp_sock *sp = sctp_sk(sk); 4809 4810 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4811 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4812 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4813 } 4814 4815 if (put_user(len, optlen)) 4816 return -EFAULT; 4817 4818 if (copy_to_user(optval, &rtoinfo, len)) 4819 return -EFAULT; 4820 4821 return 0; 4822} 4823 4824/* 4825 * 4826 * 7.1.2 SCTP_ASSOCINFO 4827 * 4828 * This option is used to tune the maximum retransmission attempts 4829 * of the association. 4830 * Returns an error if the new association retransmission value is 4831 * greater than the sum of the retransmission value of the peer. 4832 * See [SCTP] for more information. 4833 * 4834 */ 4835static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4836 char __user *optval, 4837 int __user *optlen) 4838{ 4839 4840 struct sctp_assocparams assocparams; 4841 struct sctp_association *asoc; 4842 struct list_head *pos; 4843 int cnt = 0; 4844 4845 if (len < sizeof (struct sctp_assocparams)) 4846 return -EINVAL; 4847 4848 len = sizeof(struct sctp_assocparams); 4849 4850 if (copy_from_user(&assocparams, optval, len)) 4851 return -EFAULT; 4852 4853 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4854 4855 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4856 return -EINVAL; 4857 4858 /* Values correspoinding to the specific association */ 4859 if (asoc) { 4860 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4861 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4862 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4863 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4864 * 1000) + 4865 (asoc->cookie_life.tv_usec 4866 / 1000); 4867 4868 list_for_each(pos, &asoc->peer.transport_addr_list) { 4869 cnt ++; 4870 } 4871 4872 assocparams.sasoc_number_peer_destinations = cnt; 4873 } else { 4874 /* Values corresponding to the endpoint */ 4875 struct sctp_sock *sp = sctp_sk(sk); 4876 4877 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4878 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4879 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4880 assocparams.sasoc_cookie_life = 4881 sp->assocparams.sasoc_cookie_life; 4882 assocparams.sasoc_number_peer_destinations = 4883 sp->assocparams. 4884 sasoc_number_peer_destinations; 4885 } 4886 4887 if (put_user(len, optlen)) 4888 return -EFAULT; 4889 4890 if (copy_to_user(optval, &assocparams, len)) 4891 return -EFAULT; 4892 4893 return 0; 4894} 4895 4896/* 4897 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4898 * 4899 * This socket option is a boolean flag which turns on or off mapped V4 4900 * addresses. If this option is turned on and the socket is type 4901 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4902 * If this option is turned off, then no mapping will be done of V4 4903 * addresses and a user will receive both PF_INET6 and PF_INET type 4904 * addresses on the socket. 4905 */ 4906static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4907 char __user *optval, int __user *optlen) 4908{ 4909 int val; 4910 struct sctp_sock *sp = sctp_sk(sk); 4911 4912 if (len < sizeof(int)) 4913 return -EINVAL; 4914 4915 len = sizeof(int); 4916 val = sp->v4mapped; 4917 if (put_user(len, optlen)) 4918 return -EFAULT; 4919 if (copy_to_user(optval, &val, len)) 4920 return -EFAULT; 4921 4922 return 0; 4923} 4924 4925/* 4926 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4927 * (chapter and verse is quoted at sctp_setsockopt_context()) 4928 */ 4929static int sctp_getsockopt_context(struct sock *sk, int len, 4930 char __user *optval, int __user *optlen) 4931{ 4932 struct sctp_assoc_value params; 4933 struct sctp_sock *sp; 4934 struct sctp_association *asoc; 4935 4936 if (len < sizeof(struct sctp_assoc_value)) 4937 return -EINVAL; 4938 4939 len = sizeof(struct sctp_assoc_value); 4940 4941 if (copy_from_user(&params, optval, len)) 4942 return -EFAULT; 4943 4944 sp = sctp_sk(sk); 4945 4946 if (params.assoc_id != 0) { 4947 asoc = sctp_id2assoc(sk, params.assoc_id); 4948 if (!asoc) 4949 return -EINVAL; 4950 params.assoc_value = asoc->default_rcv_context; 4951 } else { 4952 params.assoc_value = sp->default_rcv_context; 4953 } 4954 4955 if (put_user(len, optlen)) 4956 return -EFAULT; 4957 if (copy_to_user(optval, &params, len)) 4958 return -EFAULT; 4959 4960 return 0; 4961} 4962 4963/* 4964 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 4965 * This option will get or set the maximum size to put in any outgoing 4966 * SCTP DATA chunk. If a message is larger than this size it will be 4967 * fragmented by SCTP into the specified size. Note that the underlying 4968 * SCTP implementation may fragment into smaller sized chunks when the 4969 * PMTU of the underlying association is smaller than the value set by 4970 * the user. The default value for this option is '0' which indicates 4971 * the user is NOT limiting fragmentation and only the PMTU will effect 4972 * SCTP's choice of DATA chunk size. Note also that values set larger 4973 * than the maximum size of an IP datagram will effectively let SCTP 4974 * control fragmentation (i.e. the same as setting this option to 0). 4975 * 4976 * The following structure is used to access and modify this parameter: 4977 * 4978 * struct sctp_assoc_value { 4979 * sctp_assoc_t assoc_id; 4980 * uint32_t assoc_value; 4981 * }; 4982 * 4983 * assoc_id: This parameter is ignored for one-to-one style sockets. 4984 * For one-to-many style sockets this parameter indicates which 4985 * association the user is performing an action upon. Note that if 4986 * this field's value is zero then the endpoints default value is 4987 * changed (effecting future associations only). 4988 * assoc_value: This parameter specifies the maximum size in bytes. 4989 */ 4990static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4991 char __user *optval, int __user *optlen) 4992{ 4993 struct sctp_assoc_value params; 4994 struct sctp_association *asoc; 4995 4996 if (len == sizeof(int)) { 4997 pr_warn("Use of int in maxseg socket option deprecated\n"); 4998 pr_warn("Use struct sctp_assoc_value instead\n"); 4999 params.assoc_id = 0; 5000 } else if (len >= sizeof(struct sctp_assoc_value)) { 5001 len = sizeof(struct sctp_assoc_value); 5002 if (copy_from_user(&params, optval, sizeof(params))) 5003 return -EFAULT; 5004 } else 5005 return -EINVAL; 5006 5007 asoc = sctp_id2assoc(sk, params.assoc_id); 5008 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5009 return -EINVAL; 5010 5011 if (asoc) 5012 params.assoc_value = asoc->frag_point; 5013 else 5014 params.assoc_value = sctp_sk(sk)->user_frag; 5015 5016 if (put_user(len, optlen)) 5017 return -EFAULT; 5018 if (len == sizeof(int)) { 5019 if (copy_to_user(optval, &params.assoc_value, len)) 5020 return -EFAULT; 5021 } else { 5022 if (copy_to_user(optval, &params, len)) 5023 return -EFAULT; 5024 } 5025 5026 return 0; 5027} 5028 5029/* 5030 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5031 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5032 */ 5033static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5034 