at v3.0 1851 lines 53 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40#ifndef _SOCK_H 41#define _SOCK_H 42 43#include <linux/kernel.h> 44#include <linux/list.h> 45#include <linux/list_nulls.h> 46#include <linux/timer.h> 47#include <linux/cache.h> 48#include <linux/module.h> 49#include <linux/lockdep.h> 50#include <linux/netdevice.h> 51#include <linux/skbuff.h> /* struct sk_buff */ 52#include <linux/mm.h> 53#include <linux/security.h> 54#include <linux/slab.h> 55#include <linux/uaccess.h> 56 57#include <linux/filter.h> 58#include <linux/rculist_nulls.h> 59#include <linux/poll.h> 60 61#include <linux/atomic.h> 62#include <net/dst.h> 63#include <net/checksum.h> 64 65/* 66 * This structure really needs to be cleaned up. 67 * Most of it is for TCP, and not used by any of 68 * the other protocols. 69 */ 70 71/* Define this to get the SOCK_DBG debugging facility. */ 72#define SOCK_DEBUGGING 73#ifdef SOCK_DEBUGGING 74#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 75 printk(KERN_DEBUG msg); } while (0) 76#else 77/* Validate arguments and do nothing */ 78static inline void __attribute__ ((format (printf, 2, 3))) 79SOCK_DEBUG(struct sock *sk, const char *msg, ...) 80{ 81} 82#endif 83 84/* This is the per-socket lock. The spinlock provides a synchronization 85 * between user contexts and software interrupt processing, whereas the 86 * mini-semaphore synchronizes multiple users amongst themselves. 87 */ 88typedef struct { 89 spinlock_t slock; 90 int owned; 91 wait_queue_head_t wq; 92 /* 93 * We express the mutex-alike socket_lock semantics 94 * to the lock validator by explicitly managing 95 * the slock as a lock variant (in addition to 96 * the slock itself): 97 */ 98#ifdef CONFIG_DEBUG_LOCK_ALLOC 99 struct lockdep_map dep_map; 100#endif 101} socket_lock_t; 102 103struct sock; 104struct proto; 105struct net; 106 107/** 108 * struct sock_common - minimal network layer representation of sockets 109 * @skc_daddr: Foreign IPv4 addr 110 * @skc_rcv_saddr: Bound local IPv4 addr 111 * @skc_hash: hash value used with various protocol lookup tables 112 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 113 * @skc_family: network address family 114 * @skc_state: Connection state 115 * @skc_reuse: %SO_REUSEADDR setting 116 * @skc_bound_dev_if: bound device index if != 0 117 * @skc_bind_node: bind hash linkage for various protocol lookup tables 118 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 119 * @skc_prot: protocol handlers inside a network family 120 * @skc_net: reference to the network namespace of this socket 121 * @skc_node: main hash linkage for various protocol lookup tables 122 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 123 * @skc_tx_queue_mapping: tx queue number for this connection 124 * @skc_refcnt: reference count 125 * 126 * This is the minimal network layer representation of sockets, the header 127 * for struct sock and struct inet_timewait_sock. 128 */ 129struct sock_common { 130 /* skc_daddr and skc_rcv_saddr must be grouped : 131 * cf INET_MATCH() and INET_TW_MATCH() 132 */ 133 __be32 skc_daddr; 134 __be32 skc_rcv_saddr; 135 136 union { 137 unsigned int skc_hash; 138 __u16 skc_u16hashes[2]; 139 }; 140 unsigned short skc_family; 141 volatile unsigned char skc_state; 142 unsigned char skc_reuse; 143 int skc_bound_dev_if; 144 union { 145 struct hlist_node skc_bind_node; 146 struct hlist_nulls_node skc_portaddr_node; 147 }; 148 struct proto *skc_prot; 149#ifdef CONFIG_NET_NS 150 struct net *skc_net; 151#endif 152 /* 153 * fields between dontcopy_begin/dontcopy_end 154 * are not copied in sock_copy() 155 */ 156 /* private: */ 157 int skc_dontcopy_begin[0]; 158 /* public: */ 159 union { 160 struct hlist_node skc_node; 161 struct hlist_nulls_node skc_nulls_node; 162 }; 163 int skc_tx_queue_mapping; 164 atomic_t skc_refcnt; 165 /* private: */ 166 int skc_dontcopy_end[0]; 167 /* public: */ 168}; 169 170/** 171 * struct sock - network layer representation of sockets 172 * @__sk_common: shared layout with inet_timewait_sock 173 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 174 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 175 * @sk_lock: synchronizer 176 * @sk_rcvbuf: size of receive buffer in bytes 177 * @sk_wq: sock wait queue and async head 178 * @sk_dst_cache: destination cache 179 * @sk_dst_lock: destination cache lock 180 * @sk_policy: flow policy 181 * @sk_receive_queue: incoming packets 182 * @sk_wmem_alloc: transmit queue bytes committed 183 * @sk_write_queue: Packet sending queue 184 * @sk_async_wait_queue: DMA copied packets 185 * @sk_omem_alloc: "o" is "option" or "other" 186 * @sk_wmem_queued: persistent queue size 187 * @sk_forward_alloc: space allocated forward 188 * @sk_allocation: allocation mode 189 * @sk_sndbuf: size of send buffer in bytes 190 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 191 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 192 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 193 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 194 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 195 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 196 * @sk_gso_max_size: Maximum GSO segment size to build 197 * @sk_lingertime: %SO_LINGER l_linger setting 198 * @sk_backlog: always used with the per-socket spinlock held 199 * @sk_callback_lock: used with the callbacks in the end of this struct 200 * @sk_error_queue: rarely used 201 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 202 * IPV6_ADDRFORM for instance) 203 * @sk_err: last error 204 * @sk_err_soft: errors that don't cause failure but are the cause of a 205 * persistent failure not just 'timed out' 206 * @sk_drops: raw/udp drops counter 207 * @sk_ack_backlog: current listen backlog 208 * @sk_max_ack_backlog: listen backlog set in listen() 209 * @sk_priority: %SO_PRIORITY setting 210 * @sk_type: socket type (%SOCK_STREAM, etc) 211 * @sk_protocol: which protocol this socket belongs in this network family 212 * @sk_peer_pid: &struct pid for this socket's peer 213 * @sk_peer_cred: %SO_PEERCRED setting 214 * @sk_rcvlowat: %SO_RCVLOWAT setting 215 * @sk_rcvtimeo: %SO_RCVTIMEO setting 216 * @sk_sndtimeo: %SO_SNDTIMEO setting 217 * @sk_rxhash: flow hash received from netif layer 218 * @sk_filter: socket filtering instructions 219 * @sk_protinfo: private area, net family specific, when not using slab 220 * @sk_timer: sock cleanup timer 221 * @sk_stamp: time stamp of last packet received 222 * @sk_socket: Identd and reporting IO signals 223 * @sk_user_data: RPC layer private data 224 * @sk_sndmsg_page: cached page for sendmsg 225 * @sk_sndmsg_off: cached offset for sendmsg 226 * @sk_send_head: front of stuff to transmit 227 * @sk_security: used by security modules 228 * @sk_mark: generic packet mark 229 * @sk_classid: this socket's cgroup classid 