at v3.0 41 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/buffer_head.h> 20#include <linux/pagevec.h> 21#include <linux/writeback.h> 22#include <linux/mpage.h> 23#include <linux/mount.h> 24#include <linux/uio.h> 25#include <linux/namei.h> 26#include <linux/log2.h> 27#include <linux/kmemleak.h> 28#include <asm/uaccess.h> 29#include "internal.h" 30 31struct bdev_inode { 32 struct block_device bdev; 33 struct inode vfs_inode; 34}; 35 36static const struct address_space_operations def_blk_aops; 37 38static inline struct bdev_inode *BDEV_I(struct inode *inode) 39{ 40 return container_of(inode, struct bdev_inode, vfs_inode); 41} 42 43inline struct block_device *I_BDEV(struct inode *inode) 44{ 45 return &BDEV_I(inode)->bdev; 46} 47 48EXPORT_SYMBOL(I_BDEV); 49 50/* 51 * move the inode from it's current bdi to the a new bdi. if the inode is dirty 52 * we need to move it onto the dirty list of @dst so that the inode is always 53 * on the right list. 54 */ 55static void bdev_inode_switch_bdi(struct inode *inode, 56 struct backing_dev_info *dst) 57{ 58 spin_lock(&inode_wb_list_lock); 59 spin_lock(&inode->i_lock); 60 inode->i_data.backing_dev_info = dst; 61 if (inode->i_state & I_DIRTY) 62 list_move(&inode->i_wb_list, &dst->wb.b_dirty); 63 spin_unlock(&inode->i_lock); 64 spin_unlock(&inode_wb_list_lock); 65} 66 67static sector_t max_block(struct block_device *bdev) 68{ 69 sector_t retval = ~((sector_t)0); 70 loff_t sz = i_size_read(bdev->bd_inode); 71 72 if (sz) { 73 unsigned int size = block_size(bdev); 74 unsigned int sizebits = blksize_bits(size); 75 retval = (sz >> sizebits); 76 } 77 return retval; 78} 79 80/* Kill _all_ buffers and pagecache , dirty or not.. */ 81static void kill_bdev(struct block_device *bdev) 82{ 83 if (bdev->bd_inode->i_mapping->nrpages == 0) 84 return; 85 invalidate_bh_lrus(); 86 truncate_inode_pages(bdev->bd_inode->i_mapping, 0); 87} 88 89int set_blocksize(struct block_device *bdev, int size) 90{ 91 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 92 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 93 return -EINVAL; 94 95 /* Size cannot be smaller than the size supported by the device */ 96 if (size < bdev_logical_block_size(bdev)) 97 return -EINVAL; 98 99 /* Don't change the size if it is same as current */ 100 if (bdev->bd_block_size != size) { 101 sync_blockdev(bdev); 102 bdev->bd_block_size = size; 103 bdev->bd_inode->i_blkbits = blksize_bits(size); 104 kill_bdev(bdev); 105 } 106 return 0; 107} 108 109EXPORT_SYMBOL(set_blocksize); 110 111int sb_set_blocksize(struct super_block *sb, int size) 112{ 113 if (set_blocksize(sb->s_bdev, size)) 114 return 0; 115 /* If we get here, we know size is power of two 116 * and it's value is between 512 and PAGE_SIZE */ 117 sb->s_blocksize = size; 118 sb->s_blocksize_bits = blksize_bits(size); 119 return sb->s_blocksize; 120} 121 122EXPORT_SYMBOL(sb_set_blocksize); 123 124int sb_min_blocksize(struct super_block *sb, int size) 125{ 126 int minsize = bdev_logical_block_size(sb->s_bdev); 127 if (size < minsize) 128 size = minsize; 129 return sb_set_blocksize(sb, size); 130} 131 132EXPORT_SYMBOL(sb_min_blocksize); 133 134static int 135blkdev_get_block(struct inode *inode, sector_t iblock, 136 struct buffer_head *bh, int create) 137{ 138 if (iblock >= max_block(I_BDEV(inode))) { 139 if (create) 140 return -EIO; 141 142 /* 143 * for reads, we're just trying to fill a partial page. 144 * return a hole, they will have to call get_block again 145 * before they can fill it, and they will get -EIO at that 146 * time 147 */ 148 return 0; 149 } 150 bh->b_bdev = I_BDEV(inode); 151 bh->b_blocknr = iblock; 152 set_buffer_mapped(bh); 153 return 0; 154} 155 156static int 157blkdev_get_blocks(struct inode *inode, sector_t iblock, 158 struct buffer_head *bh, int create) 159{ 160 sector_t end_block = max_block(I_BDEV(inode)); 161 unsigned long max_blocks = bh->b_size >> inode->i_blkbits; 162 163 if ((iblock + max_blocks) > end_block) { 164 max_blocks = end_block - iblock; 165 if ((long)max_blocks <= 0) { 166 if (create) 167 return -EIO; /* write fully beyond EOF */ 168 /* 169 * It is a read which is fully beyond EOF. We return 170 * a !buffer_mapped buffer 171 */ 172 max_blocks = 0; 173 } 174 } 175 176 bh->b_bdev = I_BDEV(inode); 177 bh->b_blocknr = iblock; 178 bh->b_size = max_blocks << inode->i_blkbits; 179 if (max_blocks) 180 set_buffer_mapped(bh); 181 return 0; 182} 183 184static ssize_t 185blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 186 loff_t offset, unsigned long nr_segs) 187{ 188 struct file *file = iocb->ki_filp; 189 struct inode *inode = file->f_mapping->host; 190 191 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset, 192 nr_segs, blkdev_get_blocks, NULL, NULL, 0); 193} 194 195int __sync_blockdev(struct block_device *bdev, int wait) 196{ 197 if (!bdev) 198 return 0; 199 if (!wait) 200 return filemap_flush(bdev->bd_inode->i_mapping); 201 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 202} 203 204/* 205 * Write out and wait upon all the dirty data associated with a block 206 * device via its mapping. Does not take the superblock lock. 207 */ 208int sync_blockdev(struct block_device *bdev) 209{ 210 return __sync_blockdev(bdev, 1); 211} 212EXPORT_SYMBOL(sync_blockdev); 213 214/* 215 * Write out and wait upon all dirty data associated with this 216 * device. Filesystem data as well as the underlying block 217 * device. Takes the superblock lock. 218 */ 219int fsync_bdev(struct block_device *bdev) 220{ 221 struct super_block *sb = get_super(bdev); 222 if (sb) { 223 int res = sync_filesystem(sb); 224 drop_super(sb); 225 return res; 226 } 227 return sync_blockdev(bdev); 228} 229EXPORT_SYMBOL(fsync_bdev); 230 231/** 232 * freeze_bdev -- lock a filesystem and force it into a consistent state 233 * @bdev: blockdevice to lock 234 * 235 * If a superblock is found on this device, we take the s_umount semaphore 236 * on it to make sure nobody unmounts until the snapshot creation is done. 237 * The reference counter (bd_fsfreeze_count) guarantees that only the last 238 * unfreeze process can unfreeze the frozen filesystem actually when multiple 239 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 240 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 241 * actually. 