char __user *optval, int __user *optlen) 5035{ 5036 int val; 5037 5038 if (len < sizeof(int)) 5039 return -EINVAL; 5040 5041 len = sizeof(int); 5042 5043 val = sctp_sk(sk)->frag_interleave; 5044 if (put_user(len, optlen)) 5045 return -EFAULT; 5046 if (copy_to_user(optval, &val, len)) 5047 return -EFAULT; 5048 5049 return 0; 5050} 5051 5052/* 5053 * 7.1.25. Set or Get the sctp partial delivery point 5054 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5055 */ 5056static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5057 char __user *optval, 5058 int __user *optlen) 5059{ 5060 u32 val; 5061 5062 if (len < sizeof(u32)) 5063 return -EINVAL; 5064 5065 len = sizeof(u32); 5066 5067 val = sctp_sk(sk)->pd_point; 5068 if (put_user(len, optlen)) 5069 return -EFAULT; 5070 if (copy_to_user(optval, &val, len)) 5071 return -EFAULT; 5072 5073 return 0; 5074} 5075 5076/* 5077 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5078 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5079 */ 5080static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5081 char __user *optval, 5082 int __user *optlen) 5083{ 5084 struct sctp_assoc_value params; 5085 struct sctp_sock *sp; 5086 struct sctp_association *asoc; 5087 5088 if (len == sizeof(int)) { 5089 pr_warn("Use of int in max_burst socket option deprecated\n"); 5090 pr_warn("Use struct sctp_assoc_value instead\n"); 5091 params.assoc_id = 0; 5092 } else if (len >= sizeof(struct sctp_assoc_value)) { 5093 len = sizeof(struct sctp_assoc_value); 5094 if (copy_from_user(&params, optval, len)) 5095 return -EFAULT; 5096 } else 5097 return -EINVAL; 5098 5099 sp = sctp_sk(sk); 5100 5101 if (params.assoc_id != 0) { 5102 asoc = sctp_id2assoc(sk, params.assoc_id); 5103 if (!asoc) 5104 return -EINVAL; 5105 params.assoc_value = asoc->max_burst; 5106 } else 5107 params.assoc_value = sp->max_burst; 5108 5109 if (len == sizeof(int)) { 5110 if (copy_to_user(optval, &params.assoc_value, len)) 5111 return -EFAULT; 5112 } else { 5113 if (copy_to_user(optval, &params, len)) 5114 return -EFAULT; 5115 } 5116 5117 return 0; 5118 5119} 5120 5121static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5122 char __user *optval, int __user *optlen) 5123{ 5124 struct sctp_hmacalgo __user *p = (void __user *)optval; 5125 struct sctp_hmac_algo_param *hmacs; 5126 __u16 data_len = 0; 5127 u32 num_idents; 5128 5129 if (!sctp_auth_enable) 5130 return -EACCES; 5131 5132 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5133 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5134 5135 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5136 return -EINVAL; 5137 5138 len = sizeof(struct sctp_hmacalgo) + data_len; 5139 num_idents = data_len / sizeof(u16); 5140 5141 if (put_user(len, optlen)) 5142 return -EFAULT; 5143 if (put_user(num_idents, &p->shmac_num_idents)) 5144 return -EFAULT; 5145 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5146 return -EFAULT; 5147 return 0; 5148} 5149 5150static int sctp_getsockopt_active_key(struct sock *sk, int len, 5151 char __user *optval, int __user *optlen) 5152{ 5153 struct sctp_authkeyid val; 5154 struct sctp_association *asoc; 5155 5156 if (!sctp_auth_enable) 5157 return -EACCES; 5158 5159 if (len < sizeof(struct sctp_authkeyid)) 5160 return -EINVAL; 5161 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5162 return -EFAULT; 5163 5164 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5165 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5166 return -EINVAL; 5167 5168 if (asoc) 5169 val.scact_keynumber = asoc->active_key_id; 5170 else 5171 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5172 5173 len = sizeof(struct sctp_authkeyid); 5174 if (put_user(len, optlen)) 5175 return -EFAULT; 5176 if (copy_to_user(optval, &val, len)) 5177 return -EFAULT; 5178 5179 return 0; 5180} 5181 5182static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5183 char __user *optval, int __user *optlen) 5184{ 5185 struct sctp_authchunks __user *p = (void __user *)optval; 5186 struct sctp_authchunks val; 5187 struct sctp_association *asoc; 5188 struct sctp_chunks_param *ch; 5189 u32 num_chunks = 0; 5190 char __user *to; 5191 5192 if (!sctp_auth_enable) 5193 return -EACCES; 5194 5195 if (len < sizeof(struct sctp_authchunks)) 5196 return -EINVAL; 5197 5198 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5199 return -EFAULT; 5200 5201 to = p->gauth_chunks; 5202 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5203 if (!asoc) 5204 return -EINVAL; 5205 5206 ch = asoc->peer.peer_chunks; 5207 if (!ch) 5208 goto num; 5209 5210 /* See if the user provided enough room for all the data */ 5211 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5212 if (len < num_chunks) 5213 return -EINVAL; 5214 5215 if (copy_to_user(to, ch->chunks, num_chunks)) 5216 return -EFAULT; 5217num: 5218 len = sizeof(struct sctp_authchunks) + num_chunks; 5219 if (put_user(len, optlen)) return -EFAULT; 5220 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5221 return -EFAULT; 5222 return 0; 5223} 5224 5225static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5226 char __user *optval, int __user *optlen) 5227{ 5228 struct sctp_authchunks __user *p = (void __user *)optval; 5229 struct sctp_authchunks val; 5230 struct sctp_association *asoc; 5231 struct sctp_chunks_param *ch; 5232 u32 num_chunks = 0; 5233 char __user *to; 5234 5235 if (!sctp_auth_enable) 5236 return -EACCES; 5237 5238 if (len < sizeof(struct sctp_authchunks)) 5239 return -EINVAL; 5240 5241 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5242 return -EFAULT; 5243 5244 to = p->gauth_chunks; 5245 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5246 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5247 return -EINVAL; 5248 5249 if (asoc) 5250 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5251 else 5252 ch = sctp_sk(sk)->ep->auth_chunk_list; 5253 5254 if (!ch) 5255 goto num; 5256 5257 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5258 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5259 return -EINVAL; 5260 5261 if (copy_to_user(to, ch->chunks, num_chunks)) 5262 return -EFAULT; 5263num: 5264 len = sizeof(struct sctp_authchunks) + num_chunks; 5265 if (put_user(len, optlen)) 5266 return -EFAULT; 5267 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5268 return -EFAULT; 5269 5270 return 0; 5271} 5272 5273/* 5274 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5275 * This option gets the current number of associations that are attached 5276 * to a one-to-many style socket. The option value is an uint32_t. 5277 */ 5278static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5279 char __user *optval, int __user *optlen) 5280{ 5281 struct sctp_sock *sp = sctp_sk(sk); 5282 struct sctp_association *asoc; 5283 u32 val = 0; 5284 5285 if (sctp_style(sk, TCP)) 5286 return -EOPNOTSUPP; 5287 5288 if (len < sizeof(u32)) 5289 return -EINVAL; 5290 5291 len = sizeof(u32); 5292 5293 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5294 val++; 5295 } 5296 5297 if (put_user(len, optlen)) 5298 return -EFAULT; 5299 if (copy_to_user(optval, &val, len)) 5300 return -EFAULT; 5301 5302 return 0; 5303} 5304 5305/* 5306 * 8.2.6. Get the Current Identifiers of Associations 5307 * (SCTP_GET_ASSOC_ID_LIST) 5308 * 5309 * This option gets the current list of SCTP association identifiers of 5310 * the SCTP associations handled by a one-to-many style socket. 