230 * @sk_write_pending: a write to stream socket waits to start 231 * @sk_state_change: callback to indicate change in the state of the sock 232 * @sk_data_ready: callback to indicate there is data to be processed 233 * @sk_write_space: callback to indicate there is bf sending space available 234 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 235 * @sk_backlog_rcv: callback to process the backlog 236 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 237 */ 238struct sock { 239 /* 240 * Now struct inet_timewait_sock also uses sock_common, so please just 241 * don't add nothing before this first member (__sk_common) --acme 242 */ 243 struct sock_common __sk_common; 244#define sk_node __sk_common.skc_node 245#define sk_nulls_node __sk_common.skc_nulls_node 246#define sk_refcnt __sk_common.skc_refcnt 247#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 248 249#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 250#define sk_dontcopy_end __sk_common.skc_dontcopy_end 251#define sk_hash __sk_common.skc_hash 252#define sk_family __sk_common.skc_family 253#define sk_state __sk_common.skc_state 254#define sk_reuse __sk_common.skc_reuse 255#define sk_bound_dev_if __sk_common.skc_bound_dev_if 256#define sk_bind_node __sk_common.skc_bind_node 257#define sk_prot __sk_common.skc_prot 258#define sk_net __sk_common.skc_net 259 socket_lock_t sk_lock; 260 struct sk_buff_head sk_receive_queue; 261 /* 262 * The backlog queue is special, it is always used with 263 * the per-socket spinlock held and requires low latency 264 * access. Therefore we special case it's implementation. 265 * Note : rmem_alloc is in this structure to fill a hole 266 * on 64bit arches, not because its logically part of 267 * backlog. 268 */ 269 struct { 270 atomic_t rmem_alloc; 271 int len; 272 struct sk_buff *head; 273 struct sk_buff *tail; 274 } sk_backlog; 275#define sk_rmem_alloc sk_backlog.rmem_alloc 276 int sk_forward_alloc; 277#ifdef CONFIG_RPS 278 __u32 sk_rxhash; 279#endif 280 atomic_t sk_drops; 281 int sk_rcvbuf; 282 283 struct sk_filter __rcu *sk_filter; 284 struct socket_wq __rcu *sk_wq; 285 286#ifdef CONFIG_NET_DMA 287 struct sk_buff_head sk_async_wait_queue; 288#endif 289 290#ifdef CONFIG_XFRM 291 struct xfrm_policy *sk_policy[2]; 292#endif 293 unsigned long sk_flags; 294 struct dst_entry *sk_dst_cache; 295 spinlock_t sk_dst_lock; 296 atomic_t sk_wmem_alloc; 297 atomic_t sk_omem_alloc; 298 int sk_sndbuf; 299 struct sk_buff_head sk_write_queue; 300 kmemcheck_bitfield_begin(flags); 301 unsigned int sk_shutdown : 2, 302 sk_no_check : 2, 303 sk_userlocks : 4, 304 sk_protocol : 8, 305 sk_type : 16; 306 kmemcheck_bitfield_end(flags); 307 int sk_wmem_queued; 308 gfp_t sk_allocation; 309 int sk_route_caps; 310 int sk_route_nocaps; 311 int sk_gso_type; 312 unsigned int sk_gso_max_size; 313 int sk_rcvlowat; 314 unsigned long sk_lingertime; 315 struct sk_buff_head sk_error_queue; 316 struct proto *sk_prot_creator; 317 rwlock_t sk_callback_lock; 318 int sk_err, 319 sk_err_soft; 320 unsigned short sk_ack_backlog; 321 unsigned short sk_max_ack_backlog; 322 __u32 sk_priority; 323 struct pid *sk_peer_pid; 324 const struct cred *sk_peer_cred; 325 long sk_rcvtimeo; 326 long sk_sndtimeo; 327 void *sk_protinfo; 328 struct timer_list sk_timer; 329 ktime_t sk_stamp; 330 struct socket *sk_socket; 331 void *sk_user_data; 332 struct page *sk_sndmsg_page; 333 struct sk_buff *sk_send_head; 334 __u32 sk_sndmsg_off; 335 int sk_write_pending; 336#ifdef CONFIG_SECURITY 337 void *sk_security; 338#endif 339 __u32 sk_mark; 340 u32 sk_classid; 341 void (*sk_state_change)(struct sock *sk); 342 void (*sk_data_ready)(struct sock *sk, int bytes); 343 void (*sk_write_space)(struct sock *sk); 344 void (*sk_error_report)(struct sock *sk); 345 int (*sk_backlog_rcv)(struct sock *sk, 346 struct sk_buff *skb); 347 void (*sk_destruct)(struct sock *sk); 348}; 349 350/* 351 * Hashed lists helper routines 352 */ 353static inline struct sock *sk_entry(const struct hlist_node *node) 354{ 355 return hlist_entry(node, struct sock, sk_node); 356} 357 358static inline struct sock *__sk_head(const struct hlist_head *head) 359{ 360 return hlist_entry(head->first, struct sock, sk_node); 361} 362 363static inline struct sock *sk_head(const struct hlist_head *head) 364{ 365 return hlist_empty(head) ? NULL : __sk_head(head); 366} 367 368static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 369{ 370 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 371} 372 373static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 374{ 375 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 376} 377 378static inline struct sock *sk_next(const struct sock *sk) 379{ 380 return sk->sk_node.next ? 381 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 382} 383 384static inline struct sock *sk_nulls_next(const struct sock *sk) 385{ 386 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 387 hlist_nulls_entry(sk->sk_nulls_node.next, 388 struct sock, sk_nulls_node) : 389 NULL; 390} 391 392static inline int sk_unhashed(const struct sock *sk) 393{ 394 return hlist_unhashed(&sk->sk_node); 395} 396 397static inline int sk_hashed(const struct sock *sk) 398{ 399 return !sk_unhashed(sk); 400} 401 402static __inline__ void sk_node_init(struct hlist_node *node) 403{ 404 node->pprev = NULL; 405} 406 407static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node) 408{ 409 node->pprev = NULL; 410} 411 412static __inline__ void __sk_del_node(struct sock *sk) 413{ 414 __hlist_del(&sk->sk_node); 415} 416 417/* NB: equivalent to hlist_del_init_rcu */ 418static __inline__ int __sk_del_node_init(struct sock *sk) 419{ 420 if (sk_hashed(sk)) { 421 __sk_del_node(sk); 422 sk_node_init(&sk->sk_node); 423 return 1; 424 } 425 return 0; 426} 427 428/* Grab socket reference count. This operation is valid only 429 when sk is ALREADY grabbed f.e. it is found in hash table 430 or a list and the lookup is made under lock preventing hash table 431 modifications. 432 */ 433 434static inline void sock_hold(struct sock *sk) 435{ 436 atomic_inc(&sk->sk_refcnt); 437} 438 439/* Ungrab socket in the context, which assumes that socket refcnt 440 cannot hit zero, f.e. it is true in context of any socketcall. 