242 */ 243struct super_block *freeze_bdev(struct block_device *bdev) 244{ 245 struct super_block *sb; 246 int error = 0; 247 248 mutex_lock(&bdev->bd_fsfreeze_mutex); 249 if (++bdev->bd_fsfreeze_count > 1) { 250 /* 251 * We don't even need to grab a reference - the first call 252 * to freeze_bdev grab an active reference and only the last 253 * thaw_bdev drops it. 254 */ 255 sb = get_super(bdev); 256 drop_super(sb); 257 mutex_unlock(&bdev->bd_fsfreeze_mutex); 258 return sb; 259 } 260 261 sb = get_active_super(bdev); 262 if (!sb) 263 goto out; 264 error = freeze_super(sb); 265 if (error) { 266 deactivate_super(sb); 267 bdev->bd_fsfreeze_count--; 268 mutex_unlock(&bdev->bd_fsfreeze_mutex); 269 return ERR_PTR(error); 270 } 271 deactivate_super(sb); 272 out: 273 sync_blockdev(bdev); 274 mutex_unlock(&bdev->bd_fsfreeze_mutex); 275 return sb; /* thaw_bdev releases s->s_umount */ 276} 277EXPORT_SYMBOL(freeze_bdev); 278 279/** 280 * thaw_bdev -- unlock filesystem 281 * @bdev: blockdevice to unlock 282 * @sb: associated superblock 283 * 284 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 285 */ 286int thaw_bdev(struct block_device *bdev, struct super_block *sb) 287{ 288 int error = -EINVAL; 289 290 mutex_lock(&bdev->bd_fsfreeze_mutex); 291 if (!bdev->bd_fsfreeze_count) 292 goto out; 293 294 error = 0; 295 if (--bdev->bd_fsfreeze_count > 0) 296 goto out; 297 298 if (!sb) 299 goto out; 300 301 error = thaw_super(sb); 302 if (error) { 303 bdev->bd_fsfreeze_count++; 304 mutex_unlock(&bdev->bd_fsfreeze_mutex); 305 return error; 306 } 307out: 308 mutex_unlock(&bdev->bd_fsfreeze_mutex); 309 return 0; 310} 311EXPORT_SYMBOL(thaw_bdev); 312 313static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 314{ 315 return block_write_full_page(page, blkdev_get_block, wbc); 316} 317 318static int blkdev_readpage(struct file * file, struct page * page) 319{ 320 return block_read_full_page(page, blkdev_get_block); 321} 322 323static int blkdev_write_begin(struct file *file, struct address_space *mapping, 324 loff_t pos, unsigned len, unsigned flags, 325 struct page **pagep, void **fsdata) 326{ 327 return block_write_begin(mapping, pos, len, flags, pagep, 328 blkdev_get_block); 329} 330 331static int blkdev_write_end(struct file *file, struct address_space *mapping, 332 loff_t pos, unsigned len, unsigned copied, 333 struct page *page, void *fsdata) 334{ 335 int ret; 336 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 337 338 unlock_page(page); 339 page_cache_release(page); 340 341 return ret; 342} 343 344/* 345 * private llseek: 346 * for a block special file file->f_path.dentry->d_inode->i_size is zero 347 * so we compute the size by hand (just as in block_read/write above) 348 */ 349static loff_t block_llseek(struct file *file, loff_t offset, int origin) 350{ 351 struct inode *bd_inode = file->f_mapping->host; 352 loff_t size; 353 loff_t retval; 354 355 mutex_lock(&bd_inode->i_mutex); 356 size = i_size_read(bd_inode); 357 358 switch (origin) { 359 case 2: 360 offset += size; 361 break; 362 case 1: 363 offset += file->f_pos; 364 } 365 retval = -EINVAL; 366 if (offset >= 0 && offset <= size) { 367 if (offset != file->f_pos) { 368 file->f_pos = offset; 369 } 370 retval = offset; 371 } 372 mutex_unlock(&bd_inode->i_mutex); 373 return retval; 374} 375 376int blkdev_fsync(struct file *filp, int datasync) 377{ 378 struct inode *bd_inode = filp->f_mapping->host; 379 struct block_device *bdev = I_BDEV(bd_inode); 380 int error; 381 382 /* 383 * There is no need to serialise calls to blkdev_issue_flush with 384 * i_mutex and doing so causes performance issues with concurrent 385 * O_SYNC writers to a block device. 386 */ 387 mutex_unlock(&bd_inode->i_mutex); 388 389 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 390 if (error == -EOPNOTSUPP) 391 error = 0; 392 393 mutex_lock(&bd_inode->i_mutex); 394 395 return error; 396} 397EXPORT_SYMBOL(blkdev_fsync); 398 399/* 400 * pseudo-fs 401 */ 402 403static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 404static struct kmem_cache * bdev_cachep __read_mostly; 405 406static struct inode *bdev_alloc_inode(struct super_block *sb) 407{ 408 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 409 if (!ei) 410 return NULL; 411 return &ei->vfs_inode; 412} 413 414static void bdev_i_callback(struct rcu_head *head) 415{ 416 struct inode *inode = container_of(head, struct inode, i_rcu); 417 struct bdev_inode *bdi = BDEV_I(inode); 418 419 INIT_LIST_HEAD(&inode->i_dentry); 420 kmem_cache_free(bdev_cachep, bdi); 421} 422 423static void bdev_destroy_inode(struct inode *inode) 424{ 425 call_rcu(&inode->i_rcu, bdev_i_callback); 426} 427 428static void init_once(void *foo) 429{ 430 struct bdev_inode *ei = (struct bdev_inode *) foo; 431 struct block_device *bdev = &ei->bdev; 432 433 memset(bdev, 0, sizeof(*bdev)); 434 mutex_init(&bdev->bd_mutex); 435 INIT_LIST_HEAD(&bdev->bd_inodes); 436 INIT_LIST_HEAD(&bdev->bd_list); 437#ifdef CONFIG_SYSFS 438 INIT_LIST_HEAD(&bdev->bd_holder_disks); 