5311 */ 5312static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5313 char __user *optval, int __user *optlen) 5314{ 5315 struct sctp_sock *sp = sctp_sk(sk); 5316 struct sctp_association *asoc; 5317 struct sctp_assoc_ids *ids; 5318 u32 num = 0; 5319 5320 if (sctp_style(sk, TCP)) 5321 return -EOPNOTSUPP; 5322 5323 if (len < sizeof(struct sctp_assoc_ids)) 5324 return -EINVAL; 5325 5326 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5327 num++; 5328 } 5329 5330 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5331 return -EINVAL; 5332 5333 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5334 5335 ids = kmalloc(len, GFP_KERNEL); 5336 if (unlikely(!ids)) 5337 return -ENOMEM; 5338 5339 ids->gaids_number_of_ids = num; 5340 num = 0; 5341 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5342 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5343 } 5344 5345 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5346 kfree(ids); 5347 return -EFAULT; 5348 } 5349 5350 kfree(ids); 5351 return 0; 5352} 5353 5354SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5355 char __user *optval, int __user *optlen) 5356{ 5357 int retval = 0; 5358 int len; 5359 5360 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5361 sk, optname); 5362 5363 /* I can hardly begin to describe how wrong this is. This is 5364 * so broken as to be worse than useless. The API draft 5365 * REALLY is NOT helpful here... I am not convinced that the 5366 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5367 * are at all well-founded. 5368 */ 5369 if (level != SOL_SCTP) { 5370 struct sctp_af *af = sctp_sk(sk)->pf->af; 5371 5372 retval = af->getsockopt(sk, level, optname, optval, optlen); 5373 return retval; 5374 } 5375 5376 if (get_user(len, optlen)) 5377 return -EFAULT; 5378 5379 sctp_lock_sock(sk); 5380 5381 switch (optname) { 5382 case SCTP_STATUS: 5383 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5384 break; 5385 case SCTP_DISABLE_FRAGMENTS: 5386 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5387 optlen); 5388 break; 5389 case SCTP_EVENTS: 5390 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5391 break; 5392 case SCTP_AUTOCLOSE: 5393 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5394 break; 5395 case SCTP_SOCKOPT_PEELOFF: 5396 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5397 break; 5398 case SCTP_PEER_ADDR_PARAMS: 5399 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5400 optlen); 5401 break; 5402 case SCTP_DELAYED_SACK: 5403 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5404 optlen); 5405 break; 5406 case SCTP_INITMSG: 5407 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5408 break; 5409 case SCTP_GET_PEER_ADDRS: 5410 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5411 optlen); 5412 break; 5413 case SCTP_GET_LOCAL_ADDRS: 5414 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5415 optlen); 5416 break; 5417 case SCTP_SOCKOPT_CONNECTX3: 5418 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5419 break; 5420 case SCTP_DEFAULT_SEND_PARAM: 5421 retval = sctp_getsockopt_default_send_param(sk, len, 5422 optval, optlen); 5423 break; 5424 case SCTP_PRIMARY_ADDR: 5425 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5426 break; 5427 case SCTP_NODELAY: 5428 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5429 break; 5430 case SCTP_RTOINFO: 5431 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5432 break; 5433 case SCTP_ASSOCINFO: 5434 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5435 break; 5436 case SCTP_I_WANT_MAPPED_V4_ADDR: 5437 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5438 break; 5439 case SCTP_MAXSEG: 5440 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5441 break; 5442 case SCTP_GET_PEER_ADDR_INFO: 5443 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5444 optlen); 5445 break; 5446 case SCTP_ADAPTATION_LAYER: 5447 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5448 optlen); 5449 break; 5450 case SCTP_CONTEXT: 5451 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5452 break; 5453 case SCTP_FRAGMENT_INTERLEAVE: 5454 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5455 optlen); 5456 break; 5457 case SCTP_PARTIAL_DELIVERY_POINT: 5458 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5459 optlen); 5460 break; 5461 case SCTP_MAX_BURST: 5462 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5463 break; 5464 case SCTP_AUTH_KEY: 5465 case SCTP_AUTH_CHUNK: 5466 case SCTP_AUTH_DELETE_KEY: 5467 retval = -EOPNOTSUPP; 5468 break; 5469 case SCTP_HMAC_IDENT: 5470 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5471 break; 5472 case SCTP_AUTH_ACTIVE_KEY: 5473 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5474 break; 5475 case SCTP_PEER_AUTH_CHUNKS: 5476 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5477 optlen); 5478 break; 5479 case SCTP_LOCAL_AUTH_CHUNKS: 5480 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5481 optlen); 5482 break; 5483 case SCTP_GET_ASSOC_NUMBER: 5484 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5485 break; 5486 case SCTP_GET_ASSOC_ID_LIST: 5487 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5488 break; 5489 default: 5490 retval = -ENOPROTOOPT; 5491 break; 5492 } 5493 5494 sctp_release_sock(sk); 5495 return retval; 5496} 5497 5498static void sctp_hash(struct sock *sk) 5499{ 5500 /* STUB */ 5501} 5502 5503static void sctp_unhash(struct sock *sk) 5504{ 5505 /* STUB */ 5506} 5507 5508/* Check if port is acceptable. Possibly find first available port. 5509 * 5510 * The port hash table (contained in the 'global' SCTP protocol storage 5511 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5512 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5513 * list (the list number is the port number hashed out, so as you 5514 * would expect from a hash function, all the ports in a given list have 5515 * such a number that hashes out to the same list number; you were 5516 * expecting that, right?); so each list has a set of ports, with a 5517 * link to the socket (struct sock) that uses it, the port number and 5518 * a fastreuse flag (FIXME: NPI ipg). 