at v3.0 57 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/range.h> 16#include <linux/pfn.h> 17#include <linux/bit_spinlock.h> 18 19struct mempolicy; 20struct anon_vma; 21struct file_ra_state; 22struct user_struct; 23struct writeback_control; 24 25#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 26extern unsigned long max_mapnr; 27#endif 28 29extern unsigned long num_physpages; 30extern unsigned long totalram_pages; 31extern void * high_memory; 32extern int page_cluster; 33 34#ifdef CONFIG_SYSCTL 35extern int sysctl_legacy_va_layout; 36#else 37#define sysctl_legacy_va_layout 0 38#endif 39 40#include <asm/page.h> 41#include <asm/pgtable.h> 42#include <asm/processor.h> 43 44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 45 46/* to align the pointer to the (next) page boundary */ 47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 48 49/* 50 * Linux kernel virtual memory manager primitives. 51 * The idea being to have a "virtual" mm in the same way 52 * we have a virtual fs - giving a cleaner interface to the 53 * mm details, and allowing different kinds of memory mappings 54 * (from shared memory to executable loading to arbitrary 55 * mmap() functions). 56 */ 57 58extern struct kmem_cache *vm_area_cachep; 59 60#ifndef CONFIG_MMU 61extern struct rb_root nommu_region_tree; 62extern struct rw_semaphore nommu_region_sem; 63 64extern unsigned int kobjsize(const void *objp); 65#endif 66 67/* 68 * vm_flags in vm_area_struct, see mm_types.h. 69 */ 70#define VM_READ 0x00000001 /* currently active flags */ 71#define VM_WRITE 0x00000002 72#define VM_EXEC 0x00000004 73#define VM_SHARED 0x00000008 74 75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 76#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 77#define VM_MAYWRITE 0x00000020 78#define VM_MAYEXEC 0x00000040 79#define VM_MAYSHARE 0x00000080 80 81#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 83#define VM_GROWSUP 0x00000200 84#else 85#define VM_GROWSUP 0x00000000 86#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 87#endif 88#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91#define VM_EXECUTABLE 0x00001000 92#define VM_LOCKED 0x00002000 93#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 104#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 105#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 106#ifndef CONFIG_TRANSPARENT_HUGEPAGE 107#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 108#else 109#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 110#endif 111#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 112#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 113 114#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 115#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 116#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 117#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 118#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 119 120/* Bits set in the VMA until the stack is in its final location */ 121#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 122 123#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 124#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 125#endif 126 127#ifdef CONFIG_STACK_GROWSUP 128#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 129#else 130#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 131#endif 132 133#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 134#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 135#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 136#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 137#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 138 139/* 140 * Special vmas that are non-mergable, non-mlock()able. 141 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 142 */ 143#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 144 145/* 146 * mapping from the currently active vm_flags protection bits (the 147 * low four bits) to a page protection mask.. 148 */ 149extern pgprot_t protection_map[16]; 150 151#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 152#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 153#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 154#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 155#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 156#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 157 158/* 159 * This interface is used by x86 PAT code to identify a pfn mapping that is 160 * linear over entire vma. This is to optimize PAT code that deals with 161 * marking the physical region with a particular prot. This is not for generic 162 * mm use. Note also that this check will not work if the pfn mapping is 163 * linear for a vma starting at physical address 0. In which case PAT code 164 * falls back to slow path of reserving physical range page by page. 165 */ 166static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 167{ 168 return !!(vma->vm_flags & VM_PFN_AT_MMAP); 169} 170 171static inline int is_pfn_mapping(struct vm_area_struct *vma) 172{ 173 return !!(vma->vm_flags & VM_PFNMAP); 174} 175 176/* 177 * vm_fault is filled by the the pagefault handler and passed to the vma's 178 * ->fault function. The vma's ->fault is responsible for returning a bitmask 179 * of VM_FAULT_xxx flags that give details about how the fault was handled. 180 * 181 * pgoff should be used in favour of virtual_address, if possible. If pgoff 182 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 183 * mapping support. 184 */ 185struct vm_fault { 186 unsigned int flags; /* FAULT_FLAG_xxx flags */ 187 pgoff_t pgoff; /* Logical page offset based on vma */ 188 void __user *virtual_address; /* Faulting virtual address */ 189 190 struct page *page; /* ->fault handlers should return a 191 * page here, unless VM_FAULT_NOPAGE 192 * is set (which is also implied by 193 * VM_FAULT_ERROR). 194 */ 195}; 196 197/* 198 * These are the virtual MM functions - opening of an area, closing and 199 * unmapping it (needed to keep files on disk up-to-date etc), pointer 200 * to the functions called when a no-page or a wp-page exception occurs. 201 */ 202struct vm_operations_struct { 203 void (*open)(struct vm_area_struct * area); 204 void (*close)(struct vm_area_struct * area); 205 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 206 207 /* notification that a previously read-only page is about to become 208 * writable, if an error is returned it will cause a SIGBUS */ 209 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 210 211 /* called by access_process_vm when get_user_pages() fails, typically 212 * for use by special VMAs that can switch between memory and hardware 213 */ 214 int (*access)(struct vm_area_struct *vma, unsigned long addr, 215 void *buf, int len, int write); 216#ifdef CONFIG_NUMA 217 /* 218 * set_policy() op must add a reference to any non-NULL @new mempolicy 219 * to hold the policy upon return. Caller should pass NULL @new to 220 * remove a policy and fall back to surrounding context--i.e. do not 221 * install a MPOL_DEFAULT policy, nor the task or system default 222 * mempolicy. 