439#endif 440 inode_init_once(&ei->vfs_inode); 441 /* Initialize mutex for freeze. */ 442 mutex_init(&bdev->bd_fsfreeze_mutex); 443} 444 445static inline void __bd_forget(struct inode *inode) 446{ 447 list_del_init(&inode->i_devices); 448 inode->i_bdev = NULL; 449 inode->i_mapping = &inode->i_data; 450} 451 452static void bdev_evict_inode(struct inode *inode) 453{ 454 struct block_device *bdev = &BDEV_I(inode)->bdev; 455 struct list_head *p; 456 truncate_inode_pages(&inode->i_data, 0); 457 invalidate_inode_buffers(inode); /* is it needed here? */ 458 end_writeback(inode); 459 spin_lock(&bdev_lock); 460 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 461 __bd_forget(list_entry(p, struct inode, i_devices)); 462 } 463 list_del_init(&bdev->bd_list); 464 spin_unlock(&bdev_lock); 465} 466 467static const struct super_operations bdev_sops = { 468 .statfs = simple_statfs, 469 .alloc_inode = bdev_alloc_inode, 470 .destroy_inode = bdev_destroy_inode, 471 .drop_inode = generic_delete_inode, 472 .evict_inode = bdev_evict_inode, 473}; 474 475static struct dentry *bd_mount(struct file_system_type *fs_type, 476 int flags, const char *dev_name, void *data) 477{ 478 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, 0x62646576); 479} 480 481static struct file_system_type bd_type = { 482 .name = "bdev", 483 .mount = bd_mount, 484 .kill_sb = kill_anon_super, 485}; 486 487struct super_block *blockdev_superblock __read_mostly; 488 489void __init bdev_cache_init(void) 490{ 491 int err; 492 struct vfsmount *bd_mnt; 493 494 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 495 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 496 SLAB_MEM_SPREAD|SLAB_PANIC), 497 init_once); 498 err = register_filesystem(&bd_type); 499 if (err) 500 panic("Cannot register bdev pseudo-fs"); 501 bd_mnt = kern_mount(&bd_type); 502 if (IS_ERR(bd_mnt)) 503 panic("Cannot create bdev pseudo-fs"); 504 /* 505 * This vfsmount structure is only used to obtain the 506 * blockdev_superblock, so tell kmemleak not to report it. 507 */ 508 kmemleak_not_leak(bd_mnt); 509 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 510} 511 512/* 513 * Most likely _very_ bad one - but then it's hardly critical for small 514 * /dev and can be fixed when somebody will need really large one. 515 * Keep in mind that it will be fed through icache hash function too. 516 */ 517static inline unsigned long hash(dev_t dev) 518{ 519 return MAJOR(dev)+MINOR(dev); 520} 521 522static int bdev_test(struct inode *inode, void *data) 523{ 524 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 525} 526 527static int bdev_set(struct inode *inode, void *data) 528{ 529 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 530 return 0; 531} 532 533static LIST_HEAD(all_bdevs); 534 535struct block_device *bdget(dev_t dev) 536{ 537 struct block_device *bdev; 538 struct inode *inode; 539 540 inode = iget5_locked(blockdev_superblock, hash(dev), 541 bdev_test, bdev_set, &dev); 542 543 if (!inode) 544 return NULL; 545 546 bdev = &BDEV_I(inode)->bdev; 547 548 if (inode->i_state & I_NEW) { 549 bdev->bd_contains = NULL; 550 bdev->bd_inode = inode; 551 bdev->bd_block_size = (1 << inode->i_blkbits); 552 bdev->bd_part_count = 0; 553 bdev->bd_invalidated = 0; 554 inode->i_mode = S_IFBLK; 555 inode->i_rdev = dev; 556 inode->i_bdev = bdev; 557 inode->i_data.a_ops = &def_blk_aops; 558 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 559 inode->i_data.backing_dev_info = &default_backing_dev_info; 560 spin_lock(&bdev_lock); 561 list_add(&bdev->bd_list, &all_bdevs); 562 spin_unlock(&bdev_lock); 563 unlock_new_inode(inode); 564 } 565 return bdev; 566} 567 568EXPORT_SYMBOL(bdget); 569 570/** 571 * bdgrab -- Grab a reference to an already referenced block device 572 * @bdev: Block device to grab a reference to. 573 */ 574struct block_device *bdgrab(struct block_device *bdev) 575{ 576 ihold(bdev->bd_inode); 577 return bdev; 578} 579 580long nr_blockdev_pages(void) 581{ 582 struct block_device *bdev; 583 long ret = 0; 584 spin_lock(&bdev_lock); 585 list_for_each_entry(bdev, &all_bdevs, bd_list) { 586 ret += bdev->bd_inode->i_mapping->nrpages; 587 } 588 spin_unlock(&bdev_lock); 589 return ret; 590} 591 592void bdput(struct block_device *bdev) 593{ 594 iput(bdev->bd_inode); 595} 596 597EXPORT_SYMBOL(bdput); 598 599static struct block_device *bd_acquire(struct inode *inode) 600{ 601 struct block_device *bdev; 602 603 spin_lock(&bdev_lock); 604 bdev = inode->i_bdev; 605 if (bdev) { 606 ihold(bdev->bd_inode); 607 spin_unlock(&bdev_lock); 608 return bdev; 609 } 610 spin_unlock(&bdev_lock); 611 612 bdev = bdget(inode->i_rdev); 613 if (bdev) { 614 spin_lock(&bdev_lock); 615 if (!inode->i_bdev) { 616 /* 617 * We take an additional reference to bd_inode, 618 * and it's released in clear_inode() of inode. 619 * So, we can access it via ->i_mapping always 620 * without igrab(). 621 */ 622 ihold(bdev->bd_inode); 623 inode->i_bdev = bdev; 624 inode->i_mapping = bdev->bd_inode->i_mapping; 625 list_add(&inode->i_devices, &bdev->bd_inodes); 626 } 627 spin_unlock(&bdev_lock); 628 } 629 return bdev; 630} 631 632/* Call when you free inode */ 633 634void bd_forget(struct inode *inode) 635{ 636 struct block_device *bdev = NULL; 637 638 spin_lock(&bdev_lock); 639 if (inode->i_bdev) { 640 if (!sb_is_blkdev_sb(inode->i_sb)) 641 bdev = inode->i_bdev; 642 __bd_forget(inode); 643 } 644 spin_unlock(&bdev_lock); 645 646 if (bdev) 647 iput(bdev->bd_inode); 648} 649 650/** 651 * bd_may_claim - test whether a block device can be claimed 652 * @bdev: block device of interest 653 * @whole: whole block device containing @bdev, may equal @bdev 654 * @holder: holder trying to claim @bdev 655 * 656 * Test whether @bdev can be claimed by @holder. 657 * 658 * CONTEXT: 659 * spin_lock(&bdev_lock). 660 * 661 * RETURNS: 662 * %true if @bdev can be claimed, %false otherwise. 663 */ 664static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 665 void *holder) 666{ 667 if (bdev->bd_holder == holder) 668 return true; /* already a holder */ 669 else if (bdev->bd_holder != NULL) 670 return false; /* held by someone else */ 671 else if (bdev->bd_contains == bdev) 672 return true; /* is a whole device which isn't held */ 673 674 else if (whole->bd_holder == bd_may_claim) 675 return true; /* is a partition of a device that is being partitioned */ 676 else if (whole->bd_holder != NULL) 677 return false; /* is a partition of a held device */ 678 else 679 return true; /* is a partition of an un-held device */ 680} 681 682/** 683 * bd_prepare_to_claim - prepare to claim a block device 684 * @bdev: block device of interest 685 * @whole: the whole device containing @bdev, may equal @bdev 686 * @holder: holder trying to claim @bdev 687 * 688 * Prepare to claim @bdev. This function fails if @bdev is already 689 * claimed by another holder and waits if another claiming is in 690 * progress. This function doesn't actually claim. On successful 691 * return, the caller has ownership of bd_claiming and bd_holder[s]. 692 * 693 * CONTEXT: 694 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 695 * it multiple times. 696 * 697 * RETURNS: 698 * 0 if @bdev can be claimed, -EBUSY otherwise. 699 */ 700static int bd_prepare_to_claim(struct block_device *bdev, 701 struct block_device *whole, void *holder) 702{ 703retry: 704 /* if someone else claimed, fail */ 705 if (!bd_may_claim(bdev, whole, holder)) 706 return -EBUSY; 707 708 /* if claiming is already in progress, wait for it to finish */ 709 if (whole->bd_claiming) { 710 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 711 DEFINE_WAIT(wait); 712 713 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 714 spin_unlock(&bdev_lock); 715 schedule(); 716 finish_wait(wq, &wait); 717 spin_lock(&bdev_lock); 718 goto retry; 719 } 720 721 /* yay, all mine */ 722 return 0; 723} 724 725/** 726 * bd_start_claiming - start claiming a block device 727 * @bdev: block device of interest 728 * @holder: holder trying to claim @bdev 729 * 730 * @bdev is about to be opened exclusively. Check @bdev can be opened 731 * exclusively and mark that an exclusive open is in progress. Each 732 * successful call to this function must be matched with a call to 733 * either bd_finish_claiming() or bd_abort_claiming() (which do not 734 * fail). 735 * 736 * This function is used to gain exclusive access to the block device 737 * without actually causing other exclusive open attempts to fail. It 738 * should be used when the open sequence itself requires exclusive 739 * access but may subsequently fail. 740 * 741 * CONTEXT: 742 * Might sleep. 743 * 744 * RETURNS: 745 * Pointer to the block device containing @bdev on success, ERR_PTR() 746 * value on failure. 747 */ 748static struct block_device *bd_start_claiming(struct block_device *bdev, 749 void *holder) 750{ 751 struct gendisk *disk; 752 struct block_device *whole; 753 int partno, err; 754 755 might_sleep(); 756 757 /* 758 * @bdev might not have been initialized properly yet, look up 759 * and grab the outer block device the hard way. 760 */ 761 disk = get_gendisk(bdev->bd_dev, &partno); 762 if (!disk) 763 return ERR_PTR(-ENXIO); 764 765 /* 766 * Normally, @bdev should equal what's returned from bdget_disk() 767 * if partno is 0; however, some drivers (floppy) use multiple 768 * bdev's for the same physical device and @bdev may be one of the 769 * aliases. Keep @bdev if partno is 0. This means claimer 770 * tracking is broken for those devices but it has always been that 771 * way. 772 */ 773 if (partno) 774 whole = bdget_disk(disk, 0); 775 else 776 whole = bdgrab(bdev); 777 778 module_put(disk->fops->owner); 779 put_disk(disk); 780 if (!whole) 781 return ERR_PTR(-ENOMEM); 782 783 /* prepare to claim, if successful, mark claiming in progress */ 784 spin_lock(&bdev_lock); 785 786 err = bd_prepare_to_claim(bdev, whole, holder); 787 if (err == 0) { 788 whole->bd_claiming = holder; 789 spin_unlock(&bdev_lock); 790 return whole; 791 } else { 792 spin_unlock(&bdev_lock); 793 bdput(whole); 794 return ERR_PTR(err); 795 } 796} 797 798#ifdef CONFIG_SYSFS 799struct bd_holder_disk { 800 struct list_head list; 801 struct gendisk *disk; 802 int refcnt; 803}; 804 805static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 806 struct gendisk *disk) 807{ 808 struct bd_holder_disk *holder; 809 810 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 811 if (holder->disk == disk) 812 return holder; 813 return NULL; 814} 815 816static int add_symlink(struct kobject *from, struct kobject *to) 817{ 818 return sysfs_create_link(from, to, kobject_name(to)); 819} 820 821static void del_symlink(struct kobject *from, struct kobject *to) 822{ 823 sysfs_remove_link(from, kobject_name(to)); 824} 825 826/** 827 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 828 * @bdev: the claimed slave bdev 829 * @disk: the holding disk 830 * 831 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 832 * 833 * This functions creates the following sysfs symlinks. 