5519 */ 5520static struct sctp_bind_bucket *sctp_bucket_create( 5521 struct sctp_bind_hashbucket *head, unsigned short snum); 5522 5523static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5524{ 5525 struct sctp_bind_hashbucket *head; /* hash list */ 5526 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5527 struct hlist_node *node; 5528 unsigned short snum; 5529 int ret; 5530 5531 snum = ntohs(addr->v4.sin_port); 5532 5533 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5534 sctp_local_bh_disable(); 5535 5536 if (snum == 0) { 5537 /* Search for an available port. */ 5538 int low, high, remaining, index; 5539 unsigned int rover; 5540 5541 inet_get_local_port_range(&low, &high); 5542 remaining = (high - low) + 1; 5543 rover = net_random() % remaining + low; 5544 5545 do { 5546 rover++; 5547 if ((rover < low) || (rover > high)) 5548 rover = low; 5549 if (inet_is_reserved_local_port(rover)) 5550 continue; 5551 index = sctp_phashfn(rover); 5552 head = &sctp_port_hashtable[index]; 5553 sctp_spin_lock(&head->lock); 5554 sctp_for_each_hentry(pp, node, &head->chain) 5555 if (pp->port == rover) 5556 goto next; 5557 break; 5558 next: 5559 sctp_spin_unlock(&head->lock); 5560 } while (--remaining > 0); 5561 5562 /* Exhausted local port range during search? */ 5563 ret = 1; 5564 if (remaining <= 0) 5565 goto fail; 5566 5567 /* OK, here is the one we will use. HEAD (the port 5568 * hash table list entry) is non-NULL and we hold it's 5569 * mutex. 5570 */ 5571 snum = rover; 5572 } else { 5573 /* We are given an specific port number; we verify 5574 * that it is not being used. If it is used, we will 5575 * exahust the search in the hash list corresponding 5576 * to the port number (snum) - we detect that with the 5577 * port iterator, pp being NULL. 5578 */ 5579 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5580 sctp_spin_lock(&head->lock); 5581 sctp_for_each_hentry(pp, node, &head->chain) { 5582 if (pp->port == snum) 5583 goto pp_found; 5584 } 5585 } 5586 pp = NULL; 5587 goto pp_not_found; 5588pp_found: 5589 if (!hlist_empty(&pp->owner)) { 5590 /* We had a port hash table hit - there is an 5591 * available port (pp != NULL) and it is being 5592 * used by other socket (pp->owner not empty); that other 5593 * socket is going to be sk2. 5594 */ 5595 int reuse = sk->sk_reuse; 5596 struct sock *sk2; 5597 5598 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5599 if (pp->fastreuse && sk->sk_reuse && 5600 sk->sk_state != SCTP_SS_LISTENING) 5601 goto success; 5602 5603 /* Run through the list of sockets bound to the port 5604 * (pp->port) [via the pointers bind_next and 5605 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5606 * we get the endpoint they describe and run through 5607 * the endpoint's list of IP (v4 or v6) addresses, 5608 * comparing each of the addresses with the address of 5609 * the socket sk. If we find a match, then that means 5610 * that this port/socket (sk) combination are already 5611 * in an endpoint. 5612 */ 5613 sk_for_each_bound(sk2, node, &pp->owner) { 5614 struct sctp_endpoint *ep2; 5615 ep2 = sctp_sk(sk2)->ep; 5616 5617 if (sk == sk2 || 5618 (reuse && sk2->sk_reuse && 5619 sk2->sk_state != SCTP_SS_LISTENING)) 5620 continue; 5621 5622 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5623 sctp_sk(sk2), sctp_sk(sk))) { 5624 ret = (long)sk2; 5625 goto fail_unlock; 5626 } 5627 } 5628 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5629 } 5630pp_not_found: 5631 /* If there was a hash table miss, create a new port. */ 5632 ret = 1; 5633 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5634 goto fail_unlock; 5635 5636 /* In either case (hit or miss), make sure fastreuse is 1 only 5637 * if sk->sk_reuse is too (that is, if the caller requested 5638 * SO_REUSEADDR on this socket -sk-). 5639 */ 5640 if (hlist_empty(&pp->owner)) { 5641 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5642 pp->fastreuse = 1; 5643 else 5644 pp->fastreuse = 0; 5645 } else if (pp->fastreuse && 5646 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5647 pp->fastreuse = 0; 5648 5649 /* We are set, so fill up all the data in the hash table 5650 * entry, tie the socket list information with the rest of the 5651 * sockets FIXME: Blurry, NPI (ipg). 5652 */ 5653success: 5654 if (!sctp_sk(sk)->bind_hash) { 5655 inet_sk(sk)->inet_num = snum; 5656 sk_add_bind_node(sk, &pp->owner); 5657 sctp_sk(sk)->bind_hash = pp; 5658 } 5659 ret = 0; 5660 5661fail_unlock: 5662 sctp_spin_unlock(&head->lock); 5663 5664fail: 5665 sctp_local_bh_enable(); 5666 return ret; 5667} 5668 5669/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5670 * port is requested. 5671 */ 5672static int sctp_get_port(struct sock *sk, unsigned short snum) 5673{ 5674 long ret; 5675 union sctp_addr addr; 5676 struct sctp_af *af = sctp_sk(sk)->pf->af; 5677 5678 /* Set up a dummy address struct from the sk. */ 5679 af->from_sk(&addr, sk); 5680 addr.v4.sin_port = htons(snum); 5681 5682 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5683 ret = sctp_get_port_local(sk, &addr); 5684 5685 return ret ? 1 : 0; 5686} 5687 5688/* 5689 * Move a socket to LISTENING state. 5690 */ 5691SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5692{ 5693 struct sctp_sock *sp = sctp_sk(sk); 5694 struct sctp_endpoint *ep = sp->ep; 5695 struct crypto_hash *tfm = NULL; 5696 5697 /* Allocate HMAC for generating cookie. */ 5698 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5699 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5700 if (IS_ERR(tfm)) { 5701 if (net_ratelimit()) { 5702 pr_info("failed to load transform for %s: %ld\n", 5703 sctp_hmac_alg, PTR_ERR(tfm)); 5704 } 5705 return -ENOSYS; 5706 } 5707 sctp_sk(sk)->hmac = tfm; 5708 } 5709 5710 /* 5711 * If a bind() or sctp_bindx() is not called prior to a listen() 5712 * call that allows new associations to be accepted, the system 5713 * picks an ephemeral port and will choose an address set equivalent 5714 * to binding with a wildcard address. 5715 * 5716 * This is not currently spelled out in the SCTP sockets 5717 * extensions draft, but follows the practice as seen in TCP 5718 * sockets. 5719 * 5720 */ 5721 sk->sk_state = SCTP_SS_LISTENING; 5722 if (!ep->base.bind_addr.port) { 5723 if (sctp_autobind(sk)) 5724 return -EAGAIN; 5725 } else { 5726 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5727 sk->sk_state = SCTP_SS_CLOSED; 5728 return -EADDRINUSE; 5729 } 5730 } 5731 5732 sk->sk_max_ack_backlog = backlog; 5733 sctp_hash_endpoint(ep); 5734 return 0; 5735} 5736 5737/* 5738 * 4.1.3 / 5.1.3 listen() 5739 * 5740 * By default, new associations are not accepted for UDP style sockets. 5741 * An application uses listen() to mark a socket as being able to 5742 * accept new associations. 5743 * 5744 * On TCP style sockets, applications use listen() to ready the SCTP 5745 * endpoint for accepting inbound associations. 5746 * 5747 * On both types of endpoints a backlog of '0' disables listening. 5748 * 5749 * Move a socket to LISTENING state. 