223 */ 224 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 225 226 /* 227 * get_policy() op must add reference [mpol_get()] to any policy at 228 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 229 * in mm/mempolicy.c will do this automatically. 230 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 231 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 232 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 233 * must return NULL--i.e., do not "fallback" to task or system default 234 * policy. 235 */ 236 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 237 unsigned long addr); 238 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 239 const nodemask_t *to, unsigned long flags); 240#endif 241}; 242 243struct mmu_gather; 244struct inode; 245 246#define page_private(page) ((page)->private) 247#define set_page_private(page, v) ((page)->private = (v)) 248 249/* 250 * FIXME: take this include out, include page-flags.h in 251 * files which need it (119 of them) 252 */ 253#include <linux/page-flags.h> 254#include <linux/huge_mm.h> 255 256/* 257 * Methods to modify the page usage count. 258 * 259 * What counts for a page usage: 260 * - cache mapping (page->mapping) 261 * - private data (page->private) 262 * - page mapped in a task's page tables, each mapping 263 * is counted separately 264 * 265 * Also, many kernel routines increase the page count before a critical 266 * routine so they can be sure the page doesn't go away from under them. 267 */ 268 269/* 270 * Drop a ref, return true if the refcount fell to zero (the page has no users) 271 */ 272static inline int put_page_testzero(struct page *page) 273{ 274 VM_BUG_ON(atomic_read(&page->_count) == 0); 275 return atomic_dec_and_test(&page->_count); 276} 277 278/* 279 * Try to grab a ref unless the page has a refcount of zero, return false if 280 * that is the case. 281 */ 282static inline int get_page_unless_zero(struct page *page) 283{ 284 return atomic_inc_not_zero(&page->_count); 285} 286 287extern int page_is_ram(unsigned long pfn); 288 289/* Support for virtually mapped pages */ 290struct page *vmalloc_to_page(const void *addr); 291unsigned long vmalloc_to_pfn(const void *addr); 292 293/* 294 * Determine if an address is within the vmalloc range 295 * 296 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 297 * is no special casing required. 298 */ 299static inline int is_vmalloc_addr(const void *x) 300{ 301#ifdef CONFIG_MMU 302 unsigned long addr = (unsigned long)x; 303 304 return addr >= VMALLOC_START && addr < VMALLOC_END; 305#else 306 return 0; 307#endif 308} 309#ifdef CONFIG_MMU 310extern int is_vmalloc_or_module_addr(const void *x); 311#else 312static inline int is_vmalloc_or_module_addr(const void *x) 313{ 314 return 0; 315} 316#endif 317 318static inline void compound_lock(struct page *page) 319{ 320#ifdef CONFIG_TRANSPARENT_HUGEPAGE 321 bit_spin_lock(PG_compound_lock, &page->flags); 322#endif 323} 324 325static inline void compound_unlock(struct page *page) 326{ 327#ifdef CONFIG_TRANSPARENT_HUGEPAGE 328 bit_spin_unlock(PG_compound_lock, &page->flags); 329#endif 330} 331 332static inline unsigned long compound_lock_irqsave(struct page *page) 333{ 334 unsigned long uninitialized_var(flags); 335#ifdef CONFIG_TRANSPARENT_HUGEPAGE 336 local_irq_save(flags); 337 compound_lock(page); 338#endif 339 return flags; 340} 341 342static inline void compound_unlock_irqrestore(struct page *page, 343 unsigned long flags) 344{ 345#ifdef CONFIG_TRANSPARENT_HUGEPAGE 346 compound_unlock(page); 347 local_irq_restore(flags); 348#endif 349} 350 351static inline struct page *compound_head(struct page *page) 352{ 353 if (unlikely(PageTail(page))) 354 return page->first_page; 355 return page; 356} 357 358static inline int page_count(struct page *page) 359{ 360 return atomic_read(&compound_head(page)->_count); 361} 362 363static inline void get_page(struct page *page) 364{ 365 /* 366 * Getting a normal page or the head of a compound page 367 * requires to already have an elevated page->_count. Only if 368 * we're getting a tail page, the elevated page->_count is 369 * required only in the head page, so for tail pages the 370 * bugcheck only verifies that the page->_count isn't 371 * negative. 372 */ 373 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page)); 374 atomic_inc(&page->_count); 375 /* 376 * Getting a tail page will elevate both the head and tail 377 * page->_count(s). 378 */ 379 if (unlikely(PageTail(page))) { 380 /* 381 * This is safe only because 382 * __split_huge_page_refcount can't run under 383 * get_page(). 384 */ 385 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0); 386 atomic_inc(&page->first_page->_count); 387 } 388} 389 390static inline struct page *virt_to_head_page(const void *x) 391{ 392 struct page *page = virt_to_page(x); 393 return compound_head(page); 394} 395 396/* 397 * Setup the page count before being freed into the page allocator for 398 * the first time (boot or memory hotplug) 399 */ 400static inline void init_page_count(struct page *page) 401{ 402 atomic_set(&page->_count, 1); 403} 404 405/* 406 * PageBuddy() indicate that the page is free and in the buddy system 407 * (see mm/page_alloc.c). 408 * 409 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 410 * -2 so that an underflow of the page_mapcount() won't be mistaken 411 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 412 * efficiently by most CPU architectures. 413 */ 414#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 415 416static inline int PageBuddy(struct page *page) 417{ 418 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 419} 420 421static inline void __SetPageBuddy(struct page *page) 422{ 423 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 424 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 425} 426 427static inline void __ClearPageBuddy(struct page *page) 428{ 429 VM_BUG_ON(!PageBuddy(page)); 430 atomic_set(&page->_mapcount, -1); 431} 432 433void put_page(struct page *page); 434void put_pages_list(struct list_head *pages); 435 436void split_page(struct page *page, unsigned int order); 437int split_free_page(struct page *page); 438 439/* 440 * Compound pages have a destructor function. Provide a 441 * prototype for that function and accessor functions. 442 * These are _only_ valid on the head of a PG_compound page. 443 */ 444typedef void compound_page_dtor(struct page *); 445 446static inline void set_compound_page_dtor(struct page *page, 447 compound_page_dtor *dtor) 448{ 449 page[1].lru.next = (void *)dtor; 450} 451 452static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 453{ 454 return (compound_page_dtor *)page[1].lru.next; 455} 456 457static inline int compound_order(struct page *page) 458{ 459 if (!PageHead(page)) 460 return 0; 461 return (unsigned long)page[1].lru.prev; 462} 463 464static inline int compound_trans_order(struct page *page) 465{ 466 int order; 467 unsigned long flags; 468 469 if (!PageHead(page)) 470 return 0; 471 472 flags = compound_lock_irqsave(page); 473 order = compound_order(page); 474 compound_unlock_irqrestore(page, flags); 475 return order; 476} 477 478static inline void set_compound_order(struct page *page, unsigned long order) 479{ 480 page[1].lru.prev = (void *)order; 481} 482 483#ifdef CONFIG_MMU 484/* 485 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 486 * servicing faults for write access. In the normal case, do always want 487 * pte_mkwrite. But get_user_pages can cause write faults for mappings 488 * that do not have writing enabled, when used by access_process_vm. 489 */ 490static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 491{ 492 if (likely(vma->vm_flags & VM_WRITE)) 493 pte = pte_mkwrite(pte); 494 return pte; 495} 496#endif 497 498/* 499 * Multiple processes may "see" the same page. E.g. for untouched 500 * mappings of /dev/null, all processes see the same page full of 501 * zeroes, and text pages of executables and shared libraries have 502 * only one copy in memory, at most, normally. 