441 */ 442static inline void __sock_put(struct sock *sk) 443{ 444 atomic_dec(&sk->sk_refcnt); 445} 446 447static __inline__ int sk_del_node_init(struct sock *sk) 448{ 449 int rc = __sk_del_node_init(sk); 450 451 if (rc) { 452 /* paranoid for a while -acme */ 453 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 454 __sock_put(sk); 455 } 456 return rc; 457} 458#define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 459 460static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk) 461{ 462 if (sk_hashed(sk)) { 463 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 464 return 1; 465 } 466 return 0; 467} 468 469static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk) 470{ 471 int rc = __sk_nulls_del_node_init_rcu(sk); 472 473 if (rc) { 474 /* paranoid for a while -acme */ 475 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 476 __sock_put(sk); 477 } 478 return rc; 479} 480 481static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 482{ 483 hlist_add_head(&sk->sk_node, list); 484} 485 486static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 487{ 488 sock_hold(sk); 489 __sk_add_node(sk, list); 490} 491 492static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 493{ 494 sock_hold(sk); 495 hlist_add_head_rcu(&sk->sk_node, list); 496} 497 498static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 499{ 500 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 501} 502 503static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 504{ 505 sock_hold(sk); 506 __sk_nulls_add_node_rcu(sk, list); 507} 508 509static __inline__ void __sk_del_bind_node(struct sock *sk) 510{ 511 __hlist_del(&sk->sk_bind_node); 512} 513 514static __inline__ void sk_add_bind_node(struct sock *sk, 515 struct hlist_head *list) 516{ 517 hlist_add_head(&sk->sk_bind_node, list); 518} 519 520#define sk_for_each(__sk, node, list) \ 521 hlist_for_each_entry(__sk, node, list, sk_node) 522#define sk_for_each_rcu(__sk, node, list) \ 523 hlist_for_each_entry_rcu(__sk, node, list, sk_node) 524#define sk_nulls_for_each(__sk, node, list) \ 525 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 526#define sk_nulls_for_each_rcu(__sk, node, list) \ 527 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 528#define sk_for_each_from(__sk, node) \ 529 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 530 hlist_for_each_entry_from(__sk, node, sk_node) 531#define sk_nulls_for_each_from(__sk, node) \ 532 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 533 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 534#define sk_for_each_safe(__sk, node, tmp, list) \ 535 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 536#define sk_for_each_bound(__sk, node, list) \ 537 hlist_for_each_entry(__sk, node, list, sk_bind_node) 538 539/* Sock flags */ 540enum sock_flags { 541 SOCK_DEAD, 542 SOCK_DONE, 543 SOCK_URGINLINE, 544 SOCK_KEEPOPEN, 545 SOCK_LINGER, 546 SOCK_DESTROY, 547 SOCK_BROADCAST, 548 SOCK_TIMESTAMP, 549 SOCK_ZAPPED, 550 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 551 SOCK_DBG, /* %SO_DEBUG setting */ 552 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 553 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 554 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 555 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 556 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 557 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 558 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 559 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 560 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 561 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 562 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 563 SOCK_FASYNC, /* fasync() active */ 564 SOCK_RXQ_OVFL, 565}; 566 567static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 568{ 569 nsk->sk_flags = osk->sk_flags; 570} 571 572static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 573{ 574 __set_bit(flag, &sk->sk_flags); 575} 576 577static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 578{ 579 __clear_bit(flag, &sk->sk_flags); 580} 581 582static inline int sock_flag(struct sock *sk, enum sock_flags flag) 583{ 584 return test_bit(flag, &sk->sk_flags); 585} 586 587static inline void sk_acceptq_removed(struct sock *sk) 588{ 589 sk->sk_ack_backlog--; 590} 591 592static inline void sk_acceptq_added(struct sock *sk) 593{ 594 sk->sk_ack_backlog++; 595} 596 597static inline int sk_acceptq_is_full(struct sock *sk) 598{ 599 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 600} 601 602/* 603 * Compute minimal free write space needed to queue new packets. 604 */ 605static inline int sk_stream_min_wspace(struct sock *sk) 606{ 607 return sk->sk_wmem_queued >> 1; 608} 609 610static inline int sk_stream_wspace(struct sock *sk) 611{ 612 return sk->sk_sndbuf - sk->sk_wmem_queued; 613} 614 615extern void sk_stream_write_space(struct sock *sk); 616 617static inline int sk_stream_memory_free(struct sock *sk) 618{ 619 return sk->sk_wmem_queued < sk->sk_sndbuf; 620} 621 622/* OOB backlog add */ 623static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 624{ 625 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 626 skb_dst_force(skb); 627 628 if (!sk->sk_backlog.tail) 629 sk->sk_backlog.head = skb; 630 else 631 sk->sk_backlog.tail->next = skb; 632 633 sk->sk_backlog.tail = skb; 634 skb->next = NULL; 635} 636 637/* 638 * Take into account size of receive queue and backlog queue 639 */ 640static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb) 641{ 642 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 643 644 return qsize + skb->truesize > sk->sk_rcvbuf; 645} 646 647/* The per-socket spinlock must be held here. */ 648static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb) 649{ 650 if (sk_rcvqueues_full(sk, skb)) 651 return -ENOBUFS; 652 653 __sk_add_backlog(sk, skb); 654 sk->sk_backlog.len += skb->truesize; 655 return 0; 656} 657 658static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 659{ 660 return sk->sk_backlog_rcv(sk, skb); 661} 662 663static inline void sock_rps_record_flow(const struct sock *sk) 664{ 665#ifdef CONFIG_RPS 666 struct rps_sock_flow_table *sock_flow_table; 667 668 rcu_read_lock(); 669 sock_flow_table = rcu_dereference(rps_sock_flow_table); 670 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash); 671 rcu_read_unlock(); 672#endif 673} 674 675static inline void sock_rps_reset_flow(const struct sock *sk) 676{ 677#ifdef CONFIG_RPS 678 struct rps_sock_flow_table *sock_flow_table; 679 680 rcu_read_lock(); 681 sock_flow_table = rcu_dereference(rps_sock_flow_table); 682 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash); 683 rcu_read_unlock(); 684#endif 685} 686 687static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash) 688{ 689#ifdef CONFIG_RPS 690 if (unlikely(sk->sk_rxhash != rxhash)) { 691 sock_rps_reset_flow(sk); 692 sk->sk_rxhash = rxhash; 693 } 694#endif 695} 696 697#define sk_wait_event(__sk, __timeo, __condition) \ 698 ({ int __rc; \ 699 release_sock(__sk); \ 700 __rc = __condition; \ 701 if (!