5750 */ 5751int sctp_inet_listen(struct socket *sock, int backlog) 5752{ 5753 struct sock *sk = sock->sk; 5754 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5755 int err = -EINVAL; 5756 5757 if (unlikely(backlog < 0)) 5758 return err; 5759 5760 sctp_lock_sock(sk); 5761 5762 /* Peeled-off sockets are not allowed to listen(). */ 5763 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5764 goto out; 5765 5766 if (sock->state != SS_UNCONNECTED) 5767 goto out; 5768 5769 /* If backlog is zero, disable listening. */ 5770 if (!backlog) { 5771 if (sctp_sstate(sk, CLOSED)) 5772 goto out; 5773 5774 err = 0; 5775 sctp_unhash_endpoint(ep); 5776 sk->sk_state = SCTP_SS_CLOSED; 5777 if (sk->sk_reuse) 5778 sctp_sk(sk)->bind_hash->fastreuse = 1; 5779 goto out; 5780 } 5781 5782 /* If we are already listening, just update the backlog */ 5783 if (sctp_sstate(sk, LISTENING)) 5784 sk->sk_max_ack_backlog = backlog; 5785 else { 5786 err = sctp_listen_start(sk, backlog); 5787 if (err) 5788 goto out; 5789 } 5790 5791 err = 0; 5792out: 5793 sctp_release_sock(sk); 5794 return err; 5795} 5796 5797/* 5798 * This function is done by modeling the current datagram_poll() and the 5799 * tcp_poll(). Note that, based on these implementations, we don't 5800 * lock the socket in this function, even though it seems that, 5801 * ideally, locking or some other mechanisms can be used to ensure 5802 * the integrity of the counters (sndbuf and wmem_alloc) used 5803 * in this place. We assume that we don't need locks either until proven 5804 * otherwise. 5805 * 5806 * Another thing to note is that we include the Async I/O support 5807 * here, again, by modeling the current TCP/UDP code. We don't have 5808 * a good way to test with it yet. 5809 */ 5810unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5811{ 5812 struct sock *sk = sock->sk; 5813 struct sctp_sock *sp = sctp_sk(sk); 5814 unsigned int mask; 5815 5816 poll_wait(file, sk_sleep(sk), wait); 5817 5818 /* A TCP-style listening socket becomes readable when the accept queue 5819 * is not empty. 5820 */ 5821 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5822 return (!list_empty(&sp->ep->asocs)) ? 5823 (POLLIN | POLLRDNORM) : 0; 5824 5825 mask = 0; 5826 5827 /* Is there any exceptional events? */ 5828 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5829 mask |= POLLERR; 5830 if (sk->sk_shutdown & RCV_SHUTDOWN) 5831 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 5832 if (sk->sk_shutdown == SHUTDOWN_MASK) 5833 mask |= POLLHUP; 5834 5835 /* Is it readable? Reconsider this code with TCP-style support. */ 5836 if (!skb_queue_empty(&sk->sk_receive_queue)) 5837 mask |= POLLIN | POLLRDNORM; 5838 5839 /* The association is either gone or not ready. */ 5840 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5841 return mask; 5842 5843 /* Is it writable? */ 5844 if (sctp_writeable(sk)) { 5845 mask |= POLLOUT | POLLWRNORM; 5846 } else { 5847 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5848 /* 5849 * Since the socket is not locked, the buffer 5850 * might be made available after the writeable check and 5851 * before the bit is set. This could cause a lost I/O 5852 * signal. tcp_poll() has a race breaker for this race 5853 * condition. Based on their implementation, we put 5854 * in the following code to cover it as well. 5855 */ 5856 if (sctp_writeable(sk)) 5857 mask |= POLLOUT | POLLWRNORM; 5858 } 5859 return mask; 5860} 5861 5862/******************************************************************** 5863 * 2nd Level Abstractions 5864 ********************************************************************/ 5865 5866static struct sctp_bind_bucket *sctp_bucket_create( 5867 struct sctp_bind_hashbucket *head, unsigned short snum) 5868{ 5869 struct sctp_bind_bucket *pp; 5870 5871 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5872 if (pp) { 5873 SCTP_DBG_OBJCNT_INC(bind_bucket); 5874 pp->port = snum; 5875 pp->fastreuse = 0; 5876 INIT_HLIST_HEAD(&pp->owner); 5877 hlist_add_head(&pp->node, &head->chain); 5878 } 5879 return pp; 5880} 5881 5882/* Caller must hold hashbucket lock for this tb with local BH disabled */ 5883static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5884{ 5885 if (pp && hlist_empty(&pp->owner)) { 5886 __hlist_del(&pp->node); 5887 kmem_cache_free(sctp_bucket_cachep, pp); 5888 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5889 } 5890} 5891 5892/* Release this socket's reference to a local port. */ 5893static inline void __sctp_put_port(struct sock *sk) 5894{ 5895 struct sctp_bind_hashbucket *head = 5896 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 5897 struct sctp_bind_bucket *pp; 5898 5899 sctp_spin_lock(&head->lock); 5900 pp = sctp_sk(sk)->bind_hash; 5901 __sk_del_bind_node(sk); 5902 sctp_sk(sk)->bind_hash = NULL; 5903 inet_sk(sk)->inet_num = 0; 5904 sctp_bucket_destroy(pp); 5905 sctp_spin_unlock(&head->lock); 5906} 5907 5908void sctp_put_port(struct sock *sk) 5909{ 5910 sctp_local_bh_disable(); 5911 __sctp_put_port(sk); 5912 sctp_local_bh_enable(); 5913} 5914 5915/* 5916 * The system picks an ephemeral port and choose an address set equivalent 5917 * to binding with a wildcard address. 5918 * One of those addresses will be the primary address for the association. 5919 * This automatically enables the multihoming capability of SCTP. 5920 */ 5921static int sctp_autobind(struct sock *sk) 5922{ 5923 union sctp_addr autoaddr; 5924 struct sctp_af *af; 5925 __be16 port; 5926 5927 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5928 af = sctp_sk(sk)->pf->af; 5929 5930 port = htons(inet_sk(sk)->inet_num); 5931 af->inaddr_any(&autoaddr, port); 5932 5933 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5934} 5935 5936/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5937 * 5938 * From RFC 2292 5939 * 4.2 The cmsghdr Structure * 5940 * 5941 * When ancillary data is sent or received, any number of ancillary data 5942 * objects can be specified by the msg_control and msg_controllen members of 5943 * the msghdr structure, because each object is preceded by 5944 * a cmsghdr structure defining the object's length (the cmsg_len member). 5945 * Historically Berkeley-derived implementations have passed only one object 5946 * at a time, but this API allows multiple objects to be 5947 * passed in a single call to sendmsg() or recvmsg(). The following example 5948 * shows two ancillary data objects in a control buffer. 5949 * 5950 * |<--------------------------- msg_controllen -------------------------->| 5951 * | | 5952 * 5953 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5954 * 5955 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5956 * | | | 5957 * 5958 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5959 * 5960 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5961 * | | | | | 5962 * 5963 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5964 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5965 * 5966 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5967 * 5968 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5969 * ^ 5970 * | 5971 * 5972 * msg_control 5973 * points here 5974 */ 5975SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5976 sctp_cmsgs_t *cmsgs) 5977{ 5978 struct cmsghdr *cmsg; 5979 struct msghdr *my_msg = (struct msghdr *)msg; 5980 5981 for (cmsg = CMSG_FIRSTHDR(msg); 5982 cmsg != NULL; 5983 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 5984 if (!CMSG_OK(my_msg, cmsg)) 5985 return -EINVAL; 5986 5987 /* Should we parse this header or ignore? */ 5988 if (cmsg->cmsg_level != IPPROTO_SCTP) 5989 continue; 5990 5991 /* Strictly check lengths following example in SCM code. */ 5992 switch (cmsg->cmsg_type) { 5993 case SCTP_INIT: 5994 /* SCTP Socket API Extension 5995 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5996 * 5997 * This cmsghdr structure provides information for 5998 * initializing new SCTP associations with sendmsg(). 