834 * 835 * - from "slaves" directory of the holder @disk to the claimed @bdev 836 * - from "holders" directory of the @bdev to the holder @disk 837 * 838 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 839 * passed to bd_link_disk_holder(), then: 840 * 841 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 842 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 843 * 844 * The caller must have claimed @bdev before calling this function and 845 * ensure that both @bdev and @disk are valid during the creation and 846 * lifetime of these symlinks. 847 * 848 * CONTEXT: 849 * Might sleep. 850 * 851 * RETURNS: 852 * 0 on success, -errno on failure. 853 */ 854int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 855{ 856 struct bd_holder_disk *holder; 857 int ret = 0; 858 859 mutex_lock(&bdev->bd_mutex); 860 861 WARN_ON_ONCE(!bdev->bd_holder); 862 863 /* FIXME: remove the following once add_disk() handles errors */ 864 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 865 goto out_unlock; 866 867 holder = bd_find_holder_disk(bdev, disk); 868 if (holder) { 869 holder->refcnt++; 870 goto out_unlock; 871 } 872 873 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 874 if (!holder) { 875 ret = -ENOMEM; 876 goto out_unlock; 877 } 878 879 INIT_LIST_HEAD(&holder->list); 880 holder->disk = disk; 881 holder->refcnt = 1; 882 883 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 884 if (ret) 885 goto out_free; 886 887 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 888 if (ret) 889 goto out_del; 890 /* 891 * bdev could be deleted beneath us which would implicitly destroy 892 * the holder directory. Hold on to it. 893 */ 894 kobject_get(bdev->bd_part->holder_dir); 895 896 list_add(&holder->list, &bdev->bd_holder_disks); 897 goto out_unlock; 898 899out_del: 900 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 901out_free: 902 kfree(holder); 903out_unlock: 904 mutex_unlock(&bdev->bd_mutex); 905 return ret; 906} 907EXPORT_SYMBOL_GPL(bd_link_disk_holder); 908 909/** 910 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 911 * @bdev: the calimed slave bdev 912 * @disk: the holding disk 913 * 914 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 915 * 916 * CONTEXT: 917 * Might sleep. 918 */ 919void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 920{ 921 struct bd_holder_disk *holder; 922 923 mutex_lock(&bdev->bd_mutex); 924 925 holder = bd_find_holder_disk(bdev, disk); 926 927 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 928 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 929 del_symlink(bdev->bd_part->holder_dir, 930 &disk_to_dev(disk)->kobj); 931 kobject_put(bdev->bd_part->holder_dir); 932 list_del_init(&holder->list); 933 kfree(holder); 934 } 935 936 mutex_unlock(&bdev->bd_mutex); 937} 938EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 939#endif 940 941/** 942 * flush_disk - invalidates all buffer-cache entries on a disk 943 * 944 * @bdev: struct block device to be flushed 945 * @kill_dirty: flag to guide handling of dirty inodes 946 * 947 * Invalidates all buffer-cache entries on a disk. It should be called 948 * when a disk has been changed -- either by a media change or online 949 * resize. 950 */ 951static void flush_disk(struct block_device *bdev, bool kill_dirty) 952{ 953 if (__invalidate_device(bdev, kill_dirty)) { 954 char name[BDEVNAME_SIZE] = ""; 955 956 if (bdev->bd_disk) 957 disk_name(bdev->bd_disk, 0, name); 958 printk(KERN_WARNING "VFS: busy inodes on changed media or " 959 "resized disk %s\n", name); 960 } 961 962 if (!bdev->bd_disk) 963 return; 964 if (disk_partitionable(bdev->bd_disk)) 965 bdev->bd_invalidated = 1; 966} 967 968/** 969 * check_disk_size_change - checks for disk size change and adjusts bdev size. 970 * @disk: struct gendisk to check 971 * @bdev: struct bdev to adjust. 972 * 973 * This routine checks to see if the bdev size does not match the disk size 974 * and adjusts it if it differs. 975 */ 976void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 977{ 978 loff_t disk_size, bdev_size; 979 980 disk_size = (loff_t)get_capacity(disk) << 9; 981 bdev_size = i_size_read(bdev->bd_inode); 982 if (disk_size != bdev_size) { 983 char name[BDEVNAME_SIZE]; 984 985 disk_name(disk, 0, name); 986 printk(KERN_INFO 987 "%s: detected capacity change from %lld to %lld\n", 988 name, bdev_size, disk_size); 989 i_size_write(bdev->bd_inode, disk_size); 990 flush_disk(bdev, false); 991 } 992} 993EXPORT_SYMBOL(check_disk_size_change); 994 995/** 996 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 997 * @disk: struct gendisk to be revalidated 998 * 999 * This routine is a wrapper for lower-level driver's revalidate_disk 1000 * call-backs. It is used to do common pre and post operations needed 1001 * for all revalidate_disk operations. 1002 */ 1003int revalidate_disk(struct gendisk *disk) 1004{ 1005 struct block_device *bdev; 1006 int ret = 0; 1007 1008 if (disk->fops->revalidate_disk) 1009 ret = disk->fops->revalidate_disk(disk); 1010 1011 bdev = bdget_disk(disk, 0); 1012 if (!bdev) 1013 return ret; 1014 1015 mutex_lock(&bdev->bd_mutex); 1016 check_disk_size_change(disk, bdev); 1017 mutex_unlock(&bdev->bd_mutex); 1018 bdput(bdev); 1019 return ret; 1020} 1021EXPORT_SYMBOL(revalidate_disk); 1022 1023/* 1024 * This routine checks whether a removable media has been changed, 1025 * and invalidates all buffer-cache-entries in that case. This 1026 * is a relatively slow routine, so we have to try to minimize using 1027 * it. Thus it is called only upon a 'mount' or 'open'. This 1028 * is the best way of combining speed and utility, I think. 1029 * People changing diskettes in the middle of an operation deserve 1030 * to lose :-) 1031 */ 1032int check_disk_change(struct block_device *bdev) 1033{ 1034 struct gendisk *disk = bdev->bd_disk; 1035 const struct block_device_operations *bdops = disk->fops; 1036 unsigned int events; 1037 1038 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1039 DISK_EVENT_EJECT_REQUEST); 1040 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1041 return 0; 1042 1043 flush_disk(bdev, true); 1044 if (bdops->revalidate_disk) 1045 bdops->revalidate_disk(bdev->bd_disk); 1046 return 1; 1047} 1048 1049EXPORT_SYMBOL(check_disk_change); 1050 1051void bd_set_size(struct block_device *bdev, loff_t size) 1052{ 1053 unsigned bsize = bdev_logical_block_size(bdev); 1054 1055 bdev->bd_inode->i_size = size; 1056 while (bsize < PAGE_CACHE_SIZE) { 1057 if (size & bsize) 1058 break; 1059 bsize <<= 1; 1060 } 1061 bdev->bd_block_size = bsize; 1062 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1063} 1064EXPORT_SYMBOL(bd_set_size); 1065 1066static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1067 1068/* 1069 * bd_mutex locking: 1070 * 1071 * mutex_lock(part->bd_mutex) 1072 * mutex_lock_nested(whole->bd_mutex, 1) 1073 */ 1074 1075static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1076{ 1077 struct gendisk *disk; 1078 int ret; 1079 int partno; 1080 int perm = 0; 1081 1082 if (mode & FMODE_READ) 1083 perm |= MAY_READ; 1084 if (mode & FMODE_WRITE) 1085 perm |= MAY_WRITE; 1086 /* 1087 * hooks: /n/, see "layering violations". 1088 */ 1089 if (!for_part) { 1090 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1091 if (ret != 0) { 1092 bdput(bdev); 1093 return ret; 1094 } 1095 } 1096 1097 restart: 1098 1099 ret = -ENXIO; 1100 disk = get_gendisk(bdev->bd_dev, &partno); 1101 if (!disk) 1102 goto out; 1103 1104 disk_block_events(disk); 1105 mutex_lock_nested(&bdev->bd_mutex, for_part); 1106 if (!bdev->bd_openers) { 1107 bdev->bd_disk = disk; 1108 bdev->bd_contains = bdev; 1109 if (!partno) { 1110 struct backing_dev_info *bdi; 1111 1112 ret = -ENXIO; 1113 bdev->bd_part = disk_get_part(disk, partno); 1114 if (!bdev->bd_part) 1115 goto out_clear; 1116 1117 ret = 0; 1118 if (disk->fops->open) { 1119 ret = disk->fops->open(bdev, mode); 1120 if (ret == -ERESTARTSYS) { 1121 /* Lost a race with 'disk' being 1122 * deleted, try again. 1123 * See md.c 1124 */ 1125 disk_put_part(bdev->bd_part); 1126 bdev->bd_part = NULL; 1127 bdev->bd_disk = NULL; 1128 mutex_unlock(&bdev->bd_mutex); 1129 disk_unblock_events(disk); 1130 module_put(disk->fops->owner); 1131 put_disk(disk); 1132 goto restart; 1133 } 1134 } 1135 1136 if (!ret && !bdev->bd_openers) { 1137 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1138 bdi = blk_get_backing_dev_info(bdev); 1139 if (bdi == NULL) 1140 bdi = &default_backing_dev_info; 1141 bdev_inode_switch_bdi(bdev->bd_inode, bdi); 1142 } 1143 1144 /* 1145 * If the device is invalidated, rescan partition 1146 * if open succeeded or failed with -ENOMEDIUM. 1147 * The latter is necessary to prevent ghost 1148 * partitions on a removed medium. 1149 */ 1150 if (bdev->bd_invalidated && (!ret || ret == -ENOMEDIUM)) 1151 rescan_partitions(disk, bdev); 1152 if (ret) 1153 goto out_clear; 1154 } else { 1155 struct block_device *whole; 1156 whole = bdget_disk(disk, 0); 1157 ret = -ENOMEM; 1158 if (!whole) 1159 goto out_clear; 1160 BUG_ON(for_part); 1161 ret = __blkdev_get(whole, mode, 1); 1162 if (ret) 1163 goto out_clear; 1164 bdev->bd_contains = whole; 1165 bdev_inode_switch_bdi(bdev->bd_inode, 1166 whole->bd_inode->i_data.backing_dev_info); 1167 bdev->bd_part = disk_get_part(disk, partno); 1168 if (!(disk->flags & GENHD_FL_UP) || 1169 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1170 ret = -ENXIO; 1171 goto out_clear; 1172 } 1173 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1174 } 1175 } else { 1176 if (bdev->bd_contains == bdev) { 1177 ret = 0; 1178 if (bdev->bd_disk->fops->open) 1179 ret = bdev->bd_disk->fops->open(bdev, mode); 1180 /* the same as first opener case, read comment there */ 1181 if (bdev->bd_invalidated && (!ret || ret == -ENOMEDIUM)) 1182 rescan_partitions(bdev->bd_disk, bdev); 1183 if (ret) 1184 goto out_unlock_bdev; 1185 } 1186 /* only one opener holds refs to the module and disk */ 1187 module_put(disk->fops->owner); 1188 put_disk(disk); 1189 } 1190 bdev->bd_openers++; 1191 if (for_part) 1192 bdev->bd_part_count++; 1193 mutex_unlock(&bdev->bd_mutex); 1194 disk_unblock_events(disk); 1195 return 0; 1196 1197 out_clear: 1198 disk_put_part(bdev->bd_part); 1199 bdev->bd_disk = NULL; 1200 bdev->bd_part = NULL; 1201 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info); 1202 if (bdev != bdev->bd_contains) 1203 __blkdev_put(bdev->bd_contains, mode, 1); 1204 bdev->bd_contains = NULL; 1205 out_unlock_bdev: 1206 mutex_unlock(&bdev->bd_mutex); 1207 disk_unblock_events(disk); 1208 module_put(disk->fops->owner); 1209 put_disk(disk); 1210 out: 1211 bdput(bdev); 1212 1213 return ret; 1214} 1215 1216/** 1217 * blkdev_get - open a block device 1218 * @bdev: block_device to open 1219 * @mode: FMODE_* mask 1220 * @holder: exclusive holder identifier 1221 * 1222 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1223 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1224 * @holder is invalid. Exclusive opens may nest for the same @holder. 1225 * 1226 * On success, the reference count of @bdev is unchanged. On failure, 1227 * @bdev is put. 1228 * 1229 * CONTEXT: 1230 * Might sleep. 1231 * 1232 * RETURNS: 1233 * 0 on success, -errno on failure. 1234 */ 1235int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1236{ 1237 struct block_device *whole = NULL; 1238 int res; 1239 1240 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1241 1242 if ((mode & FMODE_EXCL) && holder) { 1243 whole = bd_start_claiming(bdev, holder); 1244 if (IS_ERR(whole)) { 1245 bdput(bdev); 1246 return PTR_ERR(whole); 1247 } 1248 } 1249 1250 res = __blkdev_get(bdev, mode, 0); 1251 1252 if (whole) { 1253 struct gendisk *disk = whole->bd_disk; 1254 1255 /* finish claiming */ 1256 mutex_lock(&bdev->bd_mutex); 1257 spin_lock(&bdev_lock); 1258 1259 if (!res) { 1260 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1261 /* 1262 * Note that for a whole device bd_holders 1263 * will be incremented twice, and bd_holder 1264 * will be set to bd_may_claim before being 1265 * set to holder 1266 */ 1267 whole->bd_holders++; 1268 whole->bd_holder = bd_may_claim; 1269 bdev->bd_holders++; 1270 bdev->bd_holder = holder; 1271 } 1272 1273 /* tell others that we're done */ 1274 BUG_ON(whole->bd_claiming != holder); 1275 whole->bd_claiming = NULL; 1276 wake_up_bit(&whole->bd_claiming, 0); 1277 1278 spin_unlock(&bdev_lock); 1279 1280 /* 1281 * Block event polling for write claims if requested. Any 1282 * write holder makes the write_holder state stick until 1283 * all are released. This is good enough and tracking 1284 * individual writeable reference is too fragile given the 1285 * way @mode is used in blkdev_get/put(). 1286 */ 1287 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1288 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1289 bdev->bd_write_holder = true; 1290 disk_block_events(disk); 1291 } 1292 1293 mutex_unlock(&bdev->bd_mutex); 1294 bdput(whole); 1295 } 1296 1297 return res; 1298} 1299EXPORT_SYMBOL(blkdev_get); 1300 1301/** 1302 * blkdev_get_by_path - open a block device by name 1303 * @path: path to the block device to open 1304 * @mode: FMODE_* mask 1305 * @holder: exclusive holder identifier 1306 * 1307 * Open the blockdevice described by the device file at @path. @mode 1308 * and @holder are identical to blkdev_get(). 1309 * 1310 * On success, the returned block_device has reference count of one. 1311 * 1312 * CONTEXT: 1313 * Might sleep. 1314 * 1315 * RETURNS: 1316 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1317 */ 1318struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1319 void *holder) 1320{ 1321 struct block_device *bdev; 1322 int err; 1323 1324 bdev = lookup_bdev(path); 1325 if (IS_ERR(bdev)) 1326 return bdev; 1327 1328 err = blkdev_get(bdev, mode, holder); 1329 if (err) 1330 return ERR_PTR(err); 1331 1332 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1333 blkdev_put(bdev, mode); 1334 return ERR_PTR(-EACCES); 1335 } 1336 1337 return bdev; 1338} 1339EXPORT_SYMBOL(blkdev_get_by_path); 1340 1341/** 1342 * blkdev_get_by_dev - open a block device by device number 1343 * @dev: device number of block device to open 1344 * @mode: FMODE_* mask 1345 * @holder: exclusive holder identifier 1346 * 1347 * Open the blockdevice described by device number @dev. @mode and 1348 * @holder are identical to blkdev_get(). 1349 * 1350 * Use it ONLY if you really do not have anything better - i.e. when 1351 * you are behind a truly sucky interface and all you are given is a 1352 * device number. _Never_ to be used for internal purposes. If you 1353 * ever need it - reconsider your API. 1354 * 1355 * On success, the returned block_device has reference count of one. 1356 * 1357 * CONTEXT: 1358 * Might sleep. 1359 * 1360 * RETURNS: 1361 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1362 */ 1363struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1364{ 1365 struct block_device *bdev; 1366 int err; 1367 1368 bdev = bdget(dev); 1369 if (!bdev) 1370 return ERR_PTR(-ENOMEM); 1371 1372 err = blkdev_get(bdev, mode, holder); 1373 if (err) 1374 return ERR_PTR(err); 1375 1376 return bdev; 1377} 1378EXPORT_SYMBOL(blkdev_get_by_dev); 1379 1380static int blkdev_open(struct inode * inode, struct file * filp) 1381{ 1382 struct block_device *bdev; 1383 1384 /* 1385 * Preserve backwards compatibility and allow large file access 1386 * even if userspace doesn't ask for it explicitly. Some mkfs 1387 * binary needs it. We might want to drop this workaround 1388 * during an unstable branch. 1389 */ 1390 filp->f_flags |= O_LARGEFILE; 1391 1392 if (filp->f_flags & O_NDELAY) 1393 filp->f_mode |= FMODE_NDELAY; 1394 if (filp->f_flags & O_EXCL) 1395 filp->f_mode |= FMODE_EXCL; 1396 if ((filp->f_flags & O_ACCMODE) == 3) 1397 filp->f_mode |= FMODE_WRITE_IOCTL; 1398 1399 bdev = bd_acquire(inode); 1400 if (bdev == NULL) 1401 return -ENOMEM; 1402 1403 filp->f_mapping = bdev->bd_inode->i_mapping; 1404 1405 return blkdev_get(bdev, filp->f_mode, filp); 1406} 1407 1408static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1409{ 1410 int ret = 0; 1411 struct gendisk *disk = bdev->bd_disk; 1412 struct block_device *victim = NULL; 1413 1414 mutex_lock_nested(&bdev->bd_mutex, for_part); 1415 if (for_part) 1416 bdev->bd_part_count--; 1417 1418 if (!--bdev->bd_openers) { 1419 WARN_ON_ONCE(bdev->bd_holders); 1420 sync_blockdev(bdev); 1421 kill_bdev(bdev); 1422 } 1423 if (bdev->bd_contains == bdev) { 1424 if (disk->fops->release) 1425 ret = disk->fops->release(disk, mode); 1426 } 1427 if (!bdev->bd_openers) { 1428 struct module *owner = disk->fops->owner; 1429 1430 put_disk(disk); 1431 module_put(owner); 1432 disk_put_part(bdev->bd_part); 1433 bdev->bd_part = NULL; 1434 bdev->bd_disk = NULL; 1435 bdev_inode_switch_bdi(bdev->bd_inode, 1436 &default_backing_dev_info); 1437 if (bdev != bdev->bd_contains) 1438 victim = bdev->bd_contains; 1439 bdev->bd_contains = NULL; 1440 } 1441 mutex_unlock(&bdev->bd_mutex); 1442 bdput(bdev); 1443 if (victim) 1444 __blkdev_put(victim, mode, 1); 1445 return ret; 1446} 1447 1448int blkdev_put(struct block_device *bdev, fmode_t mode) 1449{ 1450 if (mode & FMODE_EXCL) { 1451 bool bdev_free; 1452 1453 /* 1454 * Release a claim on the device. The holder fields 1455 * are protected with bdev_lock. bd_mutex is to 1456 * synchronize disk_holder unlinking. 1457 */ 1458 mutex_lock(&bdev->bd_mutex); 1459 spin_lock(&bdev_lock); 1460 1461 WARN_ON_ONCE(--bdev->bd_holders < 0); 1462 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1463 1464 /* bd_contains might point to self, check in a separate step */ 1465 if ((bdev_free = !bdev->bd_holders)) 1466 bdev->bd_holder = NULL; 1467 if (!bdev->bd_contains->bd_holders) 1468 bdev->bd_contains->bd_holder = NULL; 1469 1470 spin_unlock(&bdev_lock); 1471 1472 /* 1473 * If this was the last claim, remove holder link and 1474 * unblock evpoll if it was a write holder. 1475 */ 1476 if (bdev_free) { 1477 if (bdev->bd_write_holder) { 1478 disk_unblock_events(bdev->bd_disk); 1479 disk_check_events(bdev->bd_disk); 1480 bdev->bd_write_holder = false; 1481 } 1482 } 1483 1484 mutex_unlock(&bdev->bd_mutex); 1485 } 1486 1487 return __blkdev_put(bdev, mode, 0); 1488} 1489EXPORT_SYMBOL(blkdev_put); 1490 1491static int blkdev_close(struct inode * inode, struct file * filp) 1492{ 1493 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1494 1495 return blkdev_put(bdev, filp->f_mode); 1496} 1497 1498static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1499{ 1500 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1501 fmode_t mode = file->f_mode; 1502 1503 /* 1504 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1505 * to updated it before every ioctl. 1506 */ 1507 if (file->f_flags & O_NDELAY) 1508 mode |= FMODE_NDELAY; 1509 else 1510 mode &= ~FMODE_NDELAY; 1511 1512 return blkdev_ioctl(bdev, mode, cmd, arg); 1513} 1514 1515/* 1516 * Write data to the block device. Only intended for the block device itself 1517 * and the raw driver which basically is a fake block device. 1518 * 1519 * Does not take i_mutex for the write and thus is not for general purpose 1520 * use. 1521 */ 1522ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, 1523 unsigned long nr_segs, loff_t pos) 1524{ 1525 struct file *file = iocb->ki_filp; 1526 ssize_t ret; 1527 1528 BUG_ON(iocb->ki_pos != pos); 1529 1530 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 1531 if (ret > 0 || ret == -EIOCBQUEUED) { 1532 ssize_t err; 1533 1534 err = generic_write_sync(file, pos, ret); 1535 if (err < 0 && ret > 0) 1536 ret = err; 1537 } 1538 return ret; 1539} 1540EXPORT_SYMBOL_GPL(blkdev_aio_write); 1541 1542/* 1543 * Try to release a page associated with block device when the system 1544 * is under memory pressure. 1545 */ 1546static int blkdev_releasepage(struct page *page, gfp_t wait) 1547{ 1548 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1549 1550 if (super && super->s_op->bdev_try_to_free_page) 1551 return super->s_op->bdev_try_to_free_page(super, page, wait); 1552 1553 return try_to_free_buffers(page); 1554} 1555 1556static const struct address_space_operations def_blk_aops = { 1557 .readpage = blkdev_readpage, 1558 .writepage = blkdev_writepage, 1559 .write_begin = blkdev_write_begin, 1560 .write_end = blkdev_write_end, 1561 .writepages = generic_writepages, 1562 .releasepage = blkdev_releasepage, 1563 .direct_IO = blkdev_direct_IO, 1564}; 1565 1566const struct file_operations def_blk_fops = { 1567 .open = blkdev_open, 1568 .release = blkdev_close, 1569 .llseek = block_llseek, 1570 .read = do_sync_read, 1571 .write = do_sync_write, 1572 .aio_read = generic_file_aio_read, 1573 .aio_write = blkdev_aio_write, 1574 .mmap = generic_file_mmap, 1575 .fsync = blkdev_fsync, 1576 .unlocked_ioctl = block_ioctl, 1577#ifdef CONFIG_COMPAT 1578 .compat_ioctl = compat_blkdev_ioctl, 1579#endif 1580 .splice_read = generic_file_splice_read, 1581 .splice_write = generic_file_splice_write, 1582}; 1583 1584int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1585{ 1586 int res; 1587 mm_segment_t old_fs = get_fs(); 1588 set_fs(KERNEL_DS); 1589 res = blkdev_ioctl(bdev, 0, cmd, arg); 1590 set_fs(old_fs); 1591 return res; 1592} 1593 1594EXPORT_SYMBOL(ioctl_by_bdev); 1595 1596/** 1597 * lookup_bdev - lookup a struct block_device by name 1598 * @pathname: special file representing the block device 1599 * 1600 * Get a reference to the blockdevice at @pathname in the current 1601 * namespace if possible and return it. Return ERR_PTR(error) 1602 * otherwise. 1603 */ 1604struct block_device *lookup_bdev(const char *pathname) 1605{ 1606 struct block_device *bdev; 1607 struct inode *inode; 1608 struct path path; 1609 int error; 1610 1611 if (!pathname || !*pathname) 1612 return ERR_PTR(-EINVAL); 1613 1614 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1615 if (error) 1616 return ERR_PTR(error); 1617 1618 inode = path.dentry->d_inode; 1619 error = -ENOTBLK; 1620 if (!S_ISBLK(inode->i_mode)) 1621 goto fail; 1622 error = -EACCES; 1623 if (path.mnt->mnt_flags & MNT_NODEV) 1624 goto fail; 1625 error = -ENOMEM; 1626 bdev = bd_acquire(inode); 1627 if (!bdev) 1628 goto fail; 1629out: 1630 path_put(&path); 1631 return bdev; 1632fail: 1633 bdev = ERR_PTR(error); 1634 goto out; 1635} 1636EXPORT_SYMBOL(lookup_bdev); 1637 1638int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1639{ 1640 struct super_block *sb = get_super(bdev); 1641 int res = 0; 1642 1643 if (sb) { 1644 /* 1645 * no need to lock the super, get_super holds the 1646 * read mutex so the filesystem cannot go away 1647 * under us (->put_super runs with the write lock 1648 * hold). 1649 */ 1650 shrink_dcache_sb(sb); 1651 res = invalidate_inodes(sb, kill_dirty); 1652 drop_super(sb); 1653 } 1654 invalidate_bdev(bdev); 1655 return res; 1656} 1657EXPORT_SYMBOL(__invalidate_device);