__rc) { \ 702 *(__timeo) = schedule_timeout(*(__timeo)); \ 703 } \ 704 lock_sock(__sk); \ 705 __rc = __condition; \ 706 __rc; \ 707 }) 708 709extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 710extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 711extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 712extern int sk_stream_error(struct sock *sk, int flags, int err); 713extern void sk_stream_kill_queues(struct sock *sk); 714 715extern int sk_wait_data(struct sock *sk, long *timeo); 716 717struct request_sock_ops; 718struct timewait_sock_ops; 719struct inet_hashinfo; 720struct raw_hashinfo; 721 722/* Networking protocol blocks we attach to sockets. 723 * socket layer -> transport layer interface 724 * transport -> network interface is defined by struct inet_proto 725 */ 726struct proto { 727 void (*close)(struct sock *sk, 728 long timeout); 729 int (*connect)(struct sock *sk, 730 struct sockaddr *uaddr, 731 int addr_len); 732 int (*disconnect)(struct sock *sk, int flags); 733 734 struct sock * (*accept) (struct sock *sk, int flags, int *err); 735 736 int (*ioctl)(struct sock *sk, int cmd, 737 unsigned long arg); 738 int (*init)(struct sock *sk); 739 void (*destroy)(struct sock *sk); 740 void (*shutdown)(struct sock *sk, int how); 741 int (*setsockopt)(struct sock *sk, int level, 742 int optname, char __user *optval, 743 unsigned int optlen); 744 int (*getsockopt)(struct sock *sk, int level, 745 int optname, char __user *optval, 746 int __user *option); 747#ifdef CONFIG_COMPAT 748 int (*compat_setsockopt)(struct sock *sk, 749 int level, 750 int optname, char __user *optval, 751 unsigned int optlen); 752 int (*compat_getsockopt)(struct sock *sk, 753 int level, 754 int optname, char __user *optval, 755 int __user *option); 756 int (*compat_ioctl)(struct sock *sk, 757 unsigned int cmd, unsigned long arg); 758#endif 759 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 760 struct msghdr *msg, size_t len); 761 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 762 struct msghdr *msg, 763 size_t len, int noblock, int flags, 764 int *addr_len); 765 int (*sendpage)(struct sock *sk, struct page *page, 766 int offset, size_t size, int flags); 767 int (*bind)(struct sock *sk, 768 struct sockaddr *uaddr, int addr_len); 769 770 int (*backlog_rcv) (struct sock *sk, 771 struct sk_buff *skb); 772 773 /* Keeping track of sk's, looking them up, and port selection methods. */ 774 void (*hash)(struct sock *sk); 775 void (*unhash)(struct sock *sk); 776 void (*rehash)(struct sock *sk); 777 int (*get_port)(struct sock *sk, unsigned short snum); 778 void (*clear_sk)(struct sock *sk, int size); 779 780 /* Keeping track of sockets in use */ 781#ifdef CONFIG_PROC_FS 782 unsigned int inuse_idx; 783#endif 784 785 /* Memory pressure */ 786 void (*enter_memory_pressure)(struct sock *sk); 787 atomic_long_t *memory_allocated; /* Current allocated memory. */ 788 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 789 /* 790 * Pressure flag: try to collapse. 791 * Technical note: it is used by multiple contexts non atomically. 792 * All the __sk_mem_schedule() is of this nature: accounting 793 * is strict, actions are advisory and have some latency. 794 */ 795 int *memory_pressure; 796 long *sysctl_mem; 797 int *sysctl_wmem; 798 int *sysctl_rmem; 799 int max_header; 800 bool no_autobind; 801 802 struct kmem_cache *slab; 803 unsigned int obj_size; 804 int slab_flags; 805 806 struct percpu_counter *orphan_count; 807 808 struct request_sock_ops *rsk_prot; 809 struct timewait_sock_ops *twsk_prot; 810 811 union { 812 struct inet_hashinfo *hashinfo; 813 struct udp_table *udp_table; 814 struct raw_hashinfo *raw_hash; 815 } h; 816 817 struct module *owner; 818 819 char name[32]; 820 821 struct list_head node; 822#ifdef SOCK_REFCNT_DEBUG 823 atomic_t socks; 824#endif 825}; 826 827extern int proto_register(struct proto *prot, int alloc_slab); 828extern void proto_unregister(struct proto *prot); 829 830#ifdef SOCK_REFCNT_DEBUG 831static inline void sk_refcnt_debug_inc(struct sock *sk) 832{ 833 atomic_inc(&sk->sk_prot->socks); 834} 835 836static inline void sk_refcnt_debug_dec(struct sock *sk) 837{ 838 atomic_dec(&sk->sk_prot->socks); 839 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 840 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 841} 842 843static inline void sk_refcnt_debug_release(const struct sock *sk) 844{ 845 if (atomic_read(&sk->sk_refcnt) != 1) 846 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 847 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 848} 849#else /* SOCK_REFCNT_DEBUG */ 850#define sk_refcnt_debug_inc(sk) do { } while (0) 851#define sk_refcnt_debug_dec(sk) do { } while (0) 852#define sk_refcnt_debug_release(sk) do { } while (0) 853#endif /* SOCK_REFCNT_DEBUG */ 854 855 856#ifdef CONFIG_PROC_FS 857/* Called with local bh disabled */ 858extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 859extern int sock_prot_inuse_get(struct net *net, struct proto *proto); 860#else 861static void inline sock_prot_inuse_add(struct net *net, struct proto *prot, 862 int inc) 863{ 864} 865#endif 866 867 868/* With per-bucket locks this operation is not-atomic, so that 869 * this version is not worse. 870 */ 871static inline void __sk_prot_rehash(struct sock *sk) 872{ 873 sk->sk_prot->unhash(sk); 874 sk->sk_prot->hash(sk); 875} 876 877void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 878 879/* About 10 seconds */ 880#define SOCK_DESTROY_TIME (10*HZ) 881 882/* Sockets 0-1023 can't be bound to unless you are superuser */ 883#define PROT_SOCK 1024 884 885#define SHUTDOWN_MASK 3 886#define RCV_SHUTDOWN 1 887#define SEND_SHUTDOWN 2 888 889#define SOCK_SNDBUF_LOCK 1 890#define SOCK_RCVBUF_LOCK 2 891#define SOCK_BINDADDR_LOCK 4 892#define SOCK_BINDPORT_LOCK 8 893 894/* sock_iocb: used to kick off async processing of socket ios */ 895struct sock_iocb { 896 struct list_head list; 897 898 int flags; 899 int size; 900 struct socket *sock; 901 struct sock *sk; 902 struct scm_cookie *scm; 903 struct msghdr *msg, async_msg; 904 struct kiocb *kiocb; 905}; 906 907static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 908{ 909 return (struct sock_iocb *)iocb->private; 910} 911 912static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 913{ 914 return si->kiocb; 915} 916 917struct socket_alloc { 918 struct socket socket; 919 struct inode vfs_inode; 920}; 921 922static inline struct socket *SOCKET_I(struct inode *inode) 923{ 924 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 925} 926 927static inline struct inode *SOCK_INODE(struct socket *socket) 928{ 929 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 930} 931 932/* 933 * Functions for memory accounting 934 */ 935extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 936extern void __sk_mem_reclaim(struct sock *sk); 937 938#define SK_MEM_QUANTUM ((int)PAGE_SIZE) 939#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 940#define SK_MEM_SEND 0 941#define SK_MEM_RECV 1 942 943static inline int sk_mem_pages(int amt) 944{ 945 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 946} 947 948static inline int sk_has_account(struct sock *sk) 949{ 950 /* return true if protocol supports memory accounting */ 951 return !!sk->sk_prot->memory_allocated; 952} 953 954static inline int sk_wmem_schedule(struct sock *sk, int size) 955{ 956 if (!sk_has_account(sk)) 957 return 1; 958 return size <= sk->sk_forward_alloc || 959 __sk_mem_schedule(sk, size, SK_MEM_SEND); 960} 961 962static inline int sk_rmem_schedule(struct sock *sk, int size) 963{ 964 if (!sk_has_account(sk)) 965 return 1; 966 return size <= sk->sk_forward_alloc || 967 __sk_mem_schedule(sk, size, SK_MEM_RECV); 968} 969 970static inline void sk_mem_reclaim(struct sock *sk) 971{ 972 if (!sk_has_account(sk)) 973 return; 974 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 975 __sk_mem_reclaim(sk); 976} 977 978static inline void sk_mem_reclaim_partial(struct sock *sk) 979{ 980 if (!sk_has_account(sk)) 981 return; 982 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 983 __sk_mem_reclaim(sk); 984} 985 986static inline void sk_mem_charge(struct sock *sk, int size) 987{ 988 if (!sk_has_account(sk)) 989 return; 990 sk->sk_forward_alloc -= size; 991} 992 993static inline void sk_mem_uncharge(struct sock *sk, int size) 994{ 995 if (!sk_has_account(sk)) 996 return; 997 sk->sk_forward_alloc += size; 998} 999 1000static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1001{ 1002 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1003 sk->sk_wmem_queued -= skb->truesize; 1004 sk_mem_uncharge(sk, skb->truesize); 1005 __kfree_skb(skb); 1006} 1007 1008/* Used by processes to "lock" a socket state, so that 1009 * interrupts and bottom half handlers won't change it 1010 * from under us. It essentially blocks any incoming 1011 * packets, so that we won't get any new data or any 1012 * packets that change the state of the socket. 1013 * 1014 * While locked, BH processing will add new packets to 1015 * the backlog queue. This queue is processed by the 1016 * owner of the socket lock right before it is released. 1017 * 1018 * Since ~2.3.5 it is also exclusive sleep lock serializing 1019 * accesses from user process context. 1020 */ 1021#define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1022 1023/* 1024 * Macro so as to not evaluate some arguments when 1025 * lockdep is not enabled. 1026 * 1027 * Mark both the sk_lock and the sk_lock.slock as a 1028 * per-address-family lock class. 1029 */ 1030#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1031do { \ 1032 sk->sk_lock.owned = 0; \ 1033 init_waitqueue_head(&sk->sk_lock.wq); \ 1034 spin_lock_init(&(sk)->sk_lock.slock); \ 1035 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1036 sizeof((sk)->sk_lock)); \ 1037 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1038 (skey), (sname)); \ 1039 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1040} while (0) 1041 1042extern void lock_sock_nested(struct sock *sk, int subclass); 1043 1044static inline void lock_sock(struct sock *sk) 1045{ 1046 lock_sock_nested(sk, 0); 1047} 1048 1049extern void release_sock(struct sock *sk); 1050 1051/* BH context may only use the following locking interface. */ 1052#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1053#define bh_lock_sock_nested(__sk) \ 1054 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1055 SINGLE_DEPTH_NESTING) 1056#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1057 1058extern bool lock_sock_fast(struct sock *sk); 1059/** 1060 * unlock_sock_fast - complement of lock_sock_fast 1061 * @sk: socket 1062 * @slow: slow mode 1063 * 1064 * fast unlock socket for user context. 1065 * If slow mode is on, we call regular release_sock() 1066 */ 1067static inline void unlock_sock_fast(struct sock *sk, bool slow) 1068{ 1069 if (slow) 1070 release_sock(sk); 1071 else 1072 spin_unlock_bh(&sk->sk_lock.slock); 1073} 1074 1075 1076extern struct sock *sk_alloc(struct net *net, int family, 1077 gfp_t priority, 1078 struct proto *prot); 1079extern void sk_free(struct sock *sk); 1080extern void sk_release_kernel(struct sock *sk); 1081extern struct sock *sk_clone(const struct sock *sk, 1082 const gfp_t priority); 1083 1084extern struct sk_buff *sock_wmalloc(struct sock *sk, 1085 unsigned long size, int force, 1086 gfp_t priority); 1087extern struct sk_buff *sock_rmalloc(struct sock *sk, 1088 unsigned long size, int force, 1089 gfp_t priority); 1090extern void sock_wfree(struct sk_buff *skb); 1091extern void sock_rfree(struct sk_buff *skb); 1092 1093extern int sock_setsockopt(struct socket *sock, int level, 1094 int op, char __user *optval, 1095 unsigned int optlen); 1096 1097extern int sock_getsockopt(struct socket *sock, int level, 1098 int op, char __user *optval, 1099 int __user *optlen); 1100extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1101 unsigned long size, 1102 int noblock, 1103 int *errcode); 1104extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 1105 unsigned long header_len, 1106 unsigned long data_len, 1107 int noblock, 1108 int *errcode); 1109extern void *sock_kmalloc(struct sock *sk, int size, 1110 gfp_t priority); 1111extern void sock_kfree_s(struct sock *sk, void *mem, int size); 1112extern void sk_send_sigurg(struct sock *sk); 1113 1114#ifdef CONFIG_CGROUPS 1115extern void sock_update_classid(struct sock *sk); 1116#else 1117static inline void sock_update_classid(struct sock *sk) 1118{ 1119} 1120#endif 1121 1122/* 1123 * Functions to fill in entries in struct proto_ops when a protocol 1124 * does not implement a particular function. 1125 */ 1126extern int sock_no_bind(struct socket *, 1127 struct sockaddr *, int); 1128extern int sock_no_connect(struct socket *, 1129 struct sockaddr *, int, int); 1130extern int sock_no_socketpair(struct socket *, 1131 struct socket *); 1132extern int sock_no_accept(struct socket *, 1133 struct socket *, int); 1134extern int sock_no_getname(struct socket *, 1135 struct sockaddr *, int *, int); 1136extern unsigned int sock_no_poll(struct file *, struct socket *, 1137 struct poll_table_struct *); 1138extern int sock_no_ioctl(struct socket *, unsigned int, 1139 unsigned long); 1140extern int sock_no_listen(struct socket *, int); 1141extern int sock_no_shutdown(struct socket *, int); 1142extern int sock_no_getsockopt(struct socket *, int , int, 1143 char __user *, int __user *); 1144extern int sock_no_setsockopt(struct socket *, int, int, 1145 char __user *, unsigned int); 1146extern int sock_no_sendmsg(struct kiocb *, struct socket *, 1147 struct msghdr *, size_t); 1148extern int sock_no_recvmsg(struct kiocb *, struct socket *, 1149 struct msghdr *, size_t, int); 1150extern int sock_no_mmap(struct file *file, 1151 struct socket *sock, 1152 struct vm_area_struct *vma); 1153extern ssize_t sock_no_sendpage(struct socket *sock, 1154 struct page *page, 1155 int offset, size_t size, 1156 int flags); 1157 1158/* 1159 * Functions to fill in entries in struct proto_ops when a protocol 1160 * uses the inet style. 