5999 * The SCTP_INITMSG socket option uses this same data 6000 * structure. This structure is not used for 6001 * recvmsg(). 6002 * 6003 * cmsg_level cmsg_type cmsg_data[] 6004 * ------------ ------------ ---------------------- 6005 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6006 */ 6007 if (cmsg->cmsg_len != 6008 CMSG_LEN(sizeof(struct sctp_initmsg))) 6009 return -EINVAL; 6010 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6011 break; 6012 6013 case SCTP_SNDRCV: 6014 /* SCTP Socket API Extension 6015 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6016 * 6017 * This cmsghdr structure specifies SCTP options for 6018 * sendmsg() and describes SCTP header information 6019 * about a received message through recvmsg(). 6020 * 6021 * cmsg_level cmsg_type cmsg_data[] 6022 * ------------ ------------ ---------------------- 6023 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6024 */ 6025 if (cmsg->cmsg_len != 6026 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6027 return -EINVAL; 6028 6029 cmsgs->info = 6030 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6031 6032 /* Minimally, validate the sinfo_flags. */ 6033 if (cmsgs->info->sinfo_flags & 6034 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6035 SCTP_ABORT | SCTP_EOF)) 6036 return -EINVAL; 6037 break; 6038 6039 default: 6040 return -EINVAL; 6041 } 6042 } 6043 return 0; 6044} 6045 6046/* 6047 * Wait for a packet.. 6048 * Note: This function is the same function as in core/datagram.c 6049 * with a few modifications to make lksctp work. 6050 */ 6051static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6052{ 6053 int error; 6054 DEFINE_WAIT(wait); 6055 6056 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6057 6058 /* Socket errors? */ 6059 error = sock_error(sk); 6060 if (error) 6061 goto out; 6062 6063 if (!skb_queue_empty(&sk->sk_receive_queue)) 6064 goto ready; 6065 6066 /* Socket shut down? */ 6067 if (sk->sk_shutdown & RCV_SHUTDOWN) 6068 goto out; 6069 6070 /* Sequenced packets can come disconnected. If so we report the 6071 * problem. 6072 */ 6073 error = -ENOTCONN; 6074 6075 /* Is there a good reason to think that we may receive some data? */ 6076 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6077 goto out; 6078 6079 /* Handle signals. */ 6080 if (signal_pending(current)) 6081 goto interrupted; 6082 6083 /* Let another process have a go. Since we are going to sleep 6084 * anyway. Note: This may cause odd behaviors if the message 6085 * does not fit in the user's buffer, but this seems to be the 6086 * only way to honor MSG_DONTWAIT realistically. 6087 */ 6088 sctp_release_sock(sk); 6089 *timeo_p = schedule_timeout(*timeo_p); 6090 sctp_lock_sock(sk); 6091 6092ready: 6093 finish_wait(sk_sleep(sk), &wait); 6094 return 0; 6095 6096interrupted: 6097 error = sock_intr_errno(*timeo_p); 6098 6099out: 6100 finish_wait(sk_sleep(sk), &wait); 6101 *err = error; 6102 return error; 6103} 6104 6105/* Receive a datagram. 6106 * Note: This is pretty much the same routine as in core/datagram.c 6107 * with a few changes to make lksctp work. 6108 */ 6109static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6110 int noblock, int *err) 6111{ 6112 int error; 6113 struct sk_buff *skb; 6114 long timeo; 6115 6116 timeo = sock_rcvtimeo(sk, noblock); 6117 6118 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6119 timeo, MAX_SCHEDULE_TIMEOUT); 6120 6121 do { 6122 /* Again only user level code calls this function, 6123 * so nothing interrupt level 6124 * will suddenly eat the receive_queue. 6125 * 6126 * Look at current nfs client by the way... 6127 * However, this function was correct in any case. 8) 6128 */ 6129 if (flags & MSG_PEEK) { 6130 spin_lock_bh(&sk->sk_receive_queue.lock); 6131 skb = skb_peek(&sk->sk_receive_queue); 6132 if (skb) 6133 atomic_inc(&skb->users); 6134 spin_unlock_bh(&sk->sk_receive_queue.lock); 6135 } else { 6136 skb = skb_dequeue(&sk->sk_receive_queue); 6137 } 6138 6139 if (skb) 6140 return skb; 6141 6142 /* Caller is allowed not to check sk->sk_err before calling. */ 6143 error = sock_error(sk); 6144 if (error) 6145 goto no_packet; 6146 6147 if (sk->sk_shutdown & RCV_SHUTDOWN) 6148 break; 6149 6150 /* User doesn't want to wait. */ 6151 error = -EAGAIN; 6152 if (!timeo) 6153 goto no_packet; 6154 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6155 6156 return NULL; 6157 6158no_packet: 6159 *err = error; 6160 return NULL; 6161} 6162 6163/* If sndbuf has changed, wake up per association sndbuf waiters. */ 6164static void __sctp_write_space(struct sctp_association *asoc) 6165{ 6166 struct sock *sk = asoc->base.sk; 6167 struct socket *sock = sk->sk_socket; 6168 6169 if ((sctp_wspace(asoc) > 0) && sock) { 6170 if (waitqueue_active(&asoc->wait)) 6171 wake_up_interruptible(&asoc->wait); 6172 6173 if (sctp_writeable(sk)) { 6174 wait_queue_head_t *wq = sk_sleep(sk); 6175 6176 if (wq && waitqueue_active(wq)) 6177 wake_up_interruptible(wq); 6178 6179 /* Note that we try to include the Async I/O support 6180 * here by modeling from the current TCP/UDP code. 6181 * We have not tested with it yet. 6182 */ 6183 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6184 sock_wake_async(sock, 6185 SOCK_WAKE_SPACE, POLL_OUT); 6186 } 6187 } 6188} 6189 6190/* Do accounting for the sndbuf space. 6191 * Decrement the used sndbuf space of the corresponding association by the 6192 * data size which was just transmitted(freed). 6193 */ 6194static void sctp_wfree(struct sk_buff *skb) 6195{ 6196 struct sctp_association *asoc; 6197 struct sctp_chunk *chunk; 6198 struct sock *sk; 6199 6200 /* Get the saved chunk pointer. */ 6201 chunk = *((struct sctp_chunk **)(skb->cb)); 6202 asoc = chunk->asoc; 6203 sk = asoc->base.sk; 6204 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6205 sizeof(struct sk_buff) + 6206 sizeof(struct sctp_chunk); 6207 6208 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6209 6210 /* 6211 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6212 */ 6213 sk->sk_wmem_queued -= skb->truesize; 6214 sk_mem_uncharge(sk, skb->truesize); 6215 6216 sock_wfree(skb); 6217 __sctp_write_space(asoc); 6218 6219 sctp_association_put(asoc); 6220} 6221 6222/* Do accounting for the receive space on the socket. 6223 * Accounting for the association is done in ulpevent.c 6224 * We set this as a destructor for the cloned data skbs so that 6225 * accounting is done at the correct time. 6226 */ 6227void sctp_sock_rfree(struct sk_buff *skb) 6228{ 6229 struct sock *sk = skb->sk; 6230 struct sctp_ulpevent *event = sctp_skb2event(skb); 6231 6232 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6233 6234 /* 6235 * Mimic the behavior of sock_rfree 6236 */ 6237 sk_mem_uncharge(sk, event->rmem_len); 6238} 6239 6240 6241/* Helper function to wait for space in the sndbuf. */ 6242static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6243 size_t msg_len) 6244{ 6245 struct sock *sk = asoc->base.sk; 6246 int err = 0; 6247 long current_timeo = *timeo_p; 6248 DEFINE_WAIT(wait); 6249 6250 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6251 asoc, (long)(*timeo_p), msg_len); 6252 6253 /* Increment the association's refcnt. */ 6254 sctp_association_hold(asoc); 6255 6256 /* Wait on the association specific sndbuf space. */ 6257 for (;;) { 6258 prepare_to_wait_exclusive(&asoc->wait, &wait, 6259 TASK_INTERRUPTIBLE); 6260 if (!