at v3.0 11 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 */ 8 9#ifndef _LINUX_SLAB_H 10#define _LINUX_SLAB_H 11 12#include <linux/gfp.h> 13#include <linux/types.h> 14 15/* 16 * Flags to pass to kmem_cache_create(). 17 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. 18 */ 19#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 20#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 21#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 22#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 23#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 24#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 25#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 26/* 27 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 28 * 29 * This delays freeing the SLAB page by a grace period, it does _NOT_ 30 * delay object freeing. This means that if you do kmem_cache_free() 31 * that memory location is free to be reused at any time. Thus it may 32 * be possible to see another object there in the same RCU grace period. 33 * 34 * This feature only ensures the memory location backing the object 35 * stays valid, the trick to using this is relying on an independent 36 * object validation pass. Something like: 37 * 38 * rcu_read_lock() 39 * again: 40 * obj = lockless_lookup(key); 41 * if (obj) { 42 * if (!try_get_ref(obj)) // might fail for free objects 43 * goto again; 44 * 45 * if (obj->key != key) { // not the object we expected 46 * put_ref(obj); 47 * goto again; 48 * } 49 * } 50 * rcu_read_unlock(); 51 * 52 * See also the comment on struct slab_rcu in mm/slab.c. 53 */ 54#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 55#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 56#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 57 58/* Flag to prevent checks on free */ 59#ifdef CONFIG_DEBUG_OBJECTS 60# define SLAB_DEBUG_OBJECTS 0x00400000UL 61#else 62# define SLAB_DEBUG_OBJECTS 0x00000000UL 63#endif 64 65#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 66 67/* Don't track use of uninitialized memory */ 68#ifdef CONFIG_KMEMCHECK 69# define SLAB_NOTRACK 0x01000000UL 70#else 71# define SLAB_NOTRACK 0x00000000UL 72#endif 73#ifdef CONFIG_FAILSLAB 74# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 75#else 76# define SLAB_FAILSLAB 0x00000000UL 77#endif 78 79/* The following flags affect the page allocator grouping pages by mobility */ 80#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 81#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 82/* 83 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 84 * 85 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 86 * 87 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 88 * Both make kfree a no-op. 89 */ 90#define ZERO_SIZE_PTR ((void *)16) 91 92#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 93 (unsigned long)ZERO_SIZE_PTR) 94 95/* 96 * struct kmem_cache related prototypes 97 */ 98void __init kmem_cache_init(void); 99int slab_is_available(void); 100 101struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 102 unsigned long, 103 void (*)(void *)); 104void kmem_cache_destroy(struct kmem_cache *); 105int kmem_cache_shrink(struct kmem_cache *); 106void kmem_cache_free(struct kmem_cache *, void *); 107unsigned int kmem_cache_size(struct kmem_cache *); 108 109/* 110 * Please use this macro to create slab caches. Simply specify the 111 * name of the structure and maybe some flags that are listed above. 112 * 113 * The alignment of the struct determines object alignment. If you 114 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 115 * then the objects will be properly aligned in SMP configurations. 116 */ 117#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 118 sizeof(struct __struct), __alignof__(struct __struct),\ 119 (__flags), NULL) 120 121/* 122 * The largest kmalloc size supported by the slab allocators is 123 * 32 megabyte (2^25) or the maximum allocatable page order if that is 124 * less than 32 MB. 125 * 126 * WARNING: Its not easy to increase this value since the allocators have 127 * to do various tricks to work around compiler limitations in order to 128 * ensure proper constant folding. 129 */ 130#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 131 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 132 133#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH) 134#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT) 135 136/* 137 * Common kmalloc functions provided by all allocators 138 */ 139void * __must_check __krealloc(const void *, size_t, gfp_t); 140void * __must_check krealloc(const void *, size_t, gfp_t); 141void kfree(const void *); 142void kzfree(const void *); 143size_t ksize(const void *); 144 145/* 146 * Allocator specific definitions. These are mainly used to establish optimized 147 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by 148 * selecting the appropriate general cache at compile time. 149 * 150 * Allocators must define at least: 151 * 152 * kmem_cache_alloc() 153 * __kmalloc() 154 * kmalloc() 155 * 156 * Those wishing to support NUMA must also define: 157 * 158 * kmem_cache_alloc_node() 159 * kmalloc_node() 160 * 161 * See each allocator definition file for additional comments and 162 * implementation notes. 163 */ 164#ifdef CONFIG_SLUB 165#include <linux/slub_def.h> 166#elif defined(CONFIG_SLOB) 167#include <linux/slob_def.h> 168#else 169#include <linux/slab_def.h> 170#endif 171 172/** 173 * kcalloc - allocate memory for an array. The memory is set to zero. 174 * @n: number of elements. 