1161 */ 1162extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 1163 char __user *optval, int __user *optlen); 1164extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1165 struct msghdr *msg, size_t size, int flags); 1166extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 1167 char __user *optval, unsigned int optlen); 1168extern int compat_sock_common_getsockopt(struct socket *sock, int level, 1169 int optname, char __user *optval, int __user *optlen); 1170extern int compat_sock_common_setsockopt(struct socket *sock, int level, 1171 int optname, char __user *optval, unsigned int optlen); 1172 1173extern void sk_common_release(struct sock *sk); 1174 1175/* 1176 * Default socket callbacks and setup code 1177 */ 1178 1179/* Initialise core socket variables */ 1180extern void sock_init_data(struct socket *sock, struct sock *sk); 1181 1182extern void sk_filter_release_rcu(struct rcu_head *rcu); 1183 1184/** 1185 * sk_filter_release - release a socket filter 1186 * @fp: filter to remove 1187 * 1188 * Remove a filter from a socket and release its resources. 1189 */ 1190 1191static inline void sk_filter_release(struct sk_filter *fp) 1192{ 1193 if (atomic_dec_and_test(&fp->refcnt)) 1194 call_rcu(&fp->rcu, sk_filter_release_rcu); 1195} 1196 1197static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1198{ 1199 unsigned int size = sk_filter_len(fp); 1200 1201 atomic_sub(size, &sk->sk_omem_alloc); 1202 sk_filter_release(fp); 1203} 1204 1205static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1206{ 1207 atomic_inc(&fp->refcnt); 1208 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 1209} 1210 1211/* 1212 * Socket reference counting postulates. 1213 * 1214 * * Each user of socket SHOULD hold a reference count. 1215 * * Each access point to socket (an hash table bucket, reference from a list, 1216 * running timer, skb in flight MUST hold a reference count. 1217 * * When reference count hits 0, it means it will never increase back. 1218 * * When reference count hits 0, it means that no references from 1219 * outside exist to this socket and current process on current CPU 1220 * is last user and may/should destroy this socket. 1221 * * sk_free is called from any context: process, BH, IRQ. When 1222 * it is called, socket has no references from outside -> sk_free 1223 * may release descendant resources allocated by the socket, but 1224 * to the time when it is called, socket is NOT referenced by any 1225 * hash tables, lists etc. 1226 * * Packets, delivered from outside (from network or from another process) 1227 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1228 * when they sit in queue. Otherwise, packets will leak to hole, when 1229 * socket is looked up by one cpu and unhasing is made by another CPU. 1230 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1231 * (leak to backlog). Packet socket does all the processing inside 1232 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1233 * use separate SMP lock, so that they are prone too. 1234 */ 1235 1236/* Ungrab socket and destroy it, if it was the last reference. */ 1237static inline void sock_put(struct sock *sk) 1238{ 1239 if (atomic_dec_and_test(&sk->sk_refcnt)) 1240 sk_free(sk); 1241} 1242 1243extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1244 const int nested); 1245 1246static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1247{ 1248 sk->sk_tx_queue_mapping = tx_queue; 1249} 1250 1251static inline void sk_tx_queue_clear(struct sock *sk) 1252{ 1253 sk->sk_tx_queue_mapping = -1; 1254} 1255 1256static inline int sk_tx_queue_get(const struct sock *sk) 1257{ 1258 return sk ? sk->sk_tx_queue_mapping : -1; 1259} 1260 1261static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1262{ 1263 sk_tx_queue_clear(sk); 1264 sk->sk_socket = sock; 1265} 1266 1267static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1268{ 1269 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1270 return &rcu_dereference_raw(sk->sk_wq)->wait; 1271} 1272/* Detach socket from process context. 1273 * Announce socket dead, detach it from wait queue and inode. 1274 * Note that parent inode held reference count on this struct sock, 1275 * we do not release it in this function, because protocol 1276 * probably wants some additional cleanups or even continuing 1277 * to work with this socket (TCP). 1278 */ 1279static inline void sock_orphan(struct sock *sk) 1280{ 1281 write_lock_bh(&sk->sk_callback_lock); 1282 sock_set_flag(sk, SOCK_DEAD); 1283 sk_set_socket(sk, NULL); 1284 sk->sk_wq = NULL; 1285 write_unlock_bh(&sk->sk_callback_lock); 1286} 1287 1288static inline void sock_graft(struct sock *sk, struct socket *parent) 1289{ 1290 write_lock_bh(&sk->sk_callback_lock); 1291 sk->sk_wq = parent->wq; 1292 parent->sk = sk; 1293 sk_set_socket(sk, parent); 1294 security_sock_graft(sk, parent); 1295 write_unlock_bh(&sk->sk_callback_lock); 1296} 1297 1298extern int sock_i_uid(struct sock *sk); 1299extern unsigned long sock_i_ino(struct sock *sk); 1300 1301static inline struct dst_entry * 1302__sk_dst_get(struct sock *sk) 1303{ 1304 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() || 1305 sock_owned_by_user(sk) || 1306 lockdep_is_held(&sk->sk_lock.slock)); 1307} 1308 1309static inline struct dst_entry * 1310sk_dst_get(struct sock *sk) 1311{ 1312 struct dst_entry *dst; 1313 1314 rcu_read_lock(); 1315 dst = rcu_dereference(sk->sk_dst_cache); 1316 if (dst) 1317 dst_hold(dst); 1318 rcu_read_unlock(); 1319 return dst; 1320} 1321 1322extern void sk_reset_txq(struct sock *sk); 1323 1324static inline void dst_negative_advice(struct sock *sk) 1325{ 1326 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1327 1328 if (dst && dst->ops->negative_advice) { 1329 ndst = dst->ops->negative_advice(dst); 1330 1331 if (ndst != dst) { 1332 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1333 sk_reset_txq(sk); 1334 } 1335 } 1336} 1337 1338static inline void 1339__sk_dst_set(struct sock *sk, struct dst_entry *dst) 1340{ 1341 struct dst_entry *old_dst; 1342 1343 sk_tx_queue_clear(sk); 1344 /* 1345 * This can be called while sk is owned by the caller only, 1346 * with no state that can be checked in a rcu_dereference_check() cond 1347 */ 1348 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1349 rcu_assign_pointer(sk->sk_dst_cache, dst); 1350 dst_release(old_dst); 1351} 1352 1353static inline void 1354sk_dst_set(struct sock *sk, struct dst_entry *dst) 1355{ 1356 spin_lock(&sk->sk_dst_lock); 1357 __sk_dst_set(sk, dst); 1358 spin_unlock(&sk->sk_dst_lock); 1359} 1360 1361static inline void 1362__sk_dst_reset(struct sock *sk) 1363{ 1364 __sk_dst_set(sk, NULL); 1365} 1366 1367static inline void 1368sk_dst_reset(struct sock *sk) 1369{ 1370 spin_lock(&sk->sk_dst_lock); 1371 __sk_dst_reset(sk); 1372 spin_unlock(&sk->sk_dst_lock); 1373} 1374 1375extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1376 1377extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1378 1379static inline int sk_can_gso(const struct sock *sk) 1380{ 1381 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1382} 1383 1384extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1385 1386static inline void sk_nocaps_add(struct sock *sk, int flags) 1387{ 1388 sk->sk_route_nocaps |= flags; 1389 sk->sk_route_caps &= ~flags; 1390} 1391 1392static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1393 char __user *from, char *to, 1394 int copy, int offset) 1395{ 1396 if (skb->ip_summed == CHECKSUM_NONE) { 1397 int err = 0; 1398 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1399 if (err) 1400 return err; 1401 skb->csum = csum_block_add(skb->csum, csum, offset); 1402 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1403 if (!access_ok(VERIFY_READ, from, copy) || 1404 __copy_from_user_nocache(to, from, copy)) 1405 return -EFAULT; 1406 } else if (copy_from_user(to, from, copy)) 1407 return -EFAULT; 1408 1409 return 0; 1410} 1411 1412static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1413 char __user *from, int copy) 1414{ 1415 int err, offset = skb->len; 1416 1417 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1418 copy, offset); 1419 if (err) 1420 __skb_trim(skb, offset); 1421 1422 return err; 1423} 1424 1425static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1426 struct sk_buff *skb, 1427 struct page *page, 1428 int off, int copy) 1429{ 1430 int err; 1431 1432 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1433 copy, skb->len); 1434 if (err) 1435 return err; 1436 1437 skb->len += copy; 1438 skb->data_len += copy; 1439 skb->truesize += copy; 1440 sk->sk_wmem_queued += copy; 1441 sk_mem_charge(sk, copy); 1442 return 0; 1443} 1444 1445static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1446 struct sk_buff *skb, struct page *page, 1447 int off, int copy) 1448{ 1449 if (skb->ip_summed == CHECKSUM_NONE) { 1450 int err = 0; 1451 __wsum csum = csum_and_copy_from_user(from, 1452 page_address(page) + off, 1453 copy, 0, &err); 1454 if (err) 1455 return err; 1456 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1457 } else if (copy_from_user(page_address(page) + off, from, copy)) 1458 return -EFAULT; 1459 1460 skb->len += copy; 1461 skb->data_len += copy; 1462 skb->truesize += copy; 1463 sk->sk_wmem_queued += copy; 1464 sk_mem_charge(sk, copy); 1465 return 0; 1466} 1467 1468/** 1469 * sk_wmem_alloc_get - returns write allocations 1470 * @sk: socket 1471 * 1472 * Returns sk_wmem_alloc minus initial offset of one 1473 */ 1474static inline int sk_wmem_alloc_get(const struct sock *sk) 1475{ 1476 return atomic_read(&sk->sk_wmem_alloc) - 1; 1477} 1478 1479/** 1480 * sk_rmem_alloc_get - returns read allocations 1481 * @sk: socket 1482 * 1483 * Returns sk_rmem_alloc 1484 */ 1485static inline int sk_rmem_alloc_get(const struct sock *sk) 1486{ 1487 return atomic_read(&sk->sk_rmem_alloc); 1488} 1489 1490/** 1491 * sk_has_allocations - check if allocations are outstanding 1492 * @sk: socket 1493 * 1494 * Returns true if socket has write or read allocations 1495 */ 1496static inline int sk_has_allocations(const struct sock *sk) 1497{ 1498 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1499} 1500 1501/** 1502 * wq_has_sleeper - check if there are any waiting processes 1503 * @wq: struct socket_wq 1504 * 1505 * Returns true if socket_wq has waiting processes 1506 * 1507 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1508 * barrier call. They were added due to the race found within the tcp code. 1509 * 1510 * Consider following tcp code paths: 1511 * 1512 * CPU1 CPU2 1513 * 1514 * sys_select receive packet 1515 * ... ... 1516 * __add_wait_queue update tp->rcv_nxt 1517 * ... ... 1518 * tp->rcv_nxt check sock_def_readable 1519 * ... { 1520 * schedule rcu_read_lock(); 1521 * wq = rcu_dereference(sk->sk_wq); 1522 * if (wq && waitqueue_active(&wq->wait)) 1523 * wake_up_interruptible(&wq->wait) 1524 * ... 1525 * } 1526 * 1527 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1528 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1529 * could then endup calling schedule and sleep forever if there are no more 1530 * data on the socket. 1531 * 1532 */ 1533static inline bool wq_has_sleeper(struct socket_wq *wq) 1534{ 1535 1536 /* 1537 * We need to be sure we are in sync with the 1538 * add_wait_queue modifications to the wait queue. 1539 * 1540 * This memory barrier is paired in the sock_poll_wait. 1541 */ 1542 smp_mb(); 1543 return wq && waitqueue_active(&wq->wait); 1544} 1545 1546/** 1547 * sock_poll_wait - place memory barrier behind the poll_wait call. 1548 * @filp: file 1549 * @wait_address: socket wait queue 1550 * @p: poll_table 1551 * 1552 * See the comments in the wq_has_sleeper function. 1553 */ 1554static inline void sock_poll_wait(struct file *filp, 1555 wait_queue_head_t *wait_address, poll_table *p) 1556{ 1557 if (p && wait_address) { 1558 poll_wait(filp, wait_address, p); 1559 /* 1560 * We need to be sure we are in sync with the 1561 * socket flags modification. 1562 * 1563 * This memory barrier is paired in the wq_has_sleeper. 1564 */ 1565 smp_mb(); 1566 } 1567} 1568 1569/* 1570 * Queue a received datagram if it will fit. Stream and sequenced 1571 * protocols can't normally use this as they need to fit buffers in 1572 * and play with them. 1573 * 1574 * Inlined as it's very short and called for pretty much every 1575 * packet ever received. 1576 */ 1577 1578static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1579{ 1580 skb_orphan(skb); 1581 skb->sk = sk; 1582 skb->destructor = sock_wfree; 1583 /* 1584 * We used to take a refcount on sk, but following operation 1585 * is enough to guarantee sk_free() wont free this sock until 1586 * all in-flight packets are completed 1587 */ 1588 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1589} 1590 1591static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1592{ 1593 skb_orphan(skb); 1594 skb->sk = sk; 1595 skb->destructor = sock_rfree; 1596 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1597 sk_mem_charge(sk, skb->truesize); 1598} 1599 1600extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1601 unsigned long expires); 1602 1603extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1604 1605extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1606 1607extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1608 1609/* 1610 * Recover an error report and clear atomically 1611 */ 1612 1613static inline int sock_error(struct sock *sk) 1614{ 1615 int err; 1616 if (likely(!sk->sk_err)) 1617 return 0; 1618 err = xchg(&sk->sk_err, 0); 1619 return -err; 1620} 1621 1622static inline unsigned long