*timeo_p) 6261 goto do_nonblock; 6262 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6263 asoc->base.dead) 6264 goto do_error; 6265 if (signal_pending(current)) 6266 goto do_interrupted; 6267 if (msg_len <= sctp_wspace(asoc)) 6268 break; 6269 6270 /* Let another process have a go. Since we are going 6271 * to sleep anyway. 6272 */ 6273 sctp_release_sock(sk); 6274 current_timeo = schedule_timeout(current_timeo); 6275 BUG_ON(sk != asoc->base.sk); 6276 sctp_lock_sock(sk); 6277 6278 *timeo_p = current_timeo; 6279 } 6280 6281out: 6282 finish_wait(&asoc->wait, &wait); 6283 6284 /* Release the association's refcnt. */ 6285 sctp_association_put(asoc); 6286 6287 return err; 6288 6289do_error: 6290 err = -EPIPE; 6291 goto out; 6292 6293do_interrupted: 6294 err = sock_intr_errno(*timeo_p); 6295 goto out; 6296 6297do_nonblock: 6298 err = -EAGAIN; 6299 goto out; 6300} 6301 6302void sctp_data_ready(struct sock *sk, int len) 6303{ 6304 struct socket_wq *wq; 6305 6306 rcu_read_lock(); 6307 wq = rcu_dereference(sk->sk_wq); 6308 if (wq_has_sleeper(wq)) 6309 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6310 POLLRDNORM | POLLRDBAND); 6311 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6312 rcu_read_unlock(); 6313} 6314 6315/* If socket sndbuf has changed, wake up all per association waiters. */ 6316void sctp_write_space(struct sock *sk) 6317{ 6318 struct sctp_association *asoc; 6319 6320 /* Wake up the tasks in each wait queue. */ 6321 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6322 __sctp_write_space(asoc); 6323 } 6324} 6325 6326/* Is there any sndbuf space available on the socket? 6327 * 6328 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6329 * associations on the same socket. For a UDP-style socket with 6330 * multiple associations, it is possible for it to be "unwriteable" 6331 * prematurely. I assume that this is acceptable because 6332 * a premature "unwriteable" is better than an accidental "writeable" which 6333 * would cause an unwanted block under certain circumstances. For the 1-1 6334 * UDP-style sockets or TCP-style sockets, this code should work. 6335 * - Daisy 6336 */ 6337static int sctp_writeable(struct sock *sk) 6338{ 6339 int amt = 0; 6340 6341 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6342 if (amt < 0) 6343 amt = 0; 6344 return amt; 6345} 6346 6347/* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6348 * returns immediately with EINPROGRESS. 6349 */ 6350static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6351{ 6352 struct sock *sk = asoc->base.sk; 6353 int err = 0; 6354 long current_timeo = *timeo_p; 6355 DEFINE_WAIT(wait); 6356 6357 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6358 (long)(*timeo_p)); 6359 6360 /* Increment the association's refcnt. */ 6361 sctp_association_hold(asoc); 6362 6363 for (;;) { 6364 prepare_to_wait_exclusive(&asoc->wait, &wait, 6365 TASK_INTERRUPTIBLE); 6366 if (!*timeo_p) 6367 goto do_nonblock; 6368 if (sk->sk_shutdown & RCV_SHUTDOWN) 6369 break; 6370 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6371 asoc->base.dead) 6372 goto do_error; 6373 if (signal_pending(current)) 6374 goto do_interrupted; 6375 6376 if (sctp_state(asoc, ESTABLISHED)) 6377 break; 6378 6379 /* Let another process have a go. Since we are going 6380 * to sleep anyway. 6381 */ 6382 sctp_release_sock(sk); 6383 current_timeo = schedule_timeout(current_timeo); 6384 sctp_lock_sock(sk); 6385 6386 *timeo_p = current_timeo; 6387 } 6388 6389out: 6390 finish_wait(&asoc->wait, &wait); 6391 6392 /* Release the association's refcnt. */ 6393 sctp_association_put(asoc); 6394 6395 return err; 6396 6397do_error: 6398 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6399 err = -ETIMEDOUT; 6400 else 6401 err = -ECONNREFUSED; 6402 goto out; 6403 6404do_interrupted: 6405 err = sock_intr_errno(*timeo_p); 6406 goto out; 6407 6408do_nonblock: 6409 err = -EINPROGRESS; 6410 goto out; 6411} 6412 6413static int sctp_wait_for_accept(struct sock *sk, long timeo) 6414{ 6415 struct sctp_endpoint *ep; 6416 int err = 0; 6417 DEFINE_WAIT(wait); 6418 6419 ep = sctp_sk(sk)->ep; 6420 6421 6422 for (;;) { 6423 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6424 TASK_INTERRUPTIBLE); 6425 6426 if (list_empty(&ep->asocs)) { 6427 sctp_release_sock(sk); 6428 timeo = schedule_timeout(timeo); 6429 sctp_lock_sock(sk); 6430 } 6431 6432 err = -EINVAL; 6433 if (!sctp_sstate(sk, LISTENING)) 6434 break; 6435 6436 err = 0; 6437 if (!list_empty(&ep->asocs)) 6438 break; 6439 6440 err = sock_intr_errno(timeo); 6441 if (signal_pending(current)) 6442 break; 6443 6444 err = -EAGAIN; 6445 if (!timeo) 6446 break; 6447 } 6448 6449 finish_wait(sk_sleep(sk), &wait); 6450 6451 return err; 6452} 6453 6454static void sctp_wait_for_close(struct sock *sk, long timeout) 6455{ 6456 DEFINE_WAIT(wait); 6457 6458 do { 6459 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6460 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6461 break; 6462 sctp_release_sock(sk); 6463 timeout = schedule_timeout(timeout); 6464 sctp_lock_sock(sk); 6465 } while (!signal_pending(current) && timeout); 6466 6467 finish_wait(sk_sleep(sk), &wait); 6468} 6469 6470static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6471{ 6472 struct sk_buff *frag; 6473 6474 if (!skb->data_len) 6475 goto done; 6476 6477 /* Don't forget the fragments. */ 6478 skb_walk_frags(skb, frag) 6479 sctp_skb_set_owner_r_frag(frag, sk); 6480 6481done: 6482 sctp_skb_set_owner_r(skb, sk); 6483} 6484 6485void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6486 struct sctp_association *asoc) 6487{ 6488 struct inet_sock *inet = inet_sk(sk); 6489 struct inet_sock *newinet; 6490 6491 newsk->sk_type = sk->sk_type; 6492 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6493 newsk->sk_flags = sk->sk_flags; 6494 newsk->sk_no_check = sk->sk_no_check; 6495 newsk->sk_reuse = sk->sk_reuse; 6496 6497 newsk->sk_shutdown = sk->sk_shutdown; 6498 newsk->sk_destruct = inet_sock_destruct; 6499 newsk->sk_family = sk->sk_family; 6500 newsk->sk_protocol = IPPROTO_SCTP; 6501 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6502 newsk->sk_sndbuf = sk->sk_sndbuf; 6503 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6504 newsk->sk_lingertime = sk->sk_lingertime; 6505 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6506 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6507 6508 newinet = inet_sk(newsk); 6509 6510 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6511 * getsockname() and getpeername() 6512 */ 6513 newinet->inet_sport = inet->inet_sport; 6514 newinet->inet_saddr = inet->inet_saddr; 6515 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6516 newinet->inet_dport = htons(asoc->peer.port); 6517 newinet->pmtudisc = inet->pmtudisc; 6518 newinet->inet_id = asoc->next_tsn ^ jiffies; 6519 6520 newinet->uc_ttl = inet->uc_ttl; 6521 newinet->mc_loop = 1; 6522 newinet->mc_ttl = 1; 6523 newinet->mc_index = 0; 6524 newinet->mc_list = NULL; 6525} 6526 6527/* Populate the fields of the newsk from the oldsk and migrate the assoc 6528 * and its messages to the newsk. 