175 * @size: element size. 176 * @flags: the type of memory to allocate. 177 * 178 * The @flags argument may be one of: 179 * 180 * %GFP_USER - Allocate memory on behalf of user. May sleep. 181 * 182 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 183 * 184 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 185 * For example, use this inside interrupt handlers. 186 * 187 * %GFP_HIGHUSER - Allocate pages from high memory. 188 * 189 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 190 * 191 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 192 * 193 * %GFP_NOWAIT - Allocation will not sleep. 194 * 195 * %GFP_THISNODE - Allocate node-local memory only. 196 * 197 * %GFP_DMA - Allocation suitable for DMA. 198 * Should only be used for kmalloc() caches. Otherwise, use a 199 * slab created with SLAB_DMA. 200 * 201 * Also it is possible to set different flags by OR'ing 202 * in one or more of the following additional @flags: 203 * 204 * %__GFP_COLD - Request cache-cold pages instead of 205 * trying to return cache-warm pages. 206 * 207 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 208 * 209 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 210 * (think twice before using). 211 * 212 * %__GFP_NORETRY - If memory is not immediately available, 213 * then give up at once. 214 * 215 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 216 * 217 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 218 * 219 * There are other flags available as well, but these are not intended 220 * for general use, and so are not documented here. For a full list of 221 * potential flags, always refer to linux/gfp.h. 222 */ 223static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 224{ 225 if (size != 0 && n > ULONG_MAX / size) 226 return NULL; 227 return __kmalloc(n * size, flags | __GFP_ZERO); 228} 229 230#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB) 231/** 232 * kmalloc_node - allocate memory from a specific node 233 * @size: how many bytes of memory are required. 234 * @flags: the type of memory to allocate (see kcalloc). 235 * @node: node to allocate from. 236 * 237 * kmalloc() for non-local nodes, used to allocate from a specific node 238 * if available. Equivalent to kmalloc() in the non-NUMA single-node 239 * case. 240 */ 241static inline void *kmalloc_node(size_t size, gfp_t flags, int node) 242{ 243 return kmalloc(size, flags); 244} 245 246static inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 247{ 248 return __kmalloc(size, flags); 249} 250 251void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 252 253static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep, 254 gfp_t flags, int node) 255{ 256 return kmem_cache_alloc(cachep, flags); 257} 258#endif /* !CONFIG_NUMA && !CONFIG_SLOB */ 259 260/* 261 * kmalloc_track_caller is a special version of kmalloc that records the 262 * calling function of the routine calling it for slab leak tracking instead 263 * of just the calling function (confusing, eh?). 264 * It's useful when the call to kmalloc comes from a widely-used standard 265 * allocator where we care about the real place the memory allocation 266 * request comes from. 267 */ 268#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 269 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) 270extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 271#define kmalloc_track_caller(size, flags) \ 272 __kmalloc_track_caller(size, flags, _RET_IP_) 273#else 274#define kmalloc_track_caller(size, flags) \ 275 __kmalloc(size, flags) 276#endif /* DEBUG_SLAB */ 277 278#ifdef CONFIG_NUMA 279/* 280 * kmalloc_node_track_caller is a special version of kmalloc_node that 281 * records the calling function of the routine calling it for slab leak 282 * tracking instead of just the calling function (confusing, eh?). 283 * It's useful when the call to kmalloc_node comes from a widely-used 284 * standard allocator where we care about the real place the memory 285 * allocation request comes from. 286 */ 287#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 288 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) 289extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 290#define kmalloc_node_track_caller(size, flags, node) \ 291 __kmalloc_node_track_caller(size, flags, node, \ 292 _RET_IP_) 293#else 294#define kmalloc_node_track_caller(size, flags, node) \ 295 __kmalloc_node(size, flags, node) 296#endif 297 298#else /* CONFIG_NUMA */ 299 300#define kmalloc_node_track_caller(size, flags, node) \ 301 kmalloc_track_caller(size, flags) 302 303#endif /* CONFIG_NUMA */ 304 305/* 306 * Shortcuts 307 */ 308static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 309{ 310 return kmem_cache_alloc(k, flags | __GFP_ZERO); 311} 312 313/** 314 * kzalloc - allocate memory. The memory is set to zero. 315 * @size: how many bytes of memory are required. 316 * @flags: the type of memory to allocate (see kmalloc). 317 */ 318static inline void *kzalloc(size_t size, gfp_t flags) 319{ 320 return kmalloc(size, flags | __GFP_ZERO); 321} 322 323/** 324 * kzalloc_node - allocate zeroed memory from a particular memory node. 325 * @size: how many bytes of memory are required. 326 * @flags: the type of memory to allocate (see kmalloc). 327 * @node: memory node from which to allocate 328 */ 329static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 330{ 331 return kmalloc_node(size, flags | __GFP_ZERO, node); 332} 333 334void __init kmem_cache_init_late(void); 335 336#endif /* _LINUX_SLAB_H */