at v3.0 36 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <asm/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42#define MIGRATE_RESERVE 3 43#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44#define MIGRATE_TYPES 5 45 46#define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50extern int page_group_by_mobility_disabled; 51 52static inline int get_pageblock_migratetype(struct page *page) 53{ 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55} 56 57struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60}; 61 62struct pglist_data; 63 64/* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70#if defined(CONFIG_SMP) 71struct zone_padding { 72 char x[0]; 73} ____cacheline_internodealigned_in_smp; 74#define ZONE_PADDING(name) struct zone_padding name; 75#else 76#define ZONE_PADDING(name) 77#endif 78 79enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 107 NR_DIRTIED, /* page dirtyings since bootup */ 108 NR_WRITTEN, /* page writings since bootup */ 109#ifdef CONFIG_NUMA 110 NUMA_HIT, /* allocated in intended node */ 111 NUMA_MISS, /* allocated in non intended node */ 112 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 113 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 114 NUMA_LOCAL, /* allocation from local node */ 115 NUMA_OTHER, /* allocation from other node */ 116#endif 117 NR_ANON_TRANSPARENT_HUGEPAGES, 118 NR_VM_ZONE_STAT_ITEMS }; 119 120/* 121 * We do arithmetic on the LRU lists in various places in the code, 122 * so it is important to keep the active lists LRU_ACTIVE higher in 123 * the array than the corresponding inactive lists, and to keep 124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 125 * 126 * This has to be kept in sync with the statistics in zone_stat_item 127 * above and the descriptions in vmstat_text in mm/vmstat.c 128 */ 129#define LRU_BASE 0 130#define LRU_ACTIVE 1 131#define LRU_FILE 2 132 133enum lru_list { 134 LRU_INACTIVE_ANON = LRU_BASE, 135 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 136 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 137 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 138 LRU_UNEVICTABLE, 139 NR_LRU_LISTS 140}; 141 142#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 143 144#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 145 146static inline int is_file_lru(enum lru_list l) 147{ 148 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 149} 150 151static inline int is_active_lru(enum lru_list l) 152{ 153 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 154} 155 156static inline int is_unevictable_lru(enum lru_list l) 157{ 158 return (l == LRU_UNEVICTABLE); 159} 160 161enum zone_watermarks { 162 WMARK_MIN, 163 WMARK_LOW, 164 WMARK_HIGH, 165 NR_WMARK 166}; 167 168#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 169#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 170#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 171 172struct per_cpu_pages { 173 int count; /* number of pages in the list */ 174 int high; /* high watermark, emptying needed */ 175 int batch; /* chunk size for buddy add/remove */ 176 177 /* Lists of pages, one per migrate type stored on the pcp-lists */ 178 struct list_head lists[MIGRATE_PCPTYPES]; 179}; 180 181struct per_cpu_pageset { 182 struct per_cpu_pages pcp; 183#ifdef CONFIG_NUMA 184 s8 expire; 185#endif 186#ifdef CONFIG_SMP 187 s8 stat_threshold; 188 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 189#endif 190}; 191 192#endif /* !__GENERATING_BOUNDS.H */ 193 194enum zone_type { 195#ifdef CONFIG_ZONE_DMA 196 /* 197 * ZONE_DMA is used when there are devices that are not able 198 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 199 * carve out the portion of memory that is needed for these devices. 200 * The range is arch specific. 201 * 202 * Some examples 203 * 204 * Architecture Limit 205 * --------------------------- 206 * parisc, ia64, sparc <4G 207 * s390 <2G 208 * arm Various 209 * alpha Unlimited or 0-16MB. 210 * 211 * i386, x86_64 and multiple other arches 212 * <16M. 213 */ 214 ZONE_DMA, 215#endif 216#ifdef CONFIG_ZONE_DMA32 217 /* 218 * x86_64 needs two ZONE_DMAs because it supports devices that are 219 * only able to do DMA to the lower 16M but also 32 bit devices that 220 * can only do DMA areas below 4G. 221 */ 222 ZONE_DMA32, 223#endif 224 /* 225 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 226 * performed on pages in ZONE_NORMAL if the DMA devices support 227 * transfers to all addressable memory. 228 */ 229 ZONE_NORMAL, 230#ifdef CONFIG_HIGHMEM 231 /* 232 * A memory area that is only addressable by the kernel through 233 * mapping portions into its own address space. This is for example 234 * used by i386 to allow the kernel to address the memory beyond 235 * 900MB. The kernel will set up special mappings (page 236 * table entries on i386) for each page that the kernel needs to 237 * access. 238 */ 239 ZONE_HIGHMEM, 240#endif 241 ZONE_MOVABLE, 242 __MAX_NR_ZONES 243}; 244 245#ifndef __GENERATING_BOUNDS_H 246 247/* 248 * When a memory allocation must conform to specific limitations (such 249 * as being suitable for DMA) the caller will pass in hints to the 250 * allocator in the gfp_mask, in the zone modifier bits. These bits 251 * are used to select a priority ordered list of memory zones which 252 * match the requested limits. See gfp_zone() in include/linux/gfp.h 253 */ 254 255#if MAX_NR_ZONES < 2 256#define ZONES_SHIFT 0 257#elif MAX_NR_ZONES <= 2 258#define ZONES_SHIFT 1 259#elif MAX_NR_ZONES <= 4 260#define ZONES_SHIFT 2 261#else 262#error ZONES_SHIFT -- too many zones configured adjust calculation 263#endif 264 265struct zone_reclaim_stat { 266 /* 267 * The pageout code in vmscan.c keeps track of how many of the 268 * mem/swap backed and file backed pages are refeferenced. 269 * The higher the rotated/scanned ratio, the more valuable 270 * that cache is. 271 * 272 * The anon LRU stats live in [0], file LRU stats in [1] 273 */ 274 unsigned long recent_rotated[2]; 275 unsigned long recent_scanned[2]; 276}; 277 278struct zone { 279 /* Fields commonly accessed by the page allocator */ 280 281 /* zone watermarks, access with *_wmark_pages(zone) macros */ 282 unsigned long watermark[NR_WMARK]; 283 284 /* 285 * When free pages are below this point, additional steps are taken 286 * when reading the number of free pages to avoid per-cpu counter 287 * drift allowing watermarks to be breached 288 */ 289 unsigned long percpu_drift_mark; 290 291 /* 292 * We don't know if the memory that we're going to allocate will be freeable 293 * or/and it will be released eventually, so to avoid totally wasting several 294 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 295 * to run OOM on the lower zones despite there's tons of freeable ram 296 * on the higher zones). This array is recalculated at runtime if the 297 * sysctl_lowmem_reserve_ratio sysctl changes. 298 */ 299 unsigned long lowmem_reserve[MAX_NR_ZONES]; 300 301#ifdef CONFIG_NUMA 302 int node; 303 /* 304 * zone reclaim becomes active if more unmapped pages exist. 305 */ 306 unsigned long min_unmapped_pages; 307 unsigned long min_slab_pages; 308#endif 309 struct per_cpu_pageset __percpu *pageset; 310 /* 311 * free areas of different sizes 312 */ 313 spinlock_t lock; 314 int all_unreclaimable; /* All pages pinned */ 315#ifdef CONFIG_MEMORY_HOTPLUG 316 /* see spanned/present_pages for more description */ 317 seqlock_t span_seqlock; 318#endif 319 struct free_area free_area[MAX_ORDER]; 320 321#ifndef CONFIG_SPARSEMEM 322 /* 323 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 324 * In SPARSEMEM, this map is stored in struct mem_section 325 */ 326 unsigned long *pageblock_flags; 327#endif /* CONFIG_SPARSEMEM */ 328 329#ifdef CONFIG_COMPACTION 330 /* 331 * On compaction failure, 1<<compact_defer_shift compactions 332 * are skipped before trying again. The number attempted since 333 * last failure is tracked with compact_considered. 334 */ 335 unsigned int compact_considered; 336 unsigned int compact_defer_shift; 337#endif 338 339 ZONE_PADDING(_pad1_) 340 341 /* Fields commonly accessed by the page reclaim scanner */ 342 spinlock_t lru_lock; 343 struct zone_lru { 344 struct list_head list; 345 } lru[NR_LRU_LISTS]; 346 347 struct zone_reclaim_stat reclaim_stat; 348 349 unsigned long pages_scanned; /* since last reclaim */ 350 unsigned long flags; /* zone flags, see below */ 351 352 /* Zone statistics */ 353 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 354 355 /* 356 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 357 * this zone's LRU. Maintained by the pageout code. 358 */ 359 unsigned int inactive_ratio; 360 361 362 ZONE_PADDING(_pad2_) 363 /* Rarely used or read-mostly fields */ 364 365 /* 366 * wait_table -- the array holding the hash table 367 * wait_table_hash_nr_entries -- the size of the hash table array 368 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 369 * 370 * The purpose of all these is to keep track of the people 371 * waiting for a page to become available and make them 372 * runnable again when possible. The trouble is that this 373 * consumes a lot of space, especially when so few things 374 * wait on pages at a given time. So instead of using 375 * per-page waitqueues, we use a waitqueue hash table. 376 * 377 * The bucket discipline is to sleep on the same queue when 378 * colliding and wake all in that wait queue when removing. 379 * When something wakes, it must check to be sure its page is 380 * truly available, a la thundering herd. The cost of a 381 * collision is great, but given the expected load of the 382 * table, they should be so rare as to be outweighed by the 383 * benefits from the saved space. 384 * 385 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 386 * primary users of these fields, and in mm/page_alloc.c 387 * free_area_init_core() performs the initialization of them. 388 */ 389 wait_queue_head_t * wait_table; 390 unsigned long wait_table_hash_nr_entries; 391 unsigned long wait_table_bits; 392 393 /* 394 * Discontig memory support fields. 395 */ 396 struct pglist_data *zone_pgdat; 397 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 398 unsigned long zone_start_pfn; 399 400 /* 401 * zone_start_pfn, spanned_pages and present_pages are all 402 * protected by span_seqlock. It is a seqlock because it has 403 * to be read outside of zone->lock, and it is done in the main 404 * allocator path. But, it is written quite infrequently. 405 * 406 * The lock is declared along with zone->lock because it is 407 * frequently read in proximity to zone->lock. It's good to 408 * give them a chance of being in the same cacheline. 409 */ 410 unsigned long spanned_pages; /* total size, including holes */ 411 unsigned long present_pages; /* amount of memory (excluding holes) */ 412 413 /* 414 * rarely used fields: 415 */ 416 const char *name; 417} ____cacheline_internodealigned_in_smp; 418 419typedef enum { 420 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 421 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 422 ZONE_CONGESTED, /* zone has many dirty pages backed by 423 * a congested BDI 424 */ 425} zone_flags_t; 426 427static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 428{ 429 set_bit(flag, &zone->flags); 430} 431 432static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 433{ 434 return test_and_set_bit(flag, &zone->flags); 435} 436 437static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 438{ 439 clear_bit(flag, &zone->flags); 440} 441 442static inline int zone_is_reclaim_congested(const struct zone *zone) 443{ 444 return test_bit(ZONE_CONGESTED, &zone->flags); 445} 446 447static inline int zone_is_reclaim_locked(const struct zone *zone) 448{ 449 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 450} 451 452static inline int zone_is_oom_locked(const struct zone *zone) 453{ 454 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 455} 456 457/* 458 * The "priority" of VM scanning is how much of the queues we will scan in one 459 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 460 * queues ("queue_length >> 12") during an aging round. 461 */ 462#define DEF_PRIORITY 12 463 464/* Maximum number of zones on a zonelist */ 465#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 466 467#ifdef CONFIG_NUMA 468 469/* 470 * The NUMA zonelists are doubled because we need zonelists that restrict the 471 * allocations to a single node for GFP_THISNODE. 472 * 473 * [0] : Zonelist with fallback 474 * [1] : No fallback (GFP_THISNODE) 475 */ 476#define MAX_ZONELISTS 2 477 478 479/* 480 * We cache key information from each zonelist for smaller cache 481 * footprint when scanning for free pages in get_page_from_freelist(). 482 * 483 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 484 * up short of free memory since the last time (last_fullzone_zap) 485 * we zero'd fullzones. 486 * 2) The array z_to_n[] maps each zone in the zonelist to its node 487 * id, so that we can efficiently evaluate whether that node is 488 * set in the current tasks mems_allowed. 489 * 490 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 491 * indexed by a zones offset in the zonelist zones[] array. 492 * 493 * The get_page_from_freelist() routine does two scans. During the 494 * first scan, we skip zones whose corresponding bit in 'fullzones' 495 * is set or whose corresponding node in current->mems_allowed (which 496 * comes from cpusets) is not set. During the second scan, we bypass 497 * this zonelist_cache, to ensure we look methodically at each zone. 498 * 499 * Once per second, we zero out (zap) fullzones, forcing us to 500 * reconsider nodes that might have regained more free memory. 501 * The field last_full_zap is the time we last zapped fullzones. 502 * 503 * This mechanism reduces the amount of time we waste repeatedly 504 * reexaming zones for free memory when they just came up low on 505 * memory momentarilly ago. 506 * 507 * The zonelist_cache struct members logically belong in struct 508 * zonelist. However, the mempolicy zonelists constructed for 509 * MPOL_BIND are intentionally variable length (and usually much 510 * shorter). A general purpose mechanism for handling structs with 511 * multiple variable length members is more mechanism than we want 512 * here. We resort to some special case hackery instead. 513 * 514 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 515 * part because they are shorter), so we put the fixed length stuff 516 * at the front of the zonelist struct, ending in a variable length 517 * zones[], as is needed by MPOL_BIND. 518 * 519 * Then we put the optional zonelist cache on the end of the zonelist 520 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 521 * the fixed length portion at the front of the struct. This pointer 522 * both enables us to find the zonelist cache, and in the case of 523 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 524 * to know that the zonelist cache is not there. 525 * 526 * The end result is that struct zonelists come in two flavors: 527 * 1) The full, fixed length version, shown below, and 528 * 2) The custom zonelists for MPOL_BIND. 529 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 530 * 531 * Even though there may be multiple CPU cores on a node modifying 532 * fullzones or last_full_zap in the same zonelist_cache at the same 533 * time, we don't lock it. This is just hint data - if it is wrong now 534 * and then, the allocator will still function, perhaps a bit slower. 535 */ 536 537 538struct zonelist_cache { 539 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 540 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 541 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 542}; 543#else 544#define MAX_ZONELISTS 1 545struct zonelist_cache; 546#endif 547 548/* 549 * This struct contains information about a zone in a zonelist. It is stored 550 * here to avoid dereferences into large structures and lookups of tables 551 */ 552struct zoneref { 553 struct zone *zone; /* Pointer to actual zone */ 554 int zone_idx; /* zone_idx(zoneref->zone) */ 555}; 556 557/* 558 * One allocation request operates on a zonelist. A zonelist 559 * is a list of zones, the first one is the 'goal' of the 560 * allocation, the other zones are fallback zones, in decreasing 561 * priority. 562 * 563 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 564 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 565 * * 566 * To speed the reading of the zonelist, the zonerefs contain the zone index 567 * of the entry being read. Helper functions to access information given 568 * a struct zoneref are 569 * 570 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 571 * zonelist_zone_idx() - Return the index of the zone for an entry 572 * zonelist_node_idx() - Return the index of the node for an entry 573 */ 574struct zonelist { 575 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 576 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 577#ifdef CONFIG_NUMA 578 struct zonelist_cache zlcache; // optional ... 579#endif 580}; 581 582#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 583struct node_active_region { 584 unsigned long start_pfn; 585 unsigned long end_pfn; 586 int nid; 587}; 588#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 589 590#ifndef CONFIG_DISCONTIGMEM 591/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 592extern struct page *mem_map; 593#endif 594 595/* 596 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 597 * (mostly NUMA machines?) to denote a higher-level memory zone than the 598 * zone denotes. 599 * 600 * On NUMA machines, each NUMA node would have a pg_data_t to describe 601 * it's memory layout. 602 * 603 * Memory statistics and page replacement data structures are maintained on a 604 * per-zone basis. 