6529 */ 6530static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6531 struct sctp_association *assoc, 6532 sctp_socket_type_t type) 6533{ 6534 struct sctp_sock *oldsp = sctp_sk(oldsk); 6535 struct sctp_sock *newsp = sctp_sk(newsk); 6536 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6537 struct sctp_endpoint *newep = newsp->ep; 6538 struct sk_buff *skb, *tmp; 6539 struct sctp_ulpevent *event; 6540 struct sctp_bind_hashbucket *head; 6541 6542 /* Migrate socket buffer sizes and all the socket level options to the 6543 * new socket. 6544 */ 6545 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6546 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6547 /* Brute force copy old sctp opt. */ 6548 inet_sk_copy_descendant(newsk, oldsk); 6549 6550 /* Restore the ep value that was overwritten with the above structure 6551 * copy. 6552 */ 6553 newsp->ep = newep; 6554 newsp->hmac = NULL; 6555 6556 /* Hook this new socket in to the bind_hash list. */ 6557 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6558 sctp_local_bh_disable(); 6559 sctp_spin_lock(&head->lock); 6560 pp = sctp_sk(oldsk)->bind_hash; 6561 sk_add_bind_node(newsk, &pp->owner); 6562 sctp_sk(newsk)->bind_hash = pp; 6563 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6564 sctp_spin_unlock(&head->lock); 6565 sctp_local_bh_enable(); 6566 6567 /* Copy the bind_addr list from the original endpoint to the new 6568 * endpoint so that we can handle restarts properly 6569 */ 6570 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6571 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6572 6573 /* Move any messages in the old socket's receive queue that are for the 6574 * peeled off association to the new socket's receive queue. 6575 */ 6576 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6577 event = sctp_skb2event(skb); 6578 if (event->asoc == assoc) { 6579 __skb_unlink(skb, &oldsk->sk_receive_queue); 6580 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6581 sctp_skb_set_owner_r_frag(skb, newsk); 6582 } 6583 } 6584 6585 /* Clean up any messages pending delivery due to partial 6586 * delivery. Three cases: 6587 * 1) No partial deliver; no work. 6588 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6589 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6590 */ 6591 skb_queue_head_init(&newsp->pd_lobby); 6592 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6593 6594 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6595 struct sk_buff_head *queue; 6596 6597 /* Decide which queue to move pd_lobby skbs to. */ 6598 if (assoc->ulpq.pd_mode) { 6599 queue = &newsp->pd_lobby; 6600 } else 6601 queue = &newsk->sk_receive_queue; 6602 6603 /* Walk through the pd_lobby, looking for skbs that 6604 * need moved to the new socket. 6605 */ 6606 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6607 event = sctp_skb2event(skb); 6608 if (event->asoc == assoc) { 6609 __skb_unlink(skb, &oldsp->pd_lobby); 6610 __skb_queue_tail(queue, skb); 6611 sctp_skb_set_owner_r_frag(skb, newsk); 6612 } 6613 } 6614 6615 /* Clear up any skbs waiting for the partial 6616 * delivery to finish. 6617 */ 6618 if (assoc->ulpq.pd_mode) 6619 sctp_clear_pd(oldsk, NULL); 6620 6621 } 6622 6623 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6624 sctp_skb_set_owner_r_frag(skb, newsk); 6625 6626 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6627 sctp_skb_set_owner_r_frag(skb, newsk); 6628 6629 /* Set the type of socket to indicate that it is peeled off from the 6630 * original UDP-style socket or created with the accept() call on a 6631 * TCP-style socket.. 6632 */ 6633 newsp->type = type; 6634 6635 /* Mark the new socket "in-use" by the user so that any packets 6636 * that may arrive on the association after we've moved it are 6637 * queued to the backlog. This prevents a potential race between 6638 * backlog processing on the old socket and new-packet processing 6639 * on the new socket. 6640 * 6641 * The caller has just allocated newsk so we can guarantee that other 6642 * paths won't try to lock it and then oldsk. 6643 */ 6644 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6645 sctp_assoc_migrate(assoc, newsk); 6646 6647 /* If the association on the newsk is already closed before accept() 6648 * is called, set RCV_SHUTDOWN flag. 6649 */ 6650 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6651 newsk->sk_shutdown |= RCV_SHUTDOWN; 6652 6653 newsk->sk_state = SCTP_SS_ESTABLISHED; 6654 sctp_release_sock(newsk); 6655} 6656 6657 6658/* This proto struct describes the ULP interface for SCTP. */ 6659struct proto sctp_prot = { 6660 .name = "SCTP", 6661 .owner = THIS_MODULE, 6662 .close = sctp_close, 6663 .connect = sctp_connect, 6664 .disconnect = sctp_disconnect, 6665 .accept = sctp_accept, 6666 .ioctl = sctp_ioctl, 6667 .init = sctp_init_sock, 6668 .destroy = sctp_destroy_sock, 6669 .shutdown = sctp_shutdown, 6670 .setsockopt = sctp_setsockopt, 6671 .getsockopt = sctp_getsockopt, 6672 .sendmsg = sctp_sendmsg, 6673 .recvmsg = sctp_recvmsg, 6674 .bind = sctp_bind, 6675 .backlog_rcv = sctp_backlog_rcv, 6676 .hash = sctp_hash, 6677 .unhash = sctp_unhash, 6678 .get_port = sctp_get_port, 6679 .obj_size = sizeof(struct sctp_sock), 6680 .sysctl_mem = sysctl_sctp_mem, 6681 .sysctl_rmem = sysctl_sctp_rmem, 6682 .sysctl_wmem = sysctl_sctp_wmem, 6683 .memory_pressure = &sctp_memory_pressure, 6684 .enter_memory_pressure = sctp_enter_memory_pressure, 6685 .memory_allocated = &sctp_memory_allocated, 6686 .sockets_allocated = &sctp_sockets_allocated, 6687}; 6688 6689#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6690 6691struct proto sctpv6_prot = { 6692 .name = "SCTPv6", 6693 .owner = THIS_MODULE, 6694 .close = sctp_close, 6695 .connect = sctp_connect, 6696 .disconnect = sctp_disconnect, 6697 .accept = sctp_accept, 6698 .ioctl = sctp_ioctl, 6699 .init = sctp_init_sock, 6700 .destroy = sctp_destroy_sock, 6701 .shutdown = sctp_shutdown, 6702 .setsockopt = sctp_setsockopt, 6703 .getsockopt = sctp_getsockopt, 6704 .sendmsg = sctp_sendmsg, 6705 .recvmsg = sctp_recvmsg, 6706 .bind = sctp_bind, 6707 .backlog_rcv = sctp_backlog_rcv, 6708 .hash = sctp_hash, 6709 .unhash = sctp_unhash, 6710 .get_port = sctp_get_port, 6711 .obj_size = sizeof(struct sctp6_sock), 6712 .sysctl_mem = sysctl_sctp_mem, 6713 .sysctl_rmem = sysctl_sctp_rmem, 6714 .sysctl_wmem = sysctl_sctp_wmem, 6715 .memory_pressure = &sctp_memory_pressure, 6716 .enter_memory_pressure = sctp_enter_memory_pressure, 6717 .memory_allocated = &sctp_memory_allocated, 6718 .sockets_allocated = &sctp_sockets_allocated, 6719}; 6720#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */