Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
7 * (C) 2007 SGI, Christoph Lameter
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
11#include <linux/workqueue.h>
12#include <linux/kobject.h>
13
14#include <linux/kmemleak.h>
15
16enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
27 FREE_SLAB, /* Slab freed to the page allocator */
28 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
29 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
30 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
31 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
32 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
33 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
34 ORDER_FALLBACK, /* Number of times fallback was necessary */
35 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
36 NR_SLUB_STAT_ITEMS };
37
38struct kmem_cache_cpu {
39 void **freelist; /* Pointer to next available object */
40 unsigned long tid; /* Globally unique transaction id */
41 struct page *page; /* The slab from which we are allocating */
42 int node; /* The node of the page (or -1 for debug) */
43#ifdef CONFIG_SLUB_STATS
44 unsigned stat[NR_SLUB_STAT_ITEMS];
45#endif
46};
47
48struct kmem_cache_node {
49 spinlock_t list_lock; /* Protect partial list and nr_partial */
50 unsigned long nr_partial;
51 struct list_head partial;
52#ifdef CONFIG_SLUB_DEBUG
53 atomic_long_t nr_slabs;
54 atomic_long_t total_objects;
55 struct list_head full;
56#endif
57};
58
59/*
60 * Word size structure that can be atomically updated or read and that
61 * contains both the order and the number of objects that a slab of the
62 * given order would contain.
63 */
64struct kmem_cache_order_objects {
65 unsigned long x;
66};
67
68/*
69 * Slab cache management.
70 */
71struct kmem_cache {
72 struct kmem_cache_cpu __percpu *cpu_slab;
73 /* Used for retriving partial slabs etc */
74 unsigned long flags;
75 unsigned long min_partial;
76 int size; /* The size of an object including meta data */
77 int objsize; /* The size of an object without meta data */
78 int offset; /* Free pointer offset. */
79 struct kmem_cache_order_objects oo;
80
81 /* Allocation and freeing of slabs */
82 struct kmem_cache_order_objects max;
83 struct kmem_cache_order_objects min;
84 gfp_t allocflags; /* gfp flags to use on each alloc */
85 int refcount; /* Refcount for slab cache destroy */
86 void (*ctor)(void *);
87 int inuse; /* Offset to metadata */
88 int align; /* Alignment */
89 int reserved; /* Reserved bytes at the end of slabs */
90 const char *name; /* Name (only for display!) */
91 struct list_head list; /* List of slab caches */
92#ifdef CONFIG_SYSFS
93 struct kobject kobj; /* For sysfs */
94#endif
95
96#ifdef CONFIG_NUMA
97 /*
98 * Defragmentation by allocating from a remote node.
99 */
100 int remote_node_defrag_ratio;
101#endif
102 struct kmem_cache_node *node[MAX_NUMNODES];
103};
104
105/*
106 * Kmalloc subsystem.
107 */
108#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
109#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
110#else
111#define KMALLOC_MIN_SIZE 8
112#endif
113
114#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
115
116#ifdef ARCH_DMA_MINALIGN
117#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
118#else
119#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
120#endif
121
122#ifndef ARCH_SLAB_MINALIGN
123#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
124#endif
125
126/*
127 * Maximum kmalloc object size handled by SLUB. Larger object allocations
128 * are passed through to the page allocator. The page allocator "fastpath"
129 * is relatively slow so we need this value sufficiently high so that
130 * performance critical objects are allocated through the SLUB fastpath.
131 *
132 * This should be dropped to PAGE_SIZE / 2 once the page allocator
133 * "fastpath" becomes competitive with the slab allocator fastpaths.
134 */
135#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
136
137#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
138
139#ifdef CONFIG_ZONE_DMA
140#define SLUB_DMA __GFP_DMA
141#else
142/* Disable DMA functionality */
143#define SLUB_DMA (__force gfp_t)0
144#endif
145
146/*
147 * We keep the general caches in an array of slab caches that are used for
148 * 2^x bytes of allocations.
149 */
150extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
151
152/*
153 * Sorry that the following has to be that ugly but some versions of GCC
154 * have trouble with constant propagation and loops.
155 */
156static __always_inline int kmalloc_index(size_t size)
157{
158 if (!size)
159 return 0;
160
161 if (size <= KMALLOC_MIN_SIZE)
162 return KMALLOC_SHIFT_LOW;
163
164 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
165 return 1;
166 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
167 return 2;
168 if (size <= 8) return 3;
169 if (size <= 16) return 4;
170 if (size <= 32) return 5;
171 if (size <= 64) return 6;
172 if (size <= 128) return 7;
173 if (size <= 256) return 8;
174 if (size <= 512) return 9;
175 if (size <= 1024) return 10;
176 if (size <= 2 * 1024) return 11;
177 if (size <= 4 * 1024) return 12;
178/*
179 * The following is only needed to support architectures with a larger page
180 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
181 * size we would have to go up to 128k.
182 */
183 if (size <= 8 * 1024) return 13;
184 if (size <= 16 * 1024) return 14;
185 if (size <= 32 * 1024) return 15;
186 if (size <= 64 * 1024) return 16;
187 if (size <= 128 * 1024) return 17;
188 if (size <= 256 * 1024) return 18;
189 if (size <= 512 * 1024) return 19;
190 if (size <= 1024 * 1024) return 20;
191 if (size <= 2 * 1024 * 1024) return 21;
192 BUG();
193 return -1; /* Will never be reached */
194
195/*
196 * What we really wanted to do and cannot do because of compiler issues is:
197 * int i;
198 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
199 * if (size <= (1 << i))
200 * return i;
201 */
202}
203
204/*
205 * Find the slab cache for a given combination of allocation flags and size.
206 *
207 * This ought to end up with a global pointer to the right cache
208 * in kmalloc_caches.
209 */
210static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
211{
212 int index = kmalloc_index(size);
213
214 if (index == 0)
215 return NULL;
216
217 return kmalloc_caches[index];
218}
219
220void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
221void *__kmalloc(size_t size, gfp_t flags);
222
223static __always_inline void *
224kmalloc_order(size_t size, gfp_t flags, unsigned int order)
225{
226 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
227 kmemleak_alloc(ret, size, 1, flags);
228 return ret;
229}
230
231#ifdef CONFIG_TRACING
232extern void *
233kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
234extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
235#else
236static __always_inline void *
237kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
238{
239 return kmem_cache_alloc(s, gfpflags);
240}
241
242static __always_inline void *
243kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
244{
245 return kmalloc_order(size, flags, order);
246}
247#endif
248
249static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
250{
251 unsigned int order = get_order(size);
252 return kmalloc_order_trace(size, flags, order);
253}
254
255static __always_inline void *kmalloc(size_t size, gfp_t flags)
256{
257 if (__builtin_constant_p(size)) {
258 if (size > SLUB_MAX_SIZE)
259 return kmalloc_large(size, flags);
260
261 if (!(flags & SLUB_DMA)) {
262 struct kmem_cache *s = kmalloc_slab(size);
263
264 if (!s)
265 return ZERO_SIZE_PTR;
266
267 return kmem_cache_alloc_trace(s, flags, size);
268 }
269 }
270 return __kmalloc(size, flags);
271}
272
273#ifdef CONFIG_NUMA
274void *__kmalloc_node(size_t size, gfp_t flags, int node);
275void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
276
277#ifdef CONFIG_TRACING
278extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
279 gfp_t gfpflags,
280 int node, size_t size);
281#else
282static __always_inline void *
283kmem_cache_alloc_node_trace(struct kmem_cache *s,
284 gfp_t gfpflags,
285 int node, size_t size)
286{
287 return kmem_cache_alloc_node(s, gfpflags, node);
288}
289#endif
290
291static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
292{
293 if (__builtin_constant_p(size) &&
294 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
295 struct kmem_cache *s = kmalloc_slab(size);
296
297 if (!s)
298 return ZERO_SIZE_PTR;
299
300 return kmem_cache_alloc_node_trace(s, flags, node, size);
301 }
302 return __kmalloc_node(size, flags, node);
303}
304#endif
305
306#endif /* _LINUX_SLUB_DEF_H */