503 * 504 * For the non-reserved pages, page_count(page) denotes a reference count. 505 * page_count() == 0 means the page is free. page->lru is then used for 506 * freelist management in the buddy allocator. 507 * page_count() > 0 means the page has been allocated. 508 * 509 * Pages are allocated by the slab allocator in order to provide memory 510 * to kmalloc and kmem_cache_alloc. In this case, the management of the 511 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 512 * unless a particular usage is carefully commented. (the responsibility of 513 * freeing the kmalloc memory is the caller's, of course). 514 * 515 * A page may be used by anyone else who does a __get_free_page(). 516 * In this case, page_count still tracks the references, and should only 517 * be used through the normal accessor functions. The top bits of page->flags 518 * and page->virtual store page management information, but all other fields 519 * are unused and could be used privately, carefully. The management of this 520 * page is the responsibility of the one who allocated it, and those who have 521 * subsequently been given references to it. 522 * 523 * The other pages (we may call them "pagecache pages") are completely 524 * managed by the Linux memory manager: I/O, buffers, swapping etc. 525 * The following discussion applies only to them. 526 * 527 * A pagecache page contains an opaque `private' member, which belongs to the 528 * page's address_space. Usually, this is the address of a circular list of 529 * the page's disk buffers. PG_private must be set to tell the VM to call 530 * into the filesystem to release these pages. 531 * 532 * A page may belong to an inode's memory mapping. In this case, page->mapping 533 * is the pointer to the inode, and page->index is the file offset of the page, 534 * in units of PAGE_CACHE_SIZE. 535 * 536 * If pagecache pages are not associated with an inode, they are said to be 537 * anonymous pages. These may become associated with the swapcache, and in that 538 * case PG_swapcache is set, and page->private is an offset into the swapcache. 539 * 540 * In either case (swapcache or inode backed), the pagecache itself holds one 541 * reference to the page. Setting PG_private should also increment the 542 * refcount. The each user mapping also has a reference to the page. 543 * 544 * The pagecache pages are stored in a per-mapping radix tree, which is 545 * rooted at mapping->page_tree, and indexed by offset. 546 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 547 * lists, we instead now tag pages as dirty/writeback in the radix tree. 548 * 549 * All pagecache pages may be subject to I/O: 550 * - inode pages may need to be read from disk, 551 * - inode pages which have been modified and are MAP_SHARED may need 552 * to be written back to the inode on disk, 553 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 554 * modified may need to be swapped out to swap space and (later) to be read 555 * back into memory. 556 */ 557 558/* 559 * The zone field is never updated after free_area_init_core() 560 * sets it, so none of the operations on it need to be atomic. 561 */ 562 563 564/* 565 * page->flags layout: 566 * 567 * There are three possibilities for how page->flags get 568 * laid out. The first is for the normal case, without 569 * sparsemem. The second is for sparsemem when there is 570 * plenty of space for node and section. The last is when 571 * we have run out of space and have to fall back to an 572 * alternate (slower) way of determining the node. 573 * 574 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 575 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 576 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 577 */ 578#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 579#define SECTIONS_WIDTH SECTIONS_SHIFT 580#else 581#define SECTIONS_WIDTH 0 582#endif 583 584#define ZONES_WIDTH ZONES_SHIFT 585 586#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 587#define NODES_WIDTH NODES_SHIFT 588#else 589#ifdef CONFIG_SPARSEMEM_VMEMMAP 590#error "Vmemmap: No space for nodes field in page flags" 591#endif 592#define NODES_WIDTH 0 593#endif 594 595/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 596#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 597#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 598#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 599 600/* 601 * We are going to use the flags for the page to node mapping if its in 602 * there. This includes the case where there is no node, so it is implicit. 603 */ 604#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 605#define NODE_NOT_IN_PAGE_FLAGS 606#endif 607 608/* 609 * Define the bit shifts to access each section. For non-existent 610 * sections we define the shift as 0; that plus a 0 mask ensures 611 * the compiler will optimise away reference to them. 612 */ 613#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 614#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 615#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 616 617/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 618#ifdef NODE_NOT_IN_PAGE_FLAGS 619#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 620#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 621 SECTIONS_PGOFF : ZONES_PGOFF) 622#else 623#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 624#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 625 NODES_PGOFF : ZONES_PGOFF) 626#endif 627 628#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 629 630#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 631#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 632#endif 633 634#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 635#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 636#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 637#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 638 639static inline enum zone_type page_zonenum(struct page *page) 640{ 641 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 642} 643 644/* 645 * The identification function is only used by the buddy allocator for 646 * determining if two pages could be buddies. We are not really 647 * identifying a zone since we could be using a the section number 648 * id if we have not node id available in page flags. 649 * We guarantee only that it will return the same value for two 650 * combinable pages in a zone. 651 */ 652static inline int page_zone_id(struct page *page) 653{ 654 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 655} 656 657static inline int zone_to_nid(struct zone *zone) 658{ 659#ifdef CONFIG_NUMA 660 return zone->node; 661#else 662 return 0; 663#endif 664} 665 666#ifdef NODE_NOT_IN_PAGE_FLAGS 667extern int page_to_nid(struct page *page); 668#else 669static inline int page_to_nid(struct page *page) 670{ 671 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 672} 673#endif 674 675static inline struct zone *page_zone(struct page *page) 676{ 677 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 678} 679 680#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 681static inline void set_page_section(struct page *page, unsigned long section) 682{ 683 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 684 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 685} 686 687static inline unsigned long page_to_section(struct page *page) 688{ 689 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 690} 691#endif 692 693static inline void set_page_zone(struct page *page, enum zone_type zone) 694{ 695 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 696 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 697} 698 699static inline void set_page_node(struct page *page, unsigned long node) 700{ 701 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 702 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 703} 704 705static inline void set_page_links(struct page *page, enum zone_type zone, 706 unsigned long node, unsigned long pfn) 707{ 708 set_page_zone(page, zone); 709 set_page_node(page, node); 710#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 711 set_page_section(page, pfn_to_section_nr(pfn)); 712#endif 713} 714 715/* 716 * Some inline functions in vmstat.h depend on page_zone() 717 */ 718#include <linux/vmstat.h> 719 720static __always_inline void *lowmem_page_address(struct page *page) 721{ 722 return __va(PFN_PHYS(page_to_pfn(page))); 723} 724 725#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 726#define HASHED_PAGE_VIRTUAL 727#endif 728 729#if defined(WANT_PAGE_VIRTUAL) 730#define page_address(page) ((page)->virtual) 731#define set_page_address(page, address) \ 732 do { \ 733 (page)->virtual = (address); \ 734 } while(0) 735#define page_address_init() do { } while(0) 736#endif 737 738#if defined(HASHED_PAGE_VIRTUAL) 739void *page_address(struct page *page); 740void set_page_address(struct page *page, void *virtual); 741void page_address_init(void); 742#endif 743 744#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 745#define page_address(page) lowmem_page_address(page) 746#define set_page_address(page, address) do { } while(0) 747#define page_address_init() do { } while(0) 748#endif 749 750/* 751 * On an anonymous page mapped into a user virtual memory area, 752 * page->mapping points to its anon_vma, not to a struct address_space; 753 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 754 * 755 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 756 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 757 * and then page->mapping points, not to an anon_vma, but to a private 758 * structure which KSM associates with that merged page. See ksm.h. 759 * 760 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 761 * 762 * Please note that, confusingly, "page_mapping" refers to the inode 763 * address_space which maps the page from disk; whereas "page_mapped" 764 * refers to user virtual address space into which the page is mapped. 765 */ 766#define PAGE_MAPPING_ANON 1 767#define PAGE_MAPPING_KSM 2 768#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 769 770extern struct address_space swapper_space; 771static inline struct address_space *page_mapping(struct page *page) 772{ 773 struct address_space *mapping = page->mapping; 774 775 VM_BUG_ON(PageSlab(page)); 776 if (unlikely(PageSwapCache(page))) 777 mapping = &swapper_space; 778 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 779 mapping = NULL; 780 return mapping; 781} 782 783/* Neutral page->mapping pointer to address_space or anon_vma or other */ 784static inline void *page_rmapping(struct page *page) 785{ 786 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 787} 788 789static inline int PageAnon(struct page *page) 790{ 791 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 792} 793 794/* 795 * Return the pagecache index of the passed page. Regular pagecache pages 796 * use ->index whereas swapcache pages use ->private 797 */ 798static inline pgoff_t page_index(struct page *page) 799{ 800 if (unlikely(PageSwapCache(page))) 801 return page_private(page); 802 return page->index; 803} 804 805/* 806 * The atomic page->_mapcount, like _count, starts from -1: 807 * so that transitions both from it and to it can be tracked, 808 * using atomic_inc_and_test and atomic_add_negative(-1). 809 */ 810static inline void reset_page_mapcount(struct page *page) 811{ 812 atomic_set(&(page)->_mapcount, -1); 813} 814 815static inline int page_mapcount(struct page *page) 816{ 817 return atomic_read(&(page)->_mapcount) + 1; 818} 819 820/* 821 * Return true if this page is mapped into pagetables. 822 */ 823static inline int page_mapped(struct page *page) 824{ 825 return atomic_read(&(page)->_mapcount) >= 0; 826} 827 828/* 829 * Different kinds of faults, as returned by handle_mm_fault(). 830 * Used to decide whether a process gets delivered SIGBUS or 831 * just gets major/minor fault counters bumped up. 832 */ 833 834#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 835 836#define VM_FAULT_OOM 0x0001 837#define VM_FAULT_SIGBUS 0x0002 838#define VM_FAULT_MAJOR 0x0004 839#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 840#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 841#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 842 843#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 844#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 845#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 846 847#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 848 849#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 850 VM_FAULT_HWPOISON_LARGE) 851 852/* Encode hstate index for a hwpoisoned large page */ 853#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 854#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 855 856/* 857 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 858 */ 859extern void pagefault_out_of_memory(void); 860 861#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 862 863/* 864 * Flags passed to show_mem() and show_free_areas() to suppress output in 865 * various contexts. 866 */ 867#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 868 869extern void show_free_areas(unsigned int flags); 870extern bool skip_free_areas_node(unsigned int flags, int nid); 871 872int shmem_lock(struct file *file, int lock, struct user_struct *user); 873struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 874int shmem_zero_setup(struct vm_area_struct *); 875 876extern int can_do_mlock(void); 877extern int user_shm_lock(size_t, struct user_struct *); 878extern void user_shm_unlock(size_t, struct user_struct *); 879 880/* 881 * Parameter block passed down to zap_pte_range in exceptional cases. 882 */ 883struct zap_details { 884 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 885 struct address_space *check_mapping; /* Check page->mapping if set */ 886 pgoff_t first_index; /* Lowest page->index to unmap */ 887 pgoff_t last_index; /* Highest page->index to unmap */ 888}; 889 890struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 891 pte_t pte); 892 893int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 894 unsigned long size); 895unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 896 unsigned long size, struct zap_details *); 897unsigned long unmap_vmas(struct mmu_gather *tlb, 898 struct vm_area_struct *start_vma, unsigned long start_addr, 899 unsigned long end_addr, unsigned long *nr_accounted, 900 struct zap_details *); 901 902/** 903 * mm_walk - callbacks for walk_page_range 904 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 905 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 906 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 907 * this handler is required to be able to handle 908 * pmd_trans_huge() pmds. They may simply choose to 909 * split_huge_page() instead of handling it explicitly. 910 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 911 * @pte_hole: if set, called for each hole at all levels 912 * @hugetlb_entry: if set, called for each hugetlb entry 913 * 914 * (see walk_page_range for more details) 915 */ 916struct mm_walk { 917 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 918 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 919 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 920 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 921 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 922 int (*hugetlb_entry)(pte_t *, unsigned long, 923 unsigned long, unsigned long, struct mm_walk *); 924 struct mm_struct *mm; 925 void *private; 926}; 927 928int walk_page_range(unsigned long addr, unsigned long end, 929 struct mm_walk *walk); 930void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 931 unsigned long end, unsigned long floor, unsigned long ceiling); 932int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 933 struct vm_area_struct *vma); 934void unmap_mapping_range(struct address_space *mapping, 935 loff_t const holebegin, loff_t const holelen, int even_cows); 936int follow_pfn(struct vm_area_struct *vma, unsigned long address, 937 unsigned long *pfn); 938int follow_phys(struct vm_area_struct *vma, unsigned long address, 939 unsigned int flags, unsigned long *prot, resource_size_t *phys); 940int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 941 void *buf, int len, int write); 942 943static inline void unmap_shared_mapping_range(struct address_space *mapping, 944 loff_t const holebegin, loff_t const holelen) 945{ 946 unmap_mapping_range(mapping, holebegin, holelen, 0); 947} 948 949extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 950extern void truncate_setsize(struct inode *inode, loff_t newsize); 951extern int vmtruncate(struct inode *inode, loff_t offset); 952extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 953 954int truncate_inode_page(struct address_space *mapping, struct page *page); 955int generic_error_remove_page(struct address_space *mapping, struct page *page); 956 957int invalidate_inode_page(struct page *page); 958 959#ifdef CONFIG_MMU 960extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 961 unsigned long address, unsigned int flags); 962#else 963static inline int handle_mm_fault(struct mm_struct *mm, 964 struct vm_area_struct *vma, unsigned long address, 965 unsigned int flags) 966{ 967 /* should never happen if there's no MMU */ 968 BUG(); 969 return VM_FAULT_SIGBUS; 970} 971#endif 972 973extern int make_pages_present(unsigned long addr, unsigned long end); 974extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 975extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 976 void *buf, int len, int write); 977 978int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 979 unsigned long start, int len, unsigned int foll_flags, 980 struct page **pages, struct vm_area_struct **vmas, 981 int *nonblocking); 982int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 983 unsigned long start, int nr_pages, int write, int force, 984 struct page **pages, struct vm_area_struct **vmas); 985int get_user_pages_fast(unsigned long start, int nr_pages, int write, 986 struct page **pages); 987struct page *get_dump_page(unsigned long addr); 988 989extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 990extern void do_invalidatepage(struct page *page, unsigned long offset); 991 992int __set_page_dirty_nobuffers(struct page *page); 993int __set_page_dirty_no_writeback(struct page *page); 994int redirty_page_for_writepage(struct writeback_control *wbc, 995 struct page *page); 996void account_page_dirtied(struct page *page, struct address_space *mapping); 997void account_page_writeback(struct page *page); 998int set_page_dirty(struct page *page); 999int set_page_dirty_lock(struct page *page); 1000int clear_page_dirty_for_io(struct page *page); 1001 1002/* Is the vma a continuation of the stack vma above it? */ 1003static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1004{ 1005 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1006} 1007 1008static inline int stack_guard_page_start(struct vm_area_struct *vma, 1009 unsigned long addr) 1010{ 1011 return (vma->vm_flags & VM_GROWSDOWN) && 1012 (vma->vm_start == addr) && 1013 !vma_growsdown(vma->vm_prev, addr); 1014} 1015 1016/* Is the vma a continuation of the stack vma below it? */ 1017static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1018{ 1019 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1020} 1021 1022static inline int stack_guard_page_end(struct vm_area_struct *vma, 1023 unsigned long addr) 1024{ 1025 return (vma->vm_flags & VM_GROWSUP) && 1026 (vma->vm_end == addr) && 1027 !vma_growsup(vma->vm_next, addr); 1028} 1029 1030extern unsigned long move_page_tables(struct vm_area_struct *vma, 1031 unsigned long old_addr, struct vm_area_struct *new_vma, 1032 unsigned long new_addr, unsigned long len); 1033extern unsigned long do_mremap(unsigned long addr, 1034 unsigned long old_len, unsigned long new_len, 1035 unsigned long flags, unsigned long new_addr); 1036extern int mprotect_fixup(struct vm_area_struct *vma, 1037 struct vm_area_struct **pprev, unsigned long start, 1038 unsigned long end, unsigned long newflags); 1039 1040/* 1041 * doesn't attempt to fault and will return short. 1042 */ 1043int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1044 struct page **pages); 1045/* 1046 * per-process(per-mm_struct) statistics. 1047 */ 1048static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1049{ 1050 atomic_long_set(&mm->rss_stat.count[member], value); 1051} 1052 1053#if defined(SPLIT_RSS_COUNTING) 1054unsigned long get_mm_counter(struct mm_struct *mm, int member); 1055#else 1056static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1057{ 1058 return atomic_long_read(&mm->rss_stat.count[member]); 1059} 1060#endif 1061 1062static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1063{ 1064 atomic_long_add(value, &mm->rss_stat.count[member]); 1065} 1066 1067static inline void inc_mm_counter(struct mm_struct *mm, int member) 1068{ 1069 atomic_long_inc(&mm->rss_stat.count[member]); 1070} 1071 1072static inline void dec_mm_counter(struct mm_struct *mm, int member) 1073{ 1074 atomic_long_dec(&mm->rss_stat.count[member]); 1075} 1076 1077static inline unsigned long get_mm_rss(struct mm_struct *mm) 1078{ 1079 return get_mm_counter(mm, MM_FILEPAGES) + 1080 get_mm_counter(mm, MM_ANONPAGES); 1081} 1082 1083static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1084{ 1085 return max(mm->hiwater_rss, get_mm_rss(mm)); 1086} 1087 1088static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1089{ 1090 return max(mm->hiwater_vm, mm->total_vm); 1091} 1092 1093static inline void update_hiwater_rss(struct mm_struct *mm) 1094{ 1095 unsigned long _rss = get_mm_rss(mm); 1096 1097 if ((mm)->hiwater_rss < _rss) 1098 (mm)->hiwater_rss = _rss; 1099} 1100 1101static inline void update_hiwater_vm(struct mm_struct *mm) 1102{ 1103 if (mm->hiwater_vm < mm->total_vm) 1104 mm->hiwater_vm = mm->total_vm; 1105} 1106 1107static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1108 struct mm_struct *mm) 1109{ 1110 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1111 1112 if (*maxrss < hiwater_rss) 1113 *maxrss = hiwater_rss; 1114} 1115 1116#if defined(SPLIT_RSS_COUNTING) 1117void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 1118#else 1119static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 1120{ 1121} 1122#endif 1123 1124/* 1125 * This struct is used to pass information from page reclaim to the shrinkers. 1126 * We consolidate the values for easier extention later. 1127 */ 1128struct shrink_control { 1129 gfp_t gfp_mask; 1130 1131 /* How many slab objects shrinker() should scan and try to reclaim */ 1132 unsigned long nr_to_scan; 1133}; 1134 1135/* 1136 * A callback you can register to apply pressure to ageable caches. 1137 * 1138 * 'sc' is passed shrink_control which includes a count 'nr_to_scan' 1139 * and a 'gfpmask'. It should look through the least-recently-used 1140 * 'nr_to_scan' entries and attempt to free them up. It should return 1141 * the number of objects which remain in the cache. If it returns -1, it means 1142 * it cannot do any scanning at this time (eg. there is a risk of deadlock). 1143 * 1144 * The 'gfpmask' refers to the allocation we are currently trying to 1145 * fulfil. 1146 * 1147 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 1148 * querying the cache size, so a fastpath for that case is appropriate. 1149 */ 1150struct shrinker { 1151 int (*shrink)(struct shrinker *, struct shrink_control *sc); 1152 int seeks; /* seeks to recreate an obj */ 1153 1154 /* These are for internal use */ 1155 struct list_head list; 1156 long nr; /* objs pending delete */ 1157}; 1158#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 1159extern void register_shrinker(struct shrinker *); 1160extern void unregister_shrinker(struct shrinker *); 1161 1162int vma_wants_writenotify(struct vm_area_struct *vma); 1163 1164extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1165 spinlock_t **ptl); 1166static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1167 spinlock_t **ptl) 1168{ 1169 pte_t *ptep; 1170 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1171 return ptep; 1172} 1173 1174#ifdef __PAGETABLE_PUD_FOLDED 1175static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1176 unsigned long address) 1177{ 1178 return 0; 1179} 1180#else 1181int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1182#endif 1183 1184#ifdef __PAGETABLE_PMD_FOLDED 1185static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1186 unsigned long address) 1187{ 1188 return 0; 1189} 1190#else 1191int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1192#endif 1193 1194int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1195 pmd_t *pmd, unsigned long address); 1196int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1197 1198/* 1199 * The following ifdef needed to get the 4level-fixup.h header to work. 1200 * Remove it when 4level-fixup.h has been removed. 1201 */ 1202#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1203static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1204{ 1205 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1206 NULL: pud_offset(pgd, address); 1207} 1208 1209static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1210{ 1211 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1212 NULL: pmd_offset(pud, address); 1213} 1214#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1215 1216#if USE_SPLIT_PTLOCKS 1217/* 1218 * We tuck a spinlock to guard each pagetable page into its struct page, 1219 * at page->private, with BUILD_BUG_ON to make sure that this will not 1220 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1221 * When freeing, reset page->mapping so free_pages_check won't complain. 1222 */ 1223#define __pte_lockptr(page) &((page)->ptl) 1224#define pte_lock_init(_page) do { \ 1225 spin_lock_init(__pte_lockptr(_page)); \ 1226} while (0) 1227#define pte_lock_deinit(page) ((page)->mapping = NULL) 1228#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1229#else /* !USE_SPLIT_PTLOCKS */ 1230/* 1231 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1232 */ 1233#define pte_lock_init(page) do {} while (0) 1234#define pte_lock_deinit(page) do {} while (0) 1235#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1236#endif /* USE_SPLIT_PTLOCKS */ 1237 1238static inline void pgtable_page_ctor(struct page *page) 1239{ 1240 pte_lock_init(page); 1241 inc_zone_page_state(page, NR_PAGETABLE); 1242} 1243 1244static inline void pgtable_page_dtor(struct page *page) 1245{ 1246 pte_lock_deinit(page); 1247 dec_zone_page_state(page, NR_PAGETABLE); 1248} 1249 1250#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1251({ \ 1252 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1253 pte_t *__pte = pte_offset_map(pmd, address); \ 1254 *(ptlp) = __ptl; \ 1255 spin_lock(__ptl); \ 1256 __pte; \ 1257}) 1258 1259#define pte_unmap_unlock(pte, ptl) do { \ 1260 spin_unlock(ptl); \ 1261 pte_unmap(pte); \ 1262} while (0) 1263 1264#define pte_alloc_map(mm, vma, pmd, address) \ 1265 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1266 pmd, address))? \ 1267 NULL: pte_offset_map(pmd, address)) 1268 1269#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1270 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1271 pmd, address))? \ 1272 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1273 1274#define pte_alloc_kernel(pmd, address) \ 1275 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1276 NULL: pte_offset_kernel(pmd, address)) 1277 1278extern void free_area_init(unsigned long * zones_size); 1279extern void free_area_init_node(int nid, unsigned long * zones_size, 1280 unsigned long zone_start_pfn, unsigned long *zholes_size); 1281#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1282/* 1283 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1284 * zones, allocate the backing mem_map and account for memory holes in a more 1285 * architecture independent manner. This is a substitute for creating the 1286 * zone_sizes[] and zholes_size[] arrays and passing them to 1287 * free_area_init_node() 1288 * 1289 * An architecture is expected to register range of page frames backed by 1290 * physical memory with add_active_range() before calling 1291 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1292 * usage, an architecture is expected to do something like 1293 * 1294 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1295 * max_highmem_pfn}; 1296 * for_each_valid_physical_page_range() 1297 * add_active_range(node_id, start_pfn, end_pfn) 1298 * free_area_init_nodes(max_zone_pfns); 1299 * 1300 * If the architecture guarantees that there are no holes in the ranges 1301 * registered with add_active_range(), free_bootmem_active_regions() 1302 * will call free_bootmem_node() for each registered physical page range. 1303 * Similarly sparse_memory_present_with_active_regions() calls 1304 * memory_present() for each range when SPARSEMEM is enabled. 1305 * 1306 * See mm/page_alloc.c for more information on each function exposed by 1307 * CONFIG_ARCH_POPULATES_NODE_MAP 1308 */ 1309extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1310extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1311 unsigned long end_pfn); 1312extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1313 unsigned long end_pfn); 1314extern void remove_all_active_ranges(void); 1315void sort_node_map(void); 1316unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1317 unsigned long end_pfn); 1318extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1319 unsigned long end_pfn); 1320extern void get_pfn_range_for_nid(unsigned int nid, 1321 unsigned long *start_pfn, unsigned long *end_pfn); 1322extern unsigned long find_min_pfn_with_active_regions(void); 1323extern void free_bootmem_with_active_regions(int nid, 1324 unsigned long max_low_pfn); 1325int add_from_early_node_map(struct range *range, int az, 1326 int nr_range, int nid); 1327u64 __init find_memory_core_early(int nid, u64 size, u64 align, 1328 u64 goal, u64 limit); 1329typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1330extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1331extern void sparse_memory_present_with_active_regions(int nid); 1332#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1333 1334#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1335 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1336static inline int __early_pfn_to_nid(unsigned long pfn) 1337{ 1338 return 0; 1339} 1340#else 1341/* please see mm/page_alloc.c */ 1342extern int __meminit early_pfn_to_nid(unsigned long pfn); 1343#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1344/* there is a per-arch backend function. */ 1345extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1346#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1347#endif 1348 1349extern void set_dma_reserve(unsigned long new_dma_reserve); 1350extern void memmap_init_zone(unsigned long, int, unsigned long, 1351 unsigned long, enum memmap_context); 1352extern void setup_per_zone_wmarks(void); 1353extern int __meminit init_per_zone_wmark_min(void); 1354extern void mem_init(void); 1355extern void __init mmap_init(void); 1356extern void show_mem(unsigned int flags); 1357extern void si_meminfo(struct sysinfo * val); 1358extern void si_meminfo_node(struct sysinfo *val, int nid); 1359extern int after_bootmem; 1360 1361extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1362 1363extern void setup_per_cpu_pageset(void); 1364 1365extern void zone_pcp_update(struct zone *zone); 1366 1367/* nommu.c */ 1368extern atomic_long_t mmap_pages_allocated; 1369extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1370 1371/* prio_tree.c */ 1372void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1373void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1374void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1375struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1376 struct prio_tree_iter *iter); 1377 1378#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1379 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1380 (vma = vma_prio_tree_next(vma, iter)); ) 1381 1382static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1383 struct list_head *list) 1384{ 1385 vma->shared.vm_set.parent = NULL; 1386 list_add_tail(&vma->shared.vm_set.list, list); 1387} 1388 1389/* mmap.c */ 1390extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1391extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1392 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1393extern struct vm_area_struct *vma_merge(struct mm_struct *, 1394 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1395 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1396 struct mempolicy *); 1397extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1398extern int split_vma(struct mm_struct *, 1399 struct vm_area_struct *, unsigned long addr, int new_below); 1400extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1401extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1402 struct rb_node **, struct rb_node *); 1403extern void unlink_file_vma(struct vm_area_struct *); 1404extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1405 unsigned long addr, unsigned long len, pgoff_t pgoff); 1406extern void exit_mmap(struct mm_struct *); 1407 1408extern int mm_take_all_locks(struct mm_struct *mm); 1409extern void mm_drop_all_locks(struct mm_struct *mm); 1410 1411/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1412extern void added_exe_file_vma(struct mm_struct *mm); 1413extern void removed_exe_file_vma(struct mm_struct *mm); 1414extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1415extern struct file *get_mm_exe_file(struct mm_struct *mm); 1416 1417extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1418extern int install_special_mapping(struct mm_struct *mm, 1419 unsigned long addr, unsigned long len, 1420 unsigned long flags, struct page **pages); 1421 1422extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1423 1424extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1425 unsigned long len, unsigned long prot, 1426 unsigned long flag, unsigned long pgoff); 1427extern unsigned long mmap_region(struct file *file, unsigned long addr, 1428 unsigned long len, unsigned long flags, 1429 vm_flags_t vm_flags, unsigned long pgoff); 1430 1431static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1432 unsigned long len, unsigned long prot, 1433 unsigned long flag, unsigned long offset) 1434{ 1435 unsigned long ret = -EINVAL; 1436 if ((offset + PAGE_ALIGN(len)) < offset) 1437 goto out; 1438 if (!(offset & ~PAGE_MASK)) 1439 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1440out: 1441 return ret; 1442} 1443 1444extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1445 1446extern unsigned long do_brk(unsigned long, unsigned long); 1447 1448/* filemap.c */ 1449extern unsigned long page_unuse(struct page *); 1450extern void truncate_inode_pages(struct address_space *, loff_t); 1451extern void truncate_inode_pages_range(struct address_space *, 1452 loff_t lstart, loff_t lend); 1453 1454/* generic vm_area_ops exported for stackable file systems */ 1455extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1456 1457/* mm/page-writeback.c */ 1458int write_one_page(struct page *page, int wait); 1459void task_dirty_inc(struct task_struct *tsk); 1460 1461/* readahead.c */ 1462#define VM_MAX_READAHEAD 128 /* kbytes */ 1463#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1464 1465int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1466 pgoff_t offset, unsigned long nr_to_read); 1467 1468void page_cache_sync_readahead(struct address_space *mapping, 1469 struct file_ra_state *ra, 1470 struct file *filp, 1471 pgoff_t offset, 1472 unsigned long size); 1473 1474void page_cache_async_readahead(struct address_space *mapping, 1475 struct file_ra_state *ra, 1476 struct file *filp, 1477 struct page *pg, 1478 pgoff_t offset, 1479 unsigned long size); 1480 1481unsigned long max_sane_readahead(unsigned long nr); 1482unsigned long ra_submit(struct file_ra_state *ra, 1483 struct address_space *mapping, 1484 struct file *filp); 1485 1486/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1487extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1488 1489/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1490extern int expand_downwards(struct vm_area_struct *vma, 1491 unsigned long address); 1492#if VM_GROWSUP 1493extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1494#else 1495 #define expand_upwards(vma, address) do { } while (0) 1496#endif 1497 1498/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1499extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1500extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1501 struct vm_area_struct **pprev); 1502 1503/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1504 NULL if none. Assume start_addr < end_addr. */ 1505static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1506{ 1507 struct vm_area_struct * vma = find_vma(mm,start_addr); 1508 1509 if (vma && end_addr <= vma->vm_start) 1510 vma = NULL; 1511 return vma; 1512} 1513 1514static inline unsigned long vma_pages(struct vm_area_struct *vma) 1515{ 1516 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1517} 1518 1519#ifdef CONFIG_MMU 1520pgprot_t vm_get_page_prot(unsigned long vm_flags); 1521#else 1522static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1523{ 1524 return __pgprot(0); 1525} 1526#endif 1527 1528struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1529int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1530 unsigned long pfn, unsigned long size, pgprot_t); 1531int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1532int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1533 unsigned long pfn); 1534int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1535 unsigned long pfn); 1536 1537struct page *follow_page(struct vm_area_struct *, unsigned long address, 1538 unsigned int foll_flags); 1539#define FOLL_WRITE 0x01 /* check pte is writable */ 1540#define FOLL_TOUCH 0x02 /* mark page accessed */ 1541#define FOLL_GET 0x04 /* do get_page on page */ 1542#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1543#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1544#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1545 * and return without waiting upon it */ 1546#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1547#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1548#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1549 1550typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1551 void *data); 1552extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1553 unsigned long size, pte_fn_t fn, void *data); 1554 1555#ifdef CONFIG_PROC_FS 1556void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1557#else 1558static inline void vm_stat_account(struct mm_struct *mm, 1559 unsigned long flags, struct file *file, long pages) 1560{ 1561} 1562#endif /* CONFIG_PROC_FS */ 1563 1564#ifdef CONFIG_DEBUG_PAGEALLOC 1565extern int debug_pagealloc_enabled; 1566 1567extern void kernel_map_pages(struct page *page, int numpages, int enable); 1568 1569static inline void enable_debug_pagealloc(void) 1570{ 1571 debug_pagealloc_enabled = 1; 1572} 1573#ifdef CONFIG_HIBERNATION 1574extern bool kernel_page_present(struct page *page); 1575#endif /* CONFIG_HIBERNATION */ 1576#else 1577static inline void 1578kernel_map_pages(struct page *page, int numpages, int enable) {} 1579static inline void enable_debug_pagealloc(void) 1580{ 1581} 1582#ifdef CONFIG_HIBERNATION 1583static inline bool kernel_page_present(struct page *page) { return true; } 1584#endif /* CONFIG_HIBERNATION */ 1585#endif 1586 1587extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1588#ifdef __HAVE_ARCH_GATE_AREA 1589int in_gate_area_no_mm(unsigned long addr); 1590int in_gate_area(struct mm_struct *mm, unsigned long addr); 1591#else 1592int in_gate_area_no_mm(unsigned long addr); 1593#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1594#endif /* __HAVE_ARCH_GATE_AREA */ 1595 1596int drop_caches_sysctl_handler(struct ctl_table *, int, 1597 void __user *, size_t *, loff_t *); 1598unsigned long shrink_slab(struct shrink_control *shrink, 1599 unsigned long nr_pages_scanned, 1600 unsigned long lru_pages); 1601 1602#ifndef CONFIG_MMU 1603#define randomize_va_space 0 1604#else 1605extern int randomize_va_space; 1606#endif 1607 1608const char * arch_vma_name(struct vm_area_struct *vma); 1609void print_vma_addr(char *prefix, unsigned long rip); 1610 1611void sparse_mem_maps_populate_node(struct page **map_map, 1612 unsigned long pnum_begin, 1613 unsigned long pnum_end, 1614 unsigned long map_count, 1615 int nodeid); 1616 1617struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1618pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1619pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1620pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1621pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1622void *vmemmap_alloc_block(unsigned long size, int node); 1623void *vmemmap_alloc_block_buf(unsigned long size, int node); 1624void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1625int vmemmap_populate_basepages(struct page *start_page, 1626 unsigned long pages, int node); 1627int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1628void vmemmap_populate_print_last(void); 1629 1630 1631enum mf_flags { 1632 MF_COUNT_INCREASED = 1 << 0, 1633}; 1634extern void memory_failure(unsigned long pfn, int trapno); 1635extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1636extern int unpoison_memory(unsigned long pfn); 1637extern int sysctl_memory_failure_early_kill; 1638extern int sysctl_memory_failure_recovery; 1639extern void shake_page(struct page *p, int access); 1640extern atomic_long_t mce_bad_pages; 1641extern int soft_offline_page(struct page *page, int flags); 1642 1643extern void dump_page(struct page *page); 1644 1645#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1646extern void clear_huge_page(struct page *page, 1647 unsigned long addr, 1648 unsigned int pages_per_huge_page); 1649extern void copy_user_huge_page(struct page *dst, struct page *src, 1650 unsigned long addr, struct vm_area_struct *vma, 1651 unsigned int pages_per_huge_page); 1652#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1653 1654#endif /* __KERNEL__ */ 1655#endif /* _LINUX_MM_H */