605 */ 606struct bootmem_data; 607typedef struct pglist_data { 608 struct zone node_zones[MAX_NR_ZONES]; 609 struct zonelist node_zonelists[MAX_ZONELISTS]; 610 int nr_zones; 611#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 612 struct page *node_mem_map; 613#ifdef CONFIG_CGROUP_MEM_RES_CTLR 614 struct page_cgroup *node_page_cgroup; 615#endif 616#endif 617#ifndef CONFIG_NO_BOOTMEM 618 struct bootmem_data *bdata; 619#endif 620#ifdef CONFIG_MEMORY_HOTPLUG 621 /* 622 * Must be held any time you expect node_start_pfn, node_present_pages 623 * or node_spanned_pages stay constant. Holding this will also 624 * guarantee that any pfn_valid() stays that way. 625 * 626 * Nests above zone->lock and zone->size_seqlock. 627 */ 628 spinlock_t node_size_lock; 629#endif 630 unsigned long node_start_pfn; 631 unsigned long node_present_pages; /* total number of physical pages */ 632 unsigned long node_spanned_pages; /* total size of physical page 633 range, including holes */ 634 int node_id; 635 wait_queue_head_t kswapd_wait; 636 struct task_struct *kswapd; 637 int kswapd_max_order; 638 enum zone_type classzone_idx; 639} pg_data_t; 640 641#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 642#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 643#ifdef CONFIG_FLAT_NODE_MEM_MAP 644#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 645#else 646#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 647#endif 648#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 649 650#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 651 652#define node_end_pfn(nid) ({\ 653 pg_data_t *__pgdat = NODE_DATA(nid);\ 654 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\ 655}) 656 657#include <linux/memory_hotplug.h> 658 659extern struct mutex zonelists_mutex; 660void build_all_zonelists(void *data); 661void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 662bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 663 int classzone_idx, int alloc_flags); 664bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 665 int classzone_idx, int alloc_flags); 666enum memmap_context { 667 MEMMAP_EARLY, 668 MEMMAP_HOTPLUG, 669}; 670extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 671 unsigned long size, 672 enum memmap_context context); 673 674#ifdef CONFIG_HAVE_MEMORY_PRESENT 675void memory_present(int nid, unsigned long start, unsigned long end); 676#else 677static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 678#endif 679 680#ifdef CONFIG_HAVE_MEMORYLESS_NODES 681int local_memory_node(int node_id); 682#else 683static inline int local_memory_node(int node_id) { return node_id; }; 684#endif 685 686#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 687unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 688#endif 689 690/* 691 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 692 */ 693#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 694 695static inline int populated_zone(struct zone *zone) 696{ 697 return (!!zone->present_pages); 698} 699 700extern int movable_zone; 701 702static inline int zone_movable_is_highmem(void) 703{ 704#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 705 return movable_zone == ZONE_HIGHMEM; 706#else 707 return 0; 708#endif 709} 710 711static inline int is_highmem_idx(enum zone_type idx) 712{ 713#ifdef CONFIG_HIGHMEM 714 return (idx == ZONE_HIGHMEM || 715 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 716#else 717 return 0; 718#endif 719} 720 721static inline int is_normal_idx(enum zone_type idx) 722{ 723 return (idx == ZONE_NORMAL); 724} 725 726/** 727 * is_highmem - helper function to quickly check if a struct zone is a 728 * highmem zone or not. This is an attempt to keep references 729 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 730 * @zone - pointer to struct zone variable 731 */ 732static inline int is_highmem(struct zone *zone) 733{ 734#ifdef CONFIG_HIGHMEM 735 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 736 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 737 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 738 zone_movable_is_highmem()); 739#else 740 return 0; 741#endif 742} 743 744static inline int is_normal(struct zone *zone) 745{ 746 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 747} 748 749static inline int is_dma32(struct zone *zone) 750{ 751#ifdef CONFIG_ZONE_DMA32 752 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 753#else 754 return 0; 755#endif 756} 757 758static inline int is_dma(struct zone *zone) 759{ 760#ifdef CONFIG_ZONE_DMA 761 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 762#else 763 return 0; 764#endif 765} 766 767/* These two functions are used to setup the per zone pages min values */ 768struct ctl_table; 769int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 770 void __user *, size_t *, loff_t *); 771extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 772int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 773 void __user *, size_t *, loff_t *); 774int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 775 void __user *, size_t *, loff_t *); 776int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 777 void __user *, size_t *, loff_t *); 778int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 779 void __user *, size_t *, loff_t *); 780 781extern int numa_zonelist_order_handler(struct ctl_table *, int, 782 void __user *, size_t *, loff_t *); 783extern char numa_zonelist_order[]; 784#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 785 786#ifndef CONFIG_NEED_MULTIPLE_NODES 787 788extern struct pglist_data contig_page_data; 789#define NODE_DATA(nid) (&contig_page_data) 790#define NODE_MEM_MAP(nid) mem_map 791 792#else /* CONFIG_NEED_MULTIPLE_NODES */ 793 794#include <asm/mmzone.h> 795 796#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 797 798extern struct pglist_data *first_online_pgdat(void); 799extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 800extern struct zone *next_zone(struct zone *zone); 801 802/** 803 * for_each_online_pgdat - helper macro to iterate over all online nodes 804 * @pgdat - pointer to a pg_data_t variable 805 */ 806#define for_each_online_pgdat(pgdat) \ 807 for (pgdat = first_online_pgdat(); \ 808 pgdat; \ 809 pgdat = next_online_pgdat(pgdat)) 810/** 811 * for_each_zone - helper macro to iterate over all memory zones 812 * @zone - pointer to struct zone variable 813 * 814 * The user only needs to declare the zone variable, for_each_zone 815 * fills it in. 816 */ 817#define for_each_zone(zone) \ 818 for (zone = (first_online_pgdat())->node_zones; \ 819 zone; \ 820 zone = next_zone(zone)) 821 822#define for_each_populated_zone(zone) \ 823 for (zone = (first_online_pgdat())->node_zones; \ 824 zone; \ 825 zone = next_zone(zone)) \ 826 if (!populated_zone(zone)) \ 827 ; /* do nothing */ \ 828 else 829 830static inline struct zone *zonelist_zone(struct zoneref *zoneref) 831{ 832 return zoneref->zone; 833} 834 835static inline int zonelist_zone_idx(struct zoneref *zoneref) 836{ 837 return zoneref->zone_idx; 838} 839 840static inline int zonelist_node_idx(struct zoneref *zoneref) 841{ 842#ifdef CONFIG_NUMA 843 /* zone_to_nid not available in this context */ 844 return zoneref->zone->node; 845#else 846 return 0; 847#endif /* CONFIG_NUMA */ 848} 849 850/** 851 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 852 * @z - The cursor used as a starting point for the search 853 * @highest_zoneidx - The zone index of the highest zone to return 854 * @nodes - An optional nodemask to filter the zonelist with 855 * @zone - The first suitable zone found is returned via this parameter 856 * 857 * This function returns the next zone at or below a given zone index that is 858 * within the allowed nodemask using a cursor as the starting point for the 859 * search. The zoneref returned is a cursor that represents the current zone 860 * being examined. It should be advanced by one before calling 861 * next_zones_zonelist again. 862 */ 863struct zoneref *next_zones_zonelist(struct zoneref *z, 864 enum zone_type highest_zoneidx, 865 nodemask_t *nodes, 866 struct zone **zone); 867 868/** 869 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 870 * @zonelist - The zonelist to search for a suitable zone 871 * @highest_zoneidx - The zone index of the highest zone to return 872 * @nodes - An optional nodemask to filter the zonelist with 873 * @zone - The first suitable zone found is returned via this parameter 874 * 875 * This function returns the first zone at or below a given zone index that is 876 * within the allowed nodemask. The zoneref returned is a cursor that can be 877 * used to iterate the zonelist with next_zones_zonelist by advancing it by 878 * one before calling. 879 */ 880static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 881 enum zone_type highest_zoneidx, 882 nodemask_t *nodes, 883 struct zone **zone) 884{ 885 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 886 zone); 887} 888 889/** 890 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 891 * @zone - The current zone in the iterator 892 * @z - The current pointer within zonelist->zones being iterated 893 * @zlist - The zonelist being iterated 894 * @highidx - The zone index of the highest zone to return 895 * @nodemask - Nodemask allowed by the allocator 896 * 897 * This iterator iterates though all zones at or below a given zone index and 898 * within a given nodemask 899 */ 900#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 901 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 902 zone; \ 903 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 904 905/** 906 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 907 * @zone - The current zone in the iterator 908 * @z - The current pointer within zonelist->zones being iterated 909 * @zlist - The zonelist being iterated 910 * @highidx - The zone index of the highest zone to return 911 * 912 * This iterator iterates though all zones at or below a given zone index. 913 */ 914#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 915 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 916 917#ifdef CONFIG_SPARSEMEM 918#include <asm/sparsemem.h> 919#endif 920 921#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 922 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 923static inline unsigned long early_pfn_to_nid(unsigned long pfn) 924{ 925 return 0; 926} 927#endif 928 929#ifdef CONFIG_FLATMEM 930#define pfn_to_nid(pfn) (0) 931#endif 932 933#ifdef CONFIG_SPARSEMEM 934 935/* 936 * SECTION_SHIFT #bits space required to store a section # 937 * 938 * PA_SECTION_SHIFT physical address to/from section number 939 * PFN_SECTION_SHIFT pfn to/from section number 940 */ 941#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 942 943#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 944#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 945 946#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 947 948#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 949#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 950 951#define SECTION_BLOCKFLAGS_BITS \ 952 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 953 954#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 955#error Allocator MAX_ORDER exceeds SECTION_SIZE 956#endif 957 958#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 959#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 960 961#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 962#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 963 964struct page; 965struct page_cgroup; 966struct mem_section { 967 /* 968 * This is, logically, a pointer to an array of struct 969 * pages. However, it is stored with some other magic. 970 * (see sparse.c::sparse_init_one_section()) 971 * 972 * Additionally during early boot we encode node id of 973 * the location of the section here to guide allocation. 974 * (see sparse.c::memory_present()) 975 * 976 * Making it a UL at least makes someone do a cast 977 * before using it wrong. 978 */ 979 unsigned long section_mem_map; 980 981 /* See declaration of similar field in struct zone */ 982 unsigned long *pageblock_flags; 983#ifdef CONFIG_CGROUP_MEM_RES_CTLR 984 /* 985 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 986 * section. (see memcontrol.h/page_cgroup.h about this.) 987 */ 988 struct page_cgroup *page_cgroup; 989 unsigned long pad; 990#endif 991}; 992 993#ifdef CONFIG_SPARSEMEM_EXTREME 994#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 995#else 996#define SECTIONS_PER_ROOT 1 997#endif 998 999#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1000#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1001#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1002 1003#ifdef CONFIG_SPARSEMEM_EXTREME 1004extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1005#else 1006extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1007#endif 1008 1009static inline struct mem_section *__nr_to_section(unsigned long nr) 1010{ 1011 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1012 return NULL; 1013 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1014} 1015extern int __section_nr(struct mem_section* ms); 1016extern unsigned long usemap_size(void); 1017 1018/* 1019 * We use the lower bits of the mem_map pointer to store 1020 * a little bit of information. There should be at least 1021 * 3 bits here due to 32-bit alignment. 