at v3.0 2048 lines 53 kB view raw
1/* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22#include <linux/fs.h> 23#include <linux/slab.h> 24#include <linux/highmem.h> 25#include <linux/pagemap.h> 26#include <asm/byteorder.h> 27#include <linux/swap.h> 28#include <linux/pipe_fs_i.h> 29#include <linux/mpage.h> 30#include <linux/quotaops.h> 31 32#include <cluster/masklog.h> 33 34#include "ocfs2.h" 35 36#include "alloc.h" 37#include "aops.h" 38#include "dlmglue.h" 39#include "extent_map.h" 40#include "file.h" 41#include "inode.h" 42#include "journal.h" 43#include "suballoc.h" 44#include "super.h" 45#include "symlink.h" 46#include "refcounttree.h" 47#include "ocfs2_trace.h" 48 49#include "buffer_head_io.h" 50 51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 52 struct buffer_head *bh_result, int create) 53{ 54 int err = -EIO; 55 int status; 56 struct ocfs2_dinode *fe = NULL; 57 struct buffer_head *bh = NULL; 58 struct buffer_head *buffer_cache_bh = NULL; 59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 60 void *kaddr; 61 62 trace_ocfs2_symlink_get_block( 63 (unsigned long long)OCFS2_I(inode)->ip_blkno, 64 (unsigned long long)iblock, bh_result, create); 65 66 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 67 68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 70 (unsigned long long)iblock); 71 goto bail; 72 } 73 74 status = ocfs2_read_inode_block(inode, &bh); 75 if (status < 0) { 76 mlog_errno(status); 77 goto bail; 78 } 79 fe = (struct ocfs2_dinode *) bh->b_data; 80 81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 82 le32_to_cpu(fe->i_clusters))) { 83 mlog(ML_ERROR, "block offset is outside the allocated size: " 84 "%llu\n", (unsigned long long)iblock); 85 goto bail; 86 } 87 88 /* We don't use the page cache to create symlink data, so if 89 * need be, copy it over from the buffer cache. */ 90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 92 iblock; 93 buffer_cache_bh = sb_getblk(osb->sb, blkno); 94 if (!buffer_cache_bh) { 95 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 96 goto bail; 97 } 98 99 /* we haven't locked out transactions, so a commit 100 * could've happened. Since we've got a reference on 101 * the bh, even if it commits while we're doing the 102 * copy, the data is still good. */ 103 if (buffer_jbd(buffer_cache_bh) 104 && ocfs2_inode_is_new(inode)) { 105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0); 106 if (!kaddr) { 107 mlog(ML_ERROR, "couldn't kmap!\n"); 108 goto bail; 109 } 110 memcpy(kaddr + (bh_result->b_size * iblock), 111 buffer_cache_bh->b_data, 112 bh_result->b_size); 113 kunmap_atomic(kaddr, KM_USER0); 114 set_buffer_uptodate(bh_result); 115 } 116 brelse(buffer_cache_bh); 117 } 118 119 map_bh(bh_result, inode->i_sb, 120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 121 122 err = 0; 123 124bail: 125 brelse(bh); 126 127 return err; 128} 129 130int ocfs2_get_block(struct inode *inode, sector_t iblock, 131 struct buffer_head *bh_result, int create) 132{ 133 int err = 0; 134 unsigned int ext_flags; 135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 136 u64 p_blkno, count, past_eof; 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 138 139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 140 (unsigned long long)iblock, bh_result, create); 141 142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 144 inode, inode->i_ino); 145 146 if (S_ISLNK(inode->i_mode)) { 147 /* this always does I/O for some reason. */ 148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 149 goto bail; 150 } 151 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 153 &ext_flags); 154 if (err) { 155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 157 (unsigned long long)p_blkno); 158 goto bail; 159 } 160 161 if (max_blocks < count) 162 count = max_blocks; 163 164 /* 165 * ocfs2 never allocates in this function - the only time we 166 * need to use BH_New is when we're extending i_size on a file 167 * system which doesn't support holes, in which case BH_New 168 * allows __block_write_begin() to zero. 169 * 170 * If we see this on a sparse file system, then a truncate has 171 * raced us and removed the cluster. In this case, we clear 172 * the buffers dirty and uptodate bits and let the buffer code 173 * ignore it as a hole. 174 */ 175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 176 clear_buffer_dirty(bh_result); 177 clear_buffer_uptodate(bh_result); 178 goto bail; 179 } 180 181 /* Treat the unwritten extent as a hole for zeroing purposes. */ 182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 183 map_bh(bh_result, inode->i_sb, p_blkno); 184 185 bh_result->b_size = count << inode->i_blkbits; 186 187 if (!ocfs2_sparse_alloc(osb)) { 188 if (p_blkno == 0) { 189 err = -EIO; 190 mlog(ML_ERROR, 191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 192 (unsigned long long)iblock, 193 (unsigned long long)p_blkno, 194 (unsigned long long)OCFS2_I(inode)->ip_blkno); 195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 196 dump_stack(); 197 goto bail; 198 } 199 } 200 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 202 203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 204 (unsigned long long)past_eof); 205 if (create && (iblock >= past_eof)) 206 set_buffer_new(bh_result); 207 208bail: 209 if (err < 0) 210 err = -EIO; 211 212 return err; 213} 214 215int ocfs2_read_inline_data(struct inode *inode, struct page *page, 216 struct buffer_head *di_bh) 217{ 218 void *kaddr; 219 loff_t size; 220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 221 222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 224 (unsigned long long)OCFS2_I(inode)->ip_blkno); 225 return -EROFS; 226 } 227 228 size = i_size_read(inode); 229 230 if (size > PAGE_CACHE_SIZE || 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 232 ocfs2_error(inode->i_sb, 233 "Inode %llu has with inline data has bad size: %Lu", 234 (unsigned long long)OCFS2_I(inode)->ip_blkno, 235 (unsigned long long)size); 236 return -EROFS; 237 } 238 239 kaddr = kmap_atomic(page, KM_USER0); 240 if (size) 241 memcpy(kaddr, di->id2.i_data.id_data, size); 242 /* Clear the remaining part of the page */ 243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 244 flush_dcache_page(page); 245 kunmap_atomic(kaddr, KM_USER0); 246 247 SetPageUptodate(page); 248 249 return 0; 250} 251 252static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 253{ 254 int ret; 255 struct buffer_head *di_bh = NULL; 256 257 BUG_ON(!PageLocked(page)); 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 259 260 ret = ocfs2_read_inode_block(inode, &di_bh); 261 if (ret) { 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_read_inline_data(inode, page, di_bh); 267out: 268 unlock_page(page); 269 270 brelse(di_bh); 271 return ret; 272} 273 274static int ocfs2_readpage(struct file *file, struct page *page) 275{ 276 struct inode *inode = page->mapping->host; 277 struct ocfs2_inode_info *oi = OCFS2_I(inode); 278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 279 int ret, unlock = 1; 280 281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 282 (page ? page->index : 0)); 283 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 285 if (ret != 0) { 286 if (ret == AOP_TRUNCATED_PAGE) 287 unlock = 0; 288 mlog_errno(ret); 289 goto out; 290 } 291 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 293 ret = AOP_TRUNCATED_PAGE; 294 goto out_inode_unlock; 295 } 296 297 /* 298 * i_size might have just been updated as we grabed the meta lock. We 299 * might now be discovering a truncate that hit on another node. 300 * block_read_full_page->get_block freaks out if it is asked to read 301 * beyond the end of a file, so we check here. Callers 302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 303 * and notice that the page they just read isn't needed. 304 * 305 * XXX sys_readahead() seems to get that wrong? 306 */ 307 if (start >= i_size_read(inode)) { 308 zero_user(page, 0, PAGE_SIZE); 309 SetPageUptodate(page); 310 ret = 0; 311 goto out_alloc; 312 } 313 314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 315 ret = ocfs2_readpage_inline(inode, page); 316 else 317 ret = block_read_full_page(page, ocfs2_get_block); 318 unlock = 0; 319 320out_alloc: 321 up_read(&OCFS2_I(inode)->ip_alloc_sem); 322out_inode_unlock: 323 ocfs2_inode_unlock(inode, 0); 324out: 325 if (unlock) 326 unlock_page(page); 327 return ret; 328} 329 330/* 331 * This is used only for read-ahead. Failures or difficult to handle 332 * situations are safe to ignore. 333 * 334 * Right now, we don't bother with BH_Boundary - in-inode extent lists 335 * are quite large (243 extents on 4k blocks), so most inodes don't 336 * grow out to a tree. If need be, detecting boundary extents could 337 * trivially be added in a future version of ocfs2_get_block(). 338 */ 339static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 340 struct list_head *pages, unsigned nr_pages) 341{ 342 int ret, err = -EIO; 343 struct inode *inode = mapping->host; 344 struct ocfs2_inode_info *oi = OCFS2_I(inode); 345 loff_t start; 346 struct page *last; 347 348 /* 349 * Use the nonblocking flag for the dlm code to avoid page 350 * lock inversion, but don't bother with retrying. 351 */ 352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 353 if (ret) 354 return err; 355 356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 357 ocfs2_inode_unlock(inode, 0); 358 return err; 359 } 360 361 /* 362 * Don't bother with inline-data. There isn't anything 363 * to read-ahead in that case anyway... 364 */ 365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 366 goto out_unlock; 367 368 /* 369 * Check whether a remote node truncated this file - we just 370 * drop out in that case as it's not worth handling here. 371 */ 372 last = list_entry(pages->prev, struct page, lru); 373 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 374 if (start >= i_size_read(inode)) 375 goto out_unlock; 376 377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 378 379out_unlock: 380 up_read(&oi->ip_alloc_sem); 381 ocfs2_inode_unlock(inode, 0); 382 383 return err; 384} 385 386/* Note: Because we don't support holes, our allocation has 387 * already happened (allocation writes zeros to the file data) 388 * so we don't have to worry about ordered writes in 389 * ocfs2_writepage. 390 * 391 * ->writepage is called during the process of invalidating the page cache 392 * during blocked lock processing. It can't block on any cluster locks 393 * to during block mapping. It's relying on the fact that the block 394 * mapping can't have disappeared under the dirty pages that it is 395 * being asked to write back. 396 */ 397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 398{ 399 trace_ocfs2_writepage( 400 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 401 page->index); 402 403 return block_write_full_page(page, ocfs2_get_block, wbc); 404} 405 406/* Taken from ext3. We don't necessarily need the full blown 407 * functionality yet, but IMHO it's better to cut and paste the whole 408 * thing so we can avoid introducing our own bugs (and easily pick up 409 * their fixes when they happen) --Mark */ 410int walk_page_buffers( handle_t *handle, 411 struct buffer_head *head, 412 unsigned from, 413 unsigned to, 414 int *partial, 415 int (*fn)( handle_t *handle, 416 struct buffer_head *bh)) 417{ 418 struct buffer_head *bh; 419 unsigned block_start, block_end; 420 unsigned blocksize = head->b_size; 421 int err, ret = 0; 422 struct buffer_head *next; 423 424 for ( bh = head, block_start = 0; 425 ret == 0 && (bh != head || !block_start); 426 block_start = block_end, bh = next) 427 { 428 next = bh->b_this_page; 429 block_end = block_start + blocksize; 430 if (block_end <= from || block_start >= to) { 431 if (partial && !buffer_uptodate(bh)) 432 *partial = 1; 433 continue; 434 } 435 err = (*fn)(handle, bh); 436 if (!ret) 437 ret = err; 438 } 439 return ret; 440} 441 442static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 443{ 444 sector_t status; 445 u64 p_blkno = 0; 446 int err = 0; 447 struct inode *inode = mapping->host; 448 449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 450 (unsigned long long)block); 451 452 /* We don't need to lock journal system files, since they aren't 453 * accessed concurrently from multiple nodes. 454 */ 455 if (!INODE_JOURNAL(inode)) { 456 err = ocfs2_inode_lock(inode, NULL, 0); 457 if (err) { 458 if (err != -ENOENT) 459 mlog_errno(err); 460 goto bail; 461 } 462 down_read(&OCFS2_I(inode)->ip_alloc_sem); 463 } 464 465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 467 NULL); 468 469 if (!INODE_JOURNAL(inode)) { 470 up_read(&OCFS2_I(inode)->ip_alloc_sem); 471 ocfs2_inode_unlock(inode, 0); 472 } 473 474 if (err) { 475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 476 (unsigned long long)block); 477 mlog_errno(err); 478 goto bail; 479 } 480 481bail: 482 status = err ? 0 : p_blkno; 483 484 return status; 485} 486 487/* 488 * TODO: Make this into a generic get_blocks function. 489 * 490 * From do_direct_io in direct-io.c: 491 * "So what we do is to permit the ->get_blocks function to populate 492 * bh.b_size with the size of IO which is permitted at this offset and 493 * this i_blkbits." 494 * 495 * This function is called directly from get_more_blocks in direct-io.c. 496 * 497 * called like this: dio->get_blocks(dio->inode, fs_startblk, 498 * fs_count, map_bh, dio->rw == WRITE); 499 * 500 * Note that we never bother to allocate blocks here, and thus ignore the 501 * create argument. 502 */ 503static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 504 struct buffer_head *bh_result, int create) 505{ 506 int ret; 507 u64 p_blkno, inode_blocks, contig_blocks; 508 unsigned int ext_flags; 509 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 510 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 511 512 /* This function won't even be called if the request isn't all 513 * nicely aligned and of the right size, so there's no need 514 * for us to check any of that. */ 515 516 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 517 518 /* This figures out the size of the next contiguous block, and 519 * our logical offset */ 520 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 521 &contig_blocks, &ext_flags); 522 if (ret) { 523 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 524 (unsigned long long)iblock); 525 ret = -EIO; 526 goto bail; 527 } 528 529 /* We should already CoW the refcounted extent in case of create. */ 530 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 531 532 /* 533 * get_more_blocks() expects us to describe a hole by clearing 534 * the mapped bit on bh_result(). 535 * 536 * Consider an unwritten extent as a hole. 537 */ 538 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 539 map_bh(bh_result, inode->i_sb, p_blkno); 540 else 541 clear_buffer_mapped(bh_result); 542 543 /* make sure we don't map more than max_blocks blocks here as 544 that's all the kernel will handle at this point. */ 545 if (max_blocks < contig_blocks) 546 contig_blocks = max_blocks; 547 bh_result->b_size = contig_blocks << blocksize_bits; 548bail: 549 return ret; 550} 551 552/* 553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 554 * particularly interested in the aio/dio case. Like the core uses 555 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from 556 * truncation on another. 557 */ 558static void ocfs2_dio_end_io(struct kiocb *iocb, 559 loff_t offset, 560 ssize_t bytes, 561 void *private, 562 int ret, 563 bool is_async) 564{ 565 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 566 int level; 567 568 /* this io's submitter should not have unlocked this before we could */ 569 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 570 571 if (ocfs2_iocb_is_sem_locked(iocb)) { 572 up_read(&inode->i_alloc_sem); 573 ocfs2_iocb_clear_sem_locked(iocb); 574 } 575 576 ocfs2_iocb_clear_rw_locked(iocb); 577 578 level = ocfs2_iocb_rw_locked_level(iocb); 579 ocfs2_rw_unlock(inode, level); 580 581 if (is_async) 582 aio_complete(iocb, ret, 0); 583} 584 585/* 586 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 587 * from ext3. PageChecked() bits have been removed as OCFS2 does not 588 * do journalled data. 589 */ 590static void ocfs2_invalidatepage(struct page *page, unsigned long offset) 591{ 592 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 593 594 jbd2_journal_invalidatepage(journal, page, offset); 595} 596 597static int ocfs2_releasepage(struct page *page, gfp_t wait) 598{ 599 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 600 601 if (!page_has_buffers(page)) 602 return 0; 603 return jbd2_journal_try_to_free_buffers(journal, page, wait); 604} 605 606static ssize_t ocfs2_direct_IO(int rw, 607 struct kiocb *iocb, 608 const struct iovec *iov, 609 loff_t offset, 610 unsigned long nr_segs) 611{ 612 struct file *file = iocb->ki_filp; 613 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; 614 615 /* 616 * Fallback to buffered I/O if we see an inode without 617 * extents. 618 */ 619 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 620 return 0; 621 622 /* Fallback to buffered I/O if we are appending. */ 623 if (i_size_read(inode) <= offset) 624 return 0; 625 626 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, 627 iov, offset, nr_segs, 628 ocfs2_direct_IO_get_blocks, 629 ocfs2_dio_end_io, NULL, 0); 630} 631 632static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 633 u32 cpos, 634 unsigned int *start, 635 unsigned int *end) 636{ 637 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 638 639 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 640 unsigned int cpp; 641 642 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 643 644 cluster_start = cpos % cpp; 645 cluster_start = cluster_start << osb->s_clustersize_bits; 646 647 cluster_end = cluster_start + osb->s_clustersize; 648 } 649 650 BUG_ON(cluster_start > PAGE_SIZE); 651 BUG_ON(cluster_end > PAGE_SIZE); 652 653 if (start) 654 *start = cluster_start; 655 if (end) 656 *end = cluster_end; 657} 658 659/* 660 * 'from' and 'to' are the region in the page to avoid zeroing. 661 * 662 * If pagesize > clustersize, this function will avoid zeroing outside 663 * of the cluster boundary. 664 * 665 * from == to == 0 is code for "zero the entire cluster region" 666 */ 667static void ocfs2_clear_page_regions(struct page *page, 668 struct ocfs2_super *osb, u32 cpos, 669 unsigned from, unsigned to) 670{ 671 void *kaddr; 672 unsigned int cluster_start, cluster_end; 673 674 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 675 676 kaddr = kmap_atomic(page, KM_USER0); 677 678 if (from || to) { 679 if (from > cluster_start) 680 memset(kaddr + cluster_start, 0, from - cluster_start); 681 if (to < cluster_end) 682 memset(kaddr + to, 0, cluster_end - to); 683 } else { 684 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 685 } 686 687 kunmap_atomic(kaddr, KM_USER0); 688} 689 690/* 691 * Nonsparse file systems fully allocate before we get to the write 692 * code. This prevents ocfs2_write() from tagging the write as an 693 * allocating one, which means ocfs2_map_page_blocks() might try to 694 * read-in the blocks at the tail of our file. Avoid reading them by 695 * testing i_size against each block offset. 696 */ 697static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 698 unsigned int block_start) 699{ 700 u64 offset = page_offset(page) + block_start; 701 702 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 703 return 1; 704 705 if (i_size_read(inode) > offset) 706 return 1; 707 708 return 0; 709} 710 711/* 712 * Some of this taken from __block_write_begin(). We already have our 713 * mapping by now though, and the entire write will be allocating or 714 * it won't, so not much need to use BH_New. 715 * 716 * This will also skip zeroing, which is handled externally. 717 */ 718int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 719 struct inode *inode, unsigned int from, 720 unsigned int to, int new) 721{ 722 int ret = 0; 723 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 724 unsigned int block_end, block_start; 725 unsigned int bsize = 1 << inode->i_blkbits; 726 727 if (!page_has_buffers(page)) 728 create_empty_buffers(page, bsize, 0); 729 730 head = page_buffers(page); 731 for (bh = head, block_start = 0; bh != head || !block_start; 732 bh = bh->b_this_page, block_start += bsize) { 733 block_end = block_start + bsize; 734 735 clear_buffer_new(bh); 736 737 /* 738 * Ignore blocks outside of our i/o range - 739 * they may belong to unallocated clusters. 740 */ 741 if (block_start >= to || block_end <= from) { 742 if (PageUptodate(page)) 743 set_buffer_uptodate(bh); 744 continue; 745 } 746 747 /* 748 * For an allocating write with cluster size >= page 749 * size, we always write the entire page. 750 */ 751 if (new) 752 set_buffer_new(bh); 753 754 if (!buffer_mapped(bh)) { 755 map_bh(bh, inode->i_sb, *p_blkno); 756 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 757 } 758 759 if (PageUptodate(page)) { 760 if (!buffer_uptodate(bh)) 761 set_buffer_uptodate(bh); 762 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 763 !buffer_new(bh) && 764 ocfs2_should_read_blk(inode, page, block_start) && 765 (block_start < from || block_end > to)) { 766 ll_rw_block(READ, 1, &bh); 767 *wait_bh++=bh; 768 } 769 770 *p_blkno = *p_blkno + 1; 771 } 772 773 /* 774 * If we issued read requests - let them complete. 775 */ 776 while(wait_bh > wait) { 777 wait_on_buffer(*--wait_bh); 778 if (!buffer_uptodate(*wait_bh)) 779 ret = -EIO; 780 } 781 782 if (ret == 0 || !new) 783 return ret; 784 785 /* 786 * If we get -EIO above, zero out any newly allocated blocks 787 * to avoid exposing stale data. 788 */ 789 bh = head; 790 block_start = 0; 791 do { 792 block_end = block_start + bsize; 793 if (block_end <= from) 794 goto next_bh; 795 if (block_start >= to) 796 break; 797 798 zero_user(page, block_start, bh->b_size); 799 set_buffer_uptodate(bh); 800 mark_buffer_dirty(bh); 801 802next_bh: 803 block_start = block_end; 804 bh = bh->b_this_page; 805 } while (bh != head); 806 807 return ret; 808} 809 810#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 811#define OCFS2_MAX_CTXT_PAGES 1 812#else 813#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 814#endif 815 816#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 817 818/* 819 * Describe the state of a single cluster to be written to. 820 */ 821struct ocfs2_write_cluster_desc { 822 u32 c_cpos; 823 u32 c_phys; 824 /* 825 * Give this a unique field because c_phys eventually gets 826 * filled. 827 */ 828 unsigned c_new; 829 unsigned c_unwritten; 830 unsigned c_needs_zero; 831}; 832 833struct ocfs2_write_ctxt { 834 /* Logical cluster position / len of write */ 835 u32 w_cpos; 836 u32 w_clen; 837 838 /* First cluster allocated in a nonsparse extend */ 839 u32 w_first_new_cpos; 840 841 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 842 843 /* 844 * This is true if page_size > cluster_size. 845 * 846 * It triggers a set of special cases during write which might 847 * have to deal with allocating writes to partial pages. 848 */ 849 unsigned int w_large_pages; 850 851 /* 852 * Pages involved in this write. 853 * 854 * w_target_page is the page being written to by the user. 855 * 856 * w_pages is an array of pages which always contains 857 * w_target_page, and in the case of an allocating write with 858 * page_size < cluster size, it will contain zero'd and mapped 859 * pages adjacent to w_target_page which need to be written 860 * out in so that future reads from that region will get 861 * zero's. 862 */ 863 unsigned int w_num_pages; 864 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 865 struct page *w_target_page; 866 867 /* 868 * ocfs2_write_end() uses this to know what the real range to 869 * write in the target should be. 870 */ 871 unsigned int w_target_from; 872 unsigned int w_target_to; 873 874 /* 875 * We could use journal_current_handle() but this is cleaner, 876 * IMHO -Mark 877 */ 878 handle_t *w_handle; 879 880 struct buffer_head *w_di_bh; 881 882 struct ocfs2_cached_dealloc_ctxt w_dealloc; 883}; 884 885void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 886{ 887 int i; 888 889 for(i = 0; i < num_pages; i++) { 890 if (pages[i]) { 891 unlock_page(pages[i]); 892 mark_page_accessed(pages[i]); 893 page_cache_release(pages[i]); 894 } 895 } 896} 897 898static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 899{ 900 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 901 902 brelse(wc->w_di_bh); 903 kfree(wc); 904} 905 906static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 907 struct ocfs2_super *osb, loff_t pos, 908 unsigned len, struct buffer_head *di_bh) 909{ 910 u32 cend; 911 struct ocfs2_write_ctxt *wc; 912 913 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 914 if (!wc) 915 return -ENOMEM; 916 917 wc->w_cpos = pos >> osb->s_clustersize_bits; 918 wc->w_first_new_cpos = UINT_MAX; 919 cend = (pos + len - 1) >> osb->s_clustersize_bits; 920 wc->w_clen = cend - wc->w_cpos + 1; 921 get_bh(di_bh); 922 wc->w_di_bh = di_bh; 923 924 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 925 wc->w_large_pages = 1; 926 else 927 wc->w_large_pages = 0; 928 929 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 930 931 *wcp = wc; 932 933 return 0; 934} 935 936/* 937 * If a page has any new buffers, zero them out here, and mark them uptodate 938 * and dirty so they'll be written out (in order to prevent uninitialised 939 * block data from leaking). And clear the new bit. 940 */ 941static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 942{ 943 unsigned int block_start, block_end; 944 struct buffer_head *head, *bh; 945 946 BUG_ON(!PageLocked(page)); 947 if (!page_has_buffers(page)) 948 return; 949 950 bh = head = page_buffers(page); 951 block_start = 0; 952 do { 953 block_end = block_start + bh->b_size; 954 955 if (buffer_new(bh)) { 956 if (block_end > from && block_start < to) { 957 if (!PageUptodate(page)) { 958 unsigned start, end; 959 960 start = max(from, block_start); 961 end = min(to, block_end); 962 963 zero_user_segment(page, start, end); 964 set_buffer_uptodate(bh); 965 } 966 967 clear_buffer_new(bh); 968 mark_buffer_dirty(bh); 969 } 970 } 971 972 block_start = block_end; 973 bh = bh->b_this_page; 974 } while (bh != head); 975} 976 977/* 978 * Only called when we have a failure during allocating write to write 979 * zero's to the newly allocated region. 980 */ 981static void ocfs2_write_failure(struct inode *inode, 982 struct ocfs2_write_ctxt *wc, 983 loff_t user_pos, unsigned user_len) 984{ 985 int i; 986 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 987 to = user_pos + user_len; 988 struct page *tmppage; 989 990 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 991 992 for(i = 0; i < wc->w_num_pages; i++) { 993 tmppage = wc->w_pages[i]; 994 995 if (page_has_buffers(tmppage)) { 996 if (ocfs2_should_order_data(inode)) 997 ocfs2_jbd2_file_inode(wc->w_handle, inode); 998 999 block_commit_write(tmppage, from, to); 1000 } 1001 } 1002} 1003 1004static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1005 struct ocfs2_write_ctxt *wc, 1006 struct page *page, u32 cpos, 1007 loff_t user_pos, unsigned user_len, 1008 int new) 1009{ 1010 int ret; 1011 unsigned int map_from = 0, map_to = 0; 1012 unsigned int cluster_start, cluster_end; 1013 unsigned int user_data_from = 0, user_data_to = 0; 1014 1015 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1016 &cluster_start, &cluster_end); 1017 1018 /* treat the write as new if the a hole/lseek spanned across 1019 * the page boundary. 1020 */ 1021 new = new | ((i_size_read(inode) <= page_offset(page)) && 1022 (page_offset(page) <= user_pos)); 1023 1024 if (page == wc->w_target_page) { 1025 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1026 map_to = map_from + user_len; 1027 1028 if (new) 1029 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1030 cluster_start, cluster_end, 1031 new); 1032 else 1033 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1034 map_from, map_to, new); 1035 if (ret) { 1036 mlog_errno(ret); 1037 goto out; 1038 } 1039 1040 user_data_from = map_from; 1041 user_data_to = map_to; 1042 if (new) { 1043 map_from = cluster_start; 1044 map_to = cluster_end; 1045 } 1046 } else { 1047 /* 1048 * If we haven't allocated the new page yet, we 1049 * shouldn't be writing it out without copying user 1050 * data. This is likely a math error from the caller. 1051 */ 1052 BUG_ON(!new); 1053 1054 map_from = cluster_start; 1055 map_to = cluster_end; 1056 1057 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1058 cluster_start, cluster_end, new); 1059 if (ret) { 1060 mlog_errno(ret); 1061 goto out; 1062 } 1063 } 1064 1065 /* 1066 * Parts of newly allocated pages need to be zero'd. 1067 * 1068 * Above, we have also rewritten 'to' and 'from' - as far as 1069 * the rest of the function is concerned, the entire cluster 1070 * range inside of a page needs to be written. 1071 * 1072 * We can skip this if the page is up to date - it's already 1073 * been zero'd from being read in as a hole. 1074 */ 1075 if (new && !PageUptodate(page)) 1076 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1077 cpos, user_data_from, user_data_to); 1078 1079 flush_dcache_page(page); 1080 1081out: 1082 return ret; 1083} 1084 1085/* 1086 * This function will only grab one clusters worth of pages. 1087 */ 1088static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1089 struct ocfs2_write_ctxt *wc, 1090 u32 cpos, loff_t user_pos, 1091 unsigned user_len, int new, 1092 struct page *mmap_page) 1093{ 1094 int ret = 0, i; 1095 unsigned long start, target_index, end_index, index; 1096 struct inode *inode = mapping->host; 1097 loff_t last_byte; 1098 1099 target_index = user_pos >> PAGE_CACHE_SHIFT; 1100 1101 /* 1102 * Figure out how many pages we'll be manipulating here. For 1103 * non allocating write, we just change the one 1104 * page. Otherwise, we'll need a whole clusters worth. If we're 1105 * writing past i_size, we only need enough pages to cover the 1106 * last page of the write. 1107 */ 1108 if (new) { 1109 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1110 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1111 /* 1112 * We need the index *past* the last page we could possibly 1113 * touch. This is the page past the end of the write or 1114 * i_size, whichever is greater. 1115 */ 1116 last_byte = max(user_pos + user_len, i_size_read(inode)); 1117 BUG_ON(last_byte < 1); 1118 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1119 if ((start + wc->w_num_pages) > end_index) 1120 wc->w_num_pages = end_index - start; 1121 } else { 1122 wc->w_num_pages = 1; 1123 start = target_index; 1124 } 1125 1126 for(i = 0; i < wc->w_num_pages; i++) { 1127 index = start + i; 1128 1129 if (index == target_index && mmap_page) { 1130 /* 1131 * ocfs2_pagemkwrite() is a little different 1132 * and wants us to directly use the page 1133 * passed in. 1134 */ 1135 lock_page(mmap_page); 1136 1137 if (mmap_page->mapping != mapping) { 1138 unlock_page(mmap_page); 1139 /* 1140 * Sanity check - the locking in 1141 * ocfs2_pagemkwrite() should ensure 1142 * that this code doesn't trigger. 1143 */ 1144 ret = -EINVAL; 1145 mlog_errno(ret); 1146 goto out; 1147 } 1148 1149 page_cache_get(mmap_page); 1150 wc->w_pages[i] = mmap_page; 1151 } else { 1152 wc->w_pages[i] = find_or_create_page(mapping, index, 1153 GFP_NOFS); 1154 if (!wc->w_pages[i]) { 1155 ret = -ENOMEM; 1156 mlog_errno(ret); 1157 goto out; 1158 } 1159 } 1160 1161 if (index == target_index) 1162 wc->w_target_page = wc->w_pages[i]; 1163 } 1164out: 1165 return ret; 1166} 1167 1168/* 1169 * Prepare a single cluster for write one cluster into the file. 1170 */ 1171static int ocfs2_write_cluster(struct address_space *mapping, 1172 u32 phys, unsigned int unwritten, 1173 unsigned int should_zero, 1174 struct ocfs2_alloc_context *data_ac, 1175 struct ocfs2_alloc_context *meta_ac, 1176 struct ocfs2_write_ctxt *wc, u32 cpos, 1177 loff_t user_pos, unsigned user_len) 1178{ 1179 int ret, i, new; 1180 u64 v_blkno, p_blkno; 1181 struct inode *inode = mapping->host; 1182 struct ocfs2_extent_tree et; 1183 1184 new = phys == 0 ? 1 : 0; 1185 if (new) { 1186 u32 tmp_pos; 1187 1188 /* 1189 * This is safe to call with the page locks - it won't take 1190 * any additional semaphores or cluster locks. 1191 */ 1192 tmp_pos = cpos; 1193 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1194 &tmp_pos, 1, 0, wc->w_di_bh, 1195 wc->w_handle, data_ac, 1196 meta_ac, NULL); 1197 /* 1198 * This shouldn't happen because we must have already 1199 * calculated the correct meta data allocation required. The 1200 * internal tree allocation code should know how to increase 1201 * transaction credits itself. 1202 * 1203 * If need be, we could handle -EAGAIN for a 1204 * RESTART_TRANS here. 1205 */ 1206 mlog_bug_on_msg(ret == -EAGAIN, 1207 "Inode %llu: EAGAIN return during allocation.\n", 1208 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1209 if (ret < 0) { 1210 mlog_errno(ret); 1211 goto out; 1212 } 1213 } else if (unwritten) { 1214 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1215 wc->w_di_bh); 1216 ret = ocfs2_mark_extent_written(inode, &et, 1217 wc->w_handle, cpos, 1, phys, 1218 meta_ac, &wc->w_dealloc); 1219 if (ret < 0) { 1220 mlog_errno(ret); 1221 goto out; 1222 } 1223 } 1224 1225 if (should_zero) 1226 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1227 else 1228 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1229 1230 /* 1231 * The only reason this should fail is due to an inability to 1232 * find the extent added. 1233 */ 1234 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1235 NULL); 1236 if (ret < 0) { 1237 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1238 "at logical block %llu", 1239 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1240 (unsigned long long)v_blkno); 1241 goto out; 1242 } 1243 1244 BUG_ON(p_blkno == 0); 1245 1246 for(i = 0; i < wc->w_num_pages; i++) { 1247 int tmpret; 1248 1249 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1250 wc->w_pages[i], cpos, 1251 user_pos, user_len, 1252 should_zero); 1253 if (tmpret) { 1254 mlog_errno(tmpret); 1255 if (ret == 0) 1256 ret = tmpret; 1257 } 1258 } 1259 1260 /* 1261 * We only have cleanup to do in case of allocating write. 1262 */ 1263 if (ret && new) 1264 ocfs2_write_failure(inode, wc, user_pos, user_len); 1265 1266out: 1267 1268 return ret; 1269} 1270 1271static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1272 struct ocfs2_alloc_context *data_ac, 1273 struct ocfs2_alloc_context *meta_ac, 1274 struct ocfs2_write_ctxt *wc, 1275 loff_t pos, unsigned len) 1276{ 1277 int ret, i; 1278 loff_t cluster_off; 1279 unsigned int local_len = len; 1280 struct ocfs2_write_cluster_desc *desc; 1281 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1282 1283 for (i = 0; i < wc->w_clen; i++) { 1284 desc = &wc->w_desc[i]; 1285 1286 /* 1287 * We have to make sure that the total write passed in 1288 * doesn't extend past a single cluster. 1289 */ 1290 local_len = len; 1291 cluster_off = pos & (osb->s_clustersize - 1); 1292 if ((cluster_off + local_len) > osb->s_clustersize) 1293 local_len = osb->s_clustersize - cluster_off; 1294 1295 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1296 desc->c_unwritten, 1297 desc->c_needs_zero, 1298 data_ac, meta_ac, 1299 wc, desc->c_cpos, pos, local_len); 1300 if (ret) { 1301 mlog_errno(ret); 1302 goto out; 1303 } 1304 1305 len -= local_len; 1306 pos += local_len; 1307 } 1308 1309 ret = 0; 1310out: 1311 return ret; 1312} 1313 1314/* 1315 * ocfs2_write_end() wants to know which parts of the target page it 1316 * should complete the write on. It's easiest to compute them ahead of 1317 * time when a more complete view of the write is available. 1318 */ 1319static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1320 struct ocfs2_write_ctxt *wc, 1321 loff_t pos, unsigned len, int alloc) 1322{ 1323 struct ocfs2_write_cluster_desc *desc; 1324 1325 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1326 wc->w_target_to = wc->w_target_from + len; 1327 1328 if (alloc == 0) 1329 return; 1330 1331 /* 1332 * Allocating write - we may have different boundaries based 1333 * on page size and cluster size. 1334 * 1335 * NOTE: We can no longer compute one value from the other as 1336 * the actual write length and user provided length may be 1337 * different. 1338 */ 1339 1340 if (wc->w_large_pages) { 1341 /* 1342 * We only care about the 1st and last cluster within 1343 * our range and whether they should be zero'd or not. Either 1344 * value may be extended out to the start/end of a 1345 * newly allocated cluster. 1346 */ 1347 desc = &wc->w_desc[0]; 1348 if (desc->c_needs_zero) 1349 ocfs2_figure_cluster_boundaries(osb, 1350 desc->c_cpos, 1351 &wc->w_target_from, 1352 NULL); 1353 1354 desc = &wc->w_desc[wc->w_clen - 1]; 1355 if (desc->c_needs_zero) 1356 ocfs2_figure_cluster_boundaries(osb, 1357 desc->c_cpos, 1358 NULL, 1359 &wc->w_target_to); 1360 } else { 1361 wc->w_target_from = 0; 1362 wc->w_target_to = PAGE_CACHE_SIZE; 1363 } 1364} 1365 1366/* 1367 * Populate each single-cluster write descriptor in the write context 1368 * with information about the i/o to be done. 1369 * 1370 * Returns the number of clusters that will have to be allocated, as 1371 * well as a worst case estimate of the number of extent records that 1372 * would have to be created during a write to an unwritten region. 1373 */ 1374static int ocfs2_populate_write_desc(struct inode *inode, 1375 struct ocfs2_write_ctxt *wc, 1376 unsigned int *clusters_to_alloc, 1377 unsigned int *extents_to_split) 1378{ 1379 int ret; 1380 struct ocfs2_write_cluster_desc *desc; 1381 unsigned int num_clusters = 0; 1382 unsigned int ext_flags = 0; 1383 u32 phys = 0; 1384 int i; 1385 1386 *clusters_to_alloc = 0; 1387 *extents_to_split = 0; 1388 1389 for (i = 0; i < wc->w_clen; i++) { 1390 desc = &wc->w_desc[i]; 1391 desc->c_cpos = wc->w_cpos + i; 1392 1393 if (num_clusters == 0) { 1394 /* 1395 * Need to look up the next extent record. 1396 */ 1397 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1398 &num_clusters, &ext_flags); 1399 if (ret) { 1400 mlog_errno(ret); 1401 goto out; 1402 } 1403 1404 /* We should already CoW the refcountd extent. */ 1405 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1406 1407 /* 1408 * Assume worst case - that we're writing in 1409 * the middle of the extent. 1410 * 1411 * We can assume that the write proceeds from 1412 * left to right, in which case the extent 1413 * insert code is smart enough to coalesce the 1414 * next splits into the previous records created. 1415 */ 1416 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1417 *extents_to_split = *extents_to_split + 2; 1418 } else if (phys) { 1419 /* 1420 * Only increment phys if it doesn't describe 1421 * a hole. 1422 */ 1423 phys++; 1424 } 1425 1426 /* 1427 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1428 * file that got extended. w_first_new_cpos tells us 1429 * where the newly allocated clusters are so we can 1430 * zero them. 1431 */ 1432 if (desc->c_cpos >= wc->w_first_new_cpos) { 1433 BUG_ON(phys == 0); 1434 desc->c_needs_zero = 1; 1435 } 1436 1437 desc->c_phys = phys; 1438 if (phys == 0) { 1439 desc->c_new = 1; 1440 desc->c_needs_zero = 1; 1441 *clusters_to_alloc = *clusters_to_alloc + 1; 1442 } 1443 1444 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1445 desc->c_unwritten = 1; 1446 desc->c_needs_zero = 1; 1447 } 1448 1449 num_clusters--; 1450 } 1451 1452 ret = 0; 1453out: 1454 return ret; 1455} 1456 1457static int ocfs2_write_begin_inline(struct address_space *mapping, 1458 struct inode *inode, 1459 struct ocfs2_write_ctxt *wc) 1460{ 1461 int ret; 1462 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1463 struct page *page; 1464 handle_t *handle; 1465 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1466 1467 page = find_or_create_page(mapping, 0, GFP_NOFS); 1468 if (!page) { 1469 ret = -ENOMEM; 1470 mlog_errno(ret); 1471 goto out; 1472 } 1473 /* 1474 * If we don't set w_num_pages then this page won't get unlocked 1475 * and freed on cleanup of the write context. 1476 */ 1477 wc->w_pages[0] = wc->w_target_page = page; 1478 wc->w_num_pages = 1; 1479 1480 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1481 if (IS_ERR(handle)) { 1482 ret = PTR_ERR(handle); 1483 mlog_errno(ret); 1484 goto out; 1485 } 1486 1487 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1488 OCFS2_JOURNAL_ACCESS_WRITE); 1489 if (ret) { 1490 ocfs2_commit_trans(osb, handle); 1491 1492 mlog_errno(ret); 1493 goto out; 1494 } 1495 1496 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1497 ocfs2_set_inode_data_inline(inode, di); 1498 1499 if (!PageUptodate(page)) { 1500 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1501 if (ret) { 1502 ocfs2_commit_trans(osb, handle); 1503 1504 goto out; 1505 } 1506 } 1507 1508 wc->w_handle = handle; 1509out: 1510 return ret; 1511} 1512 1513int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1514{ 1515 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1516 1517 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1518 return 1; 1519 return 0; 1520} 1521 1522static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1523 struct inode *inode, loff_t pos, 1524 unsigned len, struct page *mmap_page, 1525 struct ocfs2_write_ctxt *wc) 1526{ 1527 int ret, written = 0; 1528 loff_t end = pos + len; 1529 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1530 struct ocfs2_dinode *di = NULL; 1531 1532 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1533 len, (unsigned long long)pos, 1534 oi->ip_dyn_features); 1535 1536 /* 1537 * Handle inodes which already have inline data 1st. 1538 */ 1539 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1540 if (mmap_page == NULL && 1541 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1542 goto do_inline_write; 1543 1544 /* 1545 * The write won't fit - we have to give this inode an 1546 * inline extent list now. 1547 */ 1548 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1549 if (ret) 1550 mlog_errno(ret); 1551 goto out; 1552 } 1553 1554 /* 1555 * Check whether the inode can accept inline data. 1556 */ 1557 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1558 return 0; 1559 1560 /* 1561 * Check whether the write can fit. 1562 */ 1563 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1564 if (mmap_page || 1565 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1566 return 0; 1567 1568do_inline_write: 1569 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1570 if (ret) { 1571 mlog_errno(ret); 1572 goto out; 1573 } 1574 1575 /* 1576 * This signals to the caller that the data can be written 1577 * inline. 1578 */ 1579 written = 1; 1580out: 1581 return written ? written : ret; 1582} 1583 1584/* 1585 * This function only does anything for file systems which can't 1586 * handle sparse files. 1587 * 1588 * What we want to do here is fill in any hole between the current end 1589 * of allocation and the end of our write. That way the rest of the 1590 * write path can treat it as an non-allocating write, which has no 1591 * special case code for sparse/nonsparse files. 1592 */ 1593static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1594 struct buffer_head *di_bh, 1595 loff_t pos, unsigned len, 1596 struct ocfs2_write_ctxt *wc) 1597{ 1598 int ret; 1599 loff_t newsize = pos + len; 1600 1601 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1602 1603 if (newsize <= i_size_read(inode)) 1604 return 0; 1605 1606 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1607 if (ret) 1608 mlog_errno(ret); 1609 1610 wc->w_first_new_cpos = 1611 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1612 1613 return ret; 1614} 1615 1616static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1617 loff_t pos) 1618{ 1619 int ret = 0; 1620 1621 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1622 if (pos > i_size_read(inode)) 1623 ret = ocfs2_zero_extend(inode, di_bh, pos); 1624 1625 return ret; 1626} 1627 1628/* 1629 * Try to flush truncate logs if we can free enough clusters from it. 1630 * As for return value, "< 0" means error, "0" no space and "1" means 1631 * we have freed enough spaces and let the caller try to allocate again. 1632 */ 1633static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 1634 unsigned int needed) 1635{ 1636 tid_t target; 1637 int ret = 0; 1638 unsigned int truncated_clusters; 1639 1640 mutex_lock(&osb->osb_tl_inode->i_mutex); 1641 truncated_clusters = osb->truncated_clusters; 1642 mutex_unlock(&osb->osb_tl_inode->i_mutex); 1643 1644 /* 1645 * Check whether we can succeed in allocating if we free 1646 * the truncate log. 1647 */ 1648 if (truncated_clusters < needed) 1649 goto out; 1650 1651 ret = ocfs2_flush_truncate_log(osb); 1652 if (ret) { 1653 mlog_errno(ret); 1654 goto out; 1655 } 1656 1657 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 1658 jbd2_log_wait_commit(osb->journal->j_journal, target); 1659 ret = 1; 1660 } 1661out: 1662 return ret; 1663} 1664 1665int ocfs2_write_begin_nolock(struct file *filp, 1666 struct address_space *mapping, 1667 loff_t pos, unsigned len, unsigned flags, 1668 struct page **pagep, void **fsdata, 1669 struct buffer_head *di_bh, struct page *mmap_page) 1670{ 1671 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1672 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1673 struct ocfs2_write_ctxt *wc; 1674 struct inode *inode = mapping->host; 1675 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1676 struct ocfs2_dinode *di; 1677 struct ocfs2_alloc_context *data_ac = NULL; 1678 struct ocfs2_alloc_context *meta_ac = NULL; 1679 handle_t *handle; 1680 struct ocfs2_extent_tree et; 1681 int try_free = 1, ret1; 1682 1683try_again: 1684 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1685 if (ret) { 1686 mlog_errno(ret); 1687 return ret; 1688 } 1689 1690 if (ocfs2_supports_inline_data(osb)) { 1691 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1692 mmap_page, wc); 1693 if (ret == 1) { 1694 ret = 0; 1695 goto success; 1696 } 1697 if (ret < 0) { 1698 mlog_errno(ret); 1699 goto out; 1700 } 1701 } 1702 1703 if (ocfs2_sparse_alloc(osb)) 1704 ret = ocfs2_zero_tail(inode, di_bh, pos); 1705 else 1706 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 1707 wc); 1708 if (ret) { 1709 mlog_errno(ret); 1710 goto out; 1711 } 1712 1713 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1714 if (ret < 0) { 1715 mlog_errno(ret); 1716 goto out; 1717 } else if (ret == 1) { 1718 clusters_need = wc->w_clen; 1719 ret = ocfs2_refcount_cow(inode, filp, di_bh, 1720 wc->w_cpos, wc->w_clen, UINT_MAX); 1721 if (ret) { 1722 mlog_errno(ret); 1723 goto out; 1724 } 1725 } 1726 1727 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1728 &extents_to_split); 1729 if (ret) { 1730 mlog_errno(ret); 1731 goto out; 1732 } 1733 clusters_need += clusters_to_alloc; 1734 1735 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1736 1737 trace_ocfs2_write_begin_nolock( 1738 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1739 (long long)i_size_read(inode), 1740 le32_to_cpu(di->i_clusters), 1741 pos, len, flags, mmap_page, 1742 clusters_to_alloc, extents_to_split); 1743 1744 /* 1745 * We set w_target_from, w_target_to here so that 1746 * ocfs2_write_end() knows which range in the target page to 1747 * write out. An allocation requires that we write the entire 1748 * cluster range. 1749 */ 1750 if (clusters_to_alloc || extents_to_split) { 1751 /* 1752 * XXX: We are stretching the limits of 1753 * ocfs2_lock_allocators(). It greatly over-estimates 1754 * the work to be done. 1755 */ 1756 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1757 wc->w_di_bh); 1758 ret = ocfs2_lock_allocators(inode, &et, 1759 clusters_to_alloc, extents_to_split, 1760 &data_ac, &meta_ac); 1761 if (ret) { 1762 mlog_errno(ret); 1763 goto out; 1764 } 1765 1766 if (data_ac) 1767 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1768 1769 credits = ocfs2_calc_extend_credits(inode->i_sb, 1770 &di->id2.i_list, 1771 clusters_to_alloc); 1772 1773 } 1774 1775 /* 1776 * We have to zero sparse allocated clusters, unwritten extent clusters, 1777 * and non-sparse clusters we just extended. For non-sparse writes, 1778 * we know zeros will only be needed in the first and/or last cluster. 1779 */ 1780 if (clusters_to_alloc || extents_to_split || 1781 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1782 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 1783 cluster_of_pages = 1; 1784 else 1785 cluster_of_pages = 0; 1786 1787 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1788 1789 handle = ocfs2_start_trans(osb, credits); 1790 if (IS_ERR(handle)) { 1791 ret = PTR_ERR(handle); 1792 mlog_errno(ret); 1793 goto out; 1794 } 1795 1796 wc->w_handle = handle; 1797 1798 if (clusters_to_alloc) { 1799 ret = dquot_alloc_space_nodirty(inode, 1800 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1801 if (ret) 1802 goto out_commit; 1803 } 1804 /* 1805 * We don't want this to fail in ocfs2_write_end(), so do it 1806 * here. 1807 */ 1808 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1809 OCFS2_JOURNAL_ACCESS_WRITE); 1810 if (ret) { 1811 mlog_errno(ret); 1812 goto out_quota; 1813 } 1814 1815 /* 1816 * Fill our page array first. That way we've grabbed enough so 1817 * that we can zero and flush if we error after adding the 1818 * extent. 1819 */ 1820 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1821 cluster_of_pages, mmap_page); 1822 if (ret) { 1823 mlog_errno(ret); 1824 goto out_quota; 1825 } 1826 1827 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1828 len); 1829 if (ret) { 1830 mlog_errno(ret); 1831 goto out_quota; 1832 } 1833 1834 if (data_ac) 1835 ocfs2_free_alloc_context(data_ac); 1836 if (meta_ac) 1837 ocfs2_free_alloc_context(meta_ac); 1838 1839success: 1840 *pagep = wc->w_target_page; 1841 *fsdata = wc; 1842 return 0; 1843out_quota: 1844 if (clusters_to_alloc) 1845 dquot_free_space(inode, 1846 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1847out_commit: 1848 ocfs2_commit_trans(osb, handle); 1849 1850out: 1851 ocfs2_free_write_ctxt(wc); 1852 1853 if (data_ac) 1854 ocfs2_free_alloc_context(data_ac); 1855 if (meta_ac) 1856 ocfs2_free_alloc_context(meta_ac); 1857 1858 if (ret == -ENOSPC && try_free) { 1859 /* 1860 * Try to free some truncate log so that we can have enough 1861 * clusters to allocate. 1862 */ 1863 try_free = 0; 1864 1865 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1866 if (ret1 == 1) 1867 goto try_again; 1868 1869 if (ret1 < 0) 1870 mlog_errno(ret1); 1871 } 1872 1873 return ret; 1874} 1875 1876static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1877 loff_t pos, unsigned len, unsigned flags, 1878 struct page **pagep, void **fsdata) 1879{ 1880 int ret; 1881 struct buffer_head *di_bh = NULL; 1882 struct inode *inode = mapping->host; 1883 1884 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1885 if (ret) { 1886 mlog_errno(ret); 1887 return ret; 1888 } 1889 1890 /* 1891 * Take alloc sem here to prevent concurrent lookups. That way 1892 * the mapping, zeroing and tree manipulation within 1893 * ocfs2_write() will be safe against ->readpage(). This 1894 * should also serve to lock out allocation from a shared 1895 * writeable region. 1896 */ 1897 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1898 1899 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 1900 fsdata, di_bh, NULL); 1901 if (ret) { 1902 mlog_errno(ret); 1903 goto out_fail; 1904 } 1905 1906 brelse(di_bh); 1907 1908 return 0; 1909 1910out_fail: 1911 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1912 1913 brelse(di_bh); 1914 ocfs2_inode_unlock(inode, 1); 1915 1916 return ret; 1917} 1918 1919static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1920 unsigned len, unsigned *copied, 1921 struct ocfs2_dinode *di, 1922 struct ocfs2_write_ctxt *wc) 1923{ 1924 void *kaddr; 1925 1926 if (unlikely(*copied < len)) { 1927 if (!PageUptodate(wc->w_target_page)) { 1928 *copied = 0; 1929 return; 1930 } 1931 } 1932 1933 kaddr = kmap_atomic(wc->w_target_page, KM_USER0); 1934 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1935 kunmap_atomic(kaddr, KM_USER0); 1936 1937 trace_ocfs2_write_end_inline( 1938 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1939 (unsigned long long)pos, *copied, 1940 le16_to_cpu(di->id2.i_data.id_count), 1941 le16_to_cpu(di->i_dyn_features)); 1942} 1943 1944int ocfs2_write_end_nolock(struct address_space *mapping, 1945 loff_t pos, unsigned len, unsigned copied, 1946 struct page *page, void *fsdata) 1947{ 1948 int i; 1949 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1950 struct inode *inode = mapping->host; 1951 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1952 struct ocfs2_write_ctxt *wc = fsdata; 1953 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1954 handle_t *handle = wc->w_handle; 1955 struct page *tmppage; 1956 1957 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1958 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1959 goto out_write_size; 1960 } 1961 1962 if (unlikely(copied < len)) { 1963 if (!PageUptodate(wc->w_target_page)) 1964 copied = 0; 1965 1966 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1967 start+len); 1968 } 1969 flush_dcache_page(wc->w_target_page); 1970 1971 for(i = 0; i < wc->w_num_pages; i++) { 1972 tmppage = wc->w_pages[i]; 1973 1974 if (tmppage == wc->w_target_page) { 1975 from = wc->w_target_from; 1976 to = wc->w_target_to; 1977 1978 BUG_ON(from > PAGE_CACHE_SIZE || 1979 to > PAGE_CACHE_SIZE || 1980 to < from); 1981 } else { 1982 /* 1983 * Pages adjacent to the target (if any) imply 1984 * a hole-filling write in which case we want 1985 * to flush their entire range. 1986 */ 1987 from = 0; 1988 to = PAGE_CACHE_SIZE; 1989 } 1990 1991 if (page_has_buffers(tmppage)) { 1992 if (ocfs2_should_order_data(inode)) 1993 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1994 block_commit_write(tmppage, from, to); 1995 } 1996 } 1997 1998out_write_size: 1999 pos += copied; 2000 if (pos > inode->i_size) { 2001 i_size_write(inode, pos); 2002 mark_inode_dirty(inode); 2003 } 2004 inode->i_blocks = ocfs2_inode_sector_count(inode); 2005 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2006 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2007 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2008 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2009 ocfs2_journal_dirty(handle, wc->w_di_bh); 2010 2011 ocfs2_commit_trans(osb, handle); 2012 2013 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2014 2015 ocfs2_free_write_ctxt(wc); 2016 2017 return copied; 2018} 2019 2020static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2021 loff_t pos, unsigned len, unsigned copied, 2022 struct page *page, void *fsdata) 2023{ 2024 int ret; 2025 struct inode *inode = mapping->host; 2026 2027 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2028 2029 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2030 ocfs2_inode_unlock(inode, 1); 2031 2032 return ret; 2033} 2034 2035const struct address_space_operations ocfs2_aops = { 2036 .readpage = ocfs2_readpage, 2037 .readpages = ocfs2_readpages, 2038 .writepage = ocfs2_writepage, 2039 .write_begin = ocfs2_write_begin, 2040 .write_end = ocfs2_write_end, 2041 .bmap = ocfs2_bmap, 2042 .direct_IO = ocfs2_direct_IO, 2043 .invalidatepage = ocfs2_invalidatepage, 2044 .releasepage = ocfs2_releasepage, 2045 .migratepage = buffer_migrate_page, 2046 .is_partially_uptodate = block_is_partially_uptodate, 2047 .error_remove_page = generic_error_remove_page, 2048};