sock_wspace(struct sock *sk) 1623{ 1624 int amt = 0; 1625 1626 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1627 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1628 if (amt < 0) 1629 amt = 0; 1630 } 1631 return amt; 1632} 1633 1634static inline void sk_wake_async(struct sock *sk, int how, int band) 1635{ 1636 if (sock_flag(sk, SOCK_FASYNC)) 1637 sock_wake_async(sk->sk_socket, how, band); 1638} 1639 1640#define SOCK_MIN_SNDBUF 2048 1641/* 1642 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need 1643 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak 1644 */ 1645#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff)) 1646 1647static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1648{ 1649 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1650 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 1651 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1652 } 1653} 1654 1655struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 1656 1657static inline struct page *sk_stream_alloc_page(struct sock *sk) 1658{ 1659 struct page *page = NULL; 1660 1661 page = alloc_pages(sk->sk_allocation, 0); 1662 if (!page) { 1663 sk->sk_prot->enter_memory_pressure(sk); 1664 sk_stream_moderate_sndbuf(sk); 1665 } 1666 return page; 1667} 1668 1669/* 1670 * Default write policy as shown to user space via poll/select/SIGIO 1671 */ 1672static inline int sock_writeable(const struct sock *sk) 1673{ 1674 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 1675} 1676 1677static inline gfp_t gfp_any(void) 1678{ 1679 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1680} 1681 1682static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1683{ 1684 return noblock ? 0 : sk->sk_rcvtimeo; 1685} 1686 1687static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1688{ 1689 return noblock ? 0 : sk->sk_sndtimeo; 1690} 1691 1692static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1693{ 1694 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1695} 1696 1697/* Alas, with timeout socket operations are not restartable. 1698 * Compare this to poll(). 1699 */ 1700static inline int sock_intr_errno(long timeo) 1701{ 1702 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1703} 1704 1705extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 1706 struct sk_buff *skb); 1707 1708static __inline__ void 1709sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1710{ 1711 ktime_t kt = skb->tstamp; 1712 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 1713 1714 /* 1715 * generate control messages if 1716 * - receive time stamping in software requested (SOCK_RCVTSTAMP 1717 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 1718 * - software time stamp available and wanted 1719 * (SOCK_TIMESTAMPING_SOFTWARE) 1720 * - hardware time stamps available and wanted 1721 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 1722 * SOCK_TIMESTAMPING_RAW_HARDWARE) 1723 */ 1724 if (sock_flag(sk, SOCK_RCVTSTAMP) || 1725 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 1726 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 1727 (hwtstamps->hwtstamp.tv64 && 1728 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 1729 (hwtstamps->syststamp.tv64 && 1730 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 1731 __sock_recv_timestamp(msg, sk, skb); 1732 else 1733 sk->sk_stamp = kt; 1734} 1735 1736extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 1737 struct sk_buff *skb); 1738 1739static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 1740 struct sk_buff *skb) 1741{ 1742#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 1743 (1UL << SOCK_RCVTSTAMP) | \ 1744 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 1745 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 1746 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 1747 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 1748 1749 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 1750 __sock_recv_ts_and_drops(msg, sk, skb); 1751 else 1752 sk->sk_stamp = skb->tstamp; 1753} 1754 1755/** 1756 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 1757 * @sk: socket sending this packet 1758 * @tx_flags: filled with instructions for time stamping 1759 * 1760 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if 1761 * parameters are invalid. 1762 */ 1763extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 1764 1765/** 1766 * sk_eat_skb - Release a skb if it is no longer needed 1767 * @sk: socket to eat this skb from 1768 * @skb: socket buffer to eat 1769 * @copied_early: flag indicating whether DMA operations copied this data early 1770 * 1771 * This routine must be called with interrupts disabled or with the socket 1772 * locked so that the sk_buff queue operation is ok. 1773*/ 1774#ifdef CONFIG_NET_DMA 1775static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1776{ 1777 __skb_unlink(skb, &sk->sk_receive_queue); 1778 if (!copied_early) 1779 __kfree_skb(skb); 1780 else 1781 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1782} 1783#else 1784static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1785{ 1786 __skb_unlink(skb, &sk->sk_receive_queue); 1787 __kfree_skb(skb); 1788} 1789#endif 1790 1791static inline 1792struct net *sock_net(const struct sock *sk) 1793{ 1794 return read_pnet(&sk->sk_net); 1795} 1796 1797static inline 1798void sock_net_set(struct sock *sk, struct net *net) 1799{ 1800 write_pnet(&sk->sk_net, net); 1801} 1802 1803/* 1804 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 1805 * They should not hold a reference to a namespace in order to allow 1806 * to stop it. 1807 * Sockets after sk_change_net should be released using sk_release_kernel 1808 */ 1809static inline void sk_change_net(struct sock *sk, struct net *net) 1810{ 1811 put_net(sock_net(sk)); 1812 sock_net_set(sk, hold_net(net)); 1813} 1814 1815static inline struct sock *skb_steal_sock(struct sk_buff *skb) 1816{ 1817 if (unlikely(skb->sk)) { 1818 struct sock *sk = skb->sk; 1819 1820 skb->destructor = NULL; 1821 skb->sk = NULL; 1822 return sk; 1823 } 1824 return NULL; 1825} 1826 1827extern void sock_enable_timestamp(struct sock *sk, int flag); 1828extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1829extern int sock_get_timestampns(struct sock *, struct timespec __user *); 1830 1831/* 1832 * Enable debug/info messages 1833 */ 1834extern int net_msg_warn; 1835#define NETDEBUG(fmt, args...) \ 1836 do { if (net_msg_warn) printk(fmt,##args); } while (0) 1837 1838#define LIMIT_NETDEBUG(fmt, args...) \ 1839 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 1840 1841extern __u32 sysctl_wmem_max; 1842extern __u32 sysctl_rmem_max; 1843 1844extern void sk_init(void); 1845 1846extern int sysctl_optmem_max; 1847 1848extern __u32 sysctl_wmem_default; 1849extern __u32 sysctl_rmem_default; 1850 1851#endif /* _SOCK_H */