1022 */ 1023#define SECTION_MARKED_PRESENT (1UL<<0) 1024#define SECTION_HAS_MEM_MAP (1UL<<1) 1025#define SECTION_MAP_LAST_BIT (1UL<<2) 1026#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1027#define SECTION_NID_SHIFT 2 1028 1029static inline struct page *__section_mem_map_addr(struct mem_section *section) 1030{ 1031 unsigned long map = section->section_mem_map; 1032 map &= SECTION_MAP_MASK; 1033 return (struct page *)map; 1034} 1035 1036static inline int present_section(struct mem_section *section) 1037{ 1038 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1039} 1040 1041static inline int present_section_nr(unsigned long nr) 1042{ 1043 return present_section(__nr_to_section(nr)); 1044} 1045 1046static inline int valid_section(struct mem_section *section) 1047{ 1048 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1049} 1050 1051static inline int valid_section_nr(unsigned long nr) 1052{ 1053 return valid_section(__nr_to_section(nr)); 1054} 1055 1056static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1057{ 1058 return __nr_to_section(pfn_to_section_nr(pfn)); 1059} 1060 1061#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1062static inline int pfn_valid(unsigned long pfn) 1063{ 1064 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1065 return 0; 1066 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1067} 1068#endif 1069 1070static inline int pfn_present(unsigned long pfn) 1071{ 1072 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1073 return 0; 1074 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1075} 1076 1077/* 1078 * These are _only_ used during initialisation, therefore they 1079 * can use __initdata ... They could have names to indicate 1080 * this restriction. 1081 */ 1082#ifdef CONFIG_NUMA 1083#define pfn_to_nid(pfn) \ 1084({ \ 1085 unsigned long __pfn_to_nid_pfn = (pfn); \ 1086 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1087}) 1088#else 1089#define pfn_to_nid(pfn) (0) 1090#endif 1091 1092#define early_pfn_valid(pfn) pfn_valid(pfn) 1093void sparse_init(void); 1094#else 1095#define sparse_init() do {} while (0) 1096#define sparse_index_init(_sec, _nid) do {} while (0) 1097#endif /* CONFIG_SPARSEMEM */ 1098 1099#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1100bool early_pfn_in_nid(unsigned long pfn, int nid); 1101#else 1102#define early_pfn_in_nid(pfn, nid) (1) 1103#endif 1104 1105#ifndef early_pfn_valid 1106#define early_pfn_valid(pfn) (1) 1107#endif 1108 1109void memory_present(int nid, unsigned long start, unsigned long end); 1110unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1111 1112/* 1113 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1114 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1115 * pfn_valid_within() should be used in this case; we optimise this away 1116 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1117 */ 1118#ifdef CONFIG_HOLES_IN_ZONE 1119#define pfn_valid_within(pfn) pfn_valid(pfn) 1120#else 1121#define pfn_valid_within(pfn) (1) 1122#endif 1123 1124#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1125/* 1126 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1127 * associated with it or not. In FLATMEM, it is expected that holes always 1128 * have valid memmap as long as there is valid PFNs either side of the hole. 1129 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1130 * entire section. 1131 * 1132 * However, an ARM, and maybe other embedded architectures in the future 1133 * free memmap backing holes to save memory on the assumption the memmap is 1134 * never used. The page_zone linkages are then broken even though pfn_valid() 1135 * returns true. A walker of the full memmap must then do this additional 1136 * check to ensure the memmap they are looking at is sane by making sure 1137 * the zone and PFN linkages are still valid. This is expensive, but walkers 1138 * of the full memmap are extremely rare. 1139 */ 1140int memmap_valid_within(unsigned long pfn, 1141 struct page *page, struct zone *zone); 1142#else 1143static inline int memmap_valid_within(unsigned long pfn, 1144 struct page *page, struct zone *zone) 1145{ 1146 return 1; 1147} 1148#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1149 1150#endif /* !__GENERATING_BOUNDS.H */ 1151#endif /* !__ASSEMBLY__ */ 1